

The F# Asynchronous Programming Model

Don Syme
1
, Tomas Petricek

2
, Dmitry Lomov

3

1 Microsoft Research, Cambridge, United Kingdom

2 Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
3 Microsoft Corporation, Redmond WA, USA

{dsyme, dmilom}@microsoft.com, tomas@tomasp.net

With one breath, with one flow, you will know, asynchronicity. [The Police, 1983, adapted]

Abstract. We describe the asynchronous programming model in F#, and its

applications to reactive, parallel and concurrent programming. The key feature

combines a core language with a non-blocking modality to author lightweight

asynchronous tasks, where the modality has control flow constructs that are

syntactically a superset of the core language and are given an asynchronous

semantic interpretation. This allows smooth transitions between synchronous

and asynchronous code and eliminates callback-style treatments of inversion of

control, without disturbing the foundation of CPU-intensive programming that

allows F# to interoperate smoothly and compile efficiently. An adapted version

of this approach has recently been announced for a future version of C#.

1 Introduction

Writing applications that react to events is becoming increasingly important. A

modern application needs to carry out a rich user interaction, communicate with web

services, react to notifications from parallel processes, or participate in cloud compu-

tations. The execution of reactive applications is controlled by events. This principle

is called inversion of control or the Hollywood principle (“Don’t call us, we’ll call

you”). Even the internal architecture of multi-core machines is approaching that of an

event-based distributed computing environment [2].

For this paper, asynchronous (also called “non-blocking” or “overlapped”)

programming is characterized by many simultaneously pending reactions to internal

or external events. These reactions may or may not be processed in parallel. Today,

many practically-oriented languages have reached an “asynchronous programming

impasse”:

 OS threads are expensive, while lightweight threading alone is less

interoperable. Despite many efforts to make them cheap, OS threads allocate

system resources and large stacks [16] and their use is insufficient for problems

that require a large number of pending reactions of outstanding asynchronous

communications. For this reason many advocate either complete re-

implementations of OS threading [3] or language runtimes supporting only light-

2 D. Syme, T. Petricek, D. Lomov

weight threads. However, both are difficult without affecting performance of

CPU-intensive native code, and in any case interoperating with OS threads is a

fundamental requirement for languages that interoperate smoothly with virtual

machines such as C#, F#, Scala [12, 19], so in this paper we assume it as an

axiom. So these languages must look to add an additional lightweight-tasking

model that is not 1:1 with OS threads, a starting point for this paper.

 Asynchronous programming using callbacks is difficult. The usual approach

to address asynchronous programming is to use callbacks. However, without

language support, callback-based code inverts control, is awkward and is limited

in expressivity. In normal use, asynchronous programming on .NET and Java

leads to a tangle of threads, callbacks, exceptions and data-races.

What is to be done about this? The answer proposed in this paper, and adopted by

F# since 20071, is to add an asynchronous modality as a first-class feature to a general

purpose language design. By “modality” we mean reusing the control flow syntax of a

host language with a different computational interpretation.2 The key contribution of

this paper is to give a recipe for how to augment a core language (e.g. an ML-like

language, with no threading or tasks) with a non-blocking modality to author

lightweight asynchronous tasks in a relatively non-intrusive way. The modality has

control constructs that are syntactically a superset of the core language and these are

given an asynchronous semantic interpretation. For F#, this allows asynchronous code

to be described fluently in familiar language syntax, without disturbing the foundation

of CPU-intensive programming that allows F# to compile efficiently to Common IL,

and hence to native code, and to interoperate well with .NET and C libraries.

2 An Overview of F# Asynchronous Programming

In this section we give an overview of the elements of F# asynchronous program-

ming, element by element. We assume familiarity with ML-like core languages and

use expr to indicate ordinary expressions in F# programming [17]. The F#

asynchronous programming extension adds a new syntactic category aexpr to indicate

the added syntax of asynchronous expressions:

expr := async { aexpr }

The foundation of F# asynchronous programming is the Async<T> type, which

represents an asynchronous computation. All expressions of the form async { ... }

are of type Async<T> for some T. When executed, an async value will eventually

produce a value of type T and deliver it to a continuation.

1 This paper describes the asynchronous support in F# 2.0. While the core idea was released

and published in book form 2007, the model has not been described in the conference

literature. This paper aims to rectify this and to help enable replication in other languages.
2 Other examples of language modalities are C# iterators (where the control syntax of C# is

used to write programs that generate sequences) and F# sequence expressions (a similar use).

The F# Asynchronous Programming Model 3

In asynchronous expressions, control-flow constructs can be used to form values

that represent asynchronous computations, and additions are made to this syntax to

await the completion of other asynchronous computations and bind their results. The

grammar of asynchronous expressions for F# is shown below3. Importantly, this is a

superset of F# core language syntax, where control flow constructs are preferred to

have an asynchronous interpretation.

aexpr :=

| do! expr execute async

| let! pat = expr in aexpr execute & bind async

| let pat = expr in aexpr execute & bind expression

| return! expr tailcall to async

| return expr return result of async expression

| aexpr; aexpr sequential composition
| if expr then aexpr else aexpr conditional on expression

| match expr with pat -> aexpr match expression

| while expr do aexpr asynchronous loop on synchronous guard

| for pat in expr do aexpr asynchronous loop on synchronous list

| use val = expr in aexpr execute & bind & dispose expression

| use! val = expr in aexpr execute & bind & dispose async

| try aexpr with pat -> aexpr asynchronous exception handling

| try aexpr finally expr asynchronous compensation

| expr execute expression for side effects

The signatures of the library functions used in this section are:

Async.RunSynchronously : Async<'T> → 'T
Async.StartImmediate : Async<unit> → unit

Async.StartInThreadPool4 : Async<unit> → unit
Async.Parallel : Async<'T>[] → Async<'T[]>
Async.Sleep : int → Async<unit>

We also assume a function that takes a URL address and fetches the contents of a web

page – we show later in this section how this function is defined.

getWebPage : string -> Async<string>

2.1 Writing, Composing and Running Asynchronous Computations

Asynchronous computations form a monad and can bind a result from another

asynchronous computation using let! v = expr in aexpr. To return a result, we use

the return expr syntax, which lifts an expression into asynchronous computation. The

following example downloads a web page and returns its length:

async { let! html = getWebPage "http://www.google.com"
 return html.Length }

The expected types are as follows:

 let! pat T = expr Async<T> in aexpr: Async<U> : Async<U>

 return expr T : Async<T>

3 F# indentation aware syntax allows the omission of the in keyword.
4 Async.StartInThreadPool is called Async.Start in F# 2.0. We use the former for clarity.

4 D. Syme, T. Petricek, D. Lomov

The syntax do! expr indicates the execution of a subordinate asynchronous

operation of type Async<unit>, the type of an asynchronous operation that does not

return a useful result. The following example sleeps 5 sec., resumes, performs a side

effect, and sleeps another 5 sec. Note F# is an impure, strict functional language, and,

as with other operations in F#, asynchronous computations may have side effects.

async { do! Async.Sleep 5000
 printfn "between naps"
 do! Async.Sleep 5000 }

The typings for the syntactic elements used here are as follows:

 do! expr Async<unit> : Async<unit>

 aexpr Async<unit> ; aexpr Async<T> : Async<T>

 expr unit : Async<unit>

Asynchronous computations can also bind the results of core language expressions

using let v = expr in aexpr, executed using normal expression evaluation:

async { let! html = getWebPage "http://www.bing.com"
 let words = html.Split(' ', '\n', '\r')
 printfn "the number of words was %d" words.Length }

For the F# version of asynchronous programming, a value of type Async<_> is best

thought of as a “task specification” or “task generator”. Consider this:

let sleepThenReturnResult =
 async { printfn "before sleep"
 do! Async.Sleep 5000
 return 1000 }

This declaration does not start a task and has no side effects. An Async<_> must be

explicitly run, and side effects will be observed each time it is run. For example, we

can explicitly run an asynchronous computation and block for its result as follows:

let res = Async.RunSynchronously sleepThenReturnResult
printfn "result = %d" res

This runs, as a background operation, a task that prints “before sleep”, then does a

non-blocking sleep for 5 sec., and then delivers the result 1000 to the blocking

operation. In this case, the function is equivalent to standard blocking code with a

pause, but we’ll see a more interesting use in Section 3. The choice to have asyncs be

task generators is an interesting one. Alternatives are possible: “hot tasks” that run

immediately, i.e. futures, or “cold tasks” that must be started explicitly, but can only

be run once. Task-generators are more suitable for a functional language as they

eliminate state (e.g. whether a task has been started).

When an asynchronous computation does not produce a result, it can be started as a

co-routine, running synchronously until the first point that it yields:

let printThenSleepThenPrint =
 async { printfn "before sleep"
 do! Async.Sleep 5000
 printfn "wake up" }

Async.StartImmediate printThenSleepThenPrint
printfn "continuing"

The F# Asynchronous Programming Model 5

This program runs a task that prints “before sleep”, then schedules a callback and

prints “continuing”. After 5 sec., the callback is invoked and prints “wake up”.

This raises the question of how the callback is run: is it on a new thread? In a thread

pool? Fortunately, .NET has an answer to this. Each running computation in .NET

implicitly has access to a synchronization context, which for our purposes is a way of

taking a function closure and running it “somewhere”. We use this to execute

asynchronous callbacks. Contexts feature in the semantics in Section 3.

An asynchronous computation can also be started “in parallel” by scheduling it for

execution using the .NET thread pool. The operation is queued and eventually

executed through a pool of OS threads using pre-emptive multi-tasking.

Async.StartInThreadPool printThenSleepThenPrint

2.2 Asynchronous Functions

An asynchronous function is a design idiom where a normal F# function or method

returns an asynchronous computation. The typical type signature of an asynchronous

function f is ty1 → ... → tyn → Async<tyreturn>. For example:

let getWebPage (url:string) =
 async { let req = WebRequest.Create url
 let! resp = req.AsyncGetResponse()
 let stream = resp.GetResponseStream()
 let reader = new StreamReader(stream)
 return! reader.AsyncReadToEnd() }

This uses additional .NET primitives. It is common that functions are written entirely

in this way, i.e. the whole body of the function or method is enclosed in async { ...

}. (Indeed, in Java/C# versions of an asynchronous language modality, it is natural to

support only asynchronous methods, and not asynchronous blocks or expressions).

The above example uses several asynchronous operations provided by the F#

library, namely AsyncGetResponse and AsyncReadToEnd. Both of these are I/O

primitives that are typically used at the leaves of asynchronous operations. The key

facet of an asynchronous I/O primitive is that it does not block an OS thread while

executing, but instead schedules the continuation of the asynchronous computation as

a callback in response to an event.5 Indeed, in the purest version of the mechanism

described here, every composite async also has this property: asyncs don’t block at

all, not even I/O, except where performing useful CPU computations.

Tail Recursive Functions and Loops. A very common pattern in functional prog-

ramming is the use of recursive functions. Let’s assume we have a function receive of

type unit -> Async<int> that asynchronously returns an integer, for example by

awaiting a message. Now consider an asynchronous function that accumulates a

parameter by repeatedly awaiting a message:

5 The .NET library provides operations through the “Asynchronous Programming Model”

(APM) pattern of BeginFoo/EndFoo methods. The F# library provides Async.FromBeginEnd to

map these to functions and uses this to wrap primitives to await basic operating signals such

as semaphores, to read and write socket connections, and to await database requests.

6 D. Syme, T. Petricek, D. Lomov

let rec count n =
 async { printfn "count = %d" n
 let! msg = receive()
 return! count (n + msg) }

Here, return! expr is an asynchronous tailcall that yields control to the sub-ordinate

async, with finite overall resource usage (neither the stack nor the heap holding

continuations grows indefinitely). Note expr has type Async<T> for some T.

Recursive asynchronous functions with asynchronous tailcalls give a very general

way to define asynchronous loops. However, the F# and OCaml syntax also allows

the direct use of for and while loops, often combined with the use of imperative data

structures such as reference cells. It is useful to extend these to asynchronous code. A

variation on a count function can be defined as follows:

let count =
 async { let n = ref 0
 while true do
 printfn "count = %d" n.Value
 let! msg = receive()
 n := n.Value + msg }

2.3 Exception Handling and Resource Compensation

Without a language support, the exception handling in asynchronous computations is

extremely difficult [10]. With language support it becomes simple: the try … with and

try … finally constructs can be used in async expressions in the natural way:

async { try
 let! primary = getWebPage "http://primary.server.com"
 return primary.Length
 with e ->
 let! backup = getWebPage "http://backup.server.com"
 return backup.Length }

Here, a failure anywhere in the download from the primary server results in the

execution of the exception handler and download from the backup server.

Deterministic resource disposal is a language construct that ensures that resources

(such as file handles) are disposed at the end of a lexical scope. In F# this is the

construct use val = expr in expr, translated to let val = expr in try expr finally

val.Dispose(). The resource val is freed on exit from the lexical scope.

Resource cleanup in asynchronous code is also difficult without language support

[10]. Many OO design patterns for async programming use a “state” object to hold the

state elements of a composed asynchronous computation, but this is non-

compositional. With language support, state becomes implied by closure, and

resource cleanup becomes simple. For example, the getWebPage function defined

above can be improved as follows:

let getWebPage (url:string) =
 async { let req = WebRequest.Create url
 use! resp = req.AsyncGetResponse()
 use stream = resp.GetResponseStream()
 use reader = new StreamReader(stream)
 return! reader.AsyncReadToEnd() }

The F# Asynchronous Programming Model 7

Here the connection, the network stream and reader are closed regardless of whether

the asynchronous computation succeeds, fails or is cancelled, even though callbacks

and asynchronous responses are implied by the use of the asynchronous syntax.

2.4 Cancellation

A cancellation mechanism allows computations to be sent a message to “stop”

execution, e.g. “thread abort” in .NET. Cancellation mechanisms are always a

difficult topic in imperative programming languages, because compiled, efficient

native code often exhibits extremely subtle properties when pre-emptively cancelled

at arbitrary machine instructions. However, for asynchronous computations we can

assume that primitive asynchronous operations are the norm (e.g. waiting on a

network request), and it is reasonable to support reliable cancellation at these

operations. Furthermore, it is reasonable to implicitly support cooperative cancellation

at specific syntactic points, and additionally through user-defined cancellation checks.

One test of asynchronous programming support in a language is whether

cancellation of asynchronous operations is handled without additional plumbing. F#

async supports the implicit propagation of a cancellation token through the execution

of an asynchronous computation. Each cancellation token is derived from a

cancellation capability (a CancellationTokenSource in .NET), used to set the overall

cancellation condition. A cancellation token can be given to Async.RunSynchronously,

Async.StartImmediate, Async.StartInThreadPool and Agent.Start, e.g.

let capability = new CancellationTokenSource()
let tasks = Async.Parallel [getWebPage "http://www.google.com"
 getWebPage "http://www.bing.com"]
// Start the work…
Async.Start (tasks, cancellationToken=capability.Token)
// OK, the work is in progress, now cancel it…
capability.Cancel()

Cancellation is checked at each I/O primitive, subject to underlying .NET library and

O/S support, and before the execution of each return, let!, use!, try/with,

try/finally, do! and async { ... } construct, and before each iteration of an

asynchronous while or for loop. For getWebPage this means cancellation can occur at

several places. But it cannot occur during core-language code (e.g. expressions such

as library calls, executed for side-effects), and it cannot occur in such a way that the

resource-reclamation implied by the use and use! expression constructs is skipped.

Cancellation is not necessarily immediately effective: in a multi-core or distributed

setting it may take arbitrarily long to propagate the cancellation message.

3 Semantics

We now present a semantics for a simplified version of F# async programming, with

the following aims:

 To give a formal reference model that is close to an ideal implementation, yet

fairly neutral w.r.t. the core language.

8 D. Syme, T. Petricek, D. Lomov

 To differentiate between computations that are pending on I/O, waiting in work

queues, and actively burning the CPU. These are the operational characteristics

that matter most to working programmers, as they have different cost models.

 To give a semantics that can be reduced to (a) the “single-threaded” model,

where one thread serves all reactions, or the “thread-pool” model, where a pool

of threads serves all reactions.

We do not present formal proofs based on the given semantics. The semantics is as

follows. We first perform a CPS conversion to reduce async expressions to core

language expressions (Fig. 1). We assume the “core” language has appropriate

contextual reduction rules (see Fig. 2). An async expression becomes a function

 () accepting success, exception and cancellation continuations

 , and a cancellation token . The only asynchronous action is

which raises a wake-up event after an arbitrary time period. Starting an async

provides continuations to reify errors and cancellation as exceptions in the core

language.

Fig. 2 presents semantics for our asynchronous extension. We assume a core

language whose semantics is given as a standard small-step reduction relation .

The semantics for the asynchronous extension is then specified as a relation on

() (), where

(a) is a set of active computations . Each conceptually corresponds to an

active OS thread contending for the CPU, evaluating . Each is labeled with a

synchronization context indicating how suspended async operations are re-

queued. Multiple computations may share the same context (e.g. a thread pool).

(b) is a set of queued computations . Each conceptually corresponds to a

queued work item awaiting execution in . For each context we assume an

operation () () which activates one queued evaluation.

(c) is a set of pending reactions . Each conceptually corresponds to a

pending callback when occurs, e.g. pending reactions to UI events. We assume

event descriptors are unique strings indicating a wakeup signal.

REDUCTION performs one step of an active computation in . SUSPENSION schedules a

pending reaction to an event. ACTIVATION activates a queued computation in .

EVENT queues a pending reaction in response to an event. Evaluation is non-

deterministic: more than one reduction rule may apply to a given triple. We do not

specify when events are raised: we assume they happen at an arbitrary number of

steps once created by evaluations of asyncsleep.

Some important ramifications of the semantics is as follows:

 When there is one ctxt, with one thread, the semantics degenerates to a

deterministic queue of event reactions, each run to completion or to an asyncsleep.

 When there is one ctxt, and multiple threads, the semantics degenerates to a

thread pool, running reactions to events in parallel.

 Cancellation cannot be caught, though finally clauses are run when cancellation

occurs. If an exception happens in a finally clause, then if the finally is being

executed during cancellation, the exception is ignored, otherwise it is propagated.

The F# Asynchronous Programming Model 9

 Cancellation checks are implicit at specific, well-defined places. Regular non-

asynchronous expressions can be used for non-interruptible operations.

Figure 1. CPS Translation of Asynchronous Expressions6 7

4 Patterns for Concurrent and Reactive Programming

We now present some common patterns built on top of the F# asynchronous model.

4.1 Parallel Composition

Parallel composition of asynchronous computations is efficient because of the

scalability properties of the .NET thread pool and the controlled, overlapped

execution of operations such as web requests by modern OSs. The F# library provides

two simple options for parallel composition, though it is easy to author additional

patterns, particularly through the use of agents (see below).

Fork-join parallelism. The library function Async.Parallel takes a list of

asynchronous computations and creates a single asynchronous computation that starts

the individual computations in parallel and waits for their completion:

6 ∅ indicates a cancellation check, given a cancellation continuation c and a cancellation token

t. and indicate detecting and ignoring an exception in core-language code respectively.

represents catching an exception and passing it to an exception continuation.
7 We omit do!, aexpr; aexpr and expr : they are syntactic sugar for let!. No cancellation check

is inserted for the sub-case expr; aexpr. For match, for and use see the F# spec [17].

 * + () ∅ ⟦ ⟧ ()

 ()
 () (() () ())

⟦ ⟧ () ∅ ((⟦ ⟧ ()))

⟦ ⟧ () ∅

⟦ ⟧ ⟦ ⟧ ⟦ ⟧

⟦ ⟧ ⟦ ⟧

⟦ ⟧

 () ∅ ⟦ ⟧(() () ())

⟦ ⟧ () ∅ ⟦ ⟧ ((⟦ ⟧ ()))

⟦ ⟧ () ⟦ ()⟧ ⟦ ()⟧ ()

⟦ ⟧

⟦ ⟧ ()

∅

 ()

 (())

10 D. Syme, T. Petricek, D. Lomov

let task =
 Async.Parallel [getWebPage "http://www.yahoo.com";
 getWebPage "http://www.bing.com"]
let result = Async.RunSynchronously task

It is possible to create computations that fetch tens of thousands of web pages in

parallel. Assuming that urls is a list of URLs:

let all = Async.Parallel [for url in urls -> getWebPage url]

Promise-based parallelism. The F# library primitive for parallel execution is

Async.StartChild. Its type is:

Async.StartChild : Async<'T> → Async<Async<'T>>

It takes an async representing a child task and returns an async that represents the

completion of the task, a form of promise [5]. Two-way parallel composition is then:

let parallel2 (job1, job2) =
 async { let! task1 = Async.StartChild job1
 let! task2 = Async.StartChild job2
 let! res1 = task1
 let! res2 = task2
 return (res1, res2)

On the first bind, StartChild starts the computation and returns a promise, also

represented as an async, which is awaited on the second bind. The inferred type is:

val parallel2 : Async<'T> * Async<'U> -> Async<'T * 'U>

4.2 Reactive Agents using State Machines

One primary motivation for including the async modality in F# is that it allows a

faithful and simple representation of asynchronous message-receiving agents. An

agent encapsulates a message queue and asynchronously reacts to messages received

from other components. The signature of the F# library type for agents is as follows:

e = e e | λx.e | let x = e in e | raise e | try e with v→e | suspend(e,ev) – some core language

expressions and results (let rec, tuples, primitive values, conditionals, pattern matching omitted)

 * + – sets of active computations

 * + – sets of queued computations

 * + - sets of pending reactions

 – small-step evaluation relation for the core language

Start state is * ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅+ ̅ ̅̅ ̅̅ ̅̅ ∅ ∅

() () evaluation relation for asynchronous extension:

REDUCTION: (* +) (* +)

SUSPENSION: (* () +) (* +)

ACTIVATION: () () () ()

EVENT: (* +) (* +)

Figure 2. Expression Reduction

The F# Asynchronous Programming Model 11

type Agent<'T> =
 static member Start: (Agent<'T> -> Async<unit>) -> Agent<'T>
 member Receive : Async<'T>
 member Post : 'T -> unit

(Agent<T> is a recommended type alias for the type MailboxProcessor<T> in F# 2.0.)

One litmus test of an asynchronous programming modality is writing reactive state

machines using a set of mutually recursive asynchronous functions. This is a common

pattern for reactive agents [20]. For example, consider an agent that adds numbers and

can be activated and deactivated. The type of messages sent to the agent is:

type Message =
 | Toggle
 | Add of int
 | Get of AsyncReplyChannel<int>

The agent has states active and inactive, which are represented as functions. Both

states are parameterized by the current number maintained by the agent. The

following example creates and starts the agent (initially active with value 0):

let agent = Agent<Message>.Start (fun inbox ->
 let rec active n =
 async { printfn "active %d" n
 let! msg = inbox.Receive()
 match msg with
 | Toggle -> return! inactive n
 | Add m -> return! active (n + m)
 | Get ch -> ch.Reply n; return! active n }
 and inactive n =
 async { printfn "inactive %d" n
 let! msg = inbox.Receive()
 match msg with
 | Toggle -> return! active n
 | Add _ -> return! inactive n
 | Get ch -> ch.Reply n; return! inactive n }
 active 0)

We can use the Post member of the agent to send messages to the state machine, e.g.

agent.Post (Add 10) // Prints "active 10"
agent.Post Toggle // Prints "inactive 10"
agent.Post (Add 20) // Prints "inactive 10"

Results can be retrieved by agents using PostAndAsyncReply:

async { agent.Post (Add 30) // prints: "active 30"
 let! n = agent.PostAndAsyncReply Get // calls & waits
 printfn "got: %d" n } // prints: "got: 30"

4.3 Reactive User Interface Programming

Typical reactive GUI code should not perform CPU intensive calculations, but needs

to promptly react to the user activity. This is an area where the F# asynchronous

model works well as it enables a co-routine style of programming with a rich set of

control constructs [13]. Most of GUI frameworks allow accessing widgets only from a

single thread (or do not support threads at all, e.g. JavaScript), making cooperative

resumption-based asynchronous tasks are a perfect match for GUI programming.

12 D. Syme, T. Petricek, D. Lomov

In F#, user interface events are exposed as values [18] and we can use the

Async.AwaitObservable primitive to use them as asyncs that will resume as soon as an

event occurs. For example, assume an event wnd.LeftButtonDown representing clicks

on a window. The following prints information about the first click event:

Async.StartImmediate
 async { let! me = Async.AwaitObservable wnd.LeftButtonDown
 printfn "clicke at (%d, %d) in %s" me.X me.Y wnd.Text }

The code registers a callback that will be called when the event occurs. The callback

is scheduled through the GUI message queue. The example above waits only for the

first occurrence of the event. To implement more complex logic, we can use control

flow constructs available in the asynchronous modality. For example, consider a

computation that reactively loops through three colors, in response to mouse clicks.

let semaphoreStates =
 async { while true do
 for light in [green; orange; red] do
 let! _ = Async.AwaitObservable wnd.LeftButtonDown
 wnd.BackgroundColor <- light }

Async.StartImmediate semaphoreStates

5 Implementation

At its core, the F# 2.0 implementation of the F# async model is as follows:

 The async syntax is de-sugared by the compiler as a “computation expression”.

 The Async<T> type is represented as a function that, when run, is given three

continuations for success, exceptions and cancellation, and will eventually call

one of these. A cancellation token is also supplied as an argument.

Together these perform a localized continuation-passing translation of control-flow

and a heap-based allocation of the closures. This is a simple and efficient

implementation that also builds on the uniform tailcall support of .NET 4.0. This is in

essence a direct implementation of the semantics described in Section 3, though many

local optimizations are added, and additional protection is made against some cases

where .NET does not guarantee tailcalls, e.g. in some partial-trust execution.

The async { ... } construct is an instance of an F# computation expression [19], a

form of retargetable syntactic control-flow, c.f. Haskell monadic syntax and LINQ

query syntax [11]. We have de-emphasized this here, as adding an asynchronous

syntactic modality to a language is independent of its implementation. For example:

async { let l = ref []
 for url in urls do
 let! result = getWebPage url
 l := result :: !l
 return !l }

is de-sugared to

async.Delay(fun () ->
 let l = ref []

The F# Asynchronous Programming Model 13

 async.Combine(
 async.For(urls, fun url ->
 async.Bind(getWebPage url, fun result ->
 l := result :: l
 async.Zero())),
 async.Delay(fun () -> async.Return(!l))))

5.1 Some Usability and Performance Indicators

The role of F# async is to replace the direct use of OS threads in scalable .NET

programming, and to be a “nicer” way of writing the event-based code necessary to

achieve true scalability. This is hard to quantify, but one way to see this is to look at

the results of a small study [10]. This implements a TCP server using four techniques:

C#+OS threads, C#+callback async, F#+OS threads and F# + F# async. Approximate

coding time and code lengths were recorded, and the developer was an expert in all

areas. This study keeps many variables constant: the VM, GC, OS and underlying

library, only the language support changes. The results are below:

 max clients C# LoC C# coding F# LoC F# coding

OS Threads ~1200 ~90 lines ~20 mins ~60 lines ~20 mins

Async > 8000 ~330 lines + ~3 hours ~60 lines + ~10 mins

Comparing scalability and development time for a .NET pseudo-stock quote server

[10], .NET 3.5, Dell Optiplex 745, Win 7 Enterprise, 4 GB, 32-bit

The advantages of F# async are clear: > 7x improvement in scalability, and ~18x

decrease in time to transition to event/async implementation. This is consistent with

the authors’ experience of using the mechanism in practice.

The above illustrates the primary benefits of F# async programming against its

immediate comparison point on .NET. It is also somewhat useful to compare to other

systems implementing agent models. Some comparison points are shown below.

 pingpong 105, 1msg pingpong 1, 107 msg

F# 2.0 async actors 8.2s/211Mb 5.9s/5.6Mb

Scala 2.8.1 actors 5.5s/166Mb 21.4s/23Mb

Erlang 5.8 processes (exceeds max agents) 16.8s/6Mb

Agent creation and messaging statistics, Windows 7.
pingpong n creates n pairs of agent and bounces messages between them. Memory use is steady

state private working set. Dell E6400, Intel P9500 2.53Ghz, 2 Core, .NET 4.0, Win7 Enterprise

F# 2.0 per-agent overheads are marginally higher, but message processing is faster.

However, a word of caution! In reality, for all these languages, the in-memory

processing costs are nearly always “good enough” for real-world asynchronous

programming. In real-world applications the overheads are often swamped by I/O

latencies, I/O waits, graphical rendering or other CPU computations. Further, in client

apps, a non-blocking UI can be much more important than reducing CPU usage.

14 D. Syme, T. Petricek, D. Lomov

6 Summary

Two major themes run through today’s programming landscape: Web and Multi-core.

Asynchronous/overlapped/non-blocking network programming is a critical problem

for optimizing today’s web programming, and compositional, functionally-oriented

parallel programming is critical for multi-core programming. The F# async model

makes significant practical contributions in both these areas, delivering a clean,

efficient and scalable implementation of a compositional asynchronous programming

model in the context of a viable applied functional programming language, without

disturbing compilation via .NET and interoperability with .NET libraries.

To recap, why is such a modality useful? There are three ways to look at this:

 Expressivity: Compositional asynchronous reactions are expressed using

sequencing, recursion, pattern matching, conditionals and exception handling.

State machines, reactive UIs and agents are simple instantiations of these.

 Semantic Separation: Adding an asynchronous modality gives language support

to a methodology that separates network I/O and asynchronous message passing

from “local” effects such as memory access and console I/O.

 Scalability: Event-based programming is still essential to scaling for server-side

systems which use OS threads. The performance indicators of Section 5 show

how using F# async allows both scaling and efficient coding in this domain.

In practice, the F# asynchronous programming model has consistently proved itself to

be an effective tool for multi-core, I/O and agent-programming problems [19, 13, 10].

6.1 Related Work

The topics of parallel, reactive, concurrent and distributed programming have given

rise to a vast literature. Some of the key techniques are co-routines, promises, futures

and actors [20, 1], synchronous languages [4], functional reactive programming, Join-

based thread co-ordination, orchestration languages [22] and light-weight threading,

especially Erlang [20]. Task, event, async and fork-join libraries abound, with no

language integration. Using monadic delimited continuations for event-based

programming is not new [9, 7, 15, 21]. Events v. threads is a major topic in systems

research, with papers highlighting the duality of the two approaches, or advocating

each [8, 9, 3]. The focus is mostly on systems performance, and less on expressivity.

The F# model ranks as a language integrated implementation of a lightweight task

mechanism specifically designed to fluently integrate with high-performance code

and interoperate well with existing virtual machines. Others with similar goals

include Thorn, the “react” and “continuation” models of Scala and Kilim [6, 14, 16]

and the F# model shares much in common with the latter two in the use of a localized

CPS transform. This achieves conceptual efficiency by re-utilizing the control syntax

of the core language with an asynchronous interpretation.

The F# Asynchronous Programming Model 15

Acknowledgements. We thank Brian McNamara, Nikolaj Bjorner, Niklas

Gustafsson, Simon Peyton Jones, Gregory Neverov, Laurent le Brun, Luke Hoban,

Jomo Fisher, Tobias Gedell, and others for their help and advice on the design of the

F# async model, and LAMP EPFL for a 2006 sabbatical where this work started.

References

[1] Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT Press,

Cambridge, MA, USA (1986)

[2] Baumann, A., et al.: The multikernel: a new OS architecture for scalable multicore systems.

In: SOSP ’09: Proc. of the ACM SIGOPS 22nd Symp. on OS Principles (2009)

[3] von Behren, R., Condit, J., Brewer, E.: Why events are a bad idea (for high-concurrency

servers). In: HOTOS’03: Proc. of the 9th Conf. on Hot Topics in OS (2003)

[4] Berry, G., Gonthier, G.: The ESTEREL synchronous programming language: design,

semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

[5] Friedman, D.P., Wise, D.S.: Aspects of applicative programming for parallel processing.

IEEE Trans. Computers 27(4), 289–296 (1978)

[6] Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based programming.

Theor. Comput. Sci. 410(2-3), 202–220 (2009)

[7] Kiselyov, O.: Delimited control in OCaml, abstractly and concretely. In: Blume, M.,

Kobayashi, N., Vidal, G. (eds.) FLOPS. LNCS, vol. 6009. Springer (2010)

[8] Lauer, H.C., Needham, R.M.: On the duality of operating system structures. SIGOPS Oper.

Syst. Rev. 13(2), 3–19 (1979)

[9] Li, P., Zdancewic, S.: Combining events and threads for scalable network services

implementation. SIGPLAN Not. 42(6), 189–199 (2007)

[10] McNamara, B.: F# async on the server side (March 2010),

http://tinyurl.com/fsasyncserver, retrieved 5/9/2010

[11] Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object, relations and XML in the

.NET framework. In: SIGMOD ’06: Int. ACM Conf. on Mgmt. of Data. ACM (2006)

[12] Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima, USA (2008)

[13] Petricek, T., Skeet, J.: Real World Functional Programming: With Examples in F# and C#.

Manning, USA (2009)

[14] Rompf, T., Maier, I., Odersky, M.: Implementing first-class polymorphic delimited

continuations by a type-directed selective CPS-transform. In: ICFP ’09: Proc. of the 14th

ACM SIGPLAN Int. Conf. on Func. Prog. (2009)

[15] Srinivasan, S.: Kilim: A Server Framework with Lightweight Actors, Isolation Types &

Zero-copy Messaging. Ph.D. thesis, University of Cambridge (2010)

[16] Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for Java. In: ECOOP ’08: 22nd

European Conf. on OO Prog. (2008)

[17] Syme, D.: F# 2.0 Language Specification, http://tinyurl.com/fsspec

[18] Syme, D.: Simplicity and compositionality in asynchronous programming through first

class events (March 2006), http://tinyurl.com/composingevents, Retrieved: Jan 2010

[19] Syme, D., Granicz, A., Cisternino, A.: Expert F#. Apress (2007)

[20] Virding, R., et al.: Concurrent programming in ERLANG (2nd ed.). Prentice Hall (1996)

[21] Vouillon, J.: OCaml light weight threading library (2002), http://ocsigen.org/lwt/

[22] Wehrman, I., Kitchin, D., Cook, W.R., Misra, J.: A timed semantics of Orc. Theor.

Comput. Sci. 402, 234–248 (2008)

	1 Introduction
	2 An Overview of F# Asynchronous Programming
	2.1 Writing, Composing and Running Asynchronous Computations
	2.2 Asynchronous Functions
	2.3 Exception Handling and Resource Compensation
	2.4 Cancellation

	3 Semantics
	4 Patterns for Concurrent and Reactive Programming
	4.1 Parallel Composition
	4.2 Reactive Agents using State Machines
	4.3 Reactive User Interface Programming

	5 Implementation
	5.1 Some Usability and Performance Indicators

	6 Summary
	6.1 Related Work

	References

