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With one breath, with one flow, you will know, asynchronicity. [ The Police, 1983, adapted ] 

Abstract. We describe the asynchronous programming model in F#, and its 

applications to reactive, parallel and concurrent programming. The key feature 

combines a core language with a non-blocking modality to author lightweight 

asynchronous tasks, where the modality has control flow constructs that are 

syntactically a superset of the core language and are given an asynchronous 

semantic interpretation. This allows smooth transitions between synchronous 

and asynchronous code and eliminates callback-style treatments of inversion of 

control, without disturbing the foundation of CPU-intensive programming that 

allows F# to interoperate smoothly and compile efficiently. An adapted version 

of this approach has recently been announced for a future version of C#. 

1 Introduction 

Writing applications that react to events is becoming increasingly important. A 

modern application needs to carry out a rich user interaction, communicate with web 

services, react to notifications from parallel processes, or participate in cloud compu-

tations. The execution of reactive applications is controlled by events. This principle 

is called inversion of control or the Hollywood principle (“Don’t call us, we’ll call 

you”). Even the internal architecture of multi-core machines is approaching that of an 

event-based distributed computing environment [2]. 

For this paper, asynchronous (also called “non-blocking” or “overlapped”) 

programming is characterized by many simultaneously pending reactions to internal 

or external events. These reactions may or may not be processed in parallel. Today, 

many practically-oriented languages have reached an “asynchronous programming 

impasse”: 

 OS threads are expensive, while lightweight threading alone is less 

interoperable. Despite many efforts to make them cheap, OS threads allocate 

system resources and large stacks [16] and their use is insufficient for problems 

that require a large number of pending reactions of outstanding asynchronous 

communications. For this reason many advocate either complete re-

implementations of OS threading [3] or language runtimes supporting only light-
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weight threads. However, both are difficult without affecting performance of 

CPU-intensive native code, and in any case interoperating with OS threads is a 

fundamental requirement for languages that interoperate smoothly with virtual 

machines such as C#, F#, Scala [12, 19], so in this paper we assume it as an 

axiom. So these languages must look to add an additional lightweight-tasking 

model that is not 1:1 with OS threads, a starting point for this paper. 

 Asynchronous programming using callbacks is difficult. The usual approach 

to address asynchronous programming is to use callbacks. However, without 

language support, callback-based code inverts control, is awkward and is limited 

in expressivity. In normal use, asynchronous programming on .NET and Java 

leads to a tangle of threads, callbacks, exceptions and data-races.   

What is to be done about this?  The answer proposed in this paper, and adopted by 

F# since 20071, is to add an asynchronous modality as a first-class feature to a general 

purpose language design. By “modality” we mean reusing the control flow syntax of a 

host language with a different computational interpretation.2 The key contribution of 

this paper is to give a recipe for how to augment a core language (e.g. an ML-like 

language, with no threading or tasks) with a non-blocking modality to author 

lightweight asynchronous tasks in a relatively non-intrusive way. The modality has 

control constructs that are syntactically a superset of the core language and these are 

given an asynchronous semantic interpretation. For F#, this allows asynchronous code 

to be described fluently in familiar language syntax, without disturbing the foundation 

of CPU-intensive programming that allows F# to compile efficiently to Common IL, 

and hence to native code, and to interoperate well with .NET and C libraries. 

2 An Overview of F# Asynchronous Programming  

In this section we give an overview of the elements of F# asynchronous program-

ming, element by element. We assume familiarity with ML-like core languages and 

use expr to indicate ordinary expressions in F# programming  [17]. The F# 

asynchronous programming extension adds a new syntactic category aexpr to indicate 

the added syntax of asynchronous expressions:  

expr := async { aexpr } 

The foundation of F# asynchronous programming is the Async<T> type, which 

represents an asynchronous computation. All expressions of the form async { ... } 

are of type Async<T> for some T. When executed, an async value will eventually 

produce a value of type T and deliver it to a continuation.  

                                                           
1 This paper describes the asynchronous support in F# 2.0. While the core idea was released 

and published in book form 2007, the model has not been described in the conference 

literature. This paper aims to rectify this and to help enable replication in other languages. 
2 Other examples of language modalities are C# iterators (where the control syntax of C# is 

used to write programs that generate sequences) and F# sequence expressions (a similar use). 
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In asynchronous expressions, control-flow constructs can be used to form values 

that represent asynchronous computations, and additions are made to this syntax to 

await the completion of other asynchronous computations and bind their results. The 

grammar of asynchronous expressions for F# is shown below3. Importantly, this is a 

superset of F# core language syntax, where control flow constructs are preferred to 

have an asynchronous interpretation. 

aexpr :=   

| do! expr                    execute async 

| let! pat = expr in aexpr      execute & bind async 

| let pat = expr in aexpr      execute & bind expression  

| return! expr           tailcall to async 

| return expr            return result of async expression 

| aexpr; aexpr          sequential composition 
| if expr then aexpr else aexpr   conditional on expression  

| match expr with pat -> aexpr   match expression  

| while expr do aexpr       asynchronous loop on synchronous guard  

| for pat in expr do aexpr     asynchronous loop on synchronous list 

| use val = expr in aexpr      execute & bind & dispose expression  

| use! val = expr in aexpr     execute & bind & dispose async 

| try aexpr with pat -> aexpr   asynchronous exception handling 

| try aexpr finally expr      asynchronous compensation 

| expr                execute  expression for side effects 

The signatures of the library functions used in this section are: 

Async.RunSynchronously   : Async<'T> → 'T 
Async.StartImmediate     : Async<unit> → unit 

Async.StartInThreadPool4 : Async<unit> → unit 
Async.Parallel           : Async<'T>[] → Async<'T[]> 
Async.Sleep              : int →  Async<unit> 

We also assume a function that takes a URL address and fetches the contents of a web 

page – we show later in this section how this function is defined. 

getWebPage : string -> Async<string> 

2.1 Writing, Composing and Running Asynchronous Computations 

Asynchronous computations form a monad and can bind a result from another 

asynchronous computation using let! v = expr in aexpr. To return a result, we use 

the return expr syntax, which lifts an expression into asynchronous computation. The 

following example downloads a web page and returns its length: 

async { let! html = getWebPage "http://www.google.com"  
        return html.Length } 

The expected types are as follows: 

 let! pat T = expr Async<T> in aexpr: Async<U>      : Async<U> 

 return expr T                   : Async<T> 

                                                           
3 F# indentation aware syntax allows the omission of the in keyword. 
4 Async.StartInThreadPool is called Async.Start in F# 2.0. We use the former for clarity. 



4   D. Syme, T. Petricek, D. Lomov 

 

The syntax do! expr indicates the execution of a subordinate  asynchronous 

operation of type Async<unit>, the type of an asynchronous operation that does not 

return a useful result. The following example sleeps 5 sec., resumes, performs a side 

effect, and sleeps another 5 sec. Note F# is an impure, strict functional language, and, 

as with other operations in F#, asynchronous computations may have side effects. 

async { do! Async.Sleep 5000 
        printfn "between naps" 
        do! Async.Sleep 5000 } 

The typings for the syntactic elements used here are as follows: 

 do! expr Async<unit>                  : Async<unit> 

 aexpr Async<unit> ; aexpr Async<T>            : Async<T> 

 expr unit                      : Async<unit> 

Asynchronous computations can also bind the results of core language expressions 

using let v = expr in aexpr, executed using normal expression evaluation: 

async { let! html = getWebPage "http://www.bing.com"  
        let words = html.Split(' ', '\n', '\r') 
        printfn "the number of words was %d" words.Length } 

For the F# version of asynchronous programming, a value of type Async<_> is best 

thought of as a “task specification” or “task generator”. Consider this: 

let sleepThenReturnResult =  
    async { printfn "before sleep" 
            do! Async.Sleep 5000 
            return 1000 } 

This declaration does not start a task and has no side effects. An Async<_> must be 

explicitly run, and side effects will be observed each time it is run. For example, we 

can explicitly run an asynchronous computation and block for its result as follows: 

let res = Async.RunSynchronously sleepThenReturnResult  
printfn "result = %d" res 

This runs, as a background operation, a task that prints “before sleep”, then does a 

non-blocking sleep for 5 sec., and then delivers the result 1000 to the blocking 

operation. In this case, the function is equivalent to standard blocking code with a 

pause, but we’ll see a more interesting use in Section 3.  The choice to have asyncs be 

task generators is an interesting one. Alternatives are possible: “hot tasks” that run 

immediately, i.e. futures, or “cold tasks” that must be started explicitly, but can only 

be run once. Task-generators are more suitable for a functional language as they 

eliminate state (e.g. whether a task has been started).  

When an asynchronous computation does not produce a result, it can be started as a 

co-routine, running synchronously until the first point that it yields: 

let printThenSleepThenPrint =  
    async { printfn "before sleep" 
            do! Async.Sleep 5000 
            printfn "wake up" } 
 
Async.StartImmediate printThenSleepThenPrint 
printfn "continuing" 
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This program runs a task that prints “before sleep”, then schedules a callback and 

prints “continuing”. After 5 sec., the callback is invoked and prints “wake up”.  

This raises the question of how the callback is run: is it on a new thread? In a thread 

pool? Fortunately, .NET has an answer to this. Each running computation in .NET 

implicitly has access to a synchronization context, which for our purposes is a way of 

taking a function closure and running it “somewhere”. We use this to execute 

asynchronous callbacks. Contexts feature in the semantics in Section 3.  

An asynchronous computation can also be started “in parallel” by scheduling it for 

execution using the .NET thread pool. The operation is queued and eventually 

executed through a pool of OS threads using pre-emptive multi-tasking. 

Async.StartInThreadPool printThenSleepThenPrint 

2.2 Asynchronous Functions 

An asynchronous function is a design idiom where a normal F# function or method 

returns an asynchronous computation. The typical type signature of an asynchronous 

function f is ty1 → ... → tyn → Async<tyreturn>. For example: 

let getWebPage (url:string) =  
    async { let req = WebRequest.Create url              
            let! resp = req.AsyncGetResponse() 
            let stream = resp.GetResponseStream()  
            let reader = new StreamReader(stream)  
            return! reader.AsyncReadToEnd() } 

This uses additional .NET primitives. It is common that functions are written entirely 

in this way, i.e. the whole body of the function or method is enclosed in async { ... 

}. (Indeed, in Java/C# versions of an asynchronous language modality, it is natural to 

support only asynchronous methods, and not asynchronous blocks or expressions). 

The above example uses several asynchronous operations provided by the F# 

library, namely AsyncGetResponse and AsyncReadToEnd. Both of these are I/O 

primitives that are typically used at the leaves of asynchronous operations. The key 

facet of an asynchronous I/O primitive is that it does not block an OS thread while 

executing, but instead schedules the continuation of the asynchronous computation as 

a callback in response to an event.5 Indeed, in the purest version of the mechanism 

described here, every composite async also has this property: asyncs don’t block at 

all, not even I/O, except where performing useful CPU computations. 

 

Tail Recursive Functions and Loops. A very common pattern in functional prog-

ramming is the use of recursive functions. Let’s assume we have a function receive of 

type unit -> Async<int> that asynchronously returns an integer, for example by 

awaiting a message. Now consider an asynchronous function that accumulates a 

parameter by repeatedly awaiting a message:  

                                                           
5 The .NET library provides operations through the “Asynchronous Programming Model” 

(APM) pattern of BeginFoo/EndFoo methods. The F# library provides Async.FromBeginEnd to 

map these to functions and uses this to wrap primitives to await basic operating signals such 

as semaphores, to read and write socket connections, and to await database requests. 
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let rec count n =  
    async { printfn "count = %d" n 
            let! msg = receive() 
            return! count (n + msg) } 

Here, return! expr is an asynchronous tailcall that yields control to the sub-ordinate 

async, with finite overall resource usage (neither the stack nor the heap holding 

continuations grows indefinitely). Note expr has type Async<T> for some T. 

Recursive asynchronous functions with asynchronous tailcalls give a very general 

way to define asynchronous loops. However, the F# and OCaml syntax also allows 

the direct use of for and while loops, often combined with the use of imperative data 

structures such as reference cells. It is useful to extend these to asynchronous code. A 

variation on a count function can be defined as follows: 

let count =  
    async { let n = ref 0 
            while true do  
                printfn "count = %d" n.Value 
                let! msg = receive() 
                n := n.Value + msg } 

2.3 Exception Handling and Resource Compensation 

Without a language support, the exception handling in asynchronous computations is 

extremely difficult [10]. With language support it becomes simple: the try … with and 

try … finally constructs can be used in async expressions in the natural way: 

async { try  
            let! primary = getWebPage "http://primary.server.com" 
            return primary.Length 
        with e ->  
            let! backup = getWebPage "http://backup.server.com" 
            return backup.Length  } 

Here, a failure anywhere in the download from the primary server results in the 

execution of the exception handler and download from the backup server.  

Deterministic resource disposal is a language construct that ensures that resources 

(such as file handles) are disposed at the end of a lexical scope. In F# this is the 

construct use val = expr in expr, translated to let val = expr in try expr finally 

val.Dispose(). The resource val is freed on exit from the lexical scope. 

Resource cleanup in asynchronous code is also difficult without language support 

[10]. Many OO design patterns for async programming use a “state” object to hold the 

state elements of a composed asynchronous computation, but this is non-

compositional. With language support, state becomes implied by closure, and 

resource cleanup becomes simple. For example, the getWebPage function defined 

above can be improved as follows: 

let getWebPage (url:string) =  
    async { let req = WebRequest.Create url              
            use! resp = req.AsyncGetResponse() 
            use stream = resp.GetResponseStream()  
            use reader = new StreamReader(stream)  
            return! reader.AsyncReadToEnd() } 
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Here the connection, the network stream and reader are closed regardless of whether 

the asynchronous computation succeeds, fails or is cancelled, even though callbacks 

and asynchronous responses are implied by the use of the asynchronous syntax. 

2.4 Cancellation  

A cancellation mechanism allows computations to be sent a message to “stop” 

execution, e.g. “thread abort” in .NET. Cancellation mechanisms are always a 

difficult topic in imperative programming languages, because compiled, efficient 

native code often exhibits extremely subtle properties when pre-emptively cancelled 

at arbitrary machine instructions.  However, for asynchronous computations we can 

assume that primitive asynchronous operations are the norm (e.g. waiting on a 

network request), and it is reasonable to support reliable cancellation at these 

operations. Furthermore, it is reasonable to implicitly support cooperative cancellation 

at specific syntactic points, and additionally through user-defined cancellation checks.   

One test of asynchronous programming support in a language is whether 

cancellation of asynchronous operations is handled without additional plumbing. F# 

async supports the implicit propagation of a cancellation token through the execution 

of an asynchronous computation. Each cancellation token is derived from a 

cancellation capability (a CancellationTokenSource in .NET), used to set the overall 

cancellation condition. A cancellation token can be given to Async.RunSynchronously, 

Async.StartImmediate, Async.StartInThreadPool and Agent.Start, e.g. 

let capability = new CancellationTokenSource() 
let tasks = Async.Parallel [ getWebPage "http://www.google.com" 
                             getWebPage "http://www.bing.com" ] 
// Start the work… 
Async.Start (tasks, cancellationToken=capability.Token) 
// OK, the work is in progress, now cancel it… 
capability.Cancel() 

Cancellation is checked at each I/O primitive, subject to underlying .NET library and 

O/S support, and before the execution of each return, let!, use!, try/with, 

try/finally, do! and async { ... } construct, and before each iteration of an 

asynchronous while or for loop. For getWebPage this means cancellation can occur at 

several places. But it cannot occur during core-language code (e.g. expressions such 

as library calls, executed for side-effects), and it cannot occur in such a way that the 

resource-reclamation implied by the use and use! expression constructs is skipped. 

Cancellation is not necessarily immediately effective: in a multi-core or distributed 

setting it may take arbitrarily long to propagate the cancellation message. 

3 Semantics 

We now present a semantics for a simplified version of F# async programming, with 

the following aims: 

 To give a formal reference model that is close to an ideal implementation, yet 

fairly neutral w.r.t. the core language. 
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 To differentiate between computations that are pending on I/O, waiting in work 

queues, and actively burning the CPU. These are the operational characteristics 

that matter most to working programmers, as they have different cost models. 

 To give a semantics that can be reduced to (a) the “single-threaded” model, 

where one thread serves all reactions, or the “thread-pool” model, where a pool 

of threads serves all reactions.  

We do not present formal proofs based on the given semantics. The semantics is as 

follows. We first perform a CPS conversion to reduce async expressions to core 

language expressions (Fig. 1). We assume the “core” language has appropriate 

contextual reduction rules (see Fig. 2). An async expression becomes a function 

 (          )      accepting success, exception and cancellation continuations 

            , and a cancellation token  . The only asynchronous action is            

which raises a wake-up event after an arbitrary time period. Starting an async 

provides continuations to reify errors and cancellation as exceptions in the core 

language. 

Fig. 2 presents semantics for our asynchronous extension. We assume a core 

language whose semantics is given as a standard small-step reduction relation     . 

The semantics for the asynchronous extension is then specified as a relation on 

(     )  (        ), where 

(a)   is a set of active computations       . Each conceptually corresponds to an 

active OS thread contending for the CPU, evaluating  . Each is labeled with a 

synchronization context      indicating how suspended async operations are re-

queued. Multiple computations may share the same context (e.g. a thread pool). 

(b)   is a set of queued computations       . Each conceptually corresponds to a 

queued work item awaiting execution in     . For each context we assume an 

operation            (   )  (     ) which activates one queued evaluation. 

(c)   is a set of pending reactions          . Each conceptually corresponds to a 

pending callback when    occurs, e.g. pending reactions to UI events. We assume 

event descriptors are unique strings indicating a wakeup signal. 

REDUCTION performs one step of an active computation in  . SUSPENSION schedules a 

pending reaction to an event. ACTIVATION activates a queued computation in  . 

EVENT queues a pending reaction in response to an event. Evaluation is non-

deterministic: more than one reduction rule may apply to a given triple. We do not 

specify when events are raised: we assume they happen at an arbitrary number of 

steps once created by evaluations of asyncsleep.  

Some important ramifications of the semantics is as follows: 

 When there is one ctxt, with one thread, the semantics degenerates to a 

deterministic queue of event reactions, each run to completion or to an asyncsleep.  

 When there is one ctxt, and multiple threads, the semantics degenerates to a 

thread pool, running reactions to events in parallel. 

 Cancellation cannot be caught, though finally clauses are run when cancellation 

occurs. If an exception happens in a finally clause, then if the finally is being 

executed during cancellation, the exception is ignored, otherwise it is propagated. 
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 Cancellation checks are implicit at specific, well-defined places. Regular non-

asynchronous expressions can be used for non-interruptible operations.  

 

Figure 1. CPS Translation of Asynchronous Expressions6 7 

4 Patterns for Concurrent and Reactive Programming 

We now present some common patterns built on top of the F# asynchronous model. 

4.1 Parallel Composition  

Parallel composition of asynchronous computations is efficient because of the 

scalability properties of the .NET thread pool and the controlled, overlapped 

execution of operations such as web requests by modern OSs. The F# library provides 

two simple options for parallel composition, though it is easy to author additional 

patterns, particularly through the use of agents (see below).  

Fork-join parallelism. The library function Async.Parallel takes a list of 

asynchronous computations and creates a single asynchronous computation that starts 

the individual computations in parallel and waits for their completion: 

                                                           
6 ∅ indicates a cancellation check, given a cancellation continuation c and a cancellation token 

t.   and   indicate detecting and ignoring an exception in core-language code respectively.   

represents catching an exception and passing it to an exception continuation. 
7 We omit do!, aexpr; aexpr and expr : they are syntactic sugar for let!. No cancellation check 

is inserted for the sub-case expr; aexpr. For match, for and use see the F# spec [17]. 
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let task =  
    Async.Parallel [ getWebPage "http://www.yahoo.com";  
                     getWebPage "http://www.bing.com" ] 
let result = Async.RunSynchronously task 

It is possible to create computations that fetch tens of thousands of web pages in 

parallel. Assuming that urls is a list of URLs: 

let all = Async.Parallel [ for url in urls -> getWebPage url ]  

Promise-based parallelism. The F# library primitive for parallel execution is 

Async.StartChild. Its type is: 

Async.StartChild  : Async<'T> → Async<Async<'T>> 

It takes an async representing a child task and returns an async that represents the 

completion of the task, a form of promise [5]. Two-way parallel composition is then:  

let parallel2 (job1, job2) =  
    async { let! task1 = Async.StartChild job1  
            let! task2 = Async.StartChild job2 
            let! res1 = task1 
            let! res2 = task2 
            return (res1, res2) 

On the first bind, StartChild starts the computation and returns a promise, also 

represented as an async, which is awaited on the second bind. The inferred type is: 

val parallel2 : Async<'T> * Async<'U> -> Async<'T * 'U> 

4.2 Reactive Agents using State Machines 

One primary motivation for including the async modality in F# is that it allows a 

faithful and simple representation of asynchronous message-receiving agents. An 

agent encapsulates a message queue and asynchronously reacts to messages received 

from other components.  The signature of the F# library type for agents is as follows: 

e = e e | λx.e | let x = e in e | raise e | try e with v→e | suspend(e,ev)   – some core language 

expressions and results (let rec, tuples, primitive values, conditionals, pattern matching omitted) 

  *      + – sets of active computations 

  *      + – sets of queued computations 

   *         + - sets of pending  reactions 

     – small-step evaluation relation for the core language  

Start state is     *        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅+            ̅          ̅̅ ̅̅ ̅̅      ∅     ∅ 

(     )  (        ) evaluation relation for asynchronous extension: 

REDUCTION:        (*      +       )  (*       +       ) 

SUSPENSION: (*       (    )     +       )  (      *         +) 

ACTIVATION:            (   )  (     )                 (     )  (       ) 

EVENT:   (      *         +)  (    *      +  )  

Figure 2. Expression Reduction 
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type Agent<'T> = 
    static member Start: (Agent<'T> -> Async<unit>) -> Agent<'T> 
    member Receive : Async<'T> 
    member Post : 'T -> unit 

(Agent<T> is a recommended type alias for the type MailboxProcessor<T> in F# 2.0.) 

One litmus test of an asynchronous programming modality is writing reactive state 

machines using a set of mutually recursive asynchronous functions. This is a common 

pattern for reactive agents [20]. For example, consider an agent that adds numbers and 

can be activated and deactivated. The type of messages sent to the agent is: 

type Message =  
    | Toggle  
    | Add of int  
    | Get of AsyncReplyChannel<int> 

The agent has states active and inactive, which are represented as functions. Both 

states are parameterized by the current number maintained by the agent. The 

following example creates and starts the agent (initially active with value 0): 

let agent = Agent<Message>.Start (fun inbox ->  
    let rec active n =  
        async { printfn "active %d" n 
                let! msg = inbox.Receive() 
                match msg with  
                | Toggle -> return! inactive n 
                | Add m  -> return! active (n + m)  
                | Get ch -> ch.Reply n; return! active n } 
    and inactive n =  
        async { printfn "inactive %d" n 
                let! msg = inbox.Receive() 
                match msg with  
                | Toggle -> return! active n 
                | Add _  -> return! inactive n  
                | Get ch -> ch.Reply n; return! inactive n } 
    active 0 ) 

We can use the Post member of the agent to send messages to the state machine, e.g. 

agent.Post (Add 10)   // Prints "active 10" 
agent.Post Toggle     // Prints "inactive 10" 
agent.Post (Add 20)   // Prints "inactive 10" 

Results can be retrieved by agents using PostAndAsyncReply: 

async { agent.Post (Add 30)                  // prints: "active 30" 
        let! n = agent.PostAndAsyncReply Get // calls & waits 
        printfn "got: %d" n }                // prints: "got: 30" 

4.3 Reactive User Interface Programming 

Typical reactive GUI code should not perform CPU intensive calculations, but needs 

to promptly react to the user activity. This is an area where the F# asynchronous 

model works well as it enables a co-routine style of programming with a rich set of 

control constructs [13]. Most of GUI frameworks allow accessing widgets only from a 

single thread (or do not support threads at all, e.g. JavaScript), making cooperative 

resumption-based asynchronous tasks are a perfect match for GUI programming. 
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In F#, user interface events are exposed as values [18] and we can use the 

Async.AwaitObservable primitive to use them as asyncs that will resume as soon as an 

event occurs. For example, assume an event wnd.LeftButtonDown representing clicks 

on a window. The following prints information about the first click event: 

Async.StartImmediate 
  async { let! me = Async.AwaitObservable wnd.LeftButtonDown  
          printfn "clicke at (%d, %d) in %s" me.X me.Y wnd.Text } 

The code registers a callback that will be called when the event occurs. The callback 

is scheduled through the GUI message queue. The example above waits only for the 

first occurrence of the event. To implement more complex logic, we can use control 

flow constructs available in the asynchronous modality. For example, consider a 

computation that reactively loops through three colors, in response to mouse clicks. 

let semaphoreStates =  
  async { while true do  
            for light in [green; orange; red] do 
              let! _ = Async.AwaitObservable wnd.LeftButtonDown  
              wnd.BackgroundColor <- light } 
 
Async.StartImmediate semaphoreStates 

5 Implementation  

At its core, the F# 2.0 implementation of the F# async model is as follows: 

 The async syntax is de-sugared by the compiler as a “computation expression”. 

 The Async<T> type is represented as a function that, when run, is given three 

continuations for success, exceptions and cancellation, and will eventually call 

one of these. A cancellation token is also supplied as an argument. 

Together these perform a localized continuation-passing translation of control-flow 

and a heap-based allocation of the closures. This is a simple and efficient 

implementation that also builds on the uniform tailcall support of .NET 4.0. This is in 

essence a direct implementation of the semantics described in Section 3, though many 

local optimizations are added, and additional protection is made against some cases 

where .NET does not guarantee tailcalls, e.g. in some partial-trust execution. 

The async { ... } construct is an instance of an F# computation expression [19], a 

form of retargetable syntactic control-flow, c.f. Haskell monadic syntax and LINQ 

query syntax [11]. We have de-emphasized this here, as adding an asynchronous 

syntactic modality to a language is independent of its implementation. For example:  

async { let l = ref [] 
        for url in urls do 
           let! result = getWebPage url 
           l := result :: !l 
        return !l } 

is de-sugared to  

async.Delay(fun () -> 
    let l = ref [] 
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    async.Combine( 
        async.For(urls, fun url -> 
            async.Bind(getWebPage url, fun result -> 
                l := result :: l 
                async.Zero() )), 
        async.Delay(fun () -> async.Return(!l)))) 

5.1 Some Usability and Performance Indicators  

The role of F# async is to replace the direct use of OS threads in scalable .NET 

programming, and to be a “nicer” way of writing the event-based code necessary to 

achieve true scalability. This is hard to quantify, but one way to see this is to look at 

the results of a small study [10]. This implements a TCP server using four techniques: 

C#+OS threads, C#+callback async, F#+OS threads and F# + F# async. Approximate 

coding time and code lengths were recorded, and the developer was an expert in all 

areas. This study keeps many variables constant: the VM, GC, OS and underlying 

library, only the language support changes. The results are below: 

 

 max clients C# LoC C# coding F# LoC F# coding 

OS Threads ~1200 ~90 lines ~20 mins ~60 lines ~20 mins 

Async > 8000 ~330 lines + ~3 hours ~60 lines + ~10 mins 

Comparing scalability and development time for a .NET pseudo-stock quote server 

[10], .NET 3.5, Dell Optiplex 745, Win 7 Enterprise, 4 GB, 32-bit 

The advantages of F# async are clear: > 7x improvement in scalability, and ~18x 

decrease in time to transition to event/async implementation. This is consistent with 

the authors’ experience of using the mechanism in practice. 

The above illustrates the primary benefits of F# async programming against its 

immediate comparison point on .NET. It is also somewhat useful to compare to other 

systems implementing agent models. Some comparison points are shown below.  

 

 pingpong 105, 1msg pingpong 1, 107 msg 

F# 2.0 async actors 8.2s/211Mb 5.9s/5.6Mb 

Scala 2.8.1 actors 5.5s/166Mb 21.4s/23Mb 

Erlang 5.8 processes (exceeds max agents) 16.8s/6Mb 

Agent creation and messaging statistics, Windows 7.  
pingpong n creates n pairs of agent and bounces messages between them. Memory use is steady 

state private working set. Dell E6400, Intel P9500 2.53Ghz, 2 Core, .NET 4.0, Win7 Enterprise 

F# 2.0 per-agent overheads are marginally higher, but message processing is faster. 

However, a word of caution! In reality, for all these languages, the in-memory 

processing costs are nearly always “good enough” for real-world asynchronous 

programming. In real-world applications the overheads are often swamped by I/O 

latencies, I/O waits, graphical rendering or other CPU computations. Further, in client 

apps, a non-blocking UI can be much more important than reducing CPU usage. 
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6 Summary 

Two major themes run through today’s programming landscape: Web and Multi-core. 

Asynchronous/overlapped/non-blocking network programming is a critical problem 

for optimizing today’s web programming, and compositional, functionally-oriented 

parallel programming is critical for multi-core programming. The F# async model 

makes significant practical contributions in both these areas, delivering a clean, 

efficient and scalable implementation of a compositional asynchronous programming 

model in the context of a viable applied functional programming language, without 

disturbing compilation via .NET and interoperability with .NET libraries. 

 

To recap, why is such a modality useful? There are three ways to look at this: 

 Expressivity: Compositional asynchronous reactions are expressed using 

sequencing, recursion, pattern matching, conditionals and exception handling. 

State machines, reactive UIs and agents are simple instantiations of these. 

 Semantic Separation: Adding an asynchronous modality gives language support 

to a methodology that separates network I/O and asynchronous message passing 

from “local” effects such as memory access and console I/O. 

 Scalability: Event-based programming is still essential to scaling for server-side 

systems which use OS threads. The performance indicators of Section 5 show 

how using F# async allows both scaling and efficient coding in this domain. 

In practice, the F# asynchronous programming model has consistently proved itself to 

be an effective tool for multi-core, I/O and agent-programming problems [19, 13, 10].  

6.1 Related Work 

The topics of parallel, reactive, concurrent and distributed programming have given 

rise to a vast literature. Some of the key techniques are co-routines, promises, futures 

and actors [20, 1], synchronous languages [4], functional reactive programming, Join-

based thread co-ordination, orchestration languages [22] and light-weight threading, 

especially Erlang [20]. Task, event, async and fork-join libraries abound, with no 

language integration. Using monadic delimited continuations for event-based 

programming is not new [9, 7, 15, 21]. Events v. threads is a major topic in systems 

research, with papers highlighting the duality of the two approaches, or advocating 

each [8, 9, 3]. The focus is mostly on systems performance, and less on expressivity. 

The F# model ranks as a language integrated implementation of a lightweight task 

mechanism specifically designed to fluently integrate with high-performance code 

and interoperate well with existing virtual machines.  Others with similar goals 

include Thorn, the “react” and “continuation” models of Scala and Kilim [6, 14, 16] 

and the F# model shares much in common with the latter two in the use of a localized 

CPS transform. This achieves conceptual efficiency by re-utilizing the control syntax 

of the core language with an asynchronous interpretation. 
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