Computer Laboratory, University of Cambridge

Tomas Petricek

tomas.petricek@cl.cam.ac.uk

supervisor: Alan Mycroft

alan.mycroft@cl.cam.ac.uk

Introduction: Structured data in XML, JSON and CSV

1iauitons One
ﬂ“l‘v | @ & | Vt’\/

CSV, web services communicate using JSON or XML.

e Schema vs. examples. Real-world data often do not carry explicit
schema. Examples are more common. Documentation for services
usually includes examples of “typical” server responses.

o Type-safe data access is hard. Data extraction expects known
format, but statically-typed languages do not understand it.

Motivation: Printing names and ages from JSON file

null, "age" : 23},

"Alexander”, "age
"Tomas"} ]

[ {llnamell
"name”
{ "name”

1.5},

match data with
| Array items -
for item in items do
t

= ':'I-I\m l_l‘.+k
CIlT L U] WALUIIL

Object o » print (Map.find o "name"
> Fa11w1th "Incorrect format”

Code expects document with a fixed schema, but is written using
pattern matching designed for handling the general case.

Solution: Using the F# Data JSON type provider

type People = JsonProvider<"people.json">
let items = People.Parse(data)
for item in items do

printft "%s" item.Name

Option.iter (printf "%d") item.Age
item.

e Schema inference. The People.Parse method returns array
of entities with Name of type string and Age of type int option.
The member names and types are inferred from sample JSON.

o Ease of use and tooling. Full type information is available.

Icead hv F# tools to nrovide auto-combplete hrpn hinte and docc

U Wi tJ “AAdAlLVyY \/Ullltll\/ AL1AA0C) CAlLlL\A AV VU

(available in Xamarin Studio, Visual Studio, Emacs and more)

e Safety properties. Same as in the original implementation.
Guaranteed to work if input value is a subtype of sample(s).
Otherwise throws a runtime exception that can be handled.

Provided initial context

Tt( )

AN

Empty initial context

Approach: Structural type inference algorithm

Primitive types are inferred from values. The following hierarchy is

1 H 1'0 flnd the nnch cnecific commaon Su hhrnn ]\Tnfn fhaf n an nd 1
l.l\.z\.zlll \A W/ UJll O QU4 Jtl JULUGW Li1il1CA QL

are treated as Boolean values and null+t is an option type.

T

Records of matching names are unified, introducing optional fields.
Collections are unified by unifying the type of their elements.
Types of different kinds are combined into a flattened sum type.

person { name : string } person { name : string, age : int }

person { name : string, age : int option }

(g r) I e ) [ PO )

Summary: What makes F# Data interesting?

F# Type
Providers

Prime example of type provider mechanism
Explores relativized type safety property

Simple yet powerful inference algorithm

Unified treatment for XML, CSV and JSON Inference

Industry
Adoption

Used by the industry with 17k downloads
Documented, tested with active community

ThanKks to: Don Syme, Gustavo Guerra & other contributors.

& UNIVERSITY OF

.|||_

&% CAMBRIDGE

Microsoft:

Research




