
Doing web-based data analytics with F#

(Case study)

Tomas Petricek

University of Cambridge

tomas.petricek@cl.cam.ac.uk

Don Syme

Microsoft Research Cambridge

don.syme@microsoft.com

Synopsis
With type providers that integrate external data directly into the

static type system, F# has become a fantastic language for doing

data analysis. Rather than looking at F# features in isolation, this

paper takes a holistic view and presents the F# approach through

a case study of a simple web-based data analytics platform.

Introduction
Among the ML family of languages, F# often takes a pragmatic

approach and emphasizes ease of use and the ability to integrate

with its execution environment(s) over other aspects of language

design. It has a number of interesting features that follow this

design principle:

 Type providers [1] are compiler and editor extensions that

integrate external data sources into the language by lazily

providing types for accessing specific data sources.

 Asynchronous workflows [2] is a library for writing asyn-

chronous (non-blocking) code similar to Lwt [3] based on

the computation expression syntax [4].

 Quotations [5] provide a modest form of meta-program-

ming designed to simplify interoperability with other exe-

cution environments such as SQL, CUDA or JavaScript.

We present a case study that demonstrates how these features

come together when building a web-based data visualization.

This contribution should be seen as a “programming language

experiment” [6]. We hope to provide an intriguing exploration

of what can be achieved by the combination of F# features when

solving a simple, yet real-world problem. Full source code for is

also available at: http://funscript.info/samples/worldbank

Case study
As an example, we aim to develop a simple modern web appli-

cation shown in Figure 1 for comparing university enrolment in

a number of selected countries and regions around the world.

The resulting application should run on the client-side (as Java-

Script) and should fetch data dynamically from the WorldBank.

We use FunScript [8] which is an F# library that takes a quo-

tation of a program and translates it to JavaScript. To manipulate

DOM and charts, we use jQuery and Highcharts (standard Java-

Script libraries). To access those in a type-safe way, FunScript

has a type provider that imports TypeScript [9] definitions:

type j = TypeScript<"jquery.d.ts">
type h = TypeScript<"highcharts.d.ts">

The d.ts files are type annotations created for the TypeScript

language. The type provider analyses those and maps them into

F# types named j and h that contain statically typed functions for

calling the JavaScript libraries (we’ll use them shortly).

The file names are specified in angle brackets (akin to generic

type parameters), because they are statically resolved. The type

provider generates the types at compile-time.

The next step is to obtain a list of countries. This is done using

the F# Data type provider for WorldBank [7]:

type WorldBank = WorldBankData<Asynchronous=true>

let data = WorldBank.GetDataContext()
let countries =
 [data.Countries.``European Union``
 data.Countries.``Czech Republic``
 data.Countries.``United Kingdom``
 data.Countries.``United States``]

When loaded in the compiler, the type provider connects to the

WorldBank via a REST API and obtains a list of countries. This

means that the list is always up-to-date and we get a compile

time error when accessing a country that no longer exists.

The static parameter Asynchronous specifies that the exposed

types for accessing country information should be only non-

blocking. This is necessary for web-based application, because

JavaScript only supports non-blocking calls to fetch the data.

Now we generate checkboxes (on the left in Figure 1) by

creating a new <input> element and adding it to the DOM:

let jQuery command = j.jQuery.Invoke(command)

let infos = countries |> List.map (fun country ->
 let inp = jQuery("<input>").attr("type", "checkbox")
 jQuery("#panel").append(inp).append(country.Name)
 country.Name, country.Indicators, el)

We are using the standard jQuery library to manipulate DOM.

Although this library is not perfect, it is de-facto standard in web

development and the FunScript type provider makes it possible

to integrate with it painlessly. We define a helper jQuery and use

it to create the elements. Note that members like append and

attr are standard jQuery patterns and are included in the auto-

complete list when writing F# code using editors such as Emacs,

MonoDevelop and Visual Studio.

The result is a list of string * Indicators * jQuery values

representing country name, its indicators and DOM object re-

presenting the check-box. The main part of our program is a

render function that asynchronously fetches data for checked

countries and generates a chart:

let render () = async {
 let head = "School enrollment, tertiary (% gross)"
 let o = h.HighchartsOptions()
 o.chart <- h.HighchartsChartOptions(renderTo="plc")
 o.title <- h.HighchartsTitleOptions(text=head)
 o.series <- [| |]

 for name, ind, check in infos do
 if unbox<bool> (check.is(":checked")) then
 let! v = ind.``School enrollment, tert. (% gr.)``
 let data = convertValues(v)
 h.HighchartsSeriesOptions(data, name)
 |> opts.series.push }

Although the function looks like ordinary F#, it is wrapped in the

async { .. } block, which denotes that it is non-blocking. The

http://funscript.info/samples/worldbank

F# compiler performs de-sugaring similar to CPS transforma-

tion, which makes it possible to include non-blocking calls in the

code. Here, the non-blocking call is done when accessing the

``School enrollment, tert. (% gr.)`` indicator using the

let! keyword. The indicator is a member (with a name wrapped

in back-ticks to allow spaces) exposed as an asynchronous com-

putation by the WorldBank type provider.

The rest of the code is mostly dealing with the DOM and the

Highcharts library using the API imported by FunScript – we

iterate over all checkboxes and generate a new series for each

checked country. Finally, the last part of the code registers event

handlers that re-draw the chart when checkbox is clicked:

for _, _, check in infos do
 check.click(fun _ ->
 render() |> Async.StartImmediate)

The click operation (exposed by jQuery) takes a function that

should be called when the event occurs. Because render() is an

asynchronous operation, we invoke it using the StartImmediate

primitive from the F# library, which starts the computation with-

out waiting for the result.

Observations
In the limited space, we have not explained every single detail

of the sample program. Here, we look at some of the interesting

aspects of the development.

Type providers for data access. The sample uses a type provi-

der that provides types specifically for the WorldBank and so we

can access countries and indicators as members. The F# Data [7]

library also includes type providers that infer the types from a

sample JSON and XML documents and can be used to call

arbitrary REST-based web services.

Type providers for integration. Type providers are not limited

to data access. Here, we used the TypeScript provider that im-

ports type definitions for JavaScript libraries and makes it possi-

ble to call them easily (via meta-programming). In other con-

texts, type providers have been used to provide access to libraries

of the statistical language R and Matlab.

Asynchronous workflows. In web browser, calls to retrieve

data from services such as WorldBank have to be done via a call-

back (to avoid blocking the browser). This inversion of control

makes it difficult to express standard control-flow structures

such as for loops. Asynchronous workflows are built on top of

F# computation expressions which provide a familiar syntax for

non-standard (e.g. asynchronous) computations.

Meta-programming. The program implemented in the previous

section is not executed as-is. Instead, the FunScript library takes

the code as an F# quotation and translates it to JavaScript. The

translation is done after the compiler de-sugars the async { … }

block and the types generated by type providers. Thus, the tran-

slation only needs to handle primitive library constructs (such as

Bind and Return operations of asynchronous workflows and the

primitives for working with JSON used by WorldBankData).

Conclusions
This paper presented a number of features available in F# in the

context of the development of a web-based interactive data ana-

lysis tool. Rather than focusing on technical details of individual

language features (and comparing them with other languages),

we used a more holistic view.

The presented case study should be seen as an experiment

demonstrating what is enabled by the combination of type pro-

viders, asynchronous workflows and light-weight support for

meta-programming. Our experience with the development of the

presented case study suggests that:

 Integration with external data sources (e.g. WorldBank)

and external execution environments (such as jQuery and

JavaScript in general) cannot be overstated.

 Light-weight and non-intrusive syntactic extensions (e.g.

asynchronous workflows) and meta-programming capa-

bilities that integrate well with modern editors (e.g. auto-

complete) contribute to the ease of development.

Although a case study such as this one focus on subjective obse-

rvations rather than “hard” scientific facts, it is our hope that the

presented example demonstrates the power of the ML family of

languages from a novel, and perhaps a slightly different, angle.

References
[1] Syme, Don, et al. “Strongly-typed language support for

internet-scale information sources.” Technical Report

MSR-TR-2012-101, Microsoft Research, 2012.

[2] Syme, Don, Tomas Petricek, and Dmitry Lomov. “The

F# asynchronous programming model.” In Proceedings

of PADL, 2011. 175-189.

[3] Vouillon, Jérôme. “Lwt: a cooperative thread library.”

Proceedings of ML Workshop, 2008.

[4] Petricek, Tomas, and Don Syme. “The F# Computation

Expression Zoo.” In Proceedings of PADL, 2014.

[5] Syme, Don. “Leveraging .NET Meta-programming Com-

ponents from F#." Proceedings of ML Workshop, 2006.

[6] Petricek, Tomas. “What can Programming Language

Research Learn from the Philosophy of Science?”

Proceedings of AISB 2014

[7] “F# Data: Library for Data Access”. Available at:

http://fsharp.github.io/FSharp.Data

[8] “FunScript – F# to JavaScript with type providers”.

Available at: http://funscript.info

[9] “TypeScript.” Available at: http://www.typescriptlang.org

Figure 1. Comparing university enrollment in EU, US and CZ.

http://fsharp.github.io/FSharp.Data
http://funscript.info/
http://www.typescriptlang.org/

