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• Structured	formats	are	ubiquitous.	Open-government	initiatives	

release	data	as	CSV,	web	services	communicate	using	JSON	or	XML.	

• Schema	vs.	examples.	Real-world	data	often	do	not	carry	explicit	

schema.	Examples	are	more	common.	Documentation	for	services	 Type	provider	projects	the	ex-schema.	Examples	are	more	common.	Documentation	for	services	

usually	includes	examples	of	“typical”	server	responses.	
Most	type	systems	assume	
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Type	provider	projects	the	ex-

ternal	world	into	the	context.	usually	includes	examples	of	“typical”	server	responses.	

• Type-safe	data	access	is	hard.	Data	extraction	expects	known	

the	initial	context	is	empty	 ternal	world	into	the	context.	

format,	but	statically-typed	languages	do	not	understand	it.	
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[ {"name" : null, "age" : 23},  

used	to	-ind	the	most	speci-ic	common	subtype.	Note	that	0	and	1		

are	treated	as	Boolean	values	and	null+τ	is	an	option	type.	[ {"name" : null, "age" : 23},  

  {"name" : "Alexander", "age" : 1.5},  

  {"name" : "Tomas"} ] 0 int float   {"name" : "Tomas"} ] 0 int float 

match data with  
T 1 bool τ1 + τ2 

match data with  

| Array items →  null string 
   for item in items do  

     match item with 

null string 

Records	of	matching	names	are	uni-ied,	introducing	optional	-ields.	
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Collections	are	uni-ied	by	unifying	the	type	of	their	elements.	

Types	of	different	kinds	are	combined	into	a	-lattened	sum	type.	
| _ → failwith "Incorrect format" 

person { name : string } person { name : string, age : int } 

Code	expects	document	with	a	fixed schema,	but	is	written	using		

	

person { name : string } person { name : string, age : int } 

pattern	matching	designed	for	handling	the	general case.	 person { name : string, age : int option } 
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type People = JsonProvider<"people.json">  [ { age : float } ] int + { age : int } type People = JsonProvider<"people.json">  

let items = People.Parse(data)  

for item in items do  

[ { age : float } ] int + { age : int } 

Summary:	What	makes	F#	Data	interesting?	

for item in items do  

  printf "%s" item.Name  Summary:	What	makes	F#	Data	interesting?	  printf "%s" item.Name  

  Option.iter (printf "%d") item.Age 

  item. 
Prime	example	of	type	provider	mechanism	

Explores	relativized	type	safety	property	

  item. 

 Age property People.Age : int option 
F#	Type	

Providers	Explores	relativized	type	safety	property	
 

 

Age 

Name 

property People.Age : int option 
Providers 

Simple	yet	powerful	inference	algorithm	

Name 

Practical  Simple	yet	powerful	inference	algorithm	

Uni-ied	treatment	for	XML,	CSV	and	JSON	
• Schema inference.	The	People.Parse	method	returns	array		

Practical		

Inference	
• Schema	inference.	The	People.Parse	method	returns	array		

of	entities	with	Name	of	type	string	and	Age	of	type	int	option.		

Inference	
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Used	by	F#	tools	to	provide	auto-complete,	type	hints	and	docs	

(available	in	Xamarin	Studio,	Visual	Studio,	Emacs	and	more)	
Thanks	to:	Don	Syme,	Gustavo	Guerra	&	other	contributors.	

• Safety	properties.	Same	as	in	the	original	implementation.	
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