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Abstract Computer programs do not always work as expected. In fact, ominous warnings about
the desperate state of the software industry continue to be released with almost ritualistic
regularity. In this paper, we look at the 60 years history of programming and at the different
practical methods that software community developed to live with programming errors.

We do so by observing a class of students discussing different approaches to programming
errors. While learning about the different methods for dealing with errors, we uncover basic
assumptions that proponents of different paradigms follow. We learn about the mathematical
attempt to eliminate errors through formal methods, scientific method based on testing, a
way of building reliable systems through engineering methods, as well as an artistic approach
to live coding that accepts errors as a creative inspiration.

This way, we can explore the differences and similarities among the different paradigms. By
inviting proponents of different methods into a single discussion, we hope to open potential
for new thinking about errors. When should we use which of the approaches? And what can
software development learn from mathematics, science, engineering and art?

When programming or studying programming, we are often enclosed in small communities
and we take our basic assumptions for granted. Through the discussion in this paper, we
attempt to map the large and rich space of programming ideas and provide reference points
for exploring, perhaps foreign, ideas that can challenge some of our assumptions.
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Learning to live with errors

BN Abrief history of coding errors

If trials of three or four simple cases have been made, and are found to agree with
the results given by the engine, it is scarcely possible that there can be any error
amongst the cards [5].

The opening quote from Charles Babbage about the Analytical Engine suggests that
Babbage did not see errors as a big problem. If Babbage was right, the software
industry would save billions of dollars, but sadly, eradicating all errors from our
software is far from easy.

In retrospect, it is curious to see how long it took early software engineers to realise
that coding errors are a problem. As Mark Priestley writes, a typical early comment
was that of Miller [circa 1949], who wrote that such errors, along with hardware
faults, could be “expected, in time, to become infrequent” [33].

Over the next 20 years, computers developed from a research experiment into an
ordinary scientific tool and industrial instrument. As noted by Nathan Ensmenger,
by the end of 1960s many were talking of a computing crisis. For the next several
decades, managers, academics and governments would release warnings about the
desperate state of the software industry with ritualistic regularity [15].

In this essay, we trace the history of errors, or miscomputations [16], in software
engineering. We discuss different strategies that programmers employ for dealing
with errors, taking inspiration from mathematics, science, engineering and art. We
conclude by speculating how can the industry escape from the seeming perpetual
computing crisis.

Lesson 1: Responding to the computing crisis

TeEACHER: To open the discussion, do you think that software engineering is suffering
from a crisis caused by coding errors? And if so, what do we need to eradicate them?

PuriL BETA: I'm not sure we can really call our discipline software engineering. As a
proper engineering discipline, we need to develop engineering standards that ensure
minimum performance, safety requirements and make sure that developing software
is a consistent and repeatable process. The black art of programming has to make a
way for the science of software engineering.!

PupiL ALpHA: This is an admirable goal, but software development is not repeatable in
the same way as, say, building bridges. In software, requirements are always changing.
We should see software as craftsmanship and emphasize skills of developers.

The only way to make software better is to value individuals and interactions over
processes and tools [28]!

'The quote is adapted from the calls for the professionalization of programmers that appeared
around the time of the NATO Conference in 1968 [15]
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PuriL Tau: Coding errors must be avoided at all costs. If a program contains an error,
we should not even call it a program! But you are both going about it the wrong way —
even with the best craftsmans and processes, there is always a chance of human error.

We need to build on strong mathematical foundations and write provably correct
software. Dependently typed programming languages are the way toward eradicating
all errors.

PupriL ALpHA: This might work for the factorial function or Fibonacci numbers, but
real software systems are not so simple. When you start building a real system, you
do not even have a full specification, more so a formal one. This is why I think the
test-driven methodology can help [7]. You turn requirements into tests, discovering
the specification and writing software that adheres to it at the same time.

PuriL EpsiLon: Oh, come on! You both really think you can eliminate all errors? Take
any complex distributed system as an example. So many things can go wrong — one
of your machines runs out of memory, your server receives an unexpected request.
Even a cosmic ray may flip a bit in your memory if your data centre is large enough!
The path to dependable software is to learn to live with errors.

PupiL Tau: I would like to object; we can accommodate for all of these situations in
our proofs, but I see there is only little time left and I'm curious if OMEGA can direct
our discussion back into a more sensible direction.

PuriL OMEGA: Yo, I tell you, errors are fun!

TeEAcHER: That is an interesting position OMEGA, but I think the class needs more
explanation. What exactly do you mean?

PupiL. OMEGA: I was playing in a club yesterday. I accidentally put on a wrong sample
and it turned out to be much better! If you make an error, you might be surprised.
And if Tau thinks it is unethical, wouldn’t it be just as unethical as to limit our method
of discovery? Penicillin was discovered by the kind of accident that Tau wants to ban!

TeEACHER: It does seem that after more than 60 years, errors are still an important
concern of the software industry and there is much disagreement about how to live
with them. Perhaps it will be easier to expand on the different positions once we
consider recent infamous examples of concrete computer errors.

Lesson 2: From Y2K to the Knight Capital glitch

TEACHER: Let us now consider the different strategies for dealing with errors using a
number of case studies. The first one is the infamous Y2K bug. This was caused by the
fact that many old programs stored only the last two digits of a year in a date and so
adding one day to 31/12/1999 produced a date that could be interpreted as 1/1/2000,
but also as 1/1/19002

? Unlike a modern data scientist, our class is lucky enough that it does not need to consider
different ways of writing days and months in a date!
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As a concrete instance, my bank statement on 1/1/2000 reported that $8617
disappeared from my savings! Fortunately, they returned my money on the next day...

BETA: I bet the specification was correct and stated how to calculate the compound
interest for a given number of years, but due to a sloppy encoding of years, the system
calculated the interest based not on +1 year, but based on -99 years!3

OMEGA: This is a case where formal proofs are not going to help. You can prove that
your calculations and algorithms are correct, but when it comes down to metal, years
won'’t be idealized natural numbers, but only two digits to save the memory space!

Tau: That would only be the case if you were using program proofs in an informal
way, but if we talk about proving programs correct, we must not make any idealizing
simplifications. We must prove properties of the actual implementation — the bug was
an incompleteness in the specification. The specification must be detailed enough not
to leave room for any ambiguity, such as how are the dates going to be represented.

ALPHA: I cannot easily think of a theorem to prove here. If the property we prove is
that the system correctly calculates the return on investment using the compound
interest formula for a given number of years, that still does not prevent us from
accidentally calculating it for -99 years...

TeacHER: Finding properties to prove is, indeed, an important question and we
will return to it in Lesson 5. To explore different interesting questions, let’s consider
another well-known bug. In August 2012, the trading firm Knight Capital lost $440m
in less than 45 minutes due to an erroneous deployment of their software.

The company removed outdated code from the software and re-purposed a flag
that was used to trigger it. It then deployed a new version of the software on all
servers except for one — and turned on the flag. This executed new routine on the
updated servers, but it triggered the outdated code on the one server running the old
version, causing the system to issue millions of erroneous trades [35].

OMEGA: I cannot believe it took Knight Capital 45 minutes to turn off the malfunc-
tioning server! The lesson here is clear. You should design the system to make such
errors immediately visible and you should be able to quickly manually intervene. You
should be able to stop incorrect trading just like you can stop a discordant beat that
you accidentally play in live music performance.

EpsiLon: I can see how a manual coding intervention could correct the error promptly,
but why not avoid it in the first place? The scenario sounds exactly like the situation
for which Erlang and its “let it crash” [3] approach has been designed! Erlang has
been used in telecommunications for systems that need to run for years without an
outage and are updated on the fly.

Rather than re-purposing a flag, you would simply add a new kind of message. If
an old system was running on one of the servers, it would crash when it receives a

3BETA makes a correct guess, $8617 is what you lose when you assume 2% interest rate on
initial investment $10000 over -99 years.



Tomas Petricek

message it cannot handle — and it would get restarted by a supervisor process while
all the updated servers would continue working fine.

Tau: If the system is programmed to automatically recover, then I do not think we are
still talking about errors. But I must admit, I find it a very inelegant approach...

TeEAcCHER: The case of Knight Capital revealed two more important questions that
we should discuss in future lessons. First, I would like to return to the idea of live
intervention in Lesson 4. Second, the Erlang approach of incorporating some degree
of error tolearance is an interesting alternative and we’ll return to it in Lesson 9.

Now, let’s discuss one more case study. In January 2016, Google Translate caused
an embarrassing diplomatic incident. When translating from Ukrainian to Russian, it
started translating Russia as “Mordor” and Sergey Lavrov (Russia’s foreign minister)
as “sad little horse” [6]. The error was introduced automatically — it mirrored language
used by some Ukrainians following Moscow’s annexation of Crimea in 2014.

Tau: I object, this is not a real error! It might be an unfortunate behaviour, but the
machine learning algorithm did what it was supposed to do — learn from the usage of
words in different texts.

ArpHA: That might be the case, but you wouldn’t want an accident like that to cause
a war! We should always see errors in the wider socio-technological perspective. That
is why a human responsibility can never be replaced by engineering processes or
mathematical proofs.

B} understanding programming paradigms through errors

When dealing with errors, different communities follow different basic principles.
This does not mean just that they will deal with errors differently. It means that their
definitions of errors differ and so does their criteria for what can be considered a
solution. In philosophy of science, such sets of incommensurable assumptions are
known as research programmes or paradigms:#*

The discussion in this section will uncover basic assumptions behind different
programming paradigms as seen through the perspective of eliminating coding errors.
While our class can reconcile some of the views (e.g. types and tests), we find that
errors draw a bigger dividing line when trying to understand what a program is in
the first place.

Lesson 3: Maintenance as part of the programming process
TEACHER: According to some studies, from 1960s on, software maintenance has

represented between 50% to 70% of total expenditure on software [15]. This is in part
due to fixing bugs, but perhaps more importantly also due to required modification in

4This is an over-simplification, but for the purpose of this article, we use research programmes
[25] and research paradigms [24] in a similar sense.
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response to the changes in the business environment. The Y2K error is a good example
of a change in the environment — the year change that was perhaps unexpected when
software was originally written suddenly became important at the end of 1990s.

ALPHA: The test-driven approach to software development works equally well during
the initial development and maintenance. You write tests to specify the behaviour.
With the Y2K bug, you would simply add a new test, fix possible failures and deploy a
new version.

TeAacHER: This is an interesting perspective on errors. Are you not only accepting
that there are errors in the program, but even propose to incorporate them into the
program development life-cycle?

Tau: Excuse me, but I think we should not be confusing what a program is with how
it is created. A program is just a linguistic entity that you can analyse for correctness
and run. How it is written is not a concern of our present discussion!

TeEACHER: This perspective might be exactly the kind of assumption that defines a
scientific research programme...

OMEGA: And I think it is fundamentally flawed! The fact that more than half of costs
involve maintenance only supports this. Programming is not a task of constructing a
linguistic entity, but rather a process of working interactively with the programming
environment, using text simply as one possible interface?>

BETA: This reminds me of a banking system written in Smalltalk that I worked on in
the 9os. In Smalltalk, you create software by interacting directly with the environment.
The program runs at the same time as you are creating it.

This was useful for rapid feedback, but once the system was working, you did not
continue to live code it, except sometimes when it went wrong and you needed to
investigate why and fix the error.

OMEGA: But the decision when to watch the system and when to leave it alone was
only yours! In live coding, you want to interact with the system during the whole
performance. In other applications, you interact more frequently in an early phase
and less frequently in a later phase. But you still need to be able to interact!

Lesson 4: Programming as human-computer interaction

TEACHER: Let us spend more time on the idea of seeing programming as an interaction
with the programming environment. We already talked about it in the context of live
coded performance and Smalltalk programming. Those are great examples, but can
we find more examples of this approach to programming?

OMEGA: Going back to the Y2K bug, live coding is actually what most companies did
in response! Yes, they tried to fix possible bugs in advance, but in the end, they had a
programmer on-site over the midnight to fix any problems as they happen.

5OMEGA is paraphrasing the definitions of Algol and Smalltalk research programmes [33]
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Similarly, when mitigating a hacking attempt, you should be able to connect to the
system and live code a defense [11]. Sadly, most systems just did not have a very good
live coding interface to make such interaction possible.

TEACHER: Is there anything that programming can learn from live coding then?

EpsiLon: I have no interest in live coded music, but I see one similarity. What OMEGA
described sounds a bit like working with a REPL environment in Python or Racket.

There, you also type commands and run them immediately. Sometimes you type
the wrong thing, see an error message and then you correct yourself. But that is still
just a playground, not something you could use to build complex systems.

TeEAcCHER: Should we then agree that OMEGA’s live coded music does not teach us
much about professional software development, or are there other areas of software
that are more similar to live coding?

EpsiLoN: I have one more example, but again, it is not what I normally think of as
programming. Doing data science using tools like Matlab or R also feels like live
coding. You also issue commands, observe the results and correct errors. Error like
typos are immediately obvious, but you can also live code experiments to test more
complex machine learning algorithms such as the one translating Russia as Mordor.

Tau: Following the same logic, you could claim that interactive theorem proving in
Coq is also live coding with errors, because you do write code interactively until
you satisfy your proof obligations. But this is clearly not an error. Just a process of
constructing a provably correct program.

ALPHA: I'm not sure about theorem proving, but test-driven development (TDD)
can probably be seen as a form of live-coding too. A good test runner runs in the
background and shows the failing tests immediately as you are writing your code to
provide rapid feedback.

OMEGA: This is exactly how live coding works! In TDD or data science, you are trying
to make errors more visible so that you can quickly correct them. It is the same as live
coded music where errors are immediately apparent. When you play a wrong note in
a live coded performance, you will immediately hear that.

I think there are two main lessons for software development. First, we need to
abolish this artificial distinction between a phase when software is created and a phase
when it is autonomously running. As the costs of maintenance showed, programming
is almost never done. Second, we need to code in a way that make the errors visible.
Just like you can immediately hear a wrong note, you should be able to hear or see
an incorrect execution of a program, perhaps in some built-in monitoring tools.

Tau: Well, now I see what you are trying to achieve, but it gives me a headache! If we
wanted to guarantee correctness of such systems, we would have to shift from proofs
about static programs to proofs about interactions and dynamic systems.

I'm not saying it is impossible. It might even be an interesting research problem!
But I would very much prefer to solve the easier task of proving correctness of static
programs first.
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Lesson 5: Achieving correctness through tests and proofs

TEACHER: Let us go back to the idea of programs as linguistic entities. Does this
perspective help us eliminate coding errors?

Tau: Absolutely! A program is essentially a formal language term and this lets us utilize
the resources of logic in order to increase the confidence in correctness of programs®
Instead of testing or debugging a program, one should prove that a program meets its
specification. Then there will be no doubt that our software is correct and serves its
purpose.

EpsiLon: I like reading papers about programming language theory and I do enjoy
an elegant proof, but I do not see how you could write proofs about software system
that has hundreds of thousands of lines of code.

Tau: For reliable software engineering, we need to make proof an inherent part
of the development process. Thanks to the Curry-Howard isomorphism, proofs are
types and so we can use types to get all the amazing power developed in logic while
programming for free.

ArLpHA: I can understand why people like types. They can be useful for avoiding basic
kinds of errors. But the problem is that types do not capture the full complexity of
software requirements.

You still need to write your user stories and to make sure they keep working,
you need some form of testing. And if you will have tests anyway, why restrict the
expressive power of a language with types and not use tests as the way of ensuring
program correctness?

Tau: Substituting proofs for tests is never going to be enough. With tests, you are just
showing the absence of certain errors, not proving your program correct.”

In modern dependently typed languages like Idris and Agda, you can express the
full program specification just in terms of types. And then we will finally be able to
write provably correct software!

TeEAcHER: I find it interesting that we are shifting the focus from program code to the
properties that specify what the program does...

EpsiLoN: At first, I thought all this talk about proofs is pointless, but now that you
mention properties, I think there might be something useful here.

Finding properties about your program is equally important if you are writing
property-based tests with tools like QuickCheck [13], which then check that a property

SHistorically, this position first appeared with the Algol language. To quote Priestley [33]:
One of the goals of the Algol research programme was to utilize the resources of logic to
increase the confidence that it was possible to have in the correctness of a program. As
McCarthy [30] had put it, “[i]nstead of debugging a program, one should prove that it
meets its specifications, and this proof should be checked by a computer program”.

7Tau is paraphrasing Dijkstra’s famous quote: “Program testing can be used to show the
presence of bugs, but never to show their absence.” [14]
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holds for partially randomly generated inputs. With random testing tools, you can
focus more on finding as many useful properties as you can, rather than on writing a
long-winded proof for every single one of them.

Lesson 6: Specifying program properties

TEACHER: Going back to the Y2K bug, the Knight Capital glitch and Google Translate
issue, can you think of some properties that we can prove or use with random testing?

ArLpHA: In case of banking system and Y2K, the test suite could include a check for
a property that adding calculated interest to a savings account never decreases the
total balance. The Y2K bug would be easily discovered and eliminated before it could
happen!

Tau: Excuse me, but this is no way of finding theorems about programs! You just picked
one random property that you believe should hold, but this is not a methodology for
constructing provably correct software.

Instead, we need to start from small correct building blocks. We need to go back to
the basics and define what a date is and what are the properties of functions operating
on dates. Assuming n is a function that returns the next date and > is the ordering on
dates, we want to prove monotonicity stating that Vd.n(d) > d.

OMmEGA: I wonder how this accounts for leap seconds... I'm not saying it cannot be
done, but if we get stuck discussing monotonicity of dates, how are we ever going to
develop something as complex as banking system? And isn’t the specification going to
become terribly complex?

Tau: Today, most people who write software assume that the costs of formal program
verification outweigh the benefits and that fixing bugs later is cheaper than investing
into correctness from the very start.

I agree we still have a long way to go, but many research projects show that
this can be done [12]. For example, CompCert [27] is a verified C compiler with
a machine-checked proof that the generated executable code behaves exactly as
prescribed by the semantics of the source program.

TEACHER: Is there something that we can learn from CompCert about finding
properties to prove about large systems?

Tau: Unlike the property about not decreasing total balance that ALPHA suggested
earlier, the property that is proved in CompCert is a complete specification. The types
specify that the compilation preserves semantics of programs between the formally
specified source language and formally specified machine code.

This means that you can infer the correct implementation from the type?! In
Coq, this did not happen automatically, but with recent development in Idris [9],

8This is a common view in the dependently-typed community, however there does not
seem to be a canonical reference making this exact point. A good example McBride and
McKinna’s work [29]
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you will just need to write a sufficiently detailed specification using types and the
implementation will be inferred for you.

EpsiLoN: And the circle is closed! You are proposing to shift all the complexity of
programming from writing a solution to writing a specification of the solution. I do
not see how this is any safer.

In today’s languages, we have to analyze the implementation and we invent new
abstractions and constructs to make this easier. In your dependently typed future, we
will have to analyze the equally complex specifications and we will presumably be
inventing new abstractions and constructs to make this easier!

OMEGA: I have to admit, we came to an interesting point here. Is it easier to write a
correct concrete implementation or a correct abstract specification?

I can see how writing the specification might be easier for C compiler, but for typical
business applications where finding properties is hard, concrete implementation in a
high-level language will be easier to understand.

n Mathematics, science, engineering and art

Through the discussion in the previous section, we discovered several ways of thinking
about programs. We have also seen that if you take one of them as granted, it is
hard to understand what proponents of other perspectives are saying — the different
assumptions forming the basis of a different paradigm make other approaches illogical.

In this section, we try to relate the different ways of thinking about programs with
different forms of human activity. It turns out that seeing program as a linguistic
entity has much in common with mathematics and testing can learn from philosophy
of science. Viewing program as a long-running system is best seen as engineering and
focusing on the interactions in programming can draw useful ideas from art. There
really are four different paradigms!

Lesson 7: Learning from philosophy of science and mathematics

TEACHER: Just like errors are an interesting topic for computing, so are experimental
failures an interesting topic when discussing science. Can we learn something
interesting about computing if we see errors as experimental failures?

Tau: A theory is scientific if it can be falsified [32], but we can never prove it true.
I see an obvious parallel with the test-driven development methodology. Tests can
falsify a program, but they can never prove that it is correct. Testing does not increase
our confidence about program correctness, just like a scientific experiment that does
not fail is not showing that a scientific theory is correct.

TEACHER: So, is there really no information in the fact that a scientific theory keeps
escaping refutation? Or that a software system passes a growingly comprehensive
test suite?



Tomas Petricek

EpsirLon: I think that even in science, not everybody agrees with the strict Popperian
view. If a scientific theory passes a test and makes a correct prediction that could have
disproved it, the probability that it is correct increases. Running the exact same test
twice does not improve the probability, but I think that a new test does.

ALpHA: I get it now! It’s like in the Bayes’ theorem. There is a prior probability that
the software is correct, possibly based on the team behind it. Testing the software
then provides new evidence and the Bayes’ theorem prescribes how probabilities are
to be changed in light of this new evidence?

The fact that running the exact same test twice does not improve the probability of
correctness, is already accounted for by the Bayes’ theorem. So what we need is a
way of finding relevant tests that do increase the probability.

TEACHER: It seems that we can account for an increasing confidence in program
correctness through testing by using the Bayesian approach to philosophy of science!
Tau, do you agree?

Tau: That might be right, but what it shows is the limits of relying on tests. Perhaps
you can increase probability, but you will never be absolutely certain. However,
programming is more like mathematics where proofs can give you exactly that —
absolute certainty. Experimentation is good in areas where we cannot have deductive
knowledge ° but why settle for probability if you can have a proof?

EpsiLoN: Let me quote Imre Lakatos, who once said that “when a powerful new
method emerges, the problems it cannot talk about are ignored” [26]. This is one
danger of focusing on proofs — suddenly it becomes impossible to talk about important
problems that cannot be explained through proofs. For example, what is the most
intuitive way of modelling a distributed system? Surely, using the right intuitive
programming model is crucial for writing correct software!

TEACHER: Well, even if we see programming more as mathematics, is achieving
correctness the only goal of proofs?

OMEGA: Proofs aren’t there to convince you that something is true. They are there
to show why it is true [4]. Even more interestingly, they sometimes play the same
role as errors in live coding performance — they lead into unexplored territory of
mathematics where we may even find different fundamental questions! [18]

TEACHER: Can proofs about programs play this role?

ErsiLon: I had a look at some Coq programs and I am convinced that the proofs
are true, but I doubt they fulfill the explanatory role. Reading a sequence of tactic
invocations is definitely harder than reading an implementation of the same problem
in a simple language.

?Bayesian Epistemology [10] is based on similar reasoning
°As noted by Hacking [19], “we find prejudices in favour of theory as far back as there is
institutionalized science.”
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Tau: I agree that Coq proofs can be complex, but they do have explanatory role. After
all, in CompCert, the proof proceeds by a sequence of steps that translate source
code in C into source code in a number of intermediary languages. Each of these
translations preserves the semantics. The proof essentially describes the architecture
of the compiler!

OMmEGA: I still doubt this can reveal truly new and unexplored ideas though. Perhaps
the problem is that constructive proofs like those about programs just have to follow
more rigid structure. In mathematics, proof by contradiction can introduce unexpected
creative twists that you can hardly get in proofs about programs.

Lesson 8: Errors as a source of artistic creativity

TeEAacHER: Talking about sources of creative inspiration, OMEGA, you claimed earlier
that errors are fun and can lead to new discoveries. Can you clarify what you mean?

OMEGA: An error in the performance of classical music occurs when the performer
plays a note that is not written on the page. In genres that are not notated so closely,
there are no wrong notes — only notes that are more or less appropriate to the
performance [8].

A musical live coding performance is also not closely notated. You issue commands.
Some of them are more appropriate and some of them are less appropriate. I imagine
data scientists using REPL experience the same feelings when things do not go as
expected!

TeEAcHER: This is talking about more interactive flavor of programming, but do errors
also have a useful role in a more traditional software development?

BeTA: I think so, but we need to consider the entire software development process,
including clarification of the specification and maintenance. I believe that errors often
show areas where we need to clarify specification.

EpsirLon: In Erlang, we say that an error is a situation in which the programmer does
not know how the program should correctly react, which seems to agree with what
BETA is saying! Of course, in Erlang, the answer is to kill the process and let the
supervisor recover from the error [3].

OMEGA: I did not think of that, but I think this perfectly explains why artistic inspiration
is important for programming! Seeing software development as mathematics or science
makes us want to carefully control the process and impose tight constraints to make
it reproducible. In contrast, artistic process tolerates or even welcomes a variety of
inputs and works to produce the best result given the situations encountered while
executing the process [17].

Tau: I'm not sure I follow. How is reproducibility a bad thing?

OMmEGA: Of course, reproducibility is nice, but it is a chimera. There is much more
variety in software engineering than in traditional engineering disciplines and re-
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quirements are always changing. An artistic process can adapt to very poorly stated
requirements or even no requirements at all [17].

BETA: But OMEGA, do you not agree that the attempts to turn our discipline from what
I earlier called “black art of programming” into an engineering discipline contributed
to the quality of software that we build today?

OMEGA: It very likely did, but we can’t say it’s helped the quality of design much [17]
and this is why we keep making the same errors!

In live coding you can very visibly improve through practice and the progress is
clear to see. Perhaps we need to look at how artistic work makes such improvements
possible? I suspect it might, in part, be thanks to the interaction with directly apparent
errors and their unexpected consequences!

Lesson 9: Engineering, or how did software get so reliable without proof?

TeEAcHER: The fact that we have this lecture series clearly shows that errors are still
an important concern, but going back to what BETA said in the previous lecture, do
you think that the quality of software that we build has been improving over, say, the
last 60 years?

EpsiLoN: Looking at the history, it is fascinating to see all the regular warnings about
the desperate state of the software industry. There is an interesting dichotomy: on
the one hand, software is one of the largest and fastest-growing sectors of the U.S.
economy; on the other hand, its reputation continues to be marked by perceptions of
crisis and failure [15].

Tau: In mathematics, you either have a proof, or you do not. In the same way, software
is either correct, or not correct — there is no such thing as “only a slightly broken”
software!! And so I agree with all of those who think that our industry has a serious
problem to solve.

That said, I'm often surprised how did software get so reliable without proofs.12
Perhaps it is because solid engineering do help to limit the damage caused by broken
software that we continue to produce.

EpsiLoN: Even if we can make all the software components provably correct, we
will still have the same problem — take large data centres or distributed systems in
telecommunications as examples. At that scale, you need to account for unexpected
hardware failures.

There will always be errors and letting the program crash and then recover
automatically through supervision is an effective way of addressing that. However,
I do like some of OMEGA’s ideas about live coding and I think they can be used to
make our monitoring and recovery tools better.

"TaAu is paraphrasing Erik Meijer’s article [31]
2 This very same question has been asked by a proponent of formal methods and the Algol
research programme [20]
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TEACHER: It seems that there must be some useful lessons from other engineering
disciplines, say, civil engineering...

BeETa: The basic idea in engineering is safety factor, which measures how much
stronger a system is than it usually needs to be. A civil engineer will calculate the
worst case load for a beam, but then build it ten times stronger, or at least twice as
strong. Such over-engineering is extremely effective and is even required by law for
bridge building.

The idea of safety factors is something I would like to see in software engineering
too. Perhaps not required by law, but certainly required by the code of ethics of any
reputable software engineering organization [2].

EpsiLoN: I never thought about it in such a formal sense, so I have to admit, I do
not even know how to calculate such safety factor for supervisor-based distributed
applications...

Tau: Now you got me interested too. The safety factor for a bridge can be calculated
based on the expected load, but in doing so, we assume a certain linearity. Increasing
the strength of material twice provides a safety factor of 2. But software systems
might involve feedback loops or non-linearity where safety factor of 2 requires tenfold
over-engineering.

What we need is a theory of stability, or perhaps a type system that can guarantee
that certain amount of supervision does, indeed, provide the required safety factor!

TEAcCHER: Judging by the way you are talking about the idea, Tau, it almost seems
that EpsiLoN convinced you to accept errors! Or am I mistaken?

Tau: But we are not talking about errors here at all! All the so called “invalid states”
that EpsiLoN proposes to handle by supervision and recovery are now perfectly valid
and expected! It is just a different way of expressing your program, but as all the ones
we talked about earlier, it does eliminate all errors from the software system.

Errors as boundary objects

Programming is not just one of mathematics, science, engineering or art. We can see
it through all these four perspectives and each of them provides different inspiration.
We have seen that each of the different paradigms for thinking about errors is more
inclined to take inspiration from a different kind of human activity.

It might seem that these four approaches define incommensurable paradigms, but
focusing our discussion around errors gives us a common central point that everyone
can understand, even though in a different and somewhat incompatible ways. In
other words, errors provide what sociologists refer to as boundary object [34].

In the last section, we will attempt to reconcile those four different approaches. Will
we ever be able to unify them into one grand plan for dealing with errors? Should we
accept them as incommensurable competing research programmes and wait until one
of them becomes dominant? Or can we choose one of the paradigms depending on
the kind of problem we are solving?
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Lesson 10: Searching for a grand unification

TEAcCHER: Now that we discussed errors from many different perspectives in the last
9o lessons, perhaps the best way to start the last lesson is by naively repeating our
initial question. What are errors and what can we do to build better software?

BETA: The simple answer is that correct software corresponds to its specification, but
we have seen that there are many issues with this answer. A complete specification
is hard to obtain, evolves during the life-cycle and for some systems, it may be very
complex or difficult to make precise.

TeAcHER: Should we then accept some degree of errors in business applications
as inevitable and try to build fully specified and provably correct software only for
mission critical systems?

EpsiLoN: We talked about the difficulties with finding properties to prove though. In
fact, the traditional division between “mission critical” systems that must be formally
verified and “business applications” where some errors are acceptable is misleading!

Instead, we should think about property-based systems whose behaviour is easier to
describe as a property or a theorem and behaviour-based systems whose behaviour is
better described as concrete code.

For the first, we need to get the specification right and then we can use property-
based testing or even dependently-typed languages that infer the implementation.
For the latter, we need to build high-level languages that make the behavior they
encode as easy to understand as possible.

Tau: I accept that formally specifying complex systems might be hard, but in case of
mission critical systems it would be unethical to completely give up. We should try to
prove at least some aspects correct, if only to increase our own understanding and
confidence.

ALPHA: I can see how you can understand the system better if you try to create a
minimal mathematical model, but didn’t we agree that small models that ignore many
details, like the representation of years, are never going to guarantee correctness?

TeEACHER: Could we perhaps draw the dividing line between what we formalize and
what we omit in a different way?

Tau: Good question. We could instead try to structure the system into multiple layers!
A smaller low layer would then be formally verified. The higher layer could be built
on top of the lower layer and so the properties guaranteed by the low layer would
hold, even if the complexity of the higher layer made it hard to make any formal
statements about that part.

OMEGA: In general, I agree that a lower layer needs to be more correct than higher
layer. But even with a proof, I think we cannot get it absolutely right3 and we need
other mechanisms to address potential errors. Sometimes, a supervision model like

3A recent work [23] discovered errors in nine out of nine academic papers presenting a
formal model, three of which were mechanized.
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that advocated by EpsiLoN might be good enough, but ultimately, you will always
need manual intervention in some cases.

Tau: Are you suggesting that programmers need to be readily available and watch
their program all the time? Surely, nobody can actually work in this way!

OMEGA: Quite the opposite. The DevOps movement [21] is, in many ways, doing
exactly that! It encourages close collaboration between development and operations
teams to enable automation and frequent releases.

You can see that as live coding the whole deployment environment, albeit with very
poor tools! Rather than having programming environment that has been designed to
support manual intervention like Smalltalk, DevOps teams rely on ad-hoc monitoring
tools and have limited ways for direct interactions. We need to finally accept that
software is a living system and build tools accordingly. I suppose this goes back to not
treating programs as just linguistic entities...

Tau: There is one thing I still do not understand about the idea of live intervention
though. How can you react quickly enough? In the Knight Capital glitch, it took 45
minutes and perhaps you could live code a fix in minutes, but is that ever going to be
fast enough?

Using your favourite analogy with music — a manual intervention, like a guitarist
lifting his finger from a discordant note [8] will have reaction time a fraction of a
second. Significantly shorter than any live coder can ever hope...

OMEGA: Yes, that is true, but live coding does not mean just typing code so that you
fix an error. You can also live code your environment, to make quick reactions easier. A
quick intervention then gives you enough time to think and decide on the best course
of action. In case of live coded music, we do this using flexible interfaces like emacs
and monome,“ but there is no reason why the same ideas would not work in other
environments.

EpsiLoN: Quite intriguing! This idea of fast and slow ways of reacting reminds me of
Kahneman’s two modes of thought [22]. The fast system is automatic, instinctive and
emotional while the slow system is more effortful, deliberative and logical. Through
deliberate training and practice, you can train your fast system to react differently. So
perhaps our new model is even getting close to how the human thought works!

B Summary: Escaping the crisis narrative

In this paper, we discussed a wide range of ideas about programming through the
perspective of program errors or miscomputations. This point of view provides a new
way of defining programming paradigms and thinking about software more generally.
Because of the ubiquitous crisis narrative that is persistent in our industry, this point
of view might be more revealing than when considering traditional programming
paradigms such as functional or object-oriented programming.

4The idea is inspired by the performance of the Meta-eX group [1]
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