
Complementary science of interactive programming systems 
Is it worth looking at the history of programming, not just for the sake of history, but in order to 

discover lost ideas that could be utilized by present-day computer scientists to advance the 

state of the art of programming? We answer the question in the affirmative, propose a metho-

dology for doing so and present an early experiment that recovers a number of interesting 

programming ideas from, against all odds, Commodore 64 BASIC. 

Programming systems and languages 

The history of programming may seem too short to comprise multiple incommensurable 

scientific paradigms, but there have certainly been interesting shifts over time. I focus on the 

shift from programming systems to programming languages discussed by Gabriel (2012) and 

hinted by Priestley (2011). Work on programming systems considers interactive environments 

like Smalltalk or Interlisp. It focuses on what is happening in the system; a study of program-

ming system considers source code, state of the running system as well as user interactions. 

Now dominant work on programming languages focuses on meaning of a program and consi-

ders solely the code. This shift enabled much contemporary programming language research 

and led to the development of useful program analysis tools, including e.g., type systems. But 

what ideas have been victim to Kuhn loss associated with the paradigm shift? What program-

ming ideas are lost if we only think in terms of programming languages?  

Past work on programming systems explored, for example, ways of modifying programs while 

running (Bobrow et al., 1988) and interesting ways of constructing programs by interacting with 

the programming environment (Smith, 1977). Such research cannot be easily expressed in 

terms of the programming language research paradigm and many of the systems that 

implemented it are no longer available in an executable format. So, how can we recover such 

ideas and make them available to present-day computer scientists?  

Complementary science  

To be effective, specialist science needs to accept certain assumptions about what it studies 

and computer science is no difference. However, this means that there are interesting questions 

outside of its core focus. The methodology of complementary science proposed by Chang 

(2012) aims to study such questions. It proposes looking at the history of science, and use the 

historical perspective to recover forgotten knowledge, use it for critical assessment of 

contemporary scientific research and attempt to further develop such forgotten ideas. As 

Chang suggests, such extension of past research is worthwhile in cases where scientists 

abandoned (some aspects of) a scientific research paradigm too early.  

We argue that the move from programming systems to programming languages is one such 

case where computer scientists abandoned a research paradigm too early. In the case of 

programming, the methodology may be even more valuable. First, programming research does 

not aim for truth, but aims for adequacy (Cross, 2006). As such, it may abandon ideas not 

because of any experimental failure, but for more social reasons. Second, ideas on 

programming also do not come solely from the world of (computer) science as many innovative 

systems are built by practitioners and “hackers”. Complementary science provides a method 

that can reintegrate such ideas into the realm of academic research. 



 

Figure 1. Reconstruction of a programming environment for Commodore64 BASIC, running a well-known 

one-liner for generating a maze (Montfort et al, 2012). Available at http://tomasp.net/commodore64  

Case study: Reconstructing Commodore64 BASIC 

In our initial work on studying programming systems using the method of complementary 

science, we explore the interactive programming environment of Commodore64 BASIC 

(Figure 1). This is a perfect example of a programming system outside of the mainstream 

computer science – the BASIC language “mutilates the mind beyond recovery” (Dijkstra, 1984) 

and the Commodore64 programming environment seem like a toy for hobbyists. Yet, the 

programming environment has a number of interesting characteristics. For example: 

• Interaction uniformity. The system uses a single interaction for both editing programs 

and running programs. If a line starts with a number, it is inserted into the program, 

otherwise it is executed directly. 

• Simple & flexible workspace. The use of line numbers makes it easy to write and test 

parts of a program independently, as well as to debug programs (without a dedicated 

debugger) by setting variable values and jumping to a desired line. 

Studying programming systems 

Interactive programming systems, both past and present, present an interesting challenge for 

their rigorous study. In particular, many of their interesting features are only apparent when 

following a realistic interaction with the system. This is difficult to reconstruct for systems that 

are no longer available or rely on specialized hardware. Edwards et al. (2019) review a number 

of possible methods that have been used for presentations of interactive programming systems 

in recent years, including video recordings and interactive web-based essays. We believe those 

approaches can be fruitfully combined with the complementary science methodology. 

http://tomasp.net/commodore64


In particular, the Commodore64 BASIC reconstruction (Figure 1), developed by the first author, 

is an interactive web-based essay that combines a tutorial walkthrough that illustrates the 

development of a simple game with an interactive console where the game can be run. The 

console only supports a limited subset of the system, but is representative enough to illustrate 

the interesting aspects of the programming environment. The reader can type and run code on 

their own, but also use the “Show me” button to replay the interaction. 

Conclusions 

We believe that the history of programming contains numerous interesting paths not taken that 

are worth recovering and that could provide inspiration for contemporary research. Doing so is, 

however, not simply a matter of reading old academic papers. In order to gain a fundamental 

understanding, we need a historical perspective that understands systems through the 

perspective of the paradigm from which they originate. The case of programming systems vs. 

programming languages illustrates this point well. If we look merely at the language used by a 

programming system, we can easily miss the most important characteristic of the system, that 

is how the programmer interacts with it. To realize this, we need a historically-informed reading 

of the system. Finally, reconstructing ideas about interactive programming systems and making 

them accessible to contemporary computer scientist (a goal we adopt from complementary 

science) also requires the use of suitable media that allow interaction – such as interactive 

web-based essays. 

References 

Gabriel, R.P. (2012). The structure of a programming language revolution. In Proceedings of the 

ACM international symposium on New ideas, new paradigms, and reflections on programming 

and software (pp. 195-214). 

Priestley, M. (2011). A science of operations: machines, logic and the invention of programming. 

Springer Science & Business Media. 

Bobrow, D.G., DeMichiel, L.G., Gabriel, R.P., Keene, S.E., Kiczales, G. and Moon, D.A. (1988). 

Common lisp object system specification. ACM Sigplan Notices, 23(SI), pp.1-142. 

Smith, D.C. (1977). A computer program to model and stimulate creative thought.  

Basel: Birkhauser. 

Chang, H. (2012). Is water H2O? Evidence, realism and pluralism (Vol. 293). Springer Science & 

Business Media. 

Cross, N. (2006). Designerly Ways of Knowing. ISBN 978-1-84628-300-0. Springer. 

Montfort, N., Baudoin, P., Bell, J., Douglass, J. and Bogost, I. (2014). 10 PRINT CHR$(205.5 + 

RND(1));: GOTO 10. MIT Press 

Dijkstra, E. (1984). The threats to computing science (EWD898). Delivered at ACM 1984 South 

Central Regional Conference, November 16–18, Austin, Texas.  

Edwards, J., Kell, S., Petricek, T. and Church, L. (2019). Evaluating programming systems design. 

In proceedings of PPIG 2019. 


