
 Computer Laboratory, University of Cambridge Computer Laboratory, University of Cambridge

F# Data: Making structured data first-class F# Data: Making structured data first-class

Tomas Petricek supervisor: Alan Mycroft Tomas Petricek
tomas.petricek@cl.cam.ac.uk

supervisor: Alan Mycroft
alan.mycroft@cl.cam.ac.uk tomas.petricek@cl.cam.ac.uk alan.mycroft@cl.cam.ac.uk

Introduction:	Structured	data	in	XML,	JSON	and	CSV		
Empty	initial	context Provided	initial	context

Introduction:	Structured	data	in	XML,	JSON	and	CSV		

• Structured	formats	are	ubiquitous.	Open-government	initiatives	

Empty	initial	context Provided	initial	context
• Structured	formats	are	ubiquitous.	Open-government	initiatives	

release	data	as	CSV,	web	services	communicate	using	JSON	or	XML.	

• Schema	vs.	examples.	Real-world	data	often	do	not	carry	explicit	

schema.	Examples	are	more	common.	Documentation	for	services	 Type	provider	projects	the	ex-schema.	Examples	are	more	common.	Documentation	for	services	

usually	includes	examples	of	“typical”	server	responses.	
Most	type	systems	assume	

the	initial	context	is	empty	

Type	provider	projects	the	ex-

ternal	world	into	the	context.	usually	includes	examples	of	“typical”	server	responses.	

• Type-safe	data	access	is	hard.	Data	extraction	expects	known	

the	initial	context	is	empty	 ternal	world	into	the	context.	

format,	but	statically-typed	languages	do	not	understand	it.	

Approach:	Structural	type	inference	algorithm	

Motivation:	Printing	names	and	ages	from	JSON	-ile	

Approach:	Structural	type	inference	algorithm	

Primitive	types	are	inferred	from	values.	The	following	hierarchy	is	Motivation:	Printing	names	and	ages	from	JSON	-ile	 Primitive	types	are	inferred	from	values.	The	following	hierarchy	is	

used	to	-ind	the	most	speci-ic	common	subtype.	Note	that	0	and	1		

[{"name" : null, "age" : 23},

used	to	-ind	the	most	speci-ic	common	subtype.	Note	that	0	and	1		

are	treated	as	Boolean	values	and	null+τ	is	an	option	type.	[{"name" : null, "age" : 23},

 {"name" : "Alexander", "age" : 1.5},

 {"name" : "Tomas"}] 0 int float {"name" : "Tomas"}] 0 int float

match data with
T 1 bool τ1 + τ2

match data with

| Array items → null string
 for item in items do

 match item with

null string

Records	of	matching	names	are	uni-ied,	introducing	optional	-ields.	
 match item with

 | Object o → print (Map.find o "name")
Records	of	matching	names	are	uni-ied,	introducing	optional	-ields.	

Collections	are	uni-ied	by	unifying	the	type	of	their	elements.	
 | _ → failwith "Incorrect format"

| _ → failwith "Incorrect format"

Collections	are	uni-ied	by	unifying	the	type	of	their	elements.	

Types	of	different	kinds	are	combined	into	a	-lattened	sum	type.	
| _ → failwith "Incorrect format"

person { name : string } person { name : string, age : int }

Code	expects	document	with	a	fixed schema,	but	is	written	using		

	

person { name : string } person { name : string, age : int }

pattern	matching	designed	for	handling	the	general case.	 person { name : string, age : int option }

Solution:	Using	the	F#	Data		JSON	type	provider	 [{ age : int }] [{ age : float }] int { age : int } Solution:	Using	the	F#	Data		JSON	type	provider	 [{ age : int }] [{ age : float }] int { age : int }

type People = JsonProvider<"people.json"> [{ age : float }] int + { age : int } type People = JsonProvider<"people.json">

let items = People.Parse(data)

for item in items do

[{ age : float }] int + { age : int }

Summary:	What	makes	F#	Data	interesting?	

for item in items do

 printf "%s" item.Name Summary:	What	makes	F#	Data	interesting?	 printf "%s" item.Name

 Option.iter (printf "%d") item.Age

 item.
Prime	example	of	type	provider	mechanism	

Explores	relativized	type	safety	property	

 item.

 Age property People.Age : int option
F#	Type	

Providers	Explores	relativized	type	safety	property	

Age

Name

property People.Age : int option
Providers

Simple	yet	powerful	inference	algorithm	

Name

Practical Simple	yet	powerful	inference	algorithm	

Uni-ied	treatment	for	XML,	CSV	and	JSON	
• Schema inference.	The	People.Parse	method	returns	array		

Practical		

Inference	
• Schema	inference.	The	People.Parse	method	returns	array		

of	entities	with	Name	of	type	string	and	Age	of	type	int	option.		

Inference	

Used	by		the	industry	with	17k	downloads	

Documented,	tested	with	active	community	

The	member	names	and	types	are	inferred	from	sample	JSON.	

Ease	of	use	and	tooling.	Full	type	information	is	available.		

Industry		

Adoption	Documented,	tested	with	active	community	
• Ease	of	use	and	tooling.	Full	type	information	is	available.		

Used	by	F#	tools	to	provide	auto-complete,	type	hints	and	docs	

Adoption	

Used	by	F#	tools	to	provide	auto-complete,	type	hints	and	docs	

(available	in	Xamarin	Studio,	Visual	Studio,	Emacs	and	more)	
Thanks	to:	Don	Syme,	Gustavo	Guerra	&	other	contributors.	

• Safety	properties.	Same	as	in	the	original	implementation.	

Guaranteed	to	work	if	input	value	is	a	subtype	of	sample(s).		

Thanks	to:	Don	Syme,	Gustavo	Guerra	&	other	contributors.	

Guaranteed	to	work	if	input	value	is	a	subtype	of	sample(s).		

Otherwise	throws	a	runtime	exception	that	can	be	handled.		Otherwise	throws	a	runtime	exception	that	can	be	handled.		

