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Abstract
Sequencing of effectful computations can be neatly captured using
monads and elegantly written using do notation. In practice such
monads often allow additional ways of composing computations,
which have to be written explicitly using combinators.

We identify joinads, an abstract notion of computation that is
stronger than monads and captures many such ad-hoc extensions.
In particular, joinads are monads with three additional operations:
one of type m a → m b → m (a, b) captures various forms of
parallel composition, one of type m a → m a → m a that is
inspired by choice and one of type m a → m (m a) that captures
aliasing of computations. Algebraically, the first two operations
form a near-semiring with commutative multiplication.

We introduce docase notation that can be viewed as a monadic
version of case. Joinad laws imply various syntactic equivalences
of programs written using docase that are analogous to equiva-
lences about case. Examples of joinads that benefit from the nota-
tion include speculative parallelism, waiting for a combination of
user interface events, but also encoding of validation rules using the
intersection of parsers.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Control structures; F.1.2 [Models of Computation]:
Parallelism and concurrency

General Terms Languages, Theory

1. Introduction
Monads are traditionally used for embedding sequential computa-
tions into lazy functional code, but many recent uses go well be-
yond sequencing of state or computations. Monads have been used
for the exact opposite—to explicitly specify parallelism. This is
done by taking a core sequential monad and adding combinators
that increase the expressive power beyond sequencing.

Monads for concurrent [5] and parallel programming [15] sup-
port forking and synchronizing computations [4]. A monad for
user-interface programming includes combinators for merging
events from various sources [29]. These ad-hoc extensions are
extremely useful, but they are not uniform. Developers have to
understand different combinators for every computation and they
lose the syntactic support provided by do notation.

This paper discusses joinads—an abstract notion of computa-
tions that extends monads. Joinads capture a pattern that appears in
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many monadic computations with an additional expressive power
that goes beyond sequencing. We presented an earlier form of
joinads in F#[27]. This paper makes several novel findings, but
our first contribution to Haskell is similar to the earlier work in F#:

• We add language support for important kinds of computations,
including parallel, concurrent and reactive programming. This
is done via a lightweight, reusable language extension that
builds on core functional concepts such as pattern matching.

This paper simplifies the concept of joinad and requires that every
joinad is also a monad (just like every group is also a monoid).
In Haskell, we also relate several ideas that already disconnectedly
exist. The specific new contributions of this paper are:

• We present docase notation for Haskell1 (Sections 2, 4) that
allows programming with monadic computations extended with
aliasing, parallel composition and choice. We specify laws
about these operations to guarantee that docase keeps the
familiar semantics of pattern matching using case (Section 5).

• To demonstrate the usefulness of the extension, we consider
parsing (Section 3.1), GUI programming using events (Section
3.2), lightweight concurrency (Section 3.4), and a parallelism
monad with support for speculative parallelism (Section 3.3).

• The type of the above computations is captured by a Joinad
type class (Section 4.2). It relates type classes that have been
already proposed for Haskell. Based on our experience, we pro-
pose and discuss several adjustments to the Haskell base library
and laws required by the type classes we combine (Section 8).

• A joinad is an abstract computation that extends monads with
three operations. Deriving the laws about the three operations
(Section 6) reveals that two of the operations form an algebraic
structure known as a near-semiring.

The following section demonstrates the usefulness of docase in
the context of parallel programming.

2. Motivating example
Consider the following problem: we are given a tree with values in
leaves and we want to test whether a predicate holds for all values
in the tree. This can be implemented as a recursive function:

all :: (a → Bool)→ Tree a → Bool

all p (Leaf v) = p v
all p (Node left right) = all p left ∧ all p right

The execution of the two recursive calls could proceed in parallel.
Moreover, when one of the branches completes returning False , it
is not necessary to wait for the completion of the other branch as
the overall result must be False .

1 Prototype version is available at http://github.com/tpetricek/
Haskell.Joinads and we plan to submit a GHC patch in the future.
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Running two branches in parallel can be specified easily using
strategies [21, 32], but adding short-circuiting behaviour is chal-
lenging. Using the docase notation and a monad for parallel pro-
gramming, the problem can be solved as follows:

all :: (a → Bool)→ Tree a → Par Bool

all p (Leaf v) = return (p v)
all p (Node left right) =

docase (all p left , all p right) of
(False, ?) → return False
(?,False) → return False
(allL, allR)→ return (allL ∧ allR)

The function builds a computation annotated with hints that specify
how to evaluate it in parallel using the Par monad [15] extended
with the support for non-deterministic choice operator [26].

To process sub-trees in parallel, the snippet constructs two com-
putations (of type Par Bool ) and uses them as arguments of
docase. Patterns in the alternatives correspond to individual com-
putations. A special pattern ? denotes that a value of the monadic
computation does not have to be available for the alternative to be
selected. When the processing of the left subtree completes and
returns False , the first alternative can be selected immediately, be-
cause the result of the second computation is not required.

If the result of the left subtree is True and the right one has
not completed, none of the alternatives are immeriately enabled.
After the right subtree is processed, one of the last two alternatives
can be selected. The choice operator added to the Par monad is
non-deterministic, so the programmer needs to provide alternative
clauses that produce the same result in case of race. We return to
this topic in Section 3.3, but it is, the case in the above example.

The selection between alternative clauses is done using the
choice operator. Note that the result of each computation is used
in two independent alternatives. Evaluating the argument repeat-
edly would defeat the purpose of docase, so the translation uses
the aliasing operator to avoid this. The third alternative combines
two computations, which is achieved using parallel composition
operator provided by the Par monad.

The translation of docase is more complex than of the do
notation. This is not a bad thing—the notation can be used to
write programs that would otherwise be very complex. In the above
example, developers would typically write the solution in a more
imperative style shown in Appendix A. The length of the explicit
version is 21 lines compared to 6 line in the version above.

3. Introducing docase
This section introduces docase using four examples. We first
consider docase expressions with a single alternative that can be
also written using zip comprehensions [9] and then gradually add
remaining features. A formal definition is shown in Section 4.

3.1 Parallel composition of parsers
Parsers are a common example of monads. A parser is a function:
when supplied with an input, it returns a parsed value and the re-
maining unconsumed input. The following definition largely fol-
lows the one by Hutton and Meijer [30]:

newtype Parser a = P (String → [(a, Int ,String)])

Compared to standard parsers, there is one notable difference. In
addition to the parsed result and unconsumed input, the result
also contains Int value, which denotes the number of consumed
characters. This will be needed later. A parser can be made an
instance of Monad to allow sequential composition and an instance
of MonadPlus to support choice. A more interesting question is,
what does a parallel composition of parsers mean:

instance MonadZip Parser where
mzip (P p1 ) (P p2 ) = P (λinp →

[((a, b),num1 , tail1 ) |
(a,num1 , tail1 )← p1 inp,
(b,num2 , tail2 )← p2 inp,num1 ≡ num2 ])

Figure 1. Instance of MonadZip for parsers

mzip :: Parser a → Parser b → Parser (a, b)

Judging by the type, the mzip operation could be implemented in
terms of >>= and return . This implementation would not, in gen-
eral, obey the laws we require. We give more details in Section 6.1.
For parsers, the mzip operation parses the input using both parsers
and then returns all combination of values such that the two parsers
consumed the same number of input characters. The meaning of
this operation is that it creates a parser for a language that is an
intersection of languages described by the two parsers.

This implementation of mzip for parsers is shown in Figure 1.
It applies the two parsing functions to the same input and then
returns all combinations for which the predicate num1 ≡ num2
holds. An alternative implementation could compare the tails, but
that would be inefficient and would not work for infinite inputs.

The function belongs to the MonadZip type class that has been
added to GHC as part of a recent implementation of monad compre-
hensions. Monad comprehensions [36] generalize list comprehen-
sions to work with an arbitrary monad. The recent extension [1, 9]
also generalizes grouping and ordering [16] and syntax for zipping
(zip comprehensions), hence the name mzip. To demonstrate the
parallel between docase and generalized monad comprehensions,
we start with an example written using both notations.

Example. Cambridge telephone numbers can be specified as
strings satisfying three independent rules: they consist of 10 char-
acters, contain only digits and they start with the prefix 1223. The
following snippet shows how to encode this rule using both parallel
monad comprehensions and the docase notation:

valid = docase (many (sat isDigit),
replicateM 10 item,
startsWith (string "1223"))

of (num, , )→ return num

valid = [num | num ← many (sat isDigit)
| ← replicateM 10 item
| ← startsWith (string "1223")]

The three arguments of the docase construct are combined using
the mzip function. In zip comprehensions, the same role is played
by the bar symbol. If the parsers succeed, they return the same
string, so the snippet only needs the result of a single parser. The
docase snippet ignores other values using patterns instead of ?
patterns. The ? pattern is special and it specifies that a value is not
required, which means that the parser can fail. Conversely, the
pattern requires the parser to succeed, but then ignores the value.

The docase notation makes it possible to write everything that
can be written using zip comprehensions in a style similar to do
notation, but it also adds additional expressive power in a different
way than generalized monad comprehensions.

Desugaring. The desugaring of docase in the simple case
shown above is essentially the same as desugaring of parallel
monad comprehensions. In the translation, the mzip operation is
written as⊗. The reason for this will become clear when we discuss
the algebraic theory behind joinads in Section 7.3.
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validPhone =
((many (sat isDigit) ⊗ times item 10)
⊗ startsWith (string "1223"))>>= λx →
case x of ((num, ), )→ return num

The actual translation includes several additional features that are
explained later, but they have no effect on the meaning. The expres-
sion combines all arguments of docase (or all parallel generators
of a comprehension) using the ⊗ operation. The result is a com-
bined value of type Parser ((String ,String),String). This value
is passed as an input to >>=. The lambda function decomposes the
tuple using original patterns of the docase alternative. In this ex-
ample, the pattern never fails, so other cases are omitted. The body
of the lambda creates a parser that succeeds and returns the parsed
valid phone number.

Next, consider a case where docase has multiple alternatives,
but each contains only a single binding (a pattern other than ?).

3.2 Choosing between events
The examples in this section are based on the imperative stream
monad developed by Scholz [29]. Imperative streams are “a gener-
alization of the IO monad suitable for synchronous concurrent pro-
gramming”. An imperative stream produces zero or more values
and performs side-effects at certain (discrete) times. Our example
uses a simplified model of event streams with type Evt a that do
not allow side-effects.

Event streams can be viewed as functions that take a time
indicating when they are started and return a list of time value
pairs representing the occurrences of the event. They are instances
of the Monad type class. The return operation creates an event
stream that occurs exactly once at the time when it was started.
The behaviour of the >>= operation is as follows: when the input
event occurs, the event stream returned by >>= starts producing the
occurrences of the event stream generated by the function passed
to >>= until the next occurrence of the input event.

In addition to the operations of Monad, event streams can also
implement a monadic or–else operation representing a choice:

morelse :: Evt a → Evt a → Evt a

The resulting event stream occurs whenever any of the two argu-
ments occur. When both of the arguments occur at the same time,
then the returned value is the value produced by the first (left) ar-
gument. As explained later (Section 5), this natural left bias of the
operation is required by a law about morelse .

Example. Assume that the user can create objects by clicking and
can use the Shift key to switch between two types of objects. The
user interface provides event streams shiftDown and shiftUp that
occur when Shift is pressed and released; an event stream load
occurs once when the application starts and mouseClick occurs
each time the mouse button is pressed.

The following snippet creates an event stream of type Evt Bool
that occurs each time a mouse button is clicked. The value carried
by the event is a flag denoting whether Shift was pressed:

shiftClicks = docase (load , shiftUp, shiftDown) of
(a, ?, ?) → fmap (const False) mouseClick
(?, u, ?)→ fmap (const False) mouseClick
(?, ?, d)→ fmap (const True) mouseClick

When one of the events passed to docase produces a value, the
resulting event starts producing values generated by one of the
alternatives (True or False whenever mouse is clicked). Each of
the alternatives matches on a single event stream and ignores the
values of other event streams using the ? pattern. The variables
bound by the patterns are not used, so we could use , but naming
the variables makes the example easier to follow.

Junit vKs = λt → if s ≡ t then Just v else Nothing

Ja ⊗ bKs = λt → case (JaKs t , JbKs t) of
(Just v1, Just v2)→ Just (v1, v2); → Nothing

Ja ⊕ bKs = λt → case (JaKs t , JbKs t) of
(Just v1, )→ Just v1; ( , o2)→ o2

Ja >>= f Ks = λt → case (last t JaKs) of
(Just (t1, v1))→ Jf v1Kt1 t ; → Nothing

where last 0 = Nothing
last t sf = case sf t of Just v → Just (t , v)

→ last (t − 1) sf

Figure 2. Semantics of imperative streams

Desugaring. The desugared code is shown below. Each alterna-
tive binds only on a single event, so the translation does not use the
mzip operation. The morelse operation is abbreviated as ⊕:

shiftClicks =
(load >>= λa → fmap (const False) mouseClick) ⊕
(shiftUp >>= λu → fmap (const False) mouseClick) ⊕
(shiftDown >>= λd → fmap (const True) mouseClick)

The translator processes alternatives independently and then merges
them using⊕. The event stream corresponding to a binding pattern
(pattern other than ?) is passed as the first argument to >>=. The
provided function contains the body of the alternative. The exam-
ple is simplified, because patterns in the alternatives do not fail.
If pattern matching could fail, the event stream should continue
behaving according to the last selected alternative. To encode this
behaviour, the translation needs one more extension (Section 3.4).

Semantics. Showing a complete implementation of event streams
is beyond the scope of this article. We present a semantics that
defines the implementation and can be used to verify that the
operations obey joinad laws. The semantics follows the original
definition of imperative streams [29]. Instead of using lists, we
model event occurrences as a function returning Maybe value:

JEvt aKT :: T → Maybe a

The time T is a discrete value. When applied to a starting time
t ∈ T , the semantic function gives a partial function that returns
Just v if the event occurs at the specified time. The semantics
of Monad operations, ⊗ and also ⊕ is given in Figure 2. The
semantics of ⊗ and ⊕ follow a similar pattern. At given time, they
combine both, or take the leftmost value if the required values are
available. Finally, the result of monadic bind (>>=) behaves as an
event stream generated by the last occurrence of the input event.

Using this semantic model, we could derive an implementation
using the techniques developed recently for functional reactive pro-
gramming (FRP) by Elliott [6]. Compared to other approaches, im-
perative streams give a simple model based just on discrete events,
but the docase notation can be also used when programming with
continuous values.

3.3 Aliasing parallel computations
This section explains the use of the last of the three joinad opera-
tions: malias which represents aliasing of computations. The oper-
ation gives the monad (joinad) more control of the control-flow by
abstracting away certain aspect of the evaluation mechanism. The
parallel all function in Section 2 critically relied on this feature, so
we demonstrate the problem using the parallelism monad.

A value of type Par a represents a computation that can be
evaluated (using some parallel evaluator) to get a value of type a .
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Junit vK = λt → (t , v)

JmzeroK = λt → (∞,⊥)

Ja ⊗ bK = λt → (max t1 t2, (v1, v2))
where ((t1, v1), (t2, v2)) = (JaK t , JbK t)

Ja ⊕ bK = λt → (min t1 t2, v)
where ((t1, v1), (t2, v2)) = (JaK t , JbK t)

v | t1 6 t2 = v1 | otherwise = v2

Ja >>= f K = λt → JbK s
where (s, v) = JaK t ; b = f v

Jmalias aK = λt → (λt2 → (max t1 t2, v))
where (t1, v) = JaK t

Figure 3. Semantics of futures

Parallel computations are instances of Monad. The return opera-
tion creates a computation that immediately returns and >>= evalu-
ates the argument and then evaluates the result produced by a con-
tinuation. The implementation of mzip for Par a starts two com-
putations in parallel and produces a value when they both complete;
morelse represents a non-deterministic choice and completes when
the first of the two computations produce a value.

Example. Consider some calculation, that uses a main function,
calc, and two alternative heuristic functions, alt1 and alt2 . In
order to continue, we need the result of the main function and one
heuristic. Using docase, this can be written as follows:

calcAlt inp = docase (calc inp, alt1 inp, alt2 inp) of
(a, b, ?)→ return (a, b)
(a, ?, c)→ return (a, c)

Note that the first argument is bound to a variable a in both of the
alternatives. The desired operational meaning is that the expression
starts all three computations in parallel and then waits until com-
putations required by some alternative complete. Using the logic
described so far, the snippet might be translated as follows:

calcAlt inp =
(calc inp) ⊗ (alt1 inp)>>= λ(a, b)→ return (a, b) ⊕
(calc inp) ⊗ (alt2 inp)>>= λ(a, c)→ return (a, c)

This does not give the required behaviour. The code creates a
computation that starts four tasks – the two alternative heuristics
and two instances of the main computation. Eliminating a common
subexpression calc inp does not solve the problem. The value
Par a obtained from calc inp represents a recipe for creating a
computation, as opposed to a running task. When used repeatedly,
it starts a new computation.

Desugaring. To get the desired semantics, we need some way to
start the computation once and get an aliased computation that can
be used multiple times. This is exactly what the malias operation
provides. It can be best explained by looking at the type signature
together with the implementation for the Par a monad:

malias :: Par a → Par (Par a)
malias p = do

v ← spawn p
return (get v)

The implementation starts a given computation using the spawn
function, which returns a mutable variable that will contain the
result of the computation when it completes. Then it returns a
computation of type Par a created using the get function. When
used, the computation blocks until the variable is set.

Equipped with this operation, the desugaring can create an
aliased monadic computation for each of the docase arguments
and then use the aliased computations repeatedly:

calcAlt inp =
malias (calc inp)>>= λc0 →
malias (alt1 inp)>>= λc1 →
malias (alt2 inp)>>= λc2 →
c0 ⊗ c1 >>= λ(a, b)→ return (a, b) ⊕
c0 ⊗ c2 >>= λ(a, b)→ return (a, b)

This version gives the desired operational behaviour. Each of the
three arguments of docase is started exactly once (in the imple-
mentation of malias). The body is composed using computations
that merely represent aliases (using a mutable variable internally).
In particular, both of the alternatives combined using ⊕ use the
alias c0 that refers to the calc computation.

Semantics. To describe the example more formally, we present a
simple semantics. It can be used to verify that the joinad laws (Sec-
tion 6) hold for the Par a type. Here, a computation is modelled
as a function that takes a time when the computation is started and
returns a time when it completes together with the result:

JPar aK :: T → (T , a)

The semantics is shown in Figure 3. Operations of Monad as well
as ⊗ and ⊕ behave as already informally described. The malias
operation applies the semantic function to a given computation
with the starting time of malias as an argument. The resulting
computation finishes either at the completion time or at the time
when it is created, whichever happens later.

The semantics does not capture the number of computations
running in parallel, so it is only useful for considering joinad laws.
The next section describes a variation where computations have
side-effects. In that case malias becomes more important, because
it avoids duplication of side-effects. For some monads, such as IO ,
the malias operation can be defined as follows:

malias op = op >>= return ◦ return

This definition could be used for any monad, but it would not
always give useful behaviour. For example, in Par a , it would
unnecessarily sequentialize all computations.

Nondeterminism. The semantics presented in Figure 3 is deter-
ministic, but in reality, this is not the case. We could add small δ to
all operations involving time. The interesting case is the ⊕ opera-
tion, where the value (second element of the tuple) depends on the
time. This means that the operation introduces non-determinism.

To keep programs simple and deterministic, we follow the ap-
proach used by Elliott for the unambiguous choice (unamb) op-
erator [6]. The morelse operation can be used only when the two
arguments are compatible:

compatible a b = ∀ t . (t1 ≡ ∞) ∨ (t2 ≡ ∞) ∨ (v1 ≡ v2)
where (t1, v1) = JaKt ; (t2, v2) = JbKt

When started at the same arbitrary time, the two operations are
required to produce the same value if they both complete. As
discussed in the next section, an operation that never completes can
be created using the mzero operation and represents an alternative
clause with failing patterns. The condition could be reformulated
in terms of docase alternatives. It is not difficult to see that the
condition holds for the motivating example from Section 2.

3.4 Committing to a concurrent alternative
The final simplification made in the previous example was that the
patterns of docase alternatives never failed. This aspect can be
demonstrated using a monad based on Poor Man’s Concurrency
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Monad developed by Claessen [5]. A value of type Concur m a
represents a computation that will eventually produce a value of
type a and may produce effects in a monad m along the way.

The monad is similar to parallel computations from the previous
section. To give a concrete semantics, assume that the underlying
monad is a writer monad using monoid M to keep the state. The
semantics from the previous section could be extended by adding
state to the result:

JConcur (Writer M ) aK :: T → (T , a,M )

The semantics from Figure 3 can be extended in a straightforward
way to use this function. Unlike Par a , the implementation of
Concur m a does not actually run computations in parallel. It
emulates concurrency by interleaving of steps. This means that the
Concur m a monad is deterministic and the time T represents the
number of primitive steps. In order to support patterns that may fail,
the type also provides an operation mzero representing a failure:

mzero :: Concur m a

The operation is defined for standard monads that implement the
MonadPlus type class. For the Poor Man’s Concurrency monad,
the operation creates a computation that never produces a value.

Example Consider a function that concurrently downloads data
from two servers. When some data is not available, the function
returns Nothing . When both servers produce a value, the function
returns Just containing a tuple, but only when the values are
compatible. When data is incompatible, the function should fail.

downloadBoth :: Concur IO Bool
downloadBoth = docase (dl1 , dl2 ) of

(Just a, Just b)→ do
lift (print "Got both values")
if compatible a b then return Just (a, b) else mzero

( , )→ do
lift (print "Some value missing")
return Nothing

The first alternative of docase matches when both of the com-
putations produce Just value. The body prints a message (the lift
function lifts a value IO a into Concur IO a) and then returns
Just or fails by returning mzero. The second alternative handles
any values and returns Nothing after printing a message.

Tullsen [33] suggested returning mzero when pattern matching
fails. When it succeeds, the original body is returned. For simplic-
ity, we omit malias:

(dl1 ⊗ dl2 >>= λt → case t of
(Just a, Just b)→ do ...
→ mzero) ⊕

(dl1 ⊗ dl2 >>= λt → do ...)

An intuitive expectation about pattern matching that we want to
keep for joinads is that→ behaves as a commit point. Once argu-
ments match patterns of some alternative, the code will execute this
alternative and not any other. However, this is not the case with the
desugaring above. When the function downloads two incompatible
values, it prints “Got both values”. Then it fails and starts executing
the second clause, printing “Some values missing”.

Desugaring To get the desired behaviour, the desugaring needs
to add an additional level of wrapping. Instead of just returning the
body, we wrap the body using return:

(dl1 ⊗ dl2 >>= λt → case t of
(Just a, Just b)→ return (do ...)
→ mzero) ⊕

(dl1 ⊗ dl2 >>= λt →
return (do ...))>>= id

The cases where pattern matching succeeded now contain just a
call to return with the body of the alternative as an argument and
the cases where the pattern matching fails contain mzero. This
means that the type of values aggregated using ⊕ is m (m a).
Additionally, all of them are either of the form m >>= return ◦ f or
m>>=mzero. The result of⊕ has the same type as its arguments, so
the overall result also has a type m (m a). It represents a monadic
value that wraps (or produces) body(ies) that have been selected.
To create a computation that actually runs the body, the desugaring
inserts >>=id at the end of the translated expression.

4. Language extension
This section formally defines the docase notation including its
syntax, typing rules and the translation.

4.1 Syntactic extension
The extension adds an additional syntactic case to Haskell expres-
sion e. It also defines a category of docase alternatives a and docase
patterns w that include the additional special pattern ? (ignore):

p = x | (p1, ..., pn) | ... Ordinary patterns
w = ? Monadic ignore pattern
| p Monadic binding pattern

a = (w1, ...,wn)→ e Docase alternative (∃i : wi 6= ?)
e = docase (e1, ..., en) of Docase expression with

a1; ...; ak k alternatives (k > 1)

The docase expression is similar to standard case. A docase
pattern w can be standard Haskell patterns p or a special ignore
pattern written as ?. A docase alternative a must contain at least
one binding pattern (pattern other than ?), because there is no easy
way to construct monadic computation that succeeds when all other
computations fail. Finally, the docase expression must include at
least one alternative.

4.2 Joinad type class
The docase syntax operates on values of some type m a that is an
instance of a Joinad type class. The type class provides operations
required by the docase translation. Figure 4 shows the definition
of Joinad. The definition just combines several classes that already
exist in various Haskell extensions and packages.

• MonadZero and MonadOr are defined in a MonadPlus reform
proposal [11]. It aims to distinguish between cases when the
(monoidal) operation is unbiased (MonadPlus) and when it has
a left bias (MonadOr). For joinads, we require left bias, but we
express the law slightly differently (Section 6.2).

• MonadZip is defined by a GHC extension that adds monad
comprehensions [1, 9]. The extension adds new expressive
power that is not available with the do notation [25]. The
docase syntax uses the MonadZip type class in a similar way
as parallel monad comprehension and provides similar expres-
sivity using a syntax similar to the do notation.

• MonadAlias is similar to the Extend type class from the
comonad package [18]. The only difference is that we require
the type to also be a monad.

The theoretical background and the laws that are required to hold
about the operations are discussed in Sections 5 and 7. The next
two sections complete the specification of the language extension.

4.3 Typing rules
Similarly to other syntactic sugar in Haskell [16], the docase
expression is type-checked before translation. The typing rules are
shown in Figure 5 and are defined in terms of three judgements.
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class Monad m ⇒ MonadZero m where
mzero :: m a

class MonadZero m ⇒ MonadOr m where
morelse :: m a → m a → m a

class Monad ⇒ MonadZip m where
mzip :: m a → m b → m (a, b)

class Monad m ⇒ MonadAlias m where
malias :: m a → m (m a)

class (MonadAlias m,MonadZip m,MonadOr m)
⇒ Joinad m

Figure 4. The definition of Joinad type class.

The judgement ` w : τ ⇒ ∆ for patterns is similar to the one
used by Wadler and Peyton Jones [16]. It specifies that a pattern w
of type τ binds variables of the environment ∆. An ignore pattern
does not bind any variables (IGN); a variable pattern binds a single
variable (VAR) and a tuple pattern binds the union of variables
bound by sub-patterns (TUP).

The judgement Γ,m, τ̄ ` a  α is more interesting. It checks
the type of an individual alternative of the docase construct.
The judgement is provided with an environment ∆, a Joinad type
m and a list of types of docase arguments. It type-checks the
alternative and yields the type of values produced by the body of
the alternative (ALT). The body e of each alternative must have the
same monadic type m (of kind ∗ → ∗) as the docase arguments.

Finally, Γ ` a : τ extends the standard type-checking procedure
for Haskell expressions with a rule for docase (DOC). When the
type of arguments is a Joinad type m (of kind ∗ → ∗) applied to
some type argument and all alternatives yield the same return type
α, then the overall type of the expression is m α.

4.4 Translation
After type-checking, the docase notation is translated to applica-
tions of functions provided by the Joinad type class. The desugar-
ing is defined using two functions:

d〈−〉 :: e → e
c〈−〉 :: a → [id ]→ e

The first function takes an expression. If the argument is the
docase expression, the function produces an expression that does
not contain docase at the top-level. The second function is used
for translating alternatives of docase. It takes a list of identifiers
that refer to the arguments of the docase expression. The transla-
tion is defined by the following two rules:

d〈docase (e1, ..., en) of a1; ...; ak 〉 =
malias e1 >>= λv1 → ... malias en >>= λvn →
(c〈a1〉 [v1, ..., vn ] ⊕ ...⊕ c〈an〉 [v1, ..., vn ])>>= id

c〈(w1, ...,wn)→ e〉 [v1, ..., vn ] =
v1 ⊗ ...⊗ vm >>= λx → case x of

(p1, ..., pm)→ return e
otherwise → mzero

where [(p1, v1), ..., (pm , vm)] =
[(wi , vi) | i ← 1 ... n,wi 6= ?]

The arguments (e1, . . , en ) of docase are first passed to malias ,
which constructs a value of type m (m a). The >>= operator pro-
vides the lambda with values vi that represents the aliased com-
putations. The function c〈−〉 takes an alternative and the aliased
computations and produces values of type m (m a) that repre-

` w : τ ⇒ ∆

` ? : τ ⇒ {} (IGN) ` x : τ ⇒ {x : τ} (VAR)

` wi : τi ⇒ ∆i

` (w1, . . . , wn) : (τ1, . . . , τn)⇒ ∆1 ∪ . . . ∪∆n
(TUP)

Γ,m, τ̄ ` a α

` wi : τi ⇒ ∆i ∆1 ∪ . . . ∪∆n ` e : m α

Γ,m, τ̄ ` (w1, . . . , wn)→ e α
(ALT)

Γ ` a : τ

〈Joinad m〉 Γ ` ei : m τi Γ,m, τ̄ ` ai  α

Γ ` docase ē of a1; . . . ; an : m α
(JON)

Figure 5. Typing rules for docase.

sent monadic values carrying bodies to be executed. The results
are combined using the ⊕ operation, which gives a value of type
m (m a). The last binding passes it to the identity function to
execute the body of the selected alternative.

To translate an alternative, we identify which of the arguments
are matched against a binding pattern. These computations are
combined using the ⊗ operation. The resulting computation pro-
duces tuples such as (a, (b, c)). As discussed later, the ⊗ opera-
tion is associative, so the order of applying ⊗ does not matter. Val-
ues produced by the combined monadic computation are matched
against a pattern re-constructed from binding patterns of the alter-
native. When a value matches, the body is wrapped using return .
Otherwise, the alternative reports a failure using mzero.

5. Reasoning about monadic pattern matching
The docase syntax intentionally resembles case syntax and we
would like to guarantee that the operational behaviour is similar as
well. The notation is used for working with values of an abstract
type, so there is no concrete semantics.

Figure 6 shows syntactic transformations that must preserve the
semantics. In Section 6, we find a set of laws that implies the equiv-
alences required here. Using a mathematical model, we proved that
the equivalences follow from the primitive laws using the Coq the-
orem prover2. Finding a set of equivalences that permit proving the
opposite implication (completeness) similarly to monad compre-
hensions [36] is left to future work.

• Binding equivalence describes a degenerate case in which pat-
tern matching uses a single alternative that always succeeds. It
specifies that a specific use of malias does not affect the mean-
ing of monadic binding.

• Argument ordering specifies that the order in which arguments
and patterns are specified does not affect the meaning. This
equation implies commutativity and associativity laws of the
⊗ operation.

• Unlike the order of arguments, the order of clauses is important.
The clause ordering equivalence specifies that the ⊕ operation
is left-biased.

2 http://www.cl.cam.ac.uk/~tp322/papers/docase.html
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• The equivalences alternative noninterference and argument
noninterference specify that including additional failing clause
or argument, respectively, has no effect on the meaning. (In
equation (4), the symbol • stands for a pattern that never
succeeds.) The equations are manifested as laws that identify
mzero as zero element of ⊗ and neutral element of ⊕.

• The next three equivalences describe the case when arguments
are created in some special way3. They define a group of natu-
rality properties of the ⊗ operation.

• The distributivity equivalence requires that certain nested uses
of docase can be flattened. This equivalence specifies that ⊗
distributes over ⊕.

6. Joinad laws
This section discusses primitive laws about individual joinad oper-
ations that are implied by the above equivalences. First, we review
the well-known monad laws that are also required for any joinad:

unit a >>= f ≡ f a (left identity)
m>>= unit ≡ m (right identity)

(m>>= f)>>= g ≡ m>>= λx→ f x >>= g (associativity)

Joinad also requires the mzero operation from MonadZero. The
value should behave as a zero element with respect to binding:

mzero >>= f ≡ mzero (left zero)
m>>= λx→ mzero ≡ mzero (right zero)

The left zero law is generally accepted. The right zero law is
sometimes omitted, because it may not hold when m is ⊥, but the
official documentation for MonadPlus [2] includes it. All of these
five laws are necessary to prove the equivalences in Figure 6.

6.1 MonadZip type class
This section discusses laws that are required about ⊗ by joinads.
The laws presented here are also a reasonable requirement for
monad comprehensions as the two are closely related. We give
more details in Section 8.1, but many of the equivalences in Fig-
ure 6 can be rewritten using the zip comprehension syntax.

The first two laws allow arbitrary rearrangement of arguments
aggregated using the ⊗ operation. This is required by argument
ordering (2). The laws are expressed using two helper functions:

a⊗ (b⊗ c) ≡ map assoc ((a⊗ b)⊗ c) (associativity)
a⊗ b ≡ map swap (b⊗ a) (symmetry)

where assoc((a, b), c) = (a, (b, c))

swap(a, b) = (b, a)

As discussed in Section 7.1, these two laws are founded in mathe-
matical theory behind joinads. The ⊗ operation is component of a
symmetric monoidal functor that requires both of the above laws.
Another law that is also required by this formalism is naturality,
which is one of three laws that relate ⊗ to other operations:

map f a⊗map g b ≡ map (f × g) (a⊗ b) (naturality)
return a⊗ return b ≡ return (a, b) (product)

a⊗ a ≡ map dup a (duplication)

where dup a = (a, a)

These laws follow from the three matching equivalences and spec-
ify the result of applying ⊗ to specific monadic values:

3 The map operation can be defined as >>=return and is also called liftM .

(1) Binding equivalence
docase m of v → e ≡ do v ← m; e

(2) Argument ordering
docase (m1, ...,mn) of

(w1,π1 ... w1,πn)→ e1; ...
(wk,π1 ... wk,πn)→ ek

(are equivalent for any permutation π of 1 . . . n)

(3) Clause ordering
docase m of v → e1; v → e2

≡ docase m of v → e1

(4) Alternative noninterference
docase m of v → e1; • → e2

≡ docase m of • → e2; v → e1
≡ docase m of v → e1

(5) Argument noninterference
docase (m,mzero) of (v , ?) → e1; (v1, v2)→ e2

≡ docase (mzero,m) of (v1, v2)→ e2; (?, v) → e1
≡ docase m of v → e1

(6) Matching units
docase (return e1, return e2) of (v1, v2)→ e

≡ case (e1, e2) of (v1, v2)→ e

(7) Matching images
docase (map f e1,map g e2) of (v1, v2)→ e

≡ docase (e1, e2) of (u1, u2)→ e [v1 ← f u1, v2 ← g u2 ]

(8) Matching duplicate
docase (a, a) of (u, v)→ e

≡ docase a of u → e [v ← u ]

(9) Distributivity
docase (m,n1,n2) of

(v , v1, ?)→ e1; v , ?, v2 → e2
≡ docase (m,docase (n1,n2) of

(v1, ?)→ return (λv → e1);
(?, v2)→ return (λv → e2)) of (v , f )→ (f v)

Figure 6. Syntactic transformations that preserve the semantics.

• In naturality, the arguments are created using map. The appli-
cation of ⊗ is lifted to be performed before the mapping. The
mapping then transform both elements of the combined tuple.

• In product, the arguments are created using return . The com-
bination of values is lifted to be performed before the use of
return and becomes a tuple constructor.

• In duplication, the arguments are two copies of the same
monadic value. The duplication can be lifted inside the monad
and performed on the actual values using map.

The next law specifies that mzero is the zero element with respect
to ⊗ (thanks to the symmetry of ⊗, it is both left and right zero):

a⊗mzero ≡ mzero ≡ mzero ⊗ a (zero)

This law is intuitively necessary. An mzero value of type m a does
not contain any value of type a . Thus, given a value of type b, there
is no way to construct a value of type (a, b).
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Applicative functors. Given a monad, it is possible to define
one instance of applicative functor (Applicative type class). An
equivalent definition of this type class described by McBride and
Paterson [22] defines an operation ? that has exactly the same type
as ⊗, but Applicative does not require symmetry.

The laws are different, hence the ⊗ operation is an independent
addition to a monad. As discussed in an earlier paper [27], for
commutative monads, the⊗ operation can be defined using>>= and
return , but this is not possible in general. For some types, the ⊗
operation is a part of a distinct Applicative instance. For example,
? for a standard List monad is a Cartesian product, but⊗ for lists is
zip. This operation defines a distinct applicative functor (over the
same type) named ZipList.

6.2 MonadOr type class
The MonadOr type class defines the morelse operation (written as
⊕). As already discussed in Section 4.2, it represents a left-biased
monoid. The monoid operation should be associative and have a
unit element (mzero in case of joinads). In Haskell, it should also
obey a form of naturality law:

(u⊕ v)⊕ w ≡ u⊕ (v ⊕ w) (associativity)
(map f u)⊕ (map f v) ≡ map f (u⊕ v) (naturality)

u⊕mzero ≡ u ≡ mzero ⊕ u (unit)

The unit law is required by the alternative noninterference (4)
equivalence; the naturality is needed by multiple equivalences in-
cluding distributivity (9). Finally, the associativity law does not di-
rectly correspond to any equivalence, but it specifies that the brack-
eting does not matter when aggregating the alternatives using ⊕
and makes this an unimportant implementation detail.

The left bias of the ⊕ operation is required by clause ordering
(3). The equivalence gives the following law:

u⊕map f u ≡ u (left bias)

The law considers a monadic value and an image created using
map. When choosing between the two, the ⊕ operation constructs
a value that is equivalent to the left argument. Intuitively, the map
operation creates a monadic value with the same structure as the
original. The law specifies that ⊕ prefers values from the left
argument when both arguments have the same structure. The left
bias law is different than the left catch law that is required about
MonadOr in the MonadPlus reform proposal [11]. We return to
this topic in Section 8.2, which discusses proposals for Haskell
libraries.

6.3 MonadZip and MonadOr relation
Perhaps the most interesting law is required by the distributivity (9)
equivalence. The law relates the ⊕ operation with ⊗ and fits very
nicely with the rest of the theory:

a⊗ (b⊕ c) ≡ (a⊗ b)⊕ (a⊗ c) (distributivity)

This simple formulation does not hold when duplicating reference
to a also duplicates effects and ⊕ is not able to undo the effects.
For docase, the value a is always created by malias , so we could
require a weaker law (that passes a to malias first). We prefer the
stronger version above for its simplicity. Thanks to the symmetry
of ⊗, the law above also implies right distributivity.

6.4 MonadAlias type class
This section identifies the malias laws. The type of the operation
is m a → m (m a) and we treat it as a way to represent aliasing
of monadic computations. As discussed in Section 7.2, operations
of this type have other uses (with different set of laws).

The number of laws is relatively high, because malias needs to
interact with all other monad and joinad operations in a particular

way. The following three laws consider mzero and return and
are implied by binding equivalence (1), matching units (6) and
argument noninterference (5), respectively:

malias a >>= id ≡ a (join identity)
malias (return a) ≡ return (return a) (unit identity)

malias mzero ≡ return mzero (zero identity)

In the first law, applying malias to a monadic value of type m a
yields a value of type m (m a). The law specifies that immediate
binding and returning has the same meaning as the original compu-
tation4. The next laws specify that aliasing of pure computation or
failed computation does not have any effect.

The next four laws consider malias given as an argument to>>=
together with a function constructed in some special way.

(malias m>>= f)⊗ n ≡ malias m>>= (⊗ n) ◦ f
malias (malias m>>= f)>>= g ≡ malias m>>= (g ◦ f)

map (map f) (malias m) ≡ malias (map f m)

map swap (malias m ?malias n) ≡ malias n ?malias m

wherem ? n = m>>= λx→ n >>= λy → return (x, y)

The first two laws are required by distributivity (9) to deal with
nested aliasing and zipping of an aliased computation. The third
law is implied by matching images (7) to lift the map operation
over aliasing and the last law is required for binding equivalence
(1) to reorder independent aliasing.

7. Theory of joinads
This section looks at categorical foundations of joinads and con-
sider an algebraic structure formed by ⊗ and ⊕.

7.1 Monoidal functors
The discussion about MonadZip and Applicative from Section 6.1
can be recast in terms of category theory, because an Applicative
instance corresponds to a monoidal functor. Given a monad, we
can construct a monoidal functor. The MonadZip type class with
the laws given above corresponds to a symmetric monoidal functor
and ⊗ is the natural transformation defined by it. This is another
justification for the naturality, associativity and symmetry laws.

Joinads combine this symmetric monoidal functor with a monad
and thus also a monoidal functor specified by the monad. The
underlying functor is the same, but the natural transformation and
units differ. The unit of the ⊗ operation is not needed by joinads,
so we do not require users to define it. In particular, this means that
return does not behave as unit with respect to ⊗. For example, a
unit for List is a singleton list, but unit for ZipList is an infinite
list. Zipping a list with an infinite list and then projecting out first
elements of a tuple gives the original list, but the same is not true
for zipping with a singleton list.

7.2 Computational comonads
The type of the malias operation is the same as the type signa-
ture of cojoin operation of a comonad. Although less frequent
than monads, comonads are also a useful notion of computations
in functional programming [23, 34], so it is worth considering how
they relate to joinads. Comonads can be defined in multiple (equiv-
alent) ways. The definition that uses cojoin extends Functor with
two operations and is shown in Figure 7. The coreturn operation
is dual to return of a monad and cojoin is dual to monadic join
which has the type m (m a)→ m a .

4 The law can be reformulated using monadic join as join(malias a) ≡ a
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class Functor m ⇒ Comonad m where
cojoin :: m a → m (m a)
coreturn :: m a → a

Figure 7. Definition of Comonad type class.

The cojoin operation of a comonad could be used as the
basis of malias , although joinads do not need the rest of the
comonadic structure (the coreturn operation). We would only con-
sider comonad laws that do not involve coreturn:

map (map f) (cojoin a) ≡ cojoin (map f a)

map cojoin (cojoin a) ≡ cojoin (cojoin a)

The first law is, indeed, one of the laws that we require to hold about
the malias operation. The second law is not required to prove the
equivalences from Figure 6, so we did not include it. However, it
could be added and it should intuitively hold for malias .

Furthermore, computational comonads introduced by Brookes
and Geva [3] are even more closely related to joinads. A compu-
tational comonad is a comonad (T, ε, δ) with an additional natural
transformation γ : IC → T . In terms of Haskell, this is a function
of type a → m a and it coincides with the return operation of
a joinad. Computational comonad has to satisfy the usual laws of
a comonad together with three additional operations that relate γ
with cojoin and coreturn . We write return for γ:

map f (return a) ≡ return (f a)

cojoin (return a) ≡ return (return a)

coreturn (return a) ≡ a
The first law is a naturality law of the return operation that can
be proved from the standard monad laws and therefore it holds for
joinads. The second law corresponds to the unit identity law that we
also require about joinads (it is required by the matching units (6)
transformation). Finally, the third law of computational comonads
involves the coreturn operation that is not present in joinads,
so it is not directly relevant. We find this close correspondence
intriguing and intend to explore it in a future work.

7.3 Joinad algebra
The laws about ⊗ and ⊕ discussed in the previous section suggest
that joinads can be modelled as an algebraic structure. Assume that
J is a set containing all monadic values of some type m a for the
same joiand m . The mzero value is a special element 0 ∈ J .

• The⊕ operation is associative and has 0 as the identity element.
This means that the structure (J,⊕, 0) is a monoid.

• The ⊗ operation is commutative and associative, which means
that (J,⊗) is a commutative semigroup. Additionally, the semi-
group has 0 as the zero element.

• Finally, the ⊗ operation distributes over the ⊕ operation.

These axioms characterize an algebraic structure called near-
semiring with commutative ⊗ operation. This specification cap-
tures the essence of joinads—the only thing that is left out is the
left bias of the⊕ operation. As discussed in Section 9.1 this general
case may be also useful, but we require left bias so that docase
has semantics inspired by the Haskell’s case construct.

8. Feature interactions and library proposals
Joinads combine type classes that are already known to the Haskell
community. This section considers adjustments that could be made
to MonadZip and MonadOr in order to accommodate joinads.

8.1 Monad comprehension laws
There is an ongoing discussion about the laws that should be re-
quired for parallel monad comprehensions [1, 9]. The original doc-
umentation specified the following two laws about MonadZip:

map f a⊗map g b ≡ map (f × g) (a⊗ b) (naturality)
map fst (a⊗ b) ≡ a (information preservation)

Monoidal laws. The naturality law was also proposed for joinads
(Section 6.1). It arises from the syntactic equivalences, but also
from the fact that the mzip operation is defined by a monoidal
functor. We propose the following two additions:

• The associativity law also arises from a monoidal functor, hence
the two should be both required.

• Symmetry is an essential aspect of mzip and we argue that the
symmetry law should be also included in MonadZip.

The symmetry of mzip holds for lists as well as for the MonadZip
instances presented in this paper. In terms of parallel monad com-
prehensions, the law guarantees the following equivalence:

[(a, b) | a ← m1 | b ← m2 ] ≡ [(a, b) | b ← m2 | a ← m1 ]

The symmetry means that the mzip operation cannot be automati-
cally implemented in terms of >>= and return . This specifies that
the additional syntax should also have an additional meaning. It is
still possible to get mzip for free, but only for commutative mon-
ads, which is discussed in earlier work on joinads [27].

Information preservation. The second law specifies that we can
recover the original arguments of a value created using ⊗. This
law is problematic. It allows applying mzip to inputs with different
structure (i.e. length of the list), but recovering the original values is
only possible if the structure of arguments is the same. For example,
zip for lists restricts the length to the length of the shorter lists, so
the original law does not hold for lists of different length.

Using naturality and the duplication law, we can derive the
following law that looks similar and clarifies the requirement about
the structure of values:

map fst (a⊗ mapfa) ≡ a ≡ map snd (map g a ⊗ a)

Instead of zipping two arbitrary monadic values, the law zips a
value with an image created using map. Thanks to the properties
of map, the law only concerns zipping of monadic values with the
same structure. Hence, we make the following proposal:

• The information preservation law does not hold for many stan-
dard implementations of mzip, so we propose replacing it with
the weaker form presented above.

The product and zero laws can be also translated in terms of parallel
monad comprehensions, but we do not find them as essential.

8.2 Left-biased additive monads
Monads that are also monoids and provide an mzero element
and an associative ⊕ operation are captured by the MonadPlus
type class from the standard Haskell library. However, there is
some confusion about the additional laws that should hold. The
MonadPlus reform proposal [11] provides a solution by splitting
the type class into MonadPlus obeying the left distribution law
and MonadOr obeying the left catch law. The left bias law that
we require for joinads (Section 6.2) adds a third alternative:

u⊕ v >>= f ≡ (u >>= f)⊕ (v >>= f) (left distribution)
(return a)⊕ u ≡ return a (left catch)
u⊕map f u ≡ u (left bias)
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instance MonadOr [ ] where
morelse (x : xs) (y : ys) = x : morelse xs ys
morelse [ ] ys = ys
morelse xs [ ] = xs

instance MonadOr Maybe where
morelse (Just a) = Just a
morelse Nothing b = b

Figure 8. Instance of MonadOr that obey left bias law

It is not difficult to find counter-examples showing that none of the
three laws implies some other. Both left bias and left catch represent
some form of left bias, but in a different way.

• The left bias law uses an arbitrary value as the left and a special
value (constructed using map) as the right argument.

• The left catch law uses an arbitrary value as the right and a
special value (constructed using unit) as the left argument.

Despite the difference, the main purpose of the two laws is the
same. They both specify that the operation is left biased. Which
law should hold about MonadOr? One option is to consider the
upper or the lower bound of the two laws:

(return a)⊕ (return b) ≡ return a (lower bound)
u⊕ u >>= f ≡ u (upper bound)

The upper bound implies by both left bias and left catch, while
the lower bound is implied by any of the two. It is not clear to
us whether any monad can provide a non-trivial implementation of
⊕ satisfying the upper bound law. The lower bound law is more
appropriate, although it is not sufficient to prove that the clause
ordering equation from Section 5 holds.

We argue that left bias better captures the purpose. The most
prominent monad that satisfies MonadOr laws is the Maybe
monad, which obeys both of the laws. We can also give a use-
ful implementation of morelse that obeys the left bias law for the
List monad. The two declarations are shown in Figure 8. An alter-
native would be to separate the type from the laws that are required
in the language, but this is a separate research topic.

9. Related and future work
We presented an earlier version of joinads in F#[27] using different
examples. An article for The Monad.Reader [25] provides more
details on the relation between joinads and monad comprehensions.

The rest of this section presents some of the important related
work on pattern matching, concurrent programming and abstract
computation types as well as preliminary ideas for future work.

9.1 Backtracking and committing patterns
Existing work on pattern matching has focused on enabling pattern
matching on abstract values using views [35]. A similar concept
also appeared in F#and Scala [7, 31]. Making patterns first-class
made it possible to encode the Join calculus using Scala [10],
although the encoding is somewhat opaque.

Some authors [31, 33] have suggested generalizing the result of
pattern matching from Maybe (representing a failure or a success)
to any additive monad using the MonadPlus type class. The con-
crete examples included encoding of backtracking using the List
monad and composing transactions using STM.

The next example demonstrates the difference between joinads
as described here and the MonadPlus interpretation. Assuming

standard parser combinators (char , many , and item), we can
write:

body = mcase (char ’(’,many item) of
( , ?) → do str ← body

← char ’)’

return str
(?, str)→ return str

The mcase construct (similar to our docase) represents a monadic
pattern matching using MonadPlus. In the syntax designed for ac-
tive patterns [31], monadic values were produced by active patterns
that return monadic values. For parsers, the type of active patterns
would be a → Parser b. This leads to a different syntax, but it is
possible to translate between the two options.

The translation based on MonadPlus follows similar pattern as
the translation of joinads, but differs in three ways:

(char ’(’>>= \ → body >>= λstr →
char ’)’>>= \ → return str) ⊕

(many item >>= λstr → return str)

The first difference (apparent from this example) is that the pro-
posed encoding using MonadPlus does not add additional wrap-
ping around the body of the alternatives to support committing to
an alternative. The second difference is that MonadPlus usually re-
quires the left distributivity law instead of the left bias law required
by MonadOr. Finally, multiple binding patterns are translated us-
ing nested >>= instead of a special mzip operation.

• When using MonadOr, the⊕ operation attempts to parse the in-
put using the first alternative. Other alternatives are considered
only if the first one fails. The above parser would determinis-
tically parse “((1))” as “1”. The laws of MonadPlus make the
resulting parser non-deterministic, so it would generate three
options: “1”, “(1)” or “((1))”.

• Without the additional wrapping, the parser needs to implement
backtracking. If the input is “(1”, the first alternative is selected,
continues consuming input, but then fails. The parser needs to
backtrack to the point when ⊕ was used and try the second
alternative. When using wrapping, the parser will commit to the
first alternative, which is an approach used by modern libraries
such as Parsec [19].

• Combining multiple inputs using the mzip operation means
that the arguments of docase can be reordered even for non-
commutative monads. A separate mzip operation may also en-
able additional optimizations, for example, in the STM monad.

The example above shows that all of the options may have a feasi-
ble meaning for some monads. We find the joinad-based semantics
of docase that supports commit points more appropriate for mon-
ads from functional programming. The variant using MonadPlus
often implies backtracking and thus may be more suitable for logic
programming languages such as Prolog.

9.2 Commit points in remote procedure calls
The discussion about commit points in Section 3.4 was inspired by
Concurrent ML (CML) [28]. CML is a concurrent programming
language built on top of Standard ML. It supports first-class syn-
chronization values called events that can be used to encode many
common concurrent programming patterns. Joinads, on the other
hand, capture a single pattern that we find extremely important.

We demonstrate the relation between joinads and CML, by
showing two implementations of a remote procedure call (RPC).
Assume we have a monad for blocking communication and monadic
computations send , recv that represent sending request and receiv-
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class Functor f ⇒ Monoidal f where
unit :: f ()
(?) :: f a → f b → f (a, b)

class Monoidal f ⇒ Alternative f where
empty :: f a
(�) :: f a → f a → f a

Figure 9. Alternative type class

ing a response. As an alternative to performing the RPC call, the
client can choose to perform another operation alt .

One way to implement the RPC call is to initiate a call, but allow
abandoning the RPC communication at any time until it completes.
This means that receiving a response from the server is used as a
commit point for the RPC call:

docase (send , recv , alt) of
((), res, ?)→ handleRpc res
(?, ?, a) → handleAlt a

We can assume that the event recv becomes enabled after send ,
so the first alternative becomes enabled after the server replies. The
second alternative will be selected if the alt event is enabled earlier.
This may, or may not, happen before the server accepts the request
and enables the send event.

The second way to implement RPC is to allow abandoning the
communication only before the server accepts the request. After
that, the client waits for recv event and cannot choose alt instead:

docase (send , alt) of
((), ?)→ do res ← recv

handleRpc res
(?, a) → handleAlt a

In this version of code, the docase construct only chooses between
send and alt . Once the first alternative is selected, it has to wait for
the server response using recv .

This section demonstrates that joinads can capture the two es-
sential patterns for writing RPC communication as introduced in
Concurrent ML. This example critically relies on the support for
commit points introduced in Section 3.4. When using the simple
encoding discussed in Section 9.1, the two expressions would trans-
late to the same meaning.

9.3 Joinads and other computation types
Joinads extend monads to support the docase construct, but func-
tional languages use several other notions of computation. In the
future, it may be interesting to consider how other computations re-
late to generalized pattern matching. Comonads (a categorical dual
of monads) [17] have been used for encoding data-flow programs
[34], but also for stencil computations using special grid patterns
[23]. Arrows [13, 20] are used mainly in functional reactive pro-
gramming research [12] and can be written using the arrow notation
[24] (in a similar way to how monads use the do notation).

Another notion of computation is called applicative functors
[22] or idioms, which are weaker than monads and can thus cap-
ture larger number of computations. Haskell libraries also include
an Alternative type class that extends applicative functors with a �
operator similar to ⊕ from MonadPlus or MonadOr. The declara-
tion is shown in Figure 9. The figure shows Monoidal type class,
which is equivalent to a more common Applicative class (as dis-
cussed by McBride and Patterson [22] in Section 7), because this
variation better reveals similarity with joinad operations.

Interestingly, the operations of Alternative have the same types
as the two most essential operations of joinads. The ? operation has

the same type as our mzip, representing parallel composition, and �
has the type of morelse , representing a choice. It is well known that
applicative functors are more general than monads and Alternative
may generalize joinads in a similar way.

9.4 Applications
We demonstrated that docase notation can be used for working
with many common monads. When using monadic parser combi-
nators [14] the morelse operation represents left-biased choice as
supported in [19]. As discussed in our earlier article, our implemen-
tation of parallel composition (the mzip operation) corresponds to
the intersection of context-free grammars [25]. We are not aware
of any parser combinator library that provides this operation, but it
seems to be very useful for validation of inputs (eliminating inputs
that do not match any of the given parsers).

The reactive programming examples used in this paper were
based on imperative streams developed by Scholz [29]. Imperative
streams are essentially monads for synchronous reactive program-
ming. A Push-Pull Functional Reactive Programming framework
developed by Elliott [6] includes a monad instance for events, so it
could likely benefit from the docase syntax too.

The parallel programming model that we presented can be
added to various existing Haskell frameworks. Our earlier article
[25] used strategies [21]. In this paper, we embedded the examples
in the Par monad [15] with several extensions to allow speculative
computations [26]. The programming model is very similar to the
pcase construct provided by Manticore [8].

10. Conclusions
This paper presented a characterization of monadic computations
that provide three additional operations: aliasing, parallel compo-
sition and choice. These operations are not new to Haskell. They
are captured by type classes Extend, MonadZip and MonadOr.
We combined them and designed a docase notation that makes it
easy to compose computations using these operations.

The docase notation is inspired by our previous work on
joinads in F#. However, this paper uses a simpler set of opera-
tions that are amenable to formal reasoning. We started with a
set of semantics-preserving transformations that are intuitively ex-
pected to hold about the docase construct. We derived a set of
laws about joinad operations and used the Coq theorem prover to
show that these suffice to perform the intuitive transformations.
We also noted that joinads form an algebraic structure known as
near-semiring.

Finally, we also made several concrete library proposals based
on our work. In particular, we support the proposal to distinguish
between unbiased MonadPlus and left-biased MonadOr and we
propose a refined set of laws that should be required by MonadZip.
We demonstrated the usefulness of our extension using a wide
range of monads including reactive and parallel programming as
well as input validation using monadic parsers.
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A. Explicit shortcircuiting
The motivating example in Section 2 used docase and the Par
monad to implement a all function for trees. The function takes a
predicate and tests whether it holds for all values stored the tree.

The following code implements the functionality Par monad
with an extension that allows cancellation of tasks [26]. This code
does not represent desugared version of the docase notation. In-
stead, it represents a typical solution that developers may write
when using the library directly:

all :: (a → Bool)→ Tree a → Par Bool

all p tree = do
tok ← newCancelToken
r ← all ′ tok tree
cancel tok
return r

where
all ′ tok (Leaf v) = return (p v)
all ′ tok (Node left right) = do

leftRes ← new
rightRes ← new
finalRes ← newBlocking
forkWith tok (all ′ tok left >>=

completed leftRes rightRes finalRes)
forkWith tok (all ′ tok right >>=

completed rightRes leftRes finalRes)
get finalRes

completed varA varB fin resA = do
put varA resA
if ¬ resA then put fin False
else get varB >>= put fin ◦ (∧ resA)

The main function creates a new cancellation token and then calls
a helper that does the processing. The cancellation token is used to
stop all pending computations when the overall result is known.

Inside all ′, the variables leftRes and rightRes are used to store
the result of their corresponding computations. The last variable
is created differently: when the variable is full and a computation
attempts to write into it, it will block instead of failing. The all ′

function then spawns two tasks to process sub-trees and waits for
the final result.

The two computations both make a recursive call and then pass
the result to completed . If the result is False , the function sets
the final result. Otherwise, it waits until the other computation
completes and then calculates the final result.

12 2011/7/11


