
Design and implementation of a live coding
environment for data science

Tomas Petricek
Abstract
Data science can be done by directly manipulating data using
spreadsheets, or by writing data manipulation scripts using
a programming language. The former is error-prone and
does not scale, while the latter requires expert skills. Live
coding has the potential to bridge this gap and make writing
of transparent, reproducible scripts more accessible.
In this paper, we describe a live programming environ-

ment for data science that provides instant previews and
contextual hints, while allowing the user to edit code in an
unrestricted way in a text editor.

Supporting a text editor is challenging as any edit can sig-
nificantly change the structure of code and fully recomputing
previews after every change is too expensive. We present a
technique that allows the type checker and the interpreter
to run on the fly, while code is written, and reuse results of
previous runs. This makes it possible to efficiently provide
instant feedback and live previews during development.

We formalise how programs are interpreted and how pre-
views are computed, prove correctness of the previews and
formally specify when can previews be reused. We believe
this work provides solid and easy to reuse foundations for
the emerging trend of live programming environments.

1 Introduction
One of the aspects that make spreadsheet tools such as Excel
more accessible than programming environments is their
liveness. When you change a value in a cell in Excel [26],
the whole spreadsheet is updated instantly and you see the
new results immediately.

Increasing number of programming environments aim to
provide the same live experience for more standard program-
ming languages, but doing this is not easy. Fully recomputing
the whole program after every single change is inefficient
and calculating how a change in source code changes the
result is extremely hard when the editor allows arbitrary
manipulation of program text. For example, consider the
following simple program that gets the release years of 10
most expensive movies in a data set movies:

let top = movies
.sortBy(λx → x .getBudget()).take(10)
.map(λx → x .getReleased().format("yyyy"))

A live coding environment shows a preview of the list of
dates. Next, assume that the programmer modifies the code

PL’17, January 01–03, 2017, New York, NY, USA
2017.

by making the constant 10 a variable and changing the date
format to see the full date:

let count = 10
let top = movies
.sortBy(λx → x .getBudget()).take(count)
.map(λx → x .getReleased().format("dd-mm-yyyy"))

Ideally, the live coding environment should understand the
change, reuse a cached result of the first two transforma-
tions (sorting and taking 10 elements) and only evaluate the
last map to differently format the release dates of already
computed top 10 movies.

This is not difficult if we represent the program in a struc-
tured way [20, 31] and allow the user to edit code via known
operations such as “extract variable” (which has no effect on
the result) or “change constant value” (which forces recom-
putation of subsequent transformations). However, many
programmers prefer to edit programs as free form text.
We present the design and implementation of a live cod-

ing system that is capable of reusing previously evaluated
expressions as in the example above, yet, is integrated into
an ordinary text editor. Our main contributions are:
• We introduce The Gamma (Section 2), a simple live cod-
ing environment for data science. We review its design
and implementation and explain how it bridges the gap
between programming and spreadsheets.
• Implementing a live programming system requires dif-
ferent way of thinking about compilers and interpreters
than the one presented in classic programming language
literature. Our formalisation (Section 3) captures the
essence of the new perspective.
• We formalise the evaluation of previews (Section 4) and
prove that our evaluation and caching mechanism is pro-
duces correct previews (Section 6.2) and can effectively
reuse partial results (Section 6.3).
• We follow the same method to implement a type checker
(Section 5) for our language that is capable of reusing
previous results. This makes it possible to efficiently
support asynchronously provided types (Section 5.1).
• In more speculative conclusions (Section 7), we consider
alternative language designs that would enable further
live coding experiences, which are difficult to build using
our current system.

We hope the architecture and its formal presentation in this
paper can contribute crucial foundations for the growing
and important trend of text-based live coding environments.

1

PL’17, January 01–03, 2017, New York, NY, USA Tomas Petricek

Figure 1. Scraping 2016 science events. Preview of the Wikipedia source page (left) and live filtering (right).

2 Live programming for data exploration
The Gamma aims to make basic data exploration accessible
to non-experts, such as data journalists [12], who need to use
data transparently. As such, we focus on simple scripts that
can be written using tools such as Jupyter notebooks [15].
Those scripts follow a typical data science workflow [13];
they acquire and reformat data, run a number of analyses
using the clean data and then create several visualizations.
An important property of data science workflow is that

we work with readily available concrete data. Data scientists
load inputs into memory and refer to it in subsequent REPL
interactions. They might later wrap completed working code
into a function (and run on multiple datasets), but do not
start with functions. We reflect this pattern in our language.

In this section, we provide a brief overview of The Gamma,
a simple live coding environment for data science.We discuss
the language, type providers and the user interface, before
focusing on the algorithms behind live previews in Section 3.

2.1 The Gamma scripting language
Figure 1 shows The Gamma script that scrapes items from
a Wikipedia page, collects those marked as “Events” and
filters them. The script illustrates two aspects of the scripting
language used by The Gamma – its structure and its use of
type providers for dot-driven data exploration.

The scripting language is not intended to be as expressive
as, say, R or Python and so it has a very simple structure –
scripts are a sequence of let-bindings (that obtain or trans-
form data) or statements (that produce visualizations). This
reflects the fact that we always work with concrete data and
allows us to provide previews.
The most notable limitation of The Gamma is that the

scripting language does not support top-level functions. This
is not a problem for the simple scripts we consider, but it
would be an issue for a general-purpose language.We discuss
potential design for functions that would still be based on
working with concrete data in Section 7.

2.2 Dot-driven data exploration
As illustrated by the second let binding in Figure 1, many
operations in The Gamma can be expressed using member
access via dot. The underlying mechanism is based on type
providers [3, 29]. The specific type provider used in the above
example has been described elsewhere [23].
Given a data source (scraped Wikipedia page), the type

provider generates type with members that allow a range of
transformations of the data such as grouping, sorting and
filtering. Some of the members are based only on the schema
(e.g. 'Item Contains' or 'Drop Heading 2'), but some may
also be generated based on (a sample of) the dataset (e.g. the
second member in 'Heading 2 is'.'Events[edit]').

What matters for the purpose of this paper is the fact that
most operations are expressed via member access matters.
First, it means that we need to provide live previews for sub-
expressions formed by a chain of member accesses. Second,
it means that the result of any member access expression
depends on the instance and, possibly, on the parameters
provided for a method call.

2.3 Direct manipulation and live previews
The screenshot in Figure 1 show the editor as implemented
in The Gamma. This includes live previews (discussed in
this paper), but also an editor that provides spreadsheet-like
interface for editing the data transformation script.
In our implementation, previews appears below the cur-

rently selected let binding. The preview can be of several
types such as web page (left) or data table (right). In this
paper, we describe how we evaluate scripts to obtain the re-
sulting object and we ignore how such objects are rendered.

The Figure 1 also shows a special handling of expressions
constructed using the pivot type provider. The editor recog-
nises individual data transformations and provides a simple
user interface for adding and removing transformations and
changing their parameters that changes the source code ac-
cordingly. This aspect is not discussed in the present paper.

2

Design and implementation of a live coding environment for data science PL’17, January 01–03, 2017, New York, NY, USA

val(10) val(15)

var(data) mem(skip, s0)
arg(0)oo

arg(1)

OO

mem(take, s1)
arg(0)oo

arg(1)

OO

val(10)

var(data) mem(skip, s0)
arg(0)oo

arg(1)
55

mem(take, s2)
arg(0)oo

arg(1)
jj

a.) The first graph is constructed from
the following initial expression:

let x = 15 in
data.skip(10).take(x)

b.) The second diagram shows the updated graph
after the programmer changes x to 10:

let x = 10 in
data.skip(10).take(x)

Figure 2. Dependency graphs formed by two steps of the live programming process.

3 Formalising live coding infrastructure
In this section, we present a formalisation of a live coding
infrastructure for a small, expression-based programming
language that supports let binding, member invocations and
λ abstractions. This is the necessary minimum for data ex-
ploration as described in the previous section.
It excludes constructs such as a mechanism for defining

new objects as we assume that those are imported from the
context through a mechanism such as type providers.

e = let x = e in e | λx → e | e .m(e, . . . , e) | x | n

Here,m ranges over member names, x over variables and
n over primitive values such as numbers. Function values
can be passed as arguments to methods (provided by a type
provider), but for the purpose of this paper, we do not need
to be able to invoke them directly.

The problem with functions. In the context of live pro-
gramming, let binding and member access are unproblem-
atic. We can evaluate them and provide live preview for both
of them, including all their sub-expressions. Function values
are more problematic, because their sub-expressions cannot
be evaluated. For example:

let page = λx → movies.skip(x ∗ 10).take(10)

We can provide live preview for the movies sub-expression,
but not for movies.skip(x ∗ 10) because we cannot obtain
the value of x without running the rest of the program and
analysing how the function is called later.
The method described in this paper obtains delayed pre-

views for sub-expressions that contain free variables (which
could be fully evaluated if values for free variables were
provided), but we describe a more speculative design of live
coding friendly functions in Section 7.

3.1 Maintaining dependency graph
The key idea behind our implementation is to maintain a
dependency graph [16] with nodes representing individual
operations of the computation that can be partially evaluated
to obtain a preview. Each time the program text is modified,

we parse it afresh (using an error-recovering parser) and
bind the abstract syntax tree to the dependency graph.
We remember the previously created nodes of the graph.

When binding a new expression to the graph, we reuse pre-
viously created nodes that have the same dependencies. For
expressions that have a new structure, we create new nodes
(using a fresh symbol to identify them).

The nodes of the graph serve as unique keys into a lookup
table with previously evaluated operations of the computa-
tion. When a preview is requested, we use the node bound to
the expression to find a preview, or evaluate it by first forcing
the evaluation of all parents in the dependency graph.

Elements of the graph. The nodes of the graph represent
individual operations to be computed. In our design, the
nodes themselves are used as keys, so we attach a unique
symbol to some of the nodes. That way, we can create two
unique nodes representing, for example, access to a member
named take which differ in their dependencies.

Furthermore, the graph edges are labeled with labels indi-
cating the kind of dependency. For a method call, the labels
are “first argument”, “second argument” and so on. Formally:

s ∈ Symbol
i ∈ Integer
n ∈ Primitive values
x ∈ Variable names
m ∈ Member names

v ∈ val(n) | var(x) | mem(m, s) | fun(x , s) (Vertices)
l ∈ body | arg(i) (Edge labels)

The val node represents a primitive value and contains the
value itself. Two occurrences of 10 in the source code will
be represented by the same node. Member access mem con-
tains the member name, together with a unique symbol –
two member access nodes with different dependencies will
contain a different symbol. Dependencies of member access
are labeled with arg indicating the index of the argument
(the instance has index 0 and arguments start with 1).

3

PL’17, January 01–03, 2017, New York, NY, USA Tomas Petricek

bindΓ,∆(e0.m(e1, . . . , en)) = (1)
v, ({v} ∪V0 ∪ . . . ∪Vn ,E ∪ E0 ∪ . . . ∪ En)

when vi , (Vi ,Ei) = bindΓ,∆(ei)
and v = ∆(mem(m), [(v0, arg(0)), . . . , (vn , arg(n))])
let E = {(v,v0, arg(0)), . . . , (v,vn , arg(n))}

bindΓ,∆(e0.m(e1, . . . , en)) = (2)
v, ({v} ∪V0 ∪ . . . ∪Vn ,E ∪ E0 ∪ . . . ∪ En)

when vi , (Vi ,Ei) = bindΓ,∆(ei)
and (mem(m), [(v0, arg(0)), . . . , (vn , arg(n))]) < dom(∆).
let v = mem(m, s), s fresh
let E = {(v,v0, arg(0)), . . . , (v,vn , arg(n))}

bindΓ,∆(let x = e1 in e2) = v, ({v} ∪V ∪V1,E ∪ E1) (3)
let v1, (V1,E1) = bindΓ,∆(e1)
let Γ1 = Γ ∪ {(x ,v1)}
let v, (V ,E) = bindΓ1,∆(e2)

bindΓ,∆(n) = val(n), ({val(n)}, ∅) (4)

bindΓ,∆(x) = v, ({v}, ∅) when v = Γ(x) (5)

bindΓ,∆(λx → e) = v, ({v} ∪V , {e} ∪ E) (6)
when Γ1 = Γ ∪ {x , var(x)}
and v0, (V ,E) = bindΓ1,∆(e)
and v = ∆(fun(x), [(v0, body)])
let e = (v,v0, body)

bindΓ,∆(λx → e) = v, ({v} ∪V , {e} ∪ E) (7)
when Γ1 = Γ ∪ {x , var(x)}
and v0, (V ,E) = bindΓ1,∆(e)
and (fun(x), [(v0, body)]) < dom(∆)
let v = fun(x , s), s fresh
let e = (v,v0, body)

Figure 3. Rules of the binding process, which constructs a dependency graph for an expression.

Finally, nodes fun and var represent function values and
variables bound by λ abstraction. For simplicity, we use vari-
able names rather than de Bruijn indices and so renaming a
bound variable forces recomputation.

Example graph. Figure 2 illustrates how we construct and
update the dependency graph. Node representing take(x)
depends on the argument – the number 15 – and the instance,
which is a node representing skip(10). This, in turn, depends
on the instance data and the number 10. Note that variables
bound via let binding such as x do not appear as var nodes.
The node using it depends directly on the node representing
the result of the expression that is assigned to x .
After changing the value of x , we create a new graph.

The dependencies of the node mem(skip, s0) are unchanged
and so the node is reused. This means that this part of the
program is not recomputed. The arg(1) dependency of the
take call changed and so we create a node mem(skip, s2)
with a new fresh symbol s2. The preview for this node is
then recomputed as needed using the already known values
of its dependencies.

Reusing graph nodes. The binding process takes an expres-
sion and constructs a dependency graph, reusing existing
nodes when possible. For this, we keep a lookup table of
member access and function value nodes. The key is formed
by a node kind (for disambiguation) together with a list of
dependencies. A node kind is a member access or a function:

k ∈ fun(x) | mem(m) (Node kinds)

Given a lookup table ∆, we write ∆(k, [(n1, l1), . . . , (vn , ln)])
to perform a lookup for a node of a kind k that has depen-
dencies v1, . . . ,vn labeled with labels l1, . . . , ln .

For example, when creating the graph in Figure 2 (b), we
perform the following lookup for the skip member access:

∆(mem(skip), [(var(data), arg(0)), (val(10), arg(1))])

The lookup returns the node mem(skip, s0) known from the
previous step. We then perform the following lookup for the
take member access:

∆(mem(take), [(mem(skip, s0), arg(0)), (val(10), arg(1))])

In the previous graph, the argument of take was 15 rather
than 10 and so this lookup fails. We then construct a new
node mem(take, s2) using a fresh symbol s2.

3.2 Binding an expressions to a graph
When constructing the dependency graph, our implementa-
tion annotates the nodes of the abstract syntax tree with the
nodes of the dependency graph, forming a mapping e → v .
For this reason, we call the process binding.

The process of binding is defined by the rules in Figure 3.
The bind function is annotated with a lookup table ∆ dis-
cussed in Section 3.1 and a variable context Γ. The variable
context is a map from variable names to dependency graph
nodes and is used for variables bound using let binding.
When applied on an expression e , binding bindΓ,∆(e) re-

turns a dependency graph (V ,E) paired with a node v cor-
responding to the expression e . In the graph, V is a set of
nodes v and E is a set of labeled edges (v1,v2, l). We attach
the label directly to the edge rather than keeping a separate
colouring function as this makes the formalisation simpler.

Binding member access. In all rules, we recursively bind
sub-expressions to get a dependency graph for each sub-
expression and a graph node that represents it. The nodes
representing sub-expressions are then used as dependencies

4

Design and implementation of a live coding environment for data science PL’17, January 01–03, 2017, New York, NY, USA

for lookup into ∆, together with their labels. When binding
a member access, we reuse an existing node if it is defined
by ∆ (1) or we create a new node containing a fresh symbol
when the domain of ∆ does not contain a key describing the
current member access (2).

Binding let binding. For let binding (3), we first bind the
expression e1 assigned to the variable to obtain a graph node
v1. We then bind the body expression e2, but using a variable
context Γ1 that maps the value of the variable to the graph
nodev1. The variable context is used when binding a variable
(6) and so all variables declared using let binding will be
bound to a graph node representing the value assigned to
the variable. The node bound to the overall let expression is
then the graph node bound to the body expression.

Binding function values. If a function value uses its argu-
ment, we will not be able to evaluate its body. In this case, the
graph node bound to a function will depend on a synthetic
node var(x) that represents the variable with no value. When
binding a function, we create the synthetic variable and add
it to the variable context Γ1 before binding the body. As with
member access, the node representing a function may (7) or
may not (8) be already present in the lookup table.

3.3 Edit and rebind loop
The binding process formalised in Section 3.2 specifies how
to update the dependency graph after updated program text
is parsed. During live coding, this is done repeatedly as the
programmer edits code. Throughout the process, we main-
tain a series of lookup table states ∆0,∆1,∆2, Initially,
the lookup table is empty, i.e. ∆0 = ∅.
At a step i , we parse an expression ei and calculate the

new dependency graph and a node bound to the top-level
expression using the previous ∆:

v, (V ,E) = bind∅,∆i−1 (ei)

The new state of the node cache is then computed by adding
newly created nodes from the graph (V ,E) to the previous
cache ∆i−1. This is done for function and member nodes

updateV ,E (∆i−1) = ∆i such that:

∆i (mem(m), [(v0, arg(0)), . . . , (vn , arg(n))]) = mem(m, s)
for all mem(m, s) ∈ V
such that (mem(m, s),vi , arg(i)) ∈ E for i ∈ 0, ..,n

∆i (fun(x), [(v1, body)]) = fun(x , s)
for all fun(x , s) ∈ V
such that (fun(x , s),v1, body) ∈ E

∆i (v) = ∆i−1(v) (otherwise)

Figure 4.Updating the node cache after binding a new graph

that contain unique symbols as defined in Figure 4. We do
not need to cache nodes representing primitive values and
variables as those do not contain symbols and will remain
the same due to the way they are constructed.

4 Evaluating previews
The mechanism for constructing dependency graphs defined
in Section 3 makes it possible to provide live previews when
editing code without recomputing the whole program each
time the source code changes.
The nodes in the dependency graph correspond to in-

dividual operations that will be performed when running
the program. When the dependencies of an operation do
not change while editing code, the subsequent dependency
graph will reuse a node used to represent the operation.
Our live editor keeps a map from graph nodes to live

previews, so a new preview only needs to be computed when
a new node appears in the dependency graph (and the user
moves the cursor to a code location that corresponds to the
node). This section describes how previews are evaluated.

Previews and delayed previews. As discussed in Section 3,
the body of a function cannot be easily evaluated to a value
if it uses the bound variable. We do not attempt to “guess”
possible arguments and, instead, provide a full preview only
for sub-expressionswith free variables bound by a let binding.
For a function body that uses the bound variable, we obtain a
delayed preview, which is an expression annotated with a list
of variables that need to be provided before the expression
can be evaluated. We use the following notation:

p ∈ n | λx → e (Fully evaluated previews)
d ∈ p | JeKΓ (Evaluated and delayed previews)

Here, p ranges over fully evaluated values. It can be either
a primitive value (such as number, string or an object) or
a function value with no free variables. A possibly delayed
preview d can then be either evaluated preview p or an
expression e that requires variables Γ. For simplicity, we use
an untyped language and so Γ is a list of variables x1, . . . ,xn .

Evaluation and splicing. In this paper, we omit the specifics
of the underlying programming language and we focus on
the live coding mechanism. However, we assume that the
language is equipped with an evaluation reduction e p
that reduces a closed expression e into a value p.

For delayed previews, we construct a delayed expression
using splicing. For example, assuming we have a delayed pre-
views Je0Kx and Je1Ky . If we need to invoke a memberm on e0
using e1 as an argument, we construct a new delayed preview
Je0.m(e1)Kx,y . This operation is akin to expression splicing
from meta-programming [28, 32] and can be more formally
captured by Contextual Modal Type Theory (CMTT) as out-
lined below.

5

PL’17, January 01–03, 2017, New York, NY, USA Tomas Petricek

(lift-expr)
v ⇓ JeKΓ
v ⇓lift JeKΓ

(lift-prev)
v ⇓ p

v ⇓lift JpK∅

(val)
val(n) ⇓ n

(var)
var(x) ⇓ JxKx

(fun-val)
(fun(x , s),v, body) ∈ E v ⇓ p

fun(x , s) ⇓ λx → p

(fun-bind)
(fun(x , s),v, body) ∈ E v ⇓ JeKx

fun(x , s) ⇓ λx → e

(fun-expr)
(fun(x , s),v, body) ∈ E v ⇓ JeKx,Γ

fun(x , s) ⇓ Jλx → eKΓ

(mem-val)
∀i ∈ {0 . . .k}.(mem(m, s),vi , arg(i)) ∈ E vi ⇓ pi p0.m(p1, . . . ,pk) p

mem(m, s) ⇓ p

(mem-expr)
∀i ∈ {0 . . .k}.(mem(m, s),vi , arg(i)) ∈ E ∃j ∈ {0 . . .k}.vj�⇓ pj vi ⇓lift JeiKΓi

mem(m, s) ⇓ Je0.m(e1, . . . , ek)KΓ0, ...,Γk

Figure 5. Rules that define evaluation of previews over a dependency graph for an expression

Evaluation of previews. The evaluation of previews is de-
fined in Figure 5. Given a dependency graph (V ,E), we define
a relation v ⇓ d that evaluates a sub-expression correspond-
ing to the node v to a (possibly delayed) preview d .
The auxiliary relation v ⇓lift d always evaluates to a de-

layed preview. If the ordinary evaluation returns a delayed
preview, so does the auxiliary relation (lift-expr). If the ordi-
nary evaluation returns a value, the value is wrapped into a
delayed preview requiring no variables (lift-prev).
Graph node representing a value is evaluated to a value

(val) and a graph node representing an unbound variable is
reduced to a delayed preview that requires the variable and
returns its value (var).
For member access, we distinguish two cases. If all ar-

guments evaluate to values (member-val), then we use the
evaluation relation , immediately evaluate the member ac-
cess and produce a value. If one of the arguments is delayed
(member-expr), because the member access is in the body
of a lambda function, then we produce a delayed member
access expression that requires the union of the variables
required by the individual arguments.
The evaluation of function values is similar, but requires

three cases. If the body can be reduced to a value with no
unbound variables (fun-val), we return a lambda function
that returns the value. If the body requires only the bound
variable (fun-bind), we return a lambda function with the
delayed preview as the body. If the body requires further
variables, the result is a delayed preview.

Caching previews. For simplicity, the relation ⇓ in Figure 5
does not specify how previews are cached and linked to
graph nodes. In practice, this is done bymaintaining a lookup
table from graph nodes v to (possibly delayed) previews p.

Whenever ⇓ is used to obtain a preview for a graph node,
we first attempt to find an already evaluated preview using
the lookup table. If the preview has not been previously
evaluated, we evaluate it and add it to the lookup table.

The evaluated previews can be reused in two ways. First,
multiple nodes can depend on one sub-graph in a single
dependency graph (if the same sub-expression appears twice
in the program). Second, the keys of the lookup table are
graph nodes and nodes are reused when a new dependency
graph is constructed after the user edits the source code.

Semantics of delayed previews. The focus of this paper is
on the design and implementation of a live coding environ-
ment, but it is worth noting that the structure of delayed
previews is closely linked to the work on Contextual Modal
Type Theory (CMTT) [19] and comonads [9].

In CMTT, [Ψ]A denotes that a proposition A is valid in
context Ψ, which is closely related to our delayed previews
written as JAKΨ. CMTT defines rules for composing context-
dependent propositions that would allow us to express the
splicing operation used in (mem-expr). In categorical terms,
the context-dependent proposition can be modeled as an
indexed comonad [10, 18]. The evaluation of a preview with
no context dependencies (built implicitly into our evaluation
rules) corresponds to the counit operation of a comonad and
would be explicitly written as JAK∅ → A.

5 Type checking
Evaluating live previews can be an expensive operations, so
being able to cache partial previews is a must for a live coding
environment. Type checking is typically fast, so the main fo-
cus of this paper is on live previews. However, asynchronous
type providers in The Gamma (Section 5.1) can make type

6

Design and implementation of a live coding environment for data science PL’17, January 01–03, 2017, New York, NY, USA

bindΓ,∆,c (e0.m(e1, . . . , en)) = (2b)
v, ({v} ∪V0 ∪ . . . ∪Vn ,E ∪ E0 ∪ . . . ∪ En)

when v0, (V0,E0) = bindΓ,∆,⊥(e0)
and ci = (v0, callsite(m, i)) (i ∈ 1 . . .n)
and vi , (Vi ,Ei) = bindΓ,∆,ci (ei) (i ∈ 1 . . .n)
and (mem(m), [(v0, arg(0)), . . . , (vn , arg(n))]) < dom(∆).
let v = mem(m, s), s fresh
let E = {(v,v0, arg(0)), . . . , (v,vn , arg(n))}

bindΓ,∆,(vc ,lc)(λx → e) = v, ({v} ∪V0,E ∪ E0) (7b)
when (var(x), [(vc , lc)]) < dom(∆)
let vx = var(x , sx), sx fresh
and Γ1 = Γ ∪ {x ,vx }
and v0, (V0,E0) = bindΓ1,∆,⊥(e)
when (fun(x), [(v0, body), (vc , lc)]) < dom(∆)
let v = fun(x , sf), sf fresh
let E = {(v,v0, body), (v,vc , lc), (vx ,vc , lc)}

Figure 6. Revised binding rules, tracking call sites of function values.

checking time consuming, and so we use the dependency
graph also for type checking (Section 5.3). Type checking
lambda functions (Section 5.2) requires a slight extension of
the model discussed in Section 3.

5.1 Asynchronously provided types
Data available in The Gamma can be defined using several
kinds of type providers. The type provider used in Figure 1
as asynchronous [30]. It downloads the sample URL and
generates types based on the contents of the web page. The
parameter to web.scrape is a static parameter and is evalu-
ated during type-checking. We omit details in this paper, but
we note this works similarly to F# type providers [29].

Type providers can also be implemented as REST services
[7] to allow anyone implement a data source in the language
of their choice. In this case, each member of a call-chain
returns a type that is generated based on the result of an
HTTP request. For example, when the user types worldbank
(to access information about countries), the type provider
makes a request to http://thegamma-services.azurewebsites.
net/worldbank, which returns two members:
[{"name" : "byYear", "returns" :
{"kind" : "nested", "endpoint" : "/pickYear"}}
{"name" : "byCountry", "returns" :
{"kind" : "nested", "endpoint" : "/pickCountry"}}]

This indicates that worldbank has members byYear and
byCountry. If the user types worldbank.byCountry, a re-
quest is made to the specified URL http://thegamma-services.
azurewebsites.net/worldbank/pickCountry:

[{"name" : "Andorra", "trace" : [""country=AR""],
"returns" : {"kind" : "nested", "endpoint" : "/pickTopic"}}
{"name" : "Afghanistan", "trace" : [""country=AF""],
"returns" : {"kind" : "nested", "endpoint" : "/pickTopic"}}, ..]

This returns a list of countries which can then be accessed
as members via worldbank.byCountry.Andorra, etc.

This is one reason for why type checking in The Gamma
can be time consuming. Other type providers may perform
other more computationally intensive work to provide types
and so it is desirable to reuse type-checking results during
live coding. The rest of this section shows how this is done
using the dependency graph discussed in Section 3.

5.2 Revised binding of functions
The Gamma script supports lambda functions, but only in a
limited way. A function can be passed as a parameter to a
method, which makes type checking of functions easier. For
example, consider:

movies.sortBy(λx → x .getBudget())

If movies is a collection of Movie objects, the type of the
lambda function must beMovie→ bool and so the type of x
isMovie. This is similar to type checking of lambda functions
in C# [33], where type is also inferred from the context (or
has to be specified explicitly).

We do not currently allow lambda functions as stand-alone
let-bound values. This could be done by requiring explicit
types, or introducing polymorphism, but it was not necessary
for the limited domain of non-expert data exploration.

Dependency graph for functions. In the binding process
specified in Section 3, a variable is a leaf of the dependency
graph. In the revised model, it depends on the context in
which it appears. A new edge labeled callsite(m, i) indicates
that the source node is the input variable of a function passed
as the ith argument to them member of the expression rep-
resented by the target node. A node representing function is
linked to the call site using the same edge.
Figure 7 shows the result of binding o.m(λx → x). Both

fun(x , s2) and var(x , s1) now depend on the node represent-
ing o. The new callsite edge makes it possible to type-check
function and variable nodes just using their dependencies.
As before, the member invocation mem(m, s0) depends on
the instance using arg(0) and on its argument using arg(1).

val(o)

mem(m, s0)

arg(0)

OO

arg(1)xx
fun(x , s2)

callsite(m,1)

;;

body // var(x , s1)

callsite(m,1)

bb

Figure 7. Dependency graph for o.m(λx → x)

7

http://thegamma-services.azurewebsites.net/worldbank
http://thegamma-services.azurewebsites.net/worldbank
http://thegamma-services.azurewebsites.net/worldbank/pickCountry
http://thegamma-services.azurewebsites.net/worldbank/pickCountry

PL’17, January 01–03, 2017, New York, NY, USA Tomas Petricek

(val)
Σ(n) = α

val(n) ⊢ α
(var)

(var(x , s),v, callsite(m, i)) ∈ E v ⊢ (..,m : (τ1, . . . ,τk) → τ , ..) τi = τ
′→ τ ′′

var(x , s) ⊢ τ ′

(fun)
{(fun(x , s),vb , body), (var(x , s),vc , callsite(m, i))} ⊆ E vc ⊢ (..,m : (τ1, . . . ,τk) → τ , ..) τi = τ

′→ τ ′′ vb ⊢ τ
′′

fun(x , s) ⊢ τ ′→ τ ′′

(mem)
∀i ∈ {0 . . .k}.(mem(m, s),vi , arg(i)) ∈ E v0 ⊢ (..,m : (τ1, . . . ,τk) → τ , ..) vi ⊢ τi

mem(m, s) ⊢ τ

Figure 8. Rules that define evaluation of previews over a dependency graph for an expression

Revised binding process. For the revised binding process,
we introduce a new edge label callsite. Variable nodes now
have dependencies and sowe cache them and attach a symbol
s to var, so we also introduce a node kind var as part of a
lookup key for ∆.
The bind function now has a parameter c , in addition to

Γ and ∆, which represents the context in which the bind-
ing happens. This is either a member invocation (labeled
with instance node v and callsite label l), or not a member
invocation written as ⊥. The updated definitions are:

v ∈ val(n) | var(x , s) | mem(m, s) | fun(x , s) (Vertices)
l ∈ body | arg(i) | callsite(m, i) (Edge labels)
k ∈ fun(x) | mem(m) | var(x) (Node kinds)
c ∈ ⊥ | (v, l) (Call sites)

The key parts of the revised definition of the bind function
are shown in Figure 6. We now write bindΓ,∆,c where c rep-
resents the context in which the binding occurs. This is set
to ⊥ in all cases, except when binding arguments of a mem-
ber call. In (2b), we first recursively bind the instance node
using ⊥ as the context and then bind all the arguments using
(v0, callsite(m, i)) as the context for ith argument. The rest is
as in case (2) before. The case (1) is updated similarly and is
not shown here for brevity.

When binding a function (7b), we now also store variable
nodes in ∆ and so we check if a variable with the given call
site exists. If no, we create a fresh node var(x , sx). The node
is added to Γ as before. At the end, we now also include a call
site edge from the variable node and from the function node
in E. We omit a similar variant of the case (6). The remaining
cases (3)-(5) are the same, except that bind has the additional
c parameter and recursive calls always set it to ⊥.

Finally, the update function in Figure 4 also needs to be
updated to store the newly created var nodes. This is done
by adding the following single case:

∆i (var(x), [(v, callsite(m, i))]) = var(x , s)
for all var(x , s) ∈ V
such that (var(x , s),v, callsite(m, i)) ∈ E

5.3 Type checking over dependency graphs
The type system for The Gamma supports a number of prim-
itive types (such as integers and strings) written as α . Com-
posed types include functions and objects with members.
Objects are be provided by type providers, but we omit the
details here. Types of object members are written as σ and
can have multiple arguments:

τ ∈ α | τ → τ | {m1 :σ1, . . . ,mn :σn} (Types)
σ ∈ (τ1, . . . ,τn) → τ (Members)

The typing judgements are written in the form v ⊢ τ . They
are parameterised by the dependency graph (V ,E), but this
is not modified during type checking so we keep it implicit
rather than writing e.g. v ⊢(V ,E) τ .

Type checking. The typing rules are shown in Figure 8.
Types of primitive valuesn are obtained using a global lookup
table Σ (val). When type checking a member call (mem), we
find its dependenciesvi and check that the first one (instance)
is an object with the required memberm. The types of input
arguments of the member then need to match the types of
the remaining (non-instance) nodes.
Type checking a function (fun) and a variable (var) is

similar. In both cases, we follow the callsite edge to find the
member that accepts the function as an argument. We obtain
the type of the function from the type of the ith argument of
the member. We use the input type as the type of variable
(var). For functions, we also check that the resulting type
matches the type of the body (fun).

Caching results. Performing type checking over the de-
pendency graph, rather than over the abstract syntax tree,
enables us to reuse the results of previously type checked
parts of a program. As when caching evaluated previews
(Section 4), we build a lookup table mapping graph nodes to
types. When type checking a node, we first check the cache
and, only if it is new, follow the ⊢ relation to obtain the type.
As a result, code can be type checked on-the-fly during

editing, even when asynchronous type providers are used,
and the programmer gets instant feedback without delays.

8

Design and implementation of a live coding environment for data science PL’17, January 01–03, 2017, New York, NY, USA

6 Properties of live coding environment
The dependency graph makes it possible to cache partial
results when evaluating previews. The mechanism needs to
satisfy two properties. First, if we evaluate a preview using
dependency graph with caching, it should be the same as
the value we would obtain by evaluating the expression di-
rectly. Second, the evaluation of previews using dependency
graphs should – in some cases – reuse previously evaluated
partial results. In other words, we show that the mechanism
is correct and implements a useful optimization.

6.1 Modeling expression evaluation
In The Gamma language, computations are expressed us-
ing member access, written as e .m(e1, . . . , en). In this paper,
we do not define how member access evaluates. This has
been done elsewhere [23], but more importantly, the evalua-
tion of previews does not rely on the exact specifics of the
evaluation, provided that the language satisfies certain basic
conditions. The following definitions provides the necessary
structure for discussing correctness of previews.
Partial evaluation may reduce an expression under λ-

abstraction. We do not require that the reduction of the host
language does this. Instead, we define an extended reduc-
tion relation and use that in the proofs. The host language
only needs to compose well with such extended reduction
as captured by the compositionality property below. We also
require that the language allows elimination of let bindings.

Definition 1 (Host language). Given a relation on expres-
sions e1 e2 that models small-step evaluation, we define:

– A preview evaluation context (also referred to as context):

C[−] = let x = − in e | let x = e in − | λx → −
e0.m(e1, . . . , ek−1,−, ek+1, . . . en)

– An extended reduction relation β such that, for any
context C , C[e1] β C[e2] whenever e1 e2.

– Let elimination let such that, using capture-avoiding
substitution, C[let x = e1 in e2] let C[e2[x ← e1]]

We say that is a suitable host language reduction if:

– It satisfies the compositionality property, that is if e e ′

and C[e] β e ′′ then also C[e ′] β e ′′.
– Let elimination does not affect the result, i.e. if e let e

′

and e ′ β e ′′ then also e β e ′′

The host language in The Gamma is a simple call-by-value
functional language without side-effects, and so it satisfies
both compositionality and allows let bindings to be elimi-
nated, although the latter affects the performance. The mech-
anism for preview evaluation presented here would also
work for call-by-name languages, but it would suffer from
the expected difficulties in the presence of side-effects or
non-determinism.

6.2 Correctness of previews
To show that the evaluated previews are correct, we prove
two properties. Correctness (Theorem 4) guarantees that,
no matter how a graph is constructed, when we use it to
evaluate a preview for an expression, the preview is the same
as the value we would obtain by evaluating the expression
directly. Determinacy (Theorem 5) guarantees that if we
cache a preview for a graph node and update the graph, the
preview we would evaluate using the updated graph would
be the same as the cached preview.
To simplify the proofs, we consider expressions without

let bindings. This is possible, because eliminating let bindings
does not change the result in the host language (Definition 1)
and it also does not change the constructed dependency
graph as shown in Lemma 1.

Lemma 1 (Let elimintion). Given an expression e1 such that
e1 let e2 and a lookup table∆0 then ifv1, (V1,E1) = bind∅,∆0 (e1)
andv2, (V2,E2) = bind∅,∆1 (e2) such that∆1 = updateV1,E1 (∆0)

then it holds that v1 = v2 and also (V1,E1) = (V2,E2).

Proof. Assume e1 = C[let x = e ′ in e ′′] and the resulting
e2 = C[e

′′[x ← e ′]]. The case bindΓ,∆(let x = e ′ in e ′′) when
binding e1 is handled using (3).
When binding e1, the node resulting from binding e ′ is

added to the graph V1,E1 and is referenced each time x is
used.When binding e2, the node representing e ′ is a primitive
value, or already present in ∆1 (added by updateV1,E1) and is
reused each time bindΓ,∆1 (e

′) is called. �

The Lemma 1 provides a way of removing let bindings
from an expression, such that the resulting dependency
graph remains the same. Here, we bind the original expres-
sion first, which adds the node for e ′ to ∆. In our implementa-
tion, this is not needed because ∆ is updated while the graph
is being constructed using bind. To keep the formalisation
simpler, we separate the process of building the dependency
graph and updating ∆.
Now, we can show that, given a let-free expression, the

preview obtained using a correctly constructed dependency
graph is the same as the one we would obtain by directly
evaluating the expression. This requires a simple auxiliary
lemma and the full proof is shown in Appendix A.

Lemma 2. [Lookup inversion] Given∆ obtained using update
as defined in Figure 4 then:
– If v = ∆(fun(x), [(v0, l0)]) then v = fun(x , s) for some s .
– If v = ∆(mem(m), [(v0, l0), . . . , (vn , ln)]) then
v = mem(m, s) for some s .

Proof. By construction of ∆ in Figure 4. �

Theorem 3 (Let-free correctness). Given an expression e
that has no free variables and does not contain let bindings,
together with a lookup table ∆ obtained from any sequence of
expressions according to Figure 4 let v, (V ,E) = bind∅,∆(e). If
v ⇓ d over a graph (V ,E) then d = p for some p and e β p.

9

PL’17, January 01–03, 2017, New York, NY, USA Tomas Petricek

Proof. First note that, when combining recursively constructed
sub-graphs, the bind operation adds new nodes and edges
leading from those new nodes. Therefore, an evaluation us-
ing ⇓ over a sub-graph will also be valid over the new graph.
Next, we prove a more general property using induction

showing that for e such that v, (V ,E) = bind∅,∆(e):
a. If FV (e) = ∅ then v ⇓ p for some p and e β p
b. If FV (e) , ∅ then v ⇓ JepKFV (e) for some ep and for

any evaluation context C[−] such that FV (C[ep]) = ∅
it holds that if C[e] β C[ep].

The proof is done by induction over the binding process,
which follows the structure of the expression e and can be
found in Appendix A. �

The correctness theorem combines the previous two results.

Theorem 4 (Correctness). Consider an expression e1 that has
no free variables together with a lookup table ∆1 obtained from
any sequence of expressions according to Figure 4 and e2 such
that e1 β e2 and let v1, (V1,E1) = bind∅,∆1 (e1).

Let ∆2 = updateV1,E1 (∆1) andv2, (V2,E2) = bind∅,∆2 (e2). If
v2 ⇓ d over a graph (V2,E2) then d = p for some p and e β p.

Proof. Direct consequence of Lemma 1 and Theorem 3. �

As discussed above when introducing Lemma 1, in our im-
plementation, ∆ is updated during the recursive binding pro-
cess and so a stronger version of the property holds – namely,
e β p for a p that is obtained by calculating preview over
a graph obtained directly for the original expression e . We
note that this is the case, but do not show it formally to keep
aid the clarity of our formalisation.
The second important property that guarantees the cor-

rectness of previews shown by the user in our implemen-
tation is determinacy. This makes it possible to cache the
previews evaluated using ⇓ using the corresponding graph
node as a lookup key.

Theorem5 (Determinacy). Let∆1 = ∅, for any e1, e2, assume
that the first expression is bound, i.e.v1, (V1,E1) = bind∅,∆1 (e1),
the graph node cache is updated ∆2 = updateV1,E1 (∆1) and a
new expression is bound, i.e. v2, (V2,E2) = bind∅,∆2 (e2). Now,
for any v , if v ⇓ p over (V1,E1) then also v ⇓ p over (V2,E2).

Proof. By induction over ⇓ over (V1,E1), we show that the
same evaluation rules also apply over (V2,E2).
This is the case, because new graph nodes added to ∆2

by updateV1,E2 are only ever added as new nodes in bind∅,∆2

and so the existing nodes and edges of (V1,E1) used during
the evaluation are unaffected. �

The mechanism used for caching previews, as discussed
at the end of Section 4, keeps a preview or a partial pre-
view d in a lookup table indexed by nodes v . The Theorem 5
guarantees that this is a valid strategy. As we update de-
pendency graph during code editing, previous nodes will
continue representing the same sub-expressions.

1. Let introduction A. The expression C1[C2[e]] is changed
to C1[let x = e in C2[x]] via semantically non-equivalent
expression C1[C2[x]] where x is unbound variable.

2. Let introduction B. The expression C1[C2[e]] is changed
toC1[let x = e inC2[x]] viaC1[let x = e inC2[e]] where x is
unused variable.

3. Let elimination A. The expression C1[let x = e in C2[x]]
is changed to C1[C2[e]] via semantically non-equivalent
expression C1[C2[x]] where x is unbound variable.

4. Let elimination B. The expression C1[let x = e in C2[x]]
is changed to C1[C2[e]] via C1[let x = e in C2[e]] where x is
unused variable.

5. Editing a non-dependency in let. Assuming x < FV (e2), the
expression C1[let x = e1 in C2[e2]] changes to an expression
C1[let x = e ′1 in C2[e2]]. The preview of a sub-expression e2
is not recomputed.

6. Editing a non-dependency in a chain. The expression
C[e .m(e1, . . . , en).m

′(e ′1, . . . , e
′
k)] is changed to an

expression C[e .m(e1, . . . , en).m′′(e ′′1 , . . . , e
′′
k)]. The preview

of a sub-expression e .m(e1, . . . , en) is not recomputed.

Figure 9. Code edit operations that enable preview reuse

6.3 Reuse of previews
In the motivating example in Section 1, the programmer first
extracted a constant value into a let binding and then modi-
fied a parameter of the last method call in a call chain. We
argued that the live coding environment should reuse par-
tially evaluated previews for these two cases. In this section,
we prove that this is, indeed, the case in our system.

Figure 9 shows a list of six code edit operations where a
preview of the expression (cases 1-4), or a sub-expression
(cases 5-6), can be reused. This is the case, because the graph
nodes that are bound to the sub-expression before and after
the code is changed are the same and hence, a cached preview
(stored using the graph node as the key) can be reused.

In some of the operations (cases 1 and 3), the code is
changed via an intermediate expression that is semantically
different and has only partial preview. This illustrates a typi-
cal way of working with code in a text editor using cut and
paste operations. Cases 1 and 3 illustrate how our approach
allows this way of editing code.

Finally, it is worth noting that our list is not exhaustive. In
particular, cases 1-4 only cover let bindings where the bound
variable is used once. However, previews can also be reused
if the variable appears multiple times.

Lemma 6 (Binding sub-expressions). Given any ∆1 together
with e1 = C[C1[e]] and e2C[C2[e]], such that all free variables
of e are bound in C , assume that the first expression is bound,
i.e.v1, (V1,E1) = bind∅,∆1 (e1), the graph node cache is updated

10

Design and implementation of a live coding environment for data science PL’17, January 01–03, 2017, New York, NY, USA

∆2 = updateV1,E1 (∆1) and the second expression is bound,
i.e. v2, (V2,E2) = bind∅,∆2 (e2).
Now, assume v,G = bindΓ1,∆1 (e) and v

′,G ′ = bindΓ2,∆2 (e)
are the recursive calls to bind e during the first and the second
binding, respectively. Then, the graph nodes assigned to the
sub-expression e are the same, i.e. v = v ′.

Proof. First, assuming that ∀x ∈ FV (e).Γ1(x) = Γ2(x), we
show by induction over the binding process of e when bind-
ing C[C1[e]] that the result is the same. In cases (1) and (6),
the updated ∆2 contains the required key and so the second
binding proceeds using the same case. In cases (2) and (7), the
second binding reuses the node created by the first binding
using case (1) and (6), respectively. Cases (4) and (5) are the
same and case (3) follows directly via induction.

Second, when binding let bindings in C[−], the initial Γ =
∅ during both bindings and so the nodes added to Γ1 and Γ2
are the same. C1 and C2 do not add any new nodes used in e
to Γ1 and Γ2 and so v = v ′ using the above. �

Theorem 7 (Preview reuse). Given the sequence of expres-
sions as specified in Figure 9, if the expressions are bound in
sequence and graph node cache updated as specified in Figure 4,
then the graph nodes assigned to the specified sub-expressions
are the same.

Proof. Consequence of Lemma 6, using appropriate contexts.
In cases with intermediate expressions (1)-(4), binding the
intermediate expression introduces additional nodes to ∆,
but those are ignored when binding the final expression. �

6.4 Properties of type checking
As noted in Section 5, the focus of this paper is on live pre-
views, but we also use the method based on reusing nodes
in a dependency graph for type checking. We do not dis-
cuss properties of type checking in detail, but we briefly
note how the different properties of live previews extend to
corresponding properties of type checking.

Type checking result reuse. In Section 6.3, we show that
certain source code edits do not cause the recomputation
of previews for the whole expression or a sub-expression.
The edits are given in Figure 9. The proof uses the fact that
the newly bound graph (after code edit) reuses nodes of the
previous graph. This implies that type checking results can
be reused in exactly the same way as live previews – they
are also stored in a lookup table with graph nodes as keys.

Correctness. The correctness property (Theorem ??) shows
that graph-based preview evaluation matches direct eval-
uation of expressions. To show a corresponding property
for type checking, we would need to provide ordinary type
system based on the structure of the expression and prove
that the two are equivalent. In our implementation, we only
use the presented graph-based type checking method, so we
do not provide an alternate account in this paper.

Determinacy. The determinacy property (Theorem 5) guar-
antees that previews can be cached, because evaluating them
again, using ⇓ over an updated graph, would yield the same
result. The same property holds for ⊢, meaning that type
checking results can be cached. Although the Theorem 5
talks explicitly about ⇓, it can be easily extended for ⊢, be-
cause the proof depends on how the graph is updated using
updateV ,E and the binding process.

7 Design lessons
The motivation for the presented work, briefly outlined in
Section 2, is to build a simple data exploration environment
that would allow non-experts, like data journalists, transpar-
ently work with data. In this paper, we focused on providing
live coding experience, which is one important step toward
the goal. However, the languagewe use is amix of established
object-oriented (member access) and functional (function
values) features with type providers.

If we were to design a new programming language, there
are lessons we can learn from the cases that make type check-
ing and preview evaluation in this paper difficult. This sec-
tion briefly considers those.

Functions and type providers. When using type providers
in a nominally-typed language, the provided types are named,
but the names are typically not easy to type [24]. This is
not a problem in typical usage where provided members
are accessed via dot. Using the worldbank example from
Section 5.1, we can access population of two countries using:

worldbank.byCountry.'United Kingdom'.
Indicators.'Population (total)'

worldbank.byCountry.'Czech Republic'.
Indicators.'Population (total)'

However, the fact that the provided types do not have nice
names becomes a problem when want to extract code to
access population into a function:
let getPopulation c =
c .Indicators.'Population (total)'

Here, the compiler cannot infer the type of c from usage and
so we are required to provide a type annotation using an
automatically generated name.

Functions and live previews. Providing live previews in
a language with ordinary functions suffers from the same
problem as type checking of functions.
Our live preview evaluation, discussed in Section 4, can

obtain only a delayed preview for the body of getPopula-
tion. The delayed preview we would obtain in this case is
Jc .Indicators.'Population (total)'Kc .

If we know the type of c , we can provide a user interface
that lets the user specify a value for c (or, more generally, free
variables of the preview) and then evaluate the preview, but
it is difficult to provide a meaningful preview automatically.

11

PL’17, January 01–03, 2017, New York, NY, USA Tomas Petricek

Wormhole abstractions. In data science scripting, we start
with a concrete example and then turn code into a reusable
function. This pattern could be supported by the language
in a way that makes type checking and preview evaluation
easier. Using an imaginary notation, we could write:

let uk = worldbank.byCountry.' United Kingdom'

def getPopulation =
[country :uk].Indicators.'Population (total)'

getPopulation worldbank.byCountry.China
getPopulation worldbank.byCountry.India

We tentatively call this notationwormhole abstraction andwe
intend to implement it in future prototypes of The Gamma.
The second line is an expression that accesses the population
of the UK, using a concrete data source as the input, but it
also defines a named function getPopulation that has a pa-
rameter country. In a way, we are providing type annotation
by example, together with a value annotation that can be
used for live previews.

Thisway of constructing abstractions is perhapsmore akin
to how spreadsheets are used – we often write a formula
using a concrete cell and then use the “drag down” operation
to extend it to other inputs.

8 Related and future work
This paper approaches the problem of live coding environ-
ments from a theoretical programming language perspective
with a special focus on tooling for data science. Hence, the
related and future work spans numerous areas.

Design andhuman-computer interaction. From a design
perspective, the idea of live programming environments has
been popularised by Bret Victor [34]. Active research on
novel forms of interaction happens in areas such as live
coded music [1, 25]. The idea of live previews can be ex-
tended to direct manipulation [27]. The Gamma provides
limited support for directly manipulating data (Section 2),
but we intend to explore this direction further.

Data science tooling. An essential tool in data science is
REPL (read-eval-print-loop) [8], which is now widely avail-
able. This has been integrated with rich graphical outputs in
tools such as Jupyter notebooks [15, 22], but such previews
are updated using an explicit command. Integrating our work
with Jupyter to provide instant live previews for R or Python
would be an interesting extension of the presented work.

Live coding and live previews. Live previews have been
implemented in LightTable [11] and, more recently, in editors
such as Chrome Developer Tools, but neither presents a
simple description of their inner workings. An issue that
attracts much attention is keeping state during code edits
[2, 17]. This would be an interesting problem if we extended
our work to event-based reactive programming.

Structured editing. An alternative approach to ours is to
avoid using text editors. Structured editors [31] allow the
user to edit the AST and could, in principle, recompute pre-
views based on the performed operations, or preview evalua-
tion as in interactive functional programming [21]. A promis-
ing direction is using bi-directional lambda calculus [20].
Finally, abandoning text also enables building richer, more
human-centric abstractions as illustrated by Subtext [5]. Our
current focus, however, remains on text-based editors.

Dependency analysis. Our use of dependency graphs [16]
is first-order. Building dependency graphs involving function
calls using modern compiler methods [14] or program slicing
[35] would allow us to deduce possible inputs for functions
and use those for previews rather than changing the language
as suggested in Section 7. This direction is worth considering,
but it requires more empirical usability testing.

Semantics and partial evaluation. The evaluation of pre-
views can be seen as a form of partial evaluation [4], done in
a way that allows reuse of results. This can be done implicitly
or explicitly in the form of multi-stage programming [32].
Both can provide useful perspective for formally analysing
how previews are evaluated. Semantically, the evaluation
of previews can be seen as a modality [6] and delayed pre-
views are linked to contextual modal type theory [19], which,
in turn, can be understood in terms of comonads [9]. This
provides an intriguing direction for rigorous analysis of the
presented system.

9 Summary
We present The Gamma, a live coding environment for data
exploration. The environment bridges the gap between spread-
sheets and scripting – live previews give users rapid feedback,
while the final result is a fully reproducible script.

In this paper, we focus on the challenge of efficiently pro-
viding live previews and type checking code during editing
in a free-form text editor. This is a challenge, because users
can perform arbitrary text transformations and we cannot
recompute previews after each edit.
The key trick is to separate the process into fast binding

phase, which constructs a dependency graph and slower eval-
uation phase and type checking phase that can cache results,
using the nodes from the dependency graph created dur-
ing binding as keys. This makes it possible to quickly parse
updated code, reconstruct dependency graph and compute
preview using previous, partially evaluated, results.

We describe our approach formally, which serves two pur-
poses. First, we aim to provide easy to use foundations for the
growing and important trend of text-based live coding envi-
ronments. Second, we explore the properties of our system
and prove that our method does not recompute previews
in a number of common cases and, at the same time, the
optimisation still produces correct previews.

12

Design and implementation of a live coding environment for data science PL’17, January 01–03, 2017, New York, NY, USA

References
[1] Samuel Aaron and Alan F Blackwell. 2013. From sonic Pi to overtone:

creative musical experiences with domain-specific and functional lan-
guages. In Proceedings of the first ACM SIGPLANworkshop on Functional
art, music, modeling & design. ACM, 35–46.

[2] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean
McDirmid, Michal Moskal, and Nikolai Tillmann. 2013. It’s Alive!
Continuous Feedback in UI Programming. In PLDI. ACM SIGPLAN.

[3] David Raymond Christiansen. 2013. Dependent type providers. In
Proceedings of the 9th ACM SIGPLANworkshop on Generic programming.
ACM, 25–34.

[4] Charles Consel and Olivier Danvy. 1993. Tutorial notes on partial eval-
uation. In Proceedings of the 20th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, 493–501.

[5] Jonathan Edwards. 2005. Subtext: uncovering the simplicity of pro-
gramming. ACM SIGPLAN Notices 40, 10 (2005), 505–518.

[6] Matt Fairtlough, Michael Mendler, and Eugenio Moggi. 2001. Special
issue: Modalities in type theory. Mathematical Structures in Computer
Science 11, 4 (2001), 507–509.

[7] Roy Fielding. 2000. Representational state transfer. Architectural Styles
and the Design of Netowork-based Software Architecture (2000), 76–85.

[8] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
2002. DrScheme: A programming environment for Scheme. Journal of
functional programming 12, 2 (2002), 159–182.

[9] Murdoch J Gabbay and Aleksandar Nanevski. 2013. Denotation of
contextual modal type theory (CMTT): Syntax andmeta-programming.
Journal of Applied Logic 11, 1 (2013), 1–29.

[10] Marco Gaboardi, Shin-ya Katsumata, Dominic A Orchard, Flavien
Breuvart, and Tarmo Uustalu. 2016. Combining effects and coeffects
via grading.. In ICFP. 476–489.

[11] Chris Granger. 2012. LightTable: A new IDE concept. http://www.
chris-granger.com/2012/04/12/ light-table-a-new-ide-concept/ (2012).

[12] Jonathan Gray, Lucy Chambers, and Liliana Bounegru. 2012. The data
journalism handbook: how journalists can use data to improve the news.
" O’Reilly Media, Inc.".

[13] P Guo. 2013. Data science workflow: Overview and challenges. blog
CACM, Communications of the ACM (2013).

[14] Ken Kennedy and John R Allen. 2001. Optimizing compilers for mod-
ern architectures: a dependence-based approach. Morgan Kaufmann
Publishers Inc.

[15] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B
Hamrick, Jason Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-
a publishing format for reproducible computational workflows.. In
ELPUB. 87–90.

[16] David J Kuck, Robert H Kuhn, David A Padua, Bruce Leasure, and
Michael Wolfe. 1981. Dependence graphs and compiler optimizations.
In Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages. ACM, 207–218.

[17] Sean McDirmid. 2007. Living it up with a live programming language.
In ACM SIGPLAN Notices, Vol. 42. ACM, 623–638.

[18] Alan Mycroft, Dominic Orchard, and Tomas Petricek. 2016. Effect
systems revisitedâĂŤcontrol-flow algebra and semantics. In Semantics,
Logics, and Calculi. Springer, 1–32.

[19] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Con-
textual modal type theory. ACM Transactions on Computational Logic
(TOCL) 9, 3 (2008), 23.

[20] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and
Matthew A Hammer. 2017. Hazelnut: a bidirectionally typed structure
editor calculus. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages. ACM, 86–99.

[21] Roland Perera. 2013. Interactive functional programming. Ph.D. Disser-
tation. University of Birmingham.

[22] Fernando Pérez and Brian E Granger. 2007. IPython: a system for
interactive scientific computing. Computing in Science & Engineering
9, 3 (2007).

[23] Tomas Petricek. 2017. Data Exploration through Dot-driven Develop-
ment. In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 74.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[24] Tomas Petricek, Gustavo Guerra, and Don Syme. 2016. Types from
data: Making structured data first-class citizens in F. ACM SIGPLAN
Notices 51, 6 (2016), 477–490.

[25] Charles Roberts, Matthew Wright, and JoAnn Kuchera-Morin. 2015.
Beyond editing: extended interaction with textual code fragment. In
NIME. 126–131.

[26] Peter Sestoft. 2012. Spreadsheet technology. Technical Report. Citeseer.
[27] Ben Shneiderman. 1981. Direct manipulation: A step beyond program-

ming languages. In ACM SIGSOC Bulletin, Vol. 13. ACM, 143.
[28] Don Syme. 2006. Leveraging. net meta-programming components from

F#: integrated queries and interoperable heterogeneous execution. In
Proceedings of the 2006 workshop on ML. ACM, 43–54.

[29] Donald Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and
Tomas Petricek. 2013. Themes in information-rich functional pro-
gramming for internet-scale data sources. In Proceedings of the 2013
workshop on Data driven functional programming. ACM, 1–4.

[30] Don Syme, Tomas Petricek, and Dmitry Lomov. 2011. The F# asynchro-
nous programming model. Practical Aspects of Declarative Languages
(2011), 175–189.

[31] Gerd Szwillus and Lisa Neal. 1996. Structure-based editors and environ-
ments. Academic Press, Inc.

[32] Walid Taha and Tim Sheard. 2000. MetaML and multi-stage program-
ming with explicit annotations. Theoretical computer science 248, 1
(2000), 211–242.

[33] Mads Torgersen and Neal Gafter. 2012. C Language Specification.
https://github.com/dotnet/csharplang/ tree/master/ spec, Retrieved 2017
(2012).

[34] Bret Victor. 2012. Learnable programming: Designing a program-
ming system for understanding programs. http://worrydream.com/
LearnableProgramming (2012).

[35] Mark Weiser. 1981. Program slicing. In Proceedings of the 5th interna-
tional conference on Software engineering. IEEE Press, 439–449.

13

http://www.chris-granger.com/2012/04/12/light-table-a-new-ide-concept/
http://www.chris-granger.com/2012/04/12/light-table-a-new-ide-concept/
https://github.com/dotnet/csharplang/tree/master/spec
http://worrydream.com/LearnableProgramming
http://worrydream.com/LearnableProgramming

PL’17, January 01–03, 2017, New York, NY, USA Tomas Petricek

A Appendix
Theorem 0 (Let-free correctness). Given an expression e
that has no free variables and does not contain let bindings,
together with a lookup table ∆ obtained from any sequence of
expressions according to Figure 4 let v, (V ,E) = bind∅,∆(e). If
v ⇓ d over a graph (V ,E) then d = p for some p and e β p.

Proof. First note that, when combining recursively constructed
sub-graphs, the bind operation adds new nodes and edges
leading from those new nodes. Therefore, an evaluation us-
ing ⇓ over a sub-graph will also be valid over the new graph.
Next, we prove a more general property using induction

showing that for e such that v, (V ,E) = bind∅,∆(e):
a. If FV (e) = ∅ then v ⇓ p for some p and e β p
b. If FV (e) , ∅ then v ⇓ JepKFV (e) for some ep and for

any evaluation context C[−] such that FV (C[ep]) = ∅
it holds that if C[e] β C[ep].

The proof is done by induction over the binding process,
which follows the structure of the expression e:

(1) bindΓ,∆(e0.m(e1, . . . , en)) – Here e = e0.m(e1, . . . , en), vi
are graph nodes obtained by induction for expressions ei
and {(v,v0, arg(0)), . . . , (v,vn , arg(n))} ⊆ E. From Lemma 2,
v = mem(m, s) for some s .

If FV (e) = ∅, then vi ⇓ pi for i ∈ 0 . . .n and v ⇓ p using
(mem-val) such that p0.m(p1, . . . ,pn) p. From induction
hypothesis, ei β pi and so, using compositionality of ,
e0.m(e1, . . . , en) β p.

If FV (e) , ∅, then vi ⇓lift Je ′i K for i ∈ 0 . . .n and using
(mem-expr), v ⇓ Je ′0.m(e

′
1, . . . , e

′
n)KFV (e). From induction hy-

pothesis, for any C[−], it holds that C[ei] β C[e ′i]. Using
compositionality, it also holds that for anyC[−], it is the case
that C[e0.m(e1, . . . , en)] β C[e ′0.m(e

′
1, . . . , e

′
n)].

(2) bindΓ,∆(e0.m(e1, . . . , en)) – This case is similar to (1), ex-
cept that the fact that v = mem(m, s) holds by construction,
rather than using Lemma 2.

(3) We assume that the expression e does not include let
bindings and so this case never happens.

(4) bindΓ,∆(n) – In this case e = n andv = val(n). The preview
of val(n) is evaluated to n using the (val) case.

(5) bindΓ,∆(x) – The initial Γ is empty and there are no let
bindings, so x must have been added to Γ by case (6) or (7).
Hence, v = var(x). Using (var) v ⇓ JxKx and so ep = e = x
and the second case (b.) trivially holds.

(6) bindΓ,∆(λx → e) – Assume vb is a graph node represent-
ing the body. The evaluation can use one of three rules:

If FV (e) = ∅ thenvb ⇓ pb for some pb andv ⇓ λx .pb using
(fun-val). From induction eb β pb and so by definition also
λx .eb β λx .pb .

If FV (e) = {x} then vb ⇓ JebKx for some eb and v ⇓ λx .eb
using (fun-bind). From induction, for any context C[−], it
holds that C[e] β C[eb]. Using a context C[−] = λx .− it
holds that λx .e β λx .eb .
Otherwise, vb ⇓ JebKx,Γ for some eb and v ⇓ Jλx .ebKΓ

using (fun-expr). From induction, for any context C[−], it
holds that C[e] β C[eb] and for any context C ′[−], by
definition of β also C ′[λx .e] C ′[λx .eb]. �

14

	Abstract
	1 Introduction
	2 Live programming for data exploration
	2.1 The Gamma scripting language
	2.2 Dot-driven data exploration
	2.3 Direct manipulation and live previews

	3 Formalising live coding infrastructure
	3.1 Maintaining dependency graph
	3.2 Binding an expressions to a graph
	3.3 Edit and rebind loop

	4 Evaluating previews
	5 Type checking
	5.1 Asynchronously provided types
	5.2 Revised binding of functions
	5.3 Type checking over dependency graphs

	6 Properties of live coding environment
	6.1 Modeling expression evaluation
	6.2 Correctness of previews
	6.3 Reuse of previews
	6.4 Properties of type checking

	7 Design lessons
	8 Related and future work
	9 Summary
	References
	A Appendix

