Teaching Functional Programming to
Professional .NET Developers

Tomas Petricek
University of Cambridge

About me and my background

2004 2010 2011 2012
Bachelors & Masters PhD

T i
L NG

Prague London Cambridge

Functional programming for
Professional .NET Developers

Different target audience

Interested in
Functional
Programming

Need to see
immediate value

Professional
Developers

Good knowledge of Know some
object-oriented functional concepts
languages from C# 3, Python, ...

Challenges and our approach

Conveying new e Start with familiar language features
concepts e Demonstrate concepts using C#

Relation with e Functional types and domain models
object-oriented e Relations with OO design patterns

iR R Al © Think about problems differently
the industry e Many concepts can be used in C# too

Demonstration #1: Immutability
and fluent interfaces

Fluent interface pattern

Simplify object construction

var tea = Product.Create("Earl Gray Tea")

.WithPrice(10.0M)
.WithPromotion();

Creates and mutates an object

public Product WithPrice(string price) {
this.price = price;

return this;

}

Fluent interface pattern

Avoiding code duplication

var teal Product.Create("Earl Gray Tea")
.WithPrice(10.0M);

var tea2 Product.Create("Earl Gray Tea")
.WithPrice(12.0M);

Does this behave the same?

var tea = Product.Create("Earl Gray Tea");

var teal = tea.WithPrice(10.0M);
var tea2 = tea.WithPrice(12.0M);

Fluent interface pattern

Fixed using immutable types

Easy to change in C#
Even easier using F# records

Example summary
Show problem in a familiar setting
Immutability leads to correct code
More important than parallelism

Demonstration #2: Functional types
and domain modeling

Modeling the problem domain

Modeling using UMIL diagrams
Capture the idea
Easy to draw & read
Hard to keep in sync

Cancelltem

W

Tenderltem
|

|
| |
CardTender CashTender

|

Modeling the problem domain

F# types fit on a single slide

type Price = decimal

type Code = string

type Quantity = int

type Product = string * Code * Price

type Tender =

| CashTender
| CardTender of string

type Lineltem =
| SaleItem of int * Product * Quantity
| TenderItem of Tender * Price
| CancelItem of int

Modeling the problem domain

Modeling domain using F#
Simple declarative specification
Teaches how F# types are compiled
Focus on data rather than operations

Functional types in practice
May be used for prototyping
|deally part of the codebase
Easy integration is crucial

Conclusions

Read the paper for more!

There is a way to use existing knowledge!
Implement functional concepts in C# or Java
Show how FP relates to common patterns
Give takeaways usable in any language

More information
Real-World FP book: http://manning.com/petricek
FP and F# Trainings: http://skillsmatter.com
Contact & more: http://tomasp.net

http://manning.com/petricek
http://skillsmatter.com/
http://tomasp.net/

