Monads are not what they seem

Uncovering the hidden nature of programming concepts

Tomas Petricek

The Alan Turing Institute, London, UK

Abstract

Computer science provides an in-depth understanding of technical and mathematical aspects of programming concepts such as monads, but there is more to monads. If we want to understand how programming concepts evolve, how programmers think about them and how they are used in practice, we need to consider a broader perspective that includes historical, philosophical and cognitive aspects. In this paper, we develop such broader understanding of monads – a programming concept that got into programming from category theory, has language support in several languages and has a reputation for being elegant and powerful, but also intimidating and difficult to understand. We review the history of monads in the context of programming and study the development through the perspectives of philosophy of science and mathematics, as well as cognitive sciences.

We develop a framework for understanding programming concepts that considers them at three levels: formal, metaphorical and implementation. Our observations are based on established results about the scientific method and mathematical entities – cognitive sciences suggest that the metaphors used when thinking about monads are more important than widely accepted, while philosophy of science explains how the research paradigm from which monads originate influences and restricts their use. Finally, we provide evidence for why a broader philosophical, sociological look at programming concepts should be of interest for programmers. It lets us understand programming concepts better and, fundamentally, choose more appropriate abstractions as illustrated in a number of case studies that conclude the paper.

ACM CCS 2012

- General and reference → Surveys and overviews;
- Social and professional topics → History of computing;

Keywords monad, programming concept, abstraction, philosophy of science, metaphor
Monads are not what they seem

1 Introduction

“A monad is just a monoid in the category of endofunctors. What is the problem?” This quote has been intended as a joke, but it, surprisingly precisely, captures the paradoxical nature of how we talk about programming concepts like monads. Monads have a precise and succinct category theoretical definition that formally defines exactly what a monad is. Yet, this definition is not useful for understanding monads, does not explain how and why they are useful in programming and, in some cases, excludes use cases that the community considers as monads. The quote also alludes to the belief that formal mathematical treatment of a programming concept leads to an ideal kind of knowledge about programming. Once you know that a monad is a monoid in the category of endofunctors, you know all there is to know.

In this paper, we aim to answer the question “What is a monad?” in a different and more useful way. We review how monads are taught, used by academics and programmers and also misused. We interpret the developments through the perspective of cognitive science, philosophy of science and philosophy of mathematics.

- We look at how monads are taught (Section 2) from the perspective of cognitive sciences. This teaches us that metaphors play an important role in understanding monads and are not a kludge employed by bad monad tutorial writers.
- We review how monads are used in academic literature (Section 3). We use the idea of research paradigms from philosophy of science to explain why some questions are asked and some are ignored.
- Looking at how monads are used by programmers in practice (Section 4), we map how the notion of monad evolves. Although the formal definition stays the same, the uses and intuition behind them shifts the meaning of what a monad is.
- We briefly consider how monads are talked about in the community of programmers (Section 5). This provides an additional evidence that the narrow technical perspective does not explain why and how monads are used.
- We conclude by looking at four concrete cases where monads were used in a way that was later seen as incorrect (Section 6). We argue that those could have been prevented if the metaphorical, philosophical and social understanding of monads was taken into account.

More broadly, this paper provides the foundation for more broader understanding of programming concepts that integrates formal and technical views with reflections obtained through cognitive sciences and philosophy. We argue that this is important not only to get a more complete understanding, but also for avoiding concrete problems when using programming concepts in practice.

2 Teaching and understanding monads

We start by reviewing the history of how monads got into programming and by looking at how monads are typically explained in tutorials. This should provide an introduction for readers who are not familiar with monads, but our focus is not on
explaining monads. Instead, we want to look at how monads are typically explained and treated. The side notes that people make about monads reveal how monads are understood and the subtle transitions between mathematics and programming hint at the research paradigm in which our work is grounded.

2.1 From category theory to programming

Monads were introduced by Godement [11] in algebraic topology in 1958. They became referred to as standard construction and triples before Saunders MacLane [26] popularized the name monad and also introduced the phrase “a monad is a monoid in the category of endofunctors”. The following definition of monad is taken from a paper by Moggi [32] that first used monads in the context of programming languages:

Definition 1. A monad over a category ‘

\[T : \mathcal{C} \to \mathcal{C} \]

is a triple \((T, \eta, \mu)\) where \(T : \mathcal{C} \to \mathcal{C}\) is a functor, \(\eta : \text{Id}_{\mathcal{C}} \to T\) and \(\mu : T^2 \to T\) are natural transformations such that:

\[
\begin{align*}
\mu_A \circ T \mu_A &= \mu_A \circ \mu_{TA} \\
\mu_A \circ \eta_{TA} &= TA = \mu_A \circ T \eta_A
\end{align*}
\]

To a reader not familiar with category theory, the definition is very opaque and understanding it is not necessary for this paper. However, it is worth discussing the original context in which it appeared. Monads were used to embed an object into an object with a richer structure [1] and also to express many different constructions in terms of the same structure [28]. This is noteworthy, because both of these are among the motivations for using monads in programming.

Moggi [32] used monads in semantics of programming languages to capture many different notions of computation that go beyond total functions such as non-determinism, side-effects and exceptions. The paper provides categorical definitions for several monads later used in programming, but it did not introduce them as programming tools, but as proving tools: “This paper is about logics for reasoning about programs, in particular for proving equivalence of programs.”

Wadler [50] is the first to use monads as programming tools. The paper translates the categorical definition to a functional language. A functor becomes a type constructor (operator on types) with a map function and natural transformations become functions:

Definition 2. For our purposes, a monad is an operator \(M\) on types, together with a triple of functions:

\[
\begin{align*}
\text{map} &:: (x \to y) \to (Mx \to My) \\
\text{unit} &:: x \to Mx \\
\text{join} &:: M(Mx) \to Mx
\end{align*}
\]

satisfying the following laws:

\[
\begin{align*}
\text{join} \circ \text{join} &= \text{join} \circ \text{map join} \\
\text{join} \circ \text{unit} &= \text{id} = \text{join} \circ \text{map unit} \\
\text{map id} &= \text{id} \\
\text{map (g \circ f)} &= \text{map g \circ map f} \\
\text{map \circ join} &= \text{join} \circ \text{map (map f)} \\
\text{map f \circ unit} &= \text{unit} \circ f
\end{align*}
\]
Monads are not what they seem

The natural transformations μ and η are now the join and unit functions, respectively. The first two monad laws are direct translation of the laws in Definition 1. The next four laws are properties of natural transformations and so they are made explicit here.

The paper translates a number of monad definitions by Moggi into the language of functional programming and links monads with the comprehension syntax for working with lists and generalizes comprehensions to work with any monad. We return to the topic of syntax in Section 4.

2.2 Bridging multiple levels of meaning

The early development that established monads as a programming concept hints at one important property of programming concepts that are central to this paper. The meaning of a programming concept such as monad comprises aspects at three different levels. The first is a mathematical aspect that can be used for formal analysis. The second is an implementation of the concept that is used for some purpose in concrete programs or libraries. Finally, the third is some metaphorical or intuitive understanding what the concept is in terms of general examples or analogies. In case of monads this is, for example, the idea that “[monads] take some uninteresting object and turn it into something more structured” [1].

We return to the three levels that constitute meaning of programming concepts in Section 4.2, after discussing uses of monads, and we look at the metaphorical level more in Section 2.4 after discussing how monads are taught in monad tutorials.

Importing monads from mathematics into actual program code is an interesting step. We use mathematics as a model of physical programs. To better structure our proofs in the model, we use a certain device provided by mathematicians. This device is then imported back into the programming world – going in the opposite direction than was originally intended when creating formal model of programs.

A mathematical monad and a programming monad are related, but they are not the same. In fact, philosophers would say that they are of a different kind [6], the first being a priori and the second being a posteriori kind of knowledge. Some aspect of what a monad is change as they bridge the gap. Moggi introduced monads for reasoning about effectful programs, but Wadler uses them to implement effectful programs in a purely functional programming language. Even a very direct translation subtly changes the purpose of a monad. A less interesting change is that Moggi used strong monads with an additional operation that is not needed in programming (because of how programming languages handle variables) and so this aspect is omitted when we use monads in programming.

2.3 How programmers talk about monads

In programming, an alternative – but equivalent – definition of monads become popular shortly after the original one appeared. The following is adapted from a tutorial by Wadler [51]. The $\gg=$ operator was initially called \star and is known as bind.

Definition 3. A monad is a triple \((M, \text{unit}, \ggg)\) consisting of a type constructor \(M\) and two operations of the following types:

\[
\ggg \:: (x \to My) \to (Mx \to My) \\
\text{unit} \:: x \to Mx
\]

These operations must satisfy the following laws:

\[
\text{unit } a \ggg f = f a \\
m \ggg \text{unit} = m \\
(m \ggg f) \ggg g = m \ggg (\lambda x. f x \ggg g)
\]

Note that \(M\) is now called a type constructor rather than a functor or operator on types. This is because the definition is now embedded in a language that support generic (polymorphic) types that are used in the implementation. In a way, this makes the definition more narrow – monads could be encoded in other ways and could be used in languages without generic types, but the established definition heavily relies on this language feature.

The programming literature on monads interprets and explains the formal definition either as purely formal or using one of two metaphors. The metaphorical explanations are usually treated as kludges that are only needed because the concept is difficult to explain otherwise. We argue that this is not the case and the metaphors are an important part of what a monad is. Before explaining why, the rest of this section reviews the three explanations.

Monad as a formalist entity. The implementations of \(\text{bind}\) and \(\text{unit}\) for a concrete monad can perform a range of different things. Some authors, such as Wadler [51], try to avoid interpreting what the \(\text{bind}\) and \(\text{unit}\) operations of a monad represent in general and only describe concrete examples.

This view is akin to formalism in philosophy of mathematics as advocated, for example, by Curry [5]. Mathematical statements have no inherent meaning and are simply syntactic forms. Proving a property involves no understanding, but only an application of string transformation rules. Avoiding interpretation and metaphors might, however, be merely a way of writing – a style preferred by the more mathematically oriented part of the programming community. As noted by Todd Bayma in an interview quoted by MacKenzie [27]:

The way mathematicians write and talk are two different things. We write very proper, formal, very abstract. We think informally, intuitively. None of that is in the publication. When we get together we ask, “What does that mean?” (…).

This suggests that, treating monad as a formalist entity is only done in writing, but when thinking and talking about monads, even a formalist typically thinks and talks in terms of the two metaphors. In writing, those are left out either for lack of space, or due to the belief that formal mathematics is a more pure, ideal form of knowledge (a topic we revisit in Section 3.2).
Monads are not what they seem

Monad as a container. The first metaphor is to see the monad $M a$ as a container containing values of type a [8]. This is a more concrete version of the intuitive understanding in mathematics (discussed in Section 2.1) where a monad embeds an object into an object with a richer structure. Using this metaphor, we can explain a number of standard monads:

- List monad – $M a$ is a list of a values, or a container storing values in the list.
- Maybe monad – $M a$ either contains a value of type a or is an empty box.
- Reader monad – $M a$ is a container that contains a value of type a together with some other things (data or information).

Tutorials using this metaphor often use illustrations to intuitively explain what the abstract operations of a monad do [2]. The container metaphor fits better with the monad definition based on join, so the following illustration includes all operations and not just the more common bind. When drawing a box to represent $M a$, we follow some tutorial authors and sometimes draw multiple a values as this better explains some of the operations.

\[
\begin{align*}
\text{unit} & : a \rightarrow [a] \\
\text{map} & : a \rightarrow b \Rightarrow [a] \rightarrow [b] \\
\text{join} & : [a] \rightarrow [a] \\
\text{bind} & : a \rightarrow [b] \Rightarrow [a] \rightarrow [b][b]
\end{align*}
\]

According to the metaphorical explanation, the unit operation takes a value and wraps it in a box. The map operation takes a function that turns a into b and applies it to all things in a box. The join operation takes a box of boxes and unwraps it into a single box containing The join operation is better explained as a combination of map and join. It takes a function that produces a box, applies it to all values in a box and then unwraps the nested boxes.

Monad as a computation. The second metaphor is to see a monad as a computation [7]. Explanations using this metaphor typically use functions $a \rightarrow M b$, although the monad $M a$ can itself be seen as a computation. This way of talking about monads focuses on composition of monadic computations through the bind operation, rather than on explaining what the monad itself represents, so it is complementary to the monad-as-container metaphor.

Ordinary functions such as $f : a \rightarrow b$ and $g : b \rightarrow c$ can be composed using function composition $g \circ f : a \rightarrow c$. Monadic functions represent computations that are, in some way, non-standard. We use bold font face for the type $M a$ and write them as as $a \rightarrow b$. However, the input structure is now incompatible with the output structure, so functions like these cannot be directly composed using \circ.

The unit function is a computation $a \rightarrow a$ that does nothing – it takes a value and returns it in a non-standard way without actually doing anything non-standard. The bind operation transforms a computation so that it can be composed into a bigger non-standard computation. Consider three functions:

\[
f : a \rightarrow b \quad g : b \rightarrow c \quad h : c \rightarrow d
\]
The bind operation turns a function with non-standard output into a function that also has a non-standard input and propagates its non-standard aspect. We apply them to the latter two functions:

\[
\begin{align*}
 f &: a \to b & \text{bind} \ g &: b \to c & \text{bind} \ h &: c \to d
\end{align*}
\]

Now the functions have compatible inputs and outputs and so we can compose them using \(\text{bind } h \circ \text{bind } g \circ f \) to obtain one non-standard computation of type \(a \to d \).

One of the tutorials that follows this idea makes the metaphor even more concrete and explains computations \(a \to b \) in terms of railway tracks from the point \(a \) to the point \(b \). A non-standard monadic computation is a railway switch, so the three functions can be visually represented as:

\[
\begin{align*}
 f &: a \longrightarrow b & g &: b \longrightarrow c & h &: c \longrightarrow d
\end{align*}
\]

The fact that the railway tracks do not link corresponds to the fact that the functions cannot be composed. The bind operation represents an adapter that transforms a track with a switch into a two-way track so that the railway can be composed:

\[
\begin{align*}
 f &: a \longrightarrow b \,\,\, \text{bind} \,\,\, g &: b \longrightarrow c \,\,\, \text{bind} \,\,\, h &: c \longrightarrow d
\end{align*}
\]

The railway switch is a good metaphor for some of the standard monads:

- Maybe monad (again) – The direct track represents a computation that produces a value, while the side track represents a computation that produced no value.
- Exception monad – Similar, but the side track now represents a computation that failed and produced an exception instead.

Several other monads such as the continuation monad and the resumption monad can also be seen as creating non-standard computation (one that returns asynchronously and one that can be stopped), but are not easily visualized as a railway track. However, for the two common cases where the railway track metaphor fits, it provides an effective way of explaining the concept.

2.4 Metaphors as an inseparable component

We typically see metaphors as a literary device. In the context of monad tutorials, they are seen as a kludge that aims to make understanding easier. Some argue that this makes it hard to understand what monads really are and metaphors should, presumably, be avoided in monad tutorials. However, recent work in cognitive science suggests the exact opposite. To quote Lakoff and Núñez:

One of the principal results in cognitive science is that abstract concepts are typically understood, via metaphor, in terms of more concrete concepts.
Monads are not what they seem

In other words, mathematical ideas are often grounded in everyday experience and metaphors link the everyday experience with more abstract concepts. Moreover, most thought is unconscious and inaccessible to introspection, so we are not directly aware that we are thinking in terms of metaphors.

One way to discover the metaphors behind our understanding is to look at the language we use to talk about abstract concepts. This is also the case for monads. For example, the following are common phrases used when discussing monads:

- “In a monad” or “wrapped in a monad” is used to talk about the parameter \(a \) of a generic type \(M \). This is the language we use for the container metaphor.
- The unit operation is also called return, suggesting the computation metaphor – the operation creates a computation that does nothing and returns the value.
- The name of the bind operation is also significant as it suggests let binding which is used for sequencing computations. The bind operation serves similar purpose when we think of monads as non-standard computations.

In summary, the two common metaphors used when explaining monads are more than just two concrete examples that are useful for understanding what a monad is. They are an inherent part of what a monad is to a programmer – both consciously and unconsciously. They provide a concrete concept, with attached everyday experience, that lets us think about monads via cognitive metaphors.

It is worth noting that even a pure formalist treatment of monads – as syntactic forms with no inherent meaning that are manipulated through string operations – can be understood in terms of metaphors. The hidden metaphor is movement. When we say, “in the next step [of a proof]”, we are expressing ourselves as if we were talking about moving along a path.

3 Using monads in programming research

Since their introduction into programming language research, monads became a popular tool in academic work on programming language theory and in programming practice. We return to programming practice in the next section (Section 4) and briefly discuss how are monads treated in academic literature.

3.1 Reasoning about programs using monads

We do not aim to present a comprehensive literature review. Instead, we look at one particular aspect of monads, namely the monad laws. Those were mentioned by the definitions in Section 2, but where do they come from? Are they the right ones and what does it mean for the laws to be right? And what does the treatment of monad laws reveal about how we think about programming and computer science?

Origins of monad laws. Algebraic laws about programming language constructs, such as those introduced by Hoare [15], are typically motivated by the aim to prove certain properties. If we have two programs that should intuitively be the same, we define
an algebraic law that formalizes this requirement. For example, we might intuitively expect that if \(b \) then \(p \) else \(p \) has the same meaning as \(p \) and introduce the equality as a law [16].

In case of monads, the laws are not motivated by intuition about programs, but instead, they are imported from the category theoretical definition. There, the laws follow from the definition that “monad is the monoid in category of endofunctors” – this is a basic structural requirement that allows further categorical definitions, but it translates to programming laws that do not appear intuitive when expressed using \(\text{bind} \) and \(\text{unit} \). They become intuitive when expressed in terms of composition of monadic computations, but this is not how they are typically presented.

Curiously, the monad laws are unanimously accepted by the programming community, even if they do not originate from intuition about programs. In contrast, various extensions of monads that add additional operations \([\text{contextual, 33, 37}]\) usually motivate the laws by programming intuition, but there is often little agreement on the laws. The best example is the \(\text{MonadPlus} \) extension that adds an operation of type \(Ma \to Ma \to Ma \). There are at least two suggested sets of laws based on two different intuitions about the operation [47].

Reasoning with monad laws. Using monads for reasoning about programs has been the original motivation by Moggi [32], but the immediate follow-up work used monads in a different way. Monad laws have later been used – as originally intended – for reasoning about programs with effects. For example, Gibbons and Hinze [9] use monad laws, together with laws about concrete monads, to reason about programs involving non-determinism, state and exceptions.

However, using monad laws to prove program properties is less ubiquitous than the early work might suggest. More often, papers that refer to monads define a library for a concrete problem such as parsing, concurrency or parallelism \([4, 18, 29]\) that fits the monad structure and satisfies the laws. Such papers often include a reference to monads in title, but their novelty is in solving a concrete programming problem.

Perhaps controversially, it appears that monad laws matter less than the early work envisioned. Monad laws are typically (but not always) mentioned in monad tutorials. Tutorials say that the purpose of the laws is to enable reasoning, but rarely demonstrate such reasoning with a concrete example. There are also no programming tools offering, for example, refactoring of programs based on monad laws. The use of monads for program reasoning remains a theme for a narrow academic community that monads have since outgrown.

3.2 Monads and research paradigms

An established result of philosophy of science is the idea that scientific research is grounded in research paradigm [21] which provides a framework within which normal science is done. This includes methods of inquiry and the kind of questions that can be asked. Research paradigms are shared by the entire scientific community, but a similar concept – research programme [23] applies at smaller scale.
Monads are not what they seem

How and what we study using monads matters, because it reveals the implicit assumptions of our current programming language research paradigm. In the computer science community, monads are rooted in a research programme that aims to “utilize the resources of logic to increase the confidence (...) in the correctness of a program”. Following Priestley [40], we refer to this as the Algol research programme.

First, using monads is a way of identifying a research as belonging to the research programme. For example, the aforementioned papers that solve parsing, concurrency or parallelism problems [4, 18, 29] could treat monads merely as an unimportant implementation artifact, but monads are an accepted tool of the research programme and so a solution based on monads is often preferred. In Section 6, we will see that this may be problematic.

One of the indisputable assumptions of the Algol research programme is that mathematics provides fundamental source of knowledge about programming. This is, arguably, why monad laws coming from category theory were unanimously accepted and are rarely questioned. (The container and computation metaphors might, intuitively, suggest different laws.) The fact that the monad laws have not disappeared from monad tutorials, even though they are not later needed, is likely also due to their roots in the Algol research programme.

Equally interesting are questions that are not, or only rarely, asked. In practice, many programmers struggle to understand monads because of their abstract nature. Some discuss how we could explain monads better (e.g. by avoiding metaphors [54]), but the question whether it is desirable to use a monad (as opposed to a concrete notion) is never asked. The assumption that abstraction is desirable is another part of the Algol research programme. Similarly, there are only few papers discussing syntax for working with monads [10, 38] and those focus on formal properties of the notation, rather than on its cognitive aspects [3].

Using monads in programming practice

In computer science research, uses of monads keep relatively close to their formal definition and their original purpose. In programming practice, some uses are also straightforward application of the original definitions, albeit not for reasoning but for implementing. Other uses stretch the original concept in new interesting ways.

In this section, we first look at some of the uses that are further away from the original definition. Next, we use those examples to illustrate how programming concepts evolve. The monad of 2017 is not the same as the monad that was introduced into programming more than a quarter of a century ago. This is not because monads are used incorrectly, but because such evolution is a normal part of the life of programming concepts.

1 To give a concrete example, things stored in a container are not ordered, so we could argue that monadic bind should be commutative, while the order in which effectful computations are performed certainly matters.
4.1 Monads in programming languages

Moggi [32] realized that monads provide a common structure for talking about a number of notions of computations involving, among others, state, exceptions and non-determinism. This means that some reasoning about programs can be done just using the common monadic structure, but reasoning about concrete effects still needs to involve the concrete notion of computation.

Translated to programming, monads were used to encode different notions of computations and the common structure allows code reuse. However, monads also became popular for sequencing computations and syntactic support for writing code using monads opened yet another direction.

Code reuse. The first practical use of monads is for code reuse. In Haskell and other languages with higher-kinded types [52], it is possible to write code that works for any monad, provided that the implementation needs only `unit` and `bind`, written as `return` and `>>=`, respectively. For example:

```haskell
mapM :: Monad m ⇒ (a → m b) → [a] → m [b]
mapM f x = loop x []
  where loop [] acc = return (reverse acc)
        loop (x : xs) acc = f x >>= λy. loop xs (y : acc)
```

The function takes a list of values `[a]` and a function that returns `mb` for each value of `a`. It applies this function to all list elements and concatenates the results, composing individual monadic values using `>>=`.

An interesting aspect of the code is that we know very little about what the function does for a concrete monad, to the extend that the name `mapM` may not be appropriate in a more specific context. It is also difficult to describe the function behavior without a reference to a concrete metaphor for thinking about monads – the above description achieves this, but at the cost of clarity. More natural description might say that the function `a → mb` returns a value wrapped in a monad (using the container metaphor) or that `mapM` composes monadic computations sequentially (using the computation metaphor). The metaphors are almost necessary to talk about the code.

Sequencing effects. The embedding of monads in Haskell can be used to define an order of evaluation (in otherwise lazy language). This aspect has been utilized by the IO monad [39] to allow imperative programming and working with input/output. This also inspired the ‘do’ notation for working with monads in Haskell:

```haskell
main :: IO ()
main = do
    putStr "What is your name?"
    n ← readLn
    putStr ("Hello " ++ n)
```

The ‘do’ notation (which has not, ironically, been described in an academic paper) is a simple syntactic sugar that allows writing a sequence of operations and inserts monadic `bind >>=` at appropriate places to ensure sequencing.
Monads are not what they seem

The ‘do’ notation can be used with any monad, but it is closely linked with the metaphor that treats monads as computations. It has been criticized for making functional code look as imperative and also for making monadic style of programming preferable for syntactic reasons [45]. We return to the latter in Section ??.

The IO monad is, arguably, not a monad [34] in the sense that it is impossible to say whether it satisfies the monad laws. Without going into the full details, the problem is that IO is an abstract data type (defined externally) and does not have a clear semantics for equality.

Non-standard computations. The IO monad pioneered the use of monads for writing non-standard computations. In case of IO, the non-standard aspect is that the computation can perform effects, which is normally not possible in Haskell. Other languages introduced other kinds of non-standard computations. For example, F# computation expressions [38], a mechanism similar to the ‘do’ notation has been introduced in order to simplify writing of asynchronous computations [43]. The non-standard aspect here is that the computation can perform asynchronous I/O without blocking the current thread. For example:

```fsharp
let getLength url = async {
  try
    let! html = downloadAsync url
    return html.Length
  with e →
    return 0
}
```

The `let!` construct is similar to ← in the ‘do’ notation and `return` is a keyword for the unit operation, but the computation expression syntax takes the idea of using monads for non-standard computations further in two ways.

First, if we ignore the `async { . . . }` block and replace `let!` with `let`, then the code is ordinary synchronous F#. Rather than being a new notation for sequencing computations, the notation lifts ordinary F# computation into a non-standard one. Second, the `try` block (for exception handling) is an example of a keyword that can be exposed by providing additional operations beyond `unit` and `bind`. Monads are still an essential part of the feature, but F# stretches into yet another direction.

Another instance of using monads to embed non-standard computations into a programming language is LINQ in C# and VB.Net [31]. The syntax used by LINQ is more akin to SQL. Like F#, it offers more keywords enabled by providing additional operations. Curiously enough, the `unit` operation is often ignored when talking about LINQ because it has no special syntax.

Syntactic sugar. Both Haskell ‘do’ notation and F# computation expressions are syntactic sugar, introduced primarily to provide nicer syntax when using monadic abstractions. Yet, in both languages, the notation can be – and has been – used by
libraries that share little with the original monadic structure. For example, the Blaze library [41] allows users to compose HTML using the ‘do’ notation:

```haskell
sayHello :: String → Html
sayHello name = H.body $ do
    H.h1 "Welcome"
    H.p ("Hello " ++ name)
```

Here, the computation constructs a `Html` value and the ‘do’ notation is used just to concatenate multiple HTML elements. The `Html` type is not a generic type `M a` as required by the monad structure and it lacks the `bind` operation. A new version of the library later appeared that changes the structure to provide the monadic interface – not because the library did not work well, but to allow composition with other monads via monad transformers.

The example shows that syntactic sugar originally designed for monads can later be used in a way that has very little to do with the original idea. In the next section, we briefly reflect on the evolution illustrated by this and the previous examples.

4.2 How programming concepts evolve

Mathematical concepts such as polyhedron or function may appear timeless, but if we look at their history, it turns out that they evolve and definitions change to accommodate or exclude corner cases and newly discovered instances. Lakatos [22] demonstrates the process in mathematics using polyhedra and Euler’s formula \(V - E + F = 2 \) that relates the number of vertices \(V \), edges \(E \) and faces \(F \) of a polyhedron.

The path from category theoretical structure to a programming construct documented in Section 2 and Section 4.1 shows that programming concepts, such as monads, undergo similar development. There is one interesting difference from mathematics though. In mathematics, the evolution is driven by aims to prove or disprove properties of an entity. In programming, there is a multitude of driving forces including formal proofs using a mathematical model, the appearance of different implementations in various programming languages and also shifts in what metaphors are used to think and talk about the concept.

More generally, the meaning of a programming language concept is constituted at three interlinked levels. For monads, the three levels provide the following:

- **Formal level.** A monad has a category theoretic definition. This is used in proofs, such as when reasoning about monadic code [9], but it also interact with the two other levels. Examples used at the formal level contribute to the metaphorical understanding of what monads are, often because formal examples are shorter, simpler and easier to comprehend. Properties that hold at the formal level can also influence the implementation level, for example, when we show that a monad defined using `bind` is equivalent to a monad defined using `join` and `map`.

- **Implementation level.** Monads have been implemented as a type class definition (in Haskell), syntactic sugar (in F# and LINQ) and as libraries in many other languages. Unlike with Lakatos’ polyhedra, the uses that do not fit the formal definition...
Monads are not what they seem

have not (yet?) led to a revision of the definition, but monad comprehensions [10] led to a new way of syntactic reasoning about queries at the formal level [12]. The ‘do’ notation introduced the idea of understanding monads as computations and the F# implementation of the Maybe monad led to the development of the powerful railway track metaphor (Section 2.4).

- **Metaphorical level.** The influence of the metaphorical level is more difficult to trace as it is rarely documented in writing. However, thinking of monads as computations is likely the reason why most formal definitions now prefer bind over map and join (the former is more convenient for programming, but the latter is simpler for proving). Similarly, thinking of monads more generally as non-standard computations likely contributed to their introduction in F# [38]. As an impure language, F# does not need monads for implementing state or exceptions, but they become useful for another kind of computations.

As discussed in Section 3, monads are deeply rooted in the mathematical Algol research programme and so it is perhaps not surprising that the core of the evolution stays around the original formal definition. However, we can see that the concept develops. Monads turn from a formal entity inhabiting the mathematical world into the physical world of programs. This changes their purpose from reasoning to implementing. As new ways of thinking about monads appear, they become useful for solving different kinds of programming problems than originally envisaged. This then leads to development of mathematical tools for using monads as a syntactic entity rather than category theoretical notion.

The three different levels exist for other programming concepts including types, functions, processes or objects, but they interact differently. For example, several papers analyze the concept of type [20, 30, 36]. Using our three-level structure, this suggests that types appeared independently at the formal and implementation levels [20], influenced by the metaphorical level – ordinary English-language interpretation of the word ‘type’ [30]. Their implementation enabled features such as auto-completion [36], which then had effects on both formal (new kinds of reasoning) and metaphorical (types as real-world entities) levels.

5 Monads and the programming community

In the previous section, we describe the meaning of monads at three different levels: formal, implementation and metaphorical. In this section, we briefly consider one additional aspect – the social side of monads. The main focus of this paper is on the three aforementioned levels of meaning, but we find it necessary to briefly explore the social side, as it asks important questions and offers additional references for the discussion of arguably questionable uses of monads in Section 6.

5.1 Monads are just monoids in the category of endofunctors

The opening quote of the paper is interesting for one more reason not mentioned before. “A monad is just a monoid in the category of endofunctors. What is the problem?” [19]
Tomas Petricek has become a cultural artifact of the programming language community. Search for the quote online and you can buy t-shirts and coffee mugs with it.

Interestingly, the quote means two exactly opposite things to two groups of people. For some, the quote embodies the elegance of the structure. A simple category theoretical definition leads to a programming construct that is useful in practice. For others, the quote symbolizes the elitism of incomprehensible “ivory tower” approach to programming.

Learning monads and writing a monad tutorial or writing a talk on monads has also become an important milestone in learning about theory of functional programming. This is illustrated by the growing number of monad tutorials recorded on the Haskell Wiki [46], although the list is now largely incomplete. Learning monads seems to have an aspects of what anthropologists call a rite of passage.

5.2 Sociology of monads

To shed some light on the social and cultural importance of monads, we can consider two points made about science and mathematics. As noted in Section 3, any science is grounded in a certain research programme that provides a number of basic assumptions that proponents of the research programme do not question.

As a developer familiar with imperative programming who is learning pure functional languages, you need to change some of your basic assumptions about programming. The initial step is not, and can not be, a rational process – we need to accept a different way of thinking and only then we can use rational reasoning to explore what follows from the assumptions. Feyerabend [36] looks at this change, analysing how old interpretations, which contradict new theory, are changed to allow the new theory to be accepted:

The offensive interpretations are replaced by others, propaganda and appeal to distant, and highly theoretical, parts of common sense are used to defuse old habits and to enthrone new ones.

As a concrete case, consider programming using input and output with and without monads. Initially, using monads will certainly appear cumbersome and thus unconvincing. When explaining a monadic “Hello world” program, one needs to appeal to more distant benefits of monads. Some of those benefits may be practical, such as those discussed in Section 4.1, but the mathematical roots of monads provide another appealing argument on its own.

As noted by Hacking [13] who discusses experimentalism in sciences such as physics, “we find prejudices in favor of theory, as far back as there is institutionalized science”. In other words, the simple fact that monads are rooted in category theory may be a factor that contributes to their popularity and social attractivity.

A concrete mechanism of how this works has been described by Lakoff and Núñez [25]. Their cognitive science research looks at how abstract mathematical ideas arise from everyday embodied experience. This contrasts with what they call _The Romance of Mathematics_ - a belief that mathematics is an objective feature of the universe that leads to the impression that “mathematicians are the ultimate scientists, discovering absolute truths, not just about the physical universe, but about any possible universe”:
Monads are not what they seem

The Romance of Mathematics makes a wonderful story. (...) It has attracted generations of young people to mathematics. [We want to believe] that, at least in doing mathematics, we can be rational, logical, and certain of our conclusions. But sadly, for the most part, it is not a true story.

Just like attracting generations of young people to mathematics, The Romance of Mathematics is likely one of the contributing factors that attract people to mathematically rooted approach to programming. However, Lakoff and Núñez also describe some of the negative effects of The Romance of Mathematics. It contributes to a culture that “rewards incomprehensibility, in which it is the norm to write only for an audience of the initiated” and it leads to “alienation of other educated people from mathematics”. The aforementioned slogan about monads certainly fits this description. The audience of initiated sees it as elegant, while it causes an alienation of the educated, but uninitiated audience.

6 Undesirable uses of monads

What was said so far in this paper might be of interest as a philosophical and historical analysis of an influential concept in programming languages, but there were no takeaways for practical programming or computer science research. The aim of this section is to change that.

Despite the fact that negative results are rarely reported in academic literature, there are a number of cases where monads were used in an academic paper and their use was later revised or avoided. In this section, we review three such cases. For each of them, we suggest that treating monads in a more comprehensive way – considering the formal, implementation and metaphorical level – could have prevented the undesirable use of monads.

6.1 Structuring the semantics of dataflow languages

The first case we consider is the use of monads for giving the semantics of dataflow programming such as Lucid. In dataflow programming, programs are written as computations over streams. For example \((x + \text{prev } x)/2\) creates a stream where each value is calculated as the average between the current and the previous value of the stream represented by the variable \(x\).

Orchard [35] discusses the history of the semantics of dataflow programming languages which was first written using monads and later revisited using comonads, category theoretical dual of monads:

In 1995, Wadge proposed that the semantics of the dataflow language Lucid, which can be understood as an equational language for infinite streams, could be structured by a monad [49]. Ten years later, Uustalu and Vene gave a semantics for Lucid in terms of a comonad, and stated that “notions of dataflow cannot be structured with monads” [48]. There is an apparent conflict, which raises a number of questions.
A stream $\text{Stream } a$ can be seen as an (infinite) sequence of a values. The monadic semantics of the above expression $(x + \text{prev } x)/2$ is a function of type $\text{Stream } a \rightarrow \text{Stream } a$, i.e. a function that takes a stream as an input and produces stream as an output. The core of the argument against using monads in this case is that monadic computations (as we’ve seen in Section 2.3) are generally written as functions of type $a \rightarrow M b$ and the monad provides the essential operation that lifts those into composable functions $M a \rightarrow M b$.

In case of monadic semantics of Lucid, we already construct composable functions of the shape $M a \rightarrow M b$ ourselves. The bind or join operation corresponds to the latest operation of Lucid:

$$\text{latest : Stream (Stream } a) \rightarrow \text{Stream } a$$

The operation takes a stream of streams and produces a new stream that returns the current value of the current stream at each point in time. This is a useful Lucid combinator. However, unlike other uses of monads we have seen, join (or bind) is not used as the plumbing to compose computations. In category theoretical terms, the computation is not captured by a Kleisli morphisms. This has a number of consequences, as noted by Orchard [35]:

A computation solely captured by Kleisli (...) morphisms benefits from equational laws for reasoning and optimization by simplification, as well as better syntactic support in languages. Such benefits are not available for [morphisms that do not follow this structure].

The solution proposed by Uustalu and Vene [48] is to structure the semantics using a comonad that provides a way of composing computations of type $C a \rightarrow b$. This fits with dataflow programming, because we can structure many operations as functions $\text{Stream } a \rightarrow b$ that takes a stream (with current value and history) and computes the new current value.

Does the discussion in this paper provide any hint that the use of monads for the semantics of dataflow is not desirable? The use of monads seems appropriate at the implementation level – we can define operations of the appropriate type and use them for writing dataflow programs. However, potential issues become apparent when we consider the formal and metaphorical level.

The formal aspects have been analyzed in detail by Orchard [35]. Although we can define a monad, the way we use it is not suitable for formal reasoning using Kleisli arrows. At the metaphorical level, a function of type $a \rightarrow \text{Stream } b$ can be seen as a producer of a stream, but not as a dataflow computation itself. We can see $\text{Stream } a$ as a container (containing present and past values), but the latest operation cannot be easily interpreted as “unwrapping” a nested container; latest must throw away some values, which is not the case for unwrapping a nested container.

6.2 Parsers and a tempting abstraction

The second case we consider is the use of monads in parsing. The early work on parser combinators [17] notes that there is a relationship with monads. Parsers were also mentioned by Wadler [50] and more work on monadic parsing soon followed [18].
Monads are not what they seem

A parser Parser a is a function $\text{String} \rightarrow (a, \text{String})$ that takes an input string and returns a parsed value of type a together with the remaining unconsumed input. Parser combinators provide ways of combining parsers. We can define a choice combinator of type $\text{Parser } a \rightarrow \text{Parser } a \rightarrow \text{Parser } a$ that takes two parsers and returns a new parser that succeeds if either of the two parsers succeed. Interestingly enough, it is also possible to provide the following two combinators:

$$
\text{bind} :: \text{Parser } a \rightarrow (a \rightarrow \text{Parser } b) \rightarrow \text{Parser } b \\
\text{unit} :: a \rightarrow \text{Parser } a
$$

The unit operation creates a parser that always succeeds and produces the given value without consuming any input. The bind operation creates a parser that applies the first parser and, if it succeeds and produces a value of type a, calls the function to construct a parser to parse the rest of the input. This implements the monadic interface and so it becomes possible to use parsers with the ‘do’ notation.

However, Swierstra and Duponcheel [42] later noted that the monadic parsers have several drawbacks and developed a way of fixing those:

The normal disadvantages of conventional [monadic] parsers, such as their lack of speed and their poor error reporting are remedied.

Their new approach provides an efficient implementation with better error reporting, but it cannot define the bind operation and thus is not monadic:

The techniques [do not] extend to monad-based parsers. [T]he monadic formulation [causes] the evaluation of the parser construction over and over (...).

One of the problems is that the parser needs to repeatedly call the function $a \rightarrow \text{Parser } b$ to construct a parser. This also means that the parser for the second part of the input is only known after parsing the first part of the input, even if the grammar is context-free and does not require the full power offered by the bind combinator. In other words, it is tempting to implement the monadic interface for parsers, because it is well-defined and relatively easy to provide, but this makes it impossible to discover a more efficient implementation of parser combinators.

How could the understanding of cognitive and social aspects of monads prevented the undesirable use of monads in this case? There are two possible answers. First, the social side of monads explains why monads are a tool that one might want to use without considering whether it is, in fact, needed. The bind combinator in the early papers was not necessarily useful, but it was implemented nevertheless, to show that parsers form a monad. Thus, being aware of the Algol research programme might make us reconsider whether bind provides merely an interesting result at the formal level, or whether it is genuinely useful at the implementation level.

Second, we could imagine an understanding of monads that more strongly emphasizes the metaphorical level. Many of the standard, widely used monads fit one of the two metaphors we introduced in Section 2.4, but it is not obvious how to interpret parsers as either containers or as non-standard computations (or railway tracks). As noted earlier, the metaphors are not just useful for teaching – they capture the well-understood and tested use cases of monads.
6.3 Monad as the uninteresting part

The last case of controversy about monads in computer science literature that we consider in this paper is the use of monads for concurrent and parallel programming. An example of work in this area is the Par monad [29]. The paper introduces a type \(\text{Par } a \) that represents a computation which may involve running work in parallel.

The Par monad represents a computation, so it fits with one of the metaphors discussed in Section 2.4. It also implements both of the operations required by a monad and the implementation satisfied the required laws:

\[
\text{bind} :: \text{Par } a \rightarrow (a \rightarrow \text{Par } b) \rightarrow \text{Par } b \\
\text{unit} :: a \rightarrow \text{Par } a
\]

The \text{unit} operation creates a computation that returns the given value. The \text{bind} operation sequentially composes the first computation with the one generated by the given function.

An objection against using monad in this case is not that it is inappropriate, but that it is the least interesting thing about the abstraction. Monad provides a way of sequentially composing computations, but what really matters about \(\text{Par } a \) is what kind of parallelism and synchronization primitives it provides (forking and write-once shared variables). The title of the paper, “A monad for deterministic parallelism” [29] might suggest that a monad is used for deterministic parallelism, but the parts of the abstraction that provide parallelism are everything except for the monadic part, which is there to allow sequential composition.

At the metaphorical level, we can see that the Par monad is a computation and we can also see that the sequencing is the least interesting part. The main purpose of the Par monad is to synchronize the complex system of railway tracks, rather than link them sequentially. This idea has been captured, for example, by the work on joinads [37], which extends monads with the following two operations:

\[
\text{merge} :: \text{m } a \rightarrow \text{m } b \rightarrow \text{m } (a, b) \\
\text{choose} :: \text{m } a \rightarrow \text{m } a \rightarrow \text{m } a
\]

The two operations provide additional way in which computations can be composed; \text{merge} joins two computations and returns a pair with both individual results and \text{choose} implements a non-deterministic choice.

Why is the rhetorical focus of the paper about the \text{Par} type on the monadic abstraction? This is, most likely, the result of the social side of monads. They are a topic of interest for the community (Section 5) and they became a key tool of the purely functional research programme (Section 3.2) that gives additional support to ideas that use it as the basis.

7 A case for wider understanding

This paper looks at the programming concept of a monad from a wider, historical, philosophical and cognitive perspectives. The method we use is to consider the meaning of a programming concept at three different levels: the formal level used for
Monads are not what they seem

proving mathematical properties about the concept, the \textit{implementation level} at which concepts are used for writing concrete code and the \textit{metaphorical level} which is used for intuitive thinking and explaining the concept.

7.1 Future and related work

The idea of treating programming concepts as entities consisting of multiple levels is not new. Turner and Angius \cite{44} treat programs as technical artifacts with two levels - one is a specification and function and the other is an implementation. Our analysis differs in that we look at \textit{programming concepts} rather than programs as a whole and we separate the formal and intuitive aspects of the specification.

We briefly hinted how similar analysis might apply to other programming concepts such as types in Section 4.2, but we believe that doing an in-depth analysis of a number of other concepts can help us better understand how programming concepts evolve in general. For example, looking at types suggests that the interaction pattern between the three levels that we uncovered for monads is just one particular kind.

The other interesting problem is finding good ways of analysing individual levels. Theoretical computer science provides a rich set of resources for looking at the formal level. We also have ways of talking about the implementation level, but often do so indirectly via the formal level. For the metaphorical level, this paper referred to relevant work in cognitive sciences, but we believe there is much left to be done in understanding how we use metaphors when programming.

7.2 Summary – What is a monad?

The short answer to the question \textit{“what is a monad”} is that it is a monoid in the category of endofunctors or that it is a generic data type equipped with two operations that satisfy certain laws. This is a correct answer in a narrow technical sense, but it does not tell us much about what monads actually are.

In this paper, we give a broader and more comprehensive answer. We look at the metaphors that are used when teaching monads and discussed why these should be seen as an inherent part of the answer. We looked at how monads are used in academic research and in practice. This illustrates how programming concepts evolve and reveals interactions between the formal, implementation and metaphorical levels. In case of monads, the formal definition keeps stable, but our understanding of the concept and how we use it in programming changes over time.

Finally, we show why such broader understanding of programming concepts such as monads is useful. We look at a number of cases, documented in the literature, where a monad was used in a way that was revised in later work. For each case, we suggests that a broader understanding of monads could help the original authors to avoid the issues discovered later.
References

Monads are not what they seem

Monads are not what they seem

About the author

Tomas Petricek Tomas is a Visiting Researcher at the Alan Turing institute, working on tools for open data-driven storytelling (http://thegamma.net). His many other interests include programming language theory (his PhD thesis is on coeffects, a theory of context-aware programming languages), open-source and functional programming (he is an active contributor to the F# ecosystem), but also understanding programming through the perspective of philosophy of science. Contact him at tomas@tomasp.net.