
Embedding effect systems in Haskell

Dominic Orchard Tomas Petricek
Computer Laboratory, University of Cambridge

firstname.lastname@cl.cam.ac.uk

Abstract
Monads are now an everyday tool in functional programming for
abstracting and delimiting effects. The link between monads and
effect systems is well-known, but in their typical use, monads pro-
vide a much more coarse-grained view of effects. Effect systems
capture fine-grained information about the effects, but monads pro-
vide only a binary view: effectful or pure.

Recent theoretical work has unified fine-grained effect systems
with monads using a monad-like structure indexed by a monoid of
effect annotations (called parametric effect monads). This aligns
the power of monads with the power of effect systems.

This paper leverages recent advances in Haskell’s type system
(as provided by GHC) to embed this approach in Haskell, providing
user-programmable effect systems. We explore a number of practi-
cal examples that make Haskell even better and safer for effectful
programming. Along the way, we relate the examples to other con-
cepts, such as Haskell’s implicit parameters and coeffects.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Applicative (functional) languages; F.3.3 [Logics and
Meanings of Programs]: Type Structure

Keywords effect systems; parametric effect monads; type systems

1. Introduction
Side effects are an essential part of programming. There are many
reasoning and programming techniques for working with them.
Two well-known approaches in functional programming are effect
systems, for analysis, and monads, for encapsulating and delimiting
effects. Monads have a number of benefits. They provide a simple
programming abstraction, or a design pattern, for encapsulating
functionality. They also delimit the scope of effects, showing which
parts of a program are pure and which parts are impure. However,
compared to effect systems, monads have two limitations.

1). Granularity The information provided by monadic typing is
limited. We can look at the type of an expression and see, for
example, that it has state effects if it uses the ST monad, but we no
nothing more about the effects from the type; the analysis provided
by standard monadic typing provides only binary information.

In contrast, effect systems annotate computations with finer-
grained information. For example, stateful computations can be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Haskell ’14, September 4–5, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3041-1/14/09. . . $15.00.
http://dx.doi.org/10.1145/2633357.2633368

annotated with sets of triples of memory locations, types, and effect
markers σ ∈ {update, read,write}. This provides information on
how state is affected, without requiring the code to be examined.

One solution for improving granularity is to define a type class
for every effectful operation, with a type class constraint over a
polymorphic monadic type [15]. However, this restricts an effect
analysis to sets with union and ordering by subsets.

2). Compositionality. Monads do not compose well. In Haskell,
we often have to refactor monadic code or add additional book-
keeping (for example, insert lifting when using monad transform-
ers) to compose different notions of effect. In contrast, effect sys-
tems which track information about different notions of effect can
be more easily composed.

The recent notion of parametric effect monads [12] (also called in-
dexed monads [19]) provides a solution to granularity, and a partial
solution to compositionality. Parametric effect monads amplify the
monadic approach with effect indices (annotations) which describe
in more detail the effects of a computation. This effect informa-
tion has the structure of a monoid (F, •, I), where I is the annota-
tion of pure computations and • composes effect information. The
monoidal structure adorns the standard monad structure, leading to
the operations of a monad having the types:

return :: a→MI a

(>>=) :: MF a→ (a→MG b)→MF•G b

The indexed data typeMFAmay be defined in terms of F , giving a
semantic, value-level counterpart to the effect information. This ap-
proach thus unifies monads with effect systems. This paper makes
the following contributions:

• We encode parametric effect monads in Haskell, using them to
embed effect systems (Section 2). This provides a general sys-
tem for high-granularity effect information and better composi-
tionality for some examples (Sections 5-6). This embedding is
shallow; we do not require any macros or custom syntax.

• We leverage recent additions to the Haskell type system to
make it possible (and practical) to track fine-grained informa-
tion about effects in the type system, for example using type-
level sets (Section 3). In particular, we use type families [5],
constraint kinds [3, 20], GADTs [22], data kinds and kind poly-
morphism [25], and closed type families [7].

• A number of practical examples are provided, including effect
systems arising from reader, writer, and state monads (Sec-
tions 5-6), and for analysing and verifying program proper-
ties including computational complexity bounds and complete-
ness of data access patterns (Section 9). We provide a Haskell-
friendly explanation of recent theoretical work and show how
to use it to improve programming practice.

• We discuss the dual situation of coeffects and comonads (Sec-
tion 8) and the connection of effect and coeffect systems to

Haskell’s implicit parameters. Implicit parameters can be seen
as an existing coeffect system in Haskell.

The code of this paper is available via Hackage (cabal install
ixmonad) or at http://github.com/dorchard/effect-monad.

In the rest of this section we look at two examples that demon-
strate the problems with the current state-of-the-art Haskell pro-
gramming. The rest of the paper shows that we can do better.

Problem 1 Consider programming stream processors. We define
two stateful operations, writeS for writing to an output stream
(modelled as a list) and incC for counting these writes:

writeS :: (Monad m)⇒ [a]→ StateT [a] m ()
incC :: (Monad m,Num s)⇒ StateT s m ()

We have planned ahead by using the state monad transformer to
allow composing states. Thus, an operation that both writes to the
output stream and increments the counter can be defined using
lift :: (MonadTrans t ,Monad m)⇒ m a → t m a:

write :: (Monad m)⇒ [a]→ StateT [a] (StateT Int m) ()
write x = do {writeS x ; lift $ incC }
In combining the two states, an arbitrary choice is made of which
one to lift (the counter state). The following example program

hellow = do {write "hello"; write " "; write "world"}
can be “run” by providing two initial states (in the correct order):

runStateT (runStateT hellow "") 0

evaluating to (((), "hello world"), 3). The type of hellow indi-
cates in which order to supply the initial state arguments and which
operations to lift in any future reuses of the state.

Consider writing another function which counts the number of
times hellow is run. We reuse incC , lifting it to increment an
additional state:

hellowC = do {hellow ; lift $ lift $ incC }
Now there are two Int states, so the types provide less guidance on
the order to apply arguments. We also see that, for every new state,
we have to add more and more lift operations, chained together.

The parametric effect monad for state (Section 6) allows defini-
tions of incC and writeS that have precise effect descriptions in
their types, written:

incC :: State ‘["count" :→ Int :! RW] ()
writeS :: [a]→ State ‘["out" :→ [a] :! RW] ()

meaning that incC has a read-write effect on a variable "count"
and writeS has a read-write effect on a variable "out". The two
can then be composed, using the usual do-notation, as:

write :: [a]→ State ‘["count" :→ Int :! RW ,
"out" :→ [a] :! RW] ()

write x = do {writeS x ; incC }
whose effect information is the union of the effects for writeS and
incC . Note that we didn’t need to use a lift operation, and we now
also have precise effect information at the type level.

An alternate solution to granularity is to define a type class for
each effectful operation parameterised by a result monad type, e.g.,

class Monad m ⇒ Output a m where writeS :: [a]→ m ()
class Monad m ⇒ Counting m where incC :: m ()

Suitable instances can be given using monad transformers. This ap-
proach provides an effect system via type class constraints, but re-
stricts the effect annotations to sets with union (conjunction of con-
straints) and ordering of effects by subsets. In this paper, we embed
a more general effect system, parameterised by a monoid of effects
with a preorder, and show examples leveraging this generality.

class Effect (m :: k → ∗ → ∗) where

type Unit m :: k
type Plus m (f :: k) (g :: k) :: k

type Inv m (f :: k) (g :: k) :: Constraint
type Inv m f g = ()

return :: a → m (Unit m) a
(>>=) :: Inv m f g ⇒

m f a → (a → m g b)→ m (Plus m f g) b

class Subeffect (m :: k → ∗ → ∗) f g where
sub :: m f a → m g a

Figure 1. Parametric effect monad and subeffecting classes

Problem 2 Consider writing a DSL for parallel programming. We
want to include the ability to use state, so the underlying imple-
mentation uses the state monad everywhere to capture stateful op-
erations. However, we want to statically ensure that a parallel map-
ping function on lists parMap is only applied to functions with, at
most, read-only state effects. The standard monadic approach does
not provide any guidance, so we have to resort to other encodings.

With the embedded effect system approach of this paper we can
write the following definition for parMap:

parMap :: (Writes f∼‘[])⇒
(a → State f b)→ [a]→ State f [b]

parMap k [] = sub (return [])
parMap k (x : xs) = do (y , ys)← (k x) ‘par ‘ (parMap k xs)

return (y : ys)

The predicate Writes f∼‘[] on effect information constrains the
computation to be free from write effects. The par combinator
provides the parallel behaviour.

2. Parametric effect monads
While monads are defined over parametric types of kind m ::∗ → ∗,
parametric effect monads are defined over types of kind m :: k →
∗ → ∗ with an additional parameter of some kind k of effect types.
We define parametric effect monads by replacing the usual Monad
type class with the Effect class, which has the same operations, but
with the effect-parameterisation described in the introduction.

Figure 1 gives the Haskell definition which uses type families,
polymorphic kinds, and constraint kinds. Plus m declares a binary
type family for composing effect annotations (of kind k) when
sequentially composing computations with bind (>>=). Unit m is
a nullary type family computing the ‘unit’ annotation for the trivial
(or pure) effect, arising from return . The idea is that Plus m and
Unit m form a monoid which is shown by the parametric effect
monad axioms (see below).

The Inv family is a constraint family [3, 20] (i.e., constraint-
kinded type family) which can be used to restrict effect parameters
in instances of Effect . The default is the empty constraint.

do-notation Haskell’s do notation provides convenient syntac-
tic sugar over the operations of a monad, resembling the imper-
ative programming approach of sequencing statements. By using
the rebindable syntax extension of GHC, we can reuse the stan-
dard monadic do-notation for programming with parametric effect
monads in Haskell. This is why we have chosen to use the standard
names for the return and (>>=) operations here.

Axioms The axioms, or laws, of a parametric effect monad have
exactly the same syntactic shape as those of monads, but with the
additional effect parameters on the monadic type constructor. These

http://github.com/dorchard/effect-monad

are as follows, along with their types (where for brevity here we
elide the parameter m for Plus and Unit families and elide Inv):

(return x)>>= f :: m (Plus Unit f) a
≡ f x :: m f a

m >>= return :: m (Plus f Unit) a
≡ m :: m f a

m >>= (λx → (f x)>>= g) :: m (Plus f (Plus g h)) a
≡ (m >>= f)>>= g :: m (Plus (Plus f g) h) a

For these equalities to hold, the type-level operations Plus and
Unit must form a monoid, where Unit is the identity of Plus (for
the first two laws), and Plus is associative (for the last law).

Relation to monads All monads are also parametric effect mon-
ads with a trivial singleton effect, i.e., if we take Unit m = ()
and Plus m () () = (). We show the full construction to embed
monads into parametric effect monads in Section 7.

Relation to effect systems Figure 2(a) recalls the rules of a simple
type-and-effect system using sets of effect annotations. The corre-
spondence between type-and-effect systems (hereafter just effect
systems) and monads was made clear by Wadler and Thiemann,
who established a syntactic correspondence by annotating monadic
type constructors with the effect sets of an effect system [24]. This
is shown for comparison in Figure 2(b), showing a correspondence
between (var)-(unit), (let)-(bind), and (sub)-(does).

Wadler and Thiemann established soundness results between an
effect system and an operational semantics, and conjectured a “co-
herent semantics” of effects and monads in a denotational style.
They suggested associating to each effect F a different monadMF .
The effect-parameterised monad approach here differs: a type MF

of the indexed family may not be a monad itself. The monadic be-
haviour is “distributed” over the indexed family of types as spec-
ified by the monoidal structure on effects. Figure 2(c) shows the
effect system provided by our parametric effect monad encoding.

A key feature of effect systems is that the (abs) rule captures all
effects of the body as latent effects that happen when the function
is run (this is shown by an effect annotated arrow, e.g., F−→). This is
also the case in our Haskell embedding: λx → do {...} is a pure
function, returning a monadic computation.

The (sub) rule above provides subeffecting, where effects can
be overapproximated. Instances of the Subeffect class in Figure 1
provide the corresponding operation for parametric effect monads.

3. Defining type-level sets
Early examples of effect systems often generated sets of effect
information, combined via union [10], or in terms of lattices but
then specialised to sets with union [9]. Sets are appropriate for
effect annotations when the order of effects is irrelevant (or at
least difficult to predict, for example, in a lazy language) and when
effects can be treated idempotently, for example, when it is enough
to know that a memory cell is read, not how many times it is read.

Later effect system descriptions separated lattices of effects into
distinct algebraic structures for sequential composition, alternation,
and fixed-points [17]. Our encoding of parametric effect monads is
parameterised by a monoid with a preorder, but sets are an impor-
tant example used throughout. In this section, we develop a type-
level notion of sets (that is, sets of types, as a type) with a corre-
sponding value-level representation. We define set union (for the
sequential composition of effect information) and the calculation
of subsets– providing the monoid and preorder structure on effects.

Defining type-level sets would be easier in a dependently-typed
language, but perhaps the most interesting (and practically useful)
thing about this paper is that we can embed effect systems in a
language without resorting to a fully dependently-typed system.

(var)
v : τ ∈ Γ

Γ ` v : τ ! ∅ (let)
Γ ` e1 : τ1 !F Γ, x : τ1 ` e2 : τ2 !G

Γ ` letx = e1 in e2 : τ2 !F ∪G

(abs)
Γ, v : σ ` e : τ !F

Γ ` λv.e : σ
F−→ τ ! ∅

(sub)
Γ ` e : τ !F F ⊆ G

Γ ` e : τ !G

(a) Gifford-Lucassen-style effect system [9]

(unit)
E ` e : τ

E ` <e> : T∅τ
(does)

E ` e : Tστ σ′ w σ
E ` e : Tσ′τ

(bind)
E ` e : Tστ E , x : τ ` e′ : Tσ

′
τ ′

E ` letx⇐ e in e′ : Tσ∪σ′τ ′

(b) The core effectful rules for Wadler and Thiemann’s Monad language for
unifying effect systems with a monadic metalanguage [24].

(unit)
Γ ` e : τ

Γ ` return e : m (Unit m) τ
(sub)

Γ ` e : m f τ Sub f g

Γ ` sub e : m g τ

(let)
Γ ` e1 : m f τ1 Γ, x : τ1 ` e2 : m g τ2

Γ ` do {x← e1; e2} : m (Plus m f g) τ2

(c) The type-embedded effect system provided in this paper by the paramet-
ric effect monad definition.

Figure 2. Comparison of different encodings of effect systems

Representing sets with lists We encode type-level sets using var-
ious advanced type system features of GHC. The main effort is in
preventing duplicate elements and enforcing the irrelevance of the
storage order for elements. These properties distinguish sets from
lists, which are much easier to define at the type level and will form
the basis of our encoding. Type-level functions will be used to re-
move duplicates and normalise the list (by sorting).

We start by inductively defining Set as a parameterised GADT:

data Set (n :: [∗]) where
Empty :: Set ‘[]
Ext :: e → Set s → Set (e ‘: s)

where the parameter has the list kind [∗] (the kind of lists of
types) [25]. This definition encodes heterogeneously-typed lists,
with a type-level list representation via type operators of kind:

‘[] :: [∗] and (‘:) :: ∗ → [∗]→ [∗]

These provide a compact notation for types. The data constructor
names Empty and Ext (for extension) remind us that we will treat
values of this type as sets, rather than lists.

The first step in using lists to represent sets is to make the order-
ing irrelevant by (perhaps ironically) fixing an arbitrary ordering on
elements of the set and normalising by sorting. We use bubble sort
here as it is straightforward to implement at the type level.

A single pass of the bubble sort algorithm recurses over a list
and orders successive pairs of elements as follows:

type family Pass (l :: [∗]) :: [∗] where
Pass ‘[] = ‘[]
Pass ‘[e] = ‘[e]
Pass (e ‘: f ‘: s) = Min e f ‘: (Pass ((Max e f) ‘: s))

type family Min (a :: k) (b :: k) :: k
type family Max (a :: k) (b :: k) :: k

Here, Min and Max are open type families which are given in-
stances later for specific applications. The definition of Pass here
uses a closed type family [7]. Closed type families define all of

there instances together, i.e., further instances cannot be defined.
This allows instances to be matched against in order, contrasting
with open type families where there is no ordering on the instances
(which may be scattered throughout different modules and com-
piled separately). Pass is defined as a closed family only because
we do not need it to be open, not because we require the extra power
of closed families; a standard open family would suffice here.

To complete the sorting, Pass is applied n-times for a list of
length n . The standard optimisation is to stop once the list is sorted,
but for brevity we take the simple approach, deconstructing the
input list to build a chain of calls to Pass:

type family Bubble l l ′ where
Bubble l ‘[] = l
Bubble l (x ‘: xs) = Pass (Bubble l xs)

type Sort l = Bubble l l

Again, we use a closed type family here, not out of necessity but
since we do not need an open definition.

This completes type-level sort. Definitions of the value-level
counterparts follow exactly the same shape as their types, thus we
relegate their full definition to Appendix A. The approach is to
implement each type-level case as an instances of the classes:

type Sortable s = Bubbler s s

class Bubbler s s ′ where
bubble :: Set s → Set s ′ → Set (Bubble s s ′)

class Passer s where
pass :: Set s → Set (Pass s)

class OrdH e f where
minH :: e → f → Min e f
maxH :: e → f → Max e f

This provides the type-specific behaviour of each case of the type-
level definitions, with room to raise the appropriate type-class con-
straints for OrdH (heterogeneously typed ordering).

The remaining idempotence property of sets requires the full
power of closed type families, using equality on types. We define
the following type-level function Nub to remove duplicates (named
after nub for removing duplicates from a list in Data.List):

type family Nub t where
Nub ‘[] = ‘[]
Nub ‘[e] = ‘[e]
Nub (e ‘: e ‘: s) = Nub (e ‘: s)
Nub (e ‘: f ‘: s) = e ‘: Nub (f ‘: s)

As mentioned, the closed form of type families allows a number of
cases to be matched against in lexical order. This allows the type
equality comparison in the third case which removes a duplicate
when two adjacent elements have the same type. The pattern of the
fourth case overlaps the third, but is only tried if the third fails.

A corresponding value-level nub is defined similarly to bubble
and pass using a type class with instances for each case of Nub:

class Nubable t where
nub :: Set t → Set (Nub t)

instance Nubable ‘[] where
nub Empty = Empty

instance Nubable ‘[e] where
nub (Ext x Empty) = Ext x Empty

instance (Nub (e ‘: f ‘: s)∼(e ‘: Nub (f ‘: s)),
Nubable (f ‘: s))⇒ Nubable (e ‘: f ‘: s) where

nub (Ext e (Ext f s)) = Ext e (nub (Ext f s))

In the last case, the equality constraint is required to explain the
behaviour of Nub. The type and value levels are in one-to-one

correspondence however we have deliberately omitted the case for
actually removing items with the same type. This class instance
will be defined later with application-specific behaviour.

Putting this all together, type- and value-level conversion of the
list format to the set format is defined:

type AsSet s = Nub (Sort s)

asSet :: (Sortable s,Nubable (Sort s))⇒
Set s → Set (AsSet s)

asSet x = nub (bsort x)

We also define a useful predicate for later definitions which asks
whether a type is in the set representation format:

type IsSet s = (s∼Nub (Sort s)) :: Constraint

This uses the constraint kinds extension [3, 20] where the kind
signature explains that this “type” definition is a unary constraint.

Now that we have the representation sorted, we define opera-
tions for taking the union and calculating subsets.

Union Set union is defined using our existing infrastructure and
the concatenation of the underlying lists:

type Union s t = AsSet (Append s t)

Append concatenates the two list representations (acting like a
disjoint union of sets) and AsSet normalises the result into the set
form. Append is defined in the usual way as a type family:

type family Append (s :: [∗]) (t :: [∗]) :: [∗] where
Append ‘[] t = t
Append (x ‘: xs) ys = x ‘: (Append xs ys)

The value-level version is identical (mutatis mutandis):

append :: Set s → Set t → Set (Append s t)
append Empty x = x
append (Ext e xs) ys = Ext e (append xs ys)

This twin definition, and the previous definition for Nub/nub,
exposes a weakness of Haskell: we have to write both the value and
type level, even though they are essentially identical. Languages
that implement richer dependent-type theories tend to avoid this
problem but, for the moment, this is the state of play in Haskell.

Given all of the above, union of value sets is then:

type Unionable s t = (Sortable (Append s t),
Nubable (Sort (Append s t)))

union :: (Unionable s t)⇒ Set s → Set t → Set (Union s t)
union s t = nub (bsort (append s t))

with the binary predicate Unionable hiding the underlying type
class constraints associated with sorting and removing duplicates.

Subsets A notion of subeffecting is useful for combining effect
information arising from non-linear control flow (for example, to
implement conditionals). We recursively define a binary predicate
Sub where Sub s t means s ⊆ t. This type class has a single
method that calculates the value representation of the subset:

class Subset s t where
subset :: Set t → Set s

instance Subset ‘[] t where
subset xs = Empty

instance Subset s t ⇒ Subset (x ‘: s) (x ‘: t) where
subset (Ext x xs) = Ext x (subset xs)

instance Subset s t ⇒ Subset s (x ‘: t) where
subset (Ext xs) = subset xs

Thus, in the first instance: empty sets are subsets of all sets; in
the second: ({x} ∪ S) ⊆ ({x} ∪ T) if S ⊆ T ; and in the third,

S ⊆ ({x}∪T) if S ⊆ T . Note that we have used a multi-parameter
type class here since the value-level behaviour depends on both the
source and target types.

Set union and subset operations will be used in the next three
sections, where additional set operations will appear as necessary.

4. Writer effects
Our first example effect system will capture write effects, related
to the writer monad. The classic writer monad provides a write-
only cumulative state, useful for producing a log (or trace) along
with a computation. The data type is essentially that of a product.
In Haskell, this monad is defined:

data Writer w a = Writer {runWriter :: (a,w)}
instance Monoid w ⇒ Monad (Writer w) where

return a = Writer (a,mempty)
(Writer (a,w))>>= k = let (b,w ′) = runWriter (k a)

in Writer (b,w ‘mappend ‘ w ′)

where mempty ::Monoid w ⇒ w and mappend ::Monoid w ⇒
w → w → w are respectively the unit element and the binary
operation of a monoid on w . Thus, a pure computation writes the
unit element of the monoid and (>>=) composes write state using
the binary operation of the monoid.

Using a parametric effect monad, we can define a more flexible
version of the writer monad that allows multiple writes to be eas-
ily combined and extended (without the need for tuples or monad
transformers), using an effect system for write effects. This ap-
proach allows us to define programs like the following:

prog :: Writer ‘["x" :→ Int , "y" :→ String] ()
prog = do put (Var :: (Var "x")) 42

put (Var :: (Var "y")) "hello"
put (Var :: (Var "x")) 58

where "x" and "y" are type level symbols and Writer is parame-
terised by a set of variable-type mappings. Running this computa-
tion produces ((), {(Var , 100), (Var , "hello")}).

We use our type-level sets representation coupled with type-
level symbols to provide variables, where the constructor :→ de-
scribes a pair of a variable and its written type. The Writer data
type and its accompanying parametric effect monad are defined:

data Writer w a = Writer {runWriter :: (a,Set w)}
instance Effect Writer where

type Inv Writer s t = (IsSet s, IsSet t ,Unionable s t)

type Unit Writer = ‘[]
type Plus Writer s t = Union s t

return x = Writer (x ,Empty)
(Writer (a,w))>>= k = let Writer (b,w ′) = k a

in Writer (b,w ‘union‘ w ′)

Thus, return has the empty set effect, and (>>=) composes writer
states by taking the union, with the Union effect annotation. The
IsSet predicates ensure the effect indices are in the set format.

The put operation is then defined as follows, introducing an
effect with a variable-type mapping:

put :: Var v → t →Writer ‘[v :→ t] ()
put v x = Writer ((),Ext v x Empty)

The mapping operator :→ and Var type are defined:

data (v :: Symbol) :→ (t :: ∗) = (Var v) :→ t
data Var (v :: Symbol) = Var

Members of the kind of symbols Symbol are type-level strings,
provided by the data kinds extension.

Recall that we did not define the nub operation on sets fully; the
case for removing duplicates at the value level was not included in
the definition of Section 3. We define this here by combining values
of the same variable using the mappend operation of a monoid:

instance (Monoid a,Nubable ((v :→ a) ‘: s))⇒
Nubable ((v :→ a) ‘: (v :→ a) ‘: s) where

nub (Ext (:→ a) (Ext (v :→ b) s)) =
nub (Ext (v :→ (a ‘mappend ‘ b)) s)

We finally implement the type-level ordering of mappings v :→ t
by providing instances for Min and Max :

type instance Min (v :→ a) (w :→ b) =
(Select v w v w) :→ (Select v w a b)

type instance Max (v :→ a) (w :→ b) =
(Select v w w v) :→ (Select v w b a)

type Select a b p q = Choose (CmpSymbol a b) p q

type family Choose (o :: Ordering) p q where
Choose LT p q = p
Choose EQ p q = p
Choose GT p q = q

where CmpSymbol :: Symbol → Symbol → Ordering from the
base library compares symbols, returning a type of kind Ordering
upon which Choose matches. The type function Select selects
its third or fourth parameter based on the variables passed as its
first two parameters; Select returns its third parameter if the first
parameter is less than the second, otherwise it returns its fourth.
The corresponding value level is a straightforward (and annoying!)
transcription of the above, shown in Appendix B for reference.

Examples and polymorphism The following gives a simple ex-
ample (using an additive monoid on Int):

varX = Var :: (Var "x")
varY = Var :: (Var "y")

test = do put varX (42 :: Int)
put varY "hello"

put varX (58 :: Int)
put varY " world"

The effects are easily inferred (shown here by querying GHCi):

*Main> :t test
test :: Writer ’["x" :-> Int, "y" :-> [Char]] ()

and the code executes as expected:

*Main> runWriter (test 1)
((),(x, 100), (y, "hello world"))

Explicit type signatures were used on assignments to "x" otherwise
our implementation cannot unify the two writes to "x". If we want
"x" to be polymorphic we must use a scoped type variable with a
type signature fixing the type of each put to x . For example:

test ′ (n :: a) = do put varX (42 :: a)
put varY "hello"

put varX (n :: a)

for which Haskell can infer the expected polymorphic effect type:

*Main> :t test’
test’ :: (Monoid a, Num a) =>

a -> Writer ’["x" :-> a, "y" :-> [Char]] ()

While it is cumbersome to have to add explicit type signatures for
the polymorphism here, the overhead is not vast and the type sys-
tem can still infer the effect type for us. We can also be entirely
polymorphic in an effect, and in a higher-order setting. For exam-

ple, the following function takes an effectful function as a parame-
ter and applies it, along with some of its own write effects:

test2 :: (IsSet f ,Unionable f ‘["y" :→ String])
⇒ (Int →Writer f t)
→ Writer (Union f ‘["y" :→ String]) ()

test2 f = do {f 3; put varY "world."}
Thus, test2 takes an effectful f , calls it with 3, and then writes
to "y". The resulting effect is thus the union of f ’s effects and
‘["y" :→ String]. To test, runWriter (test2 test ′) returns the
expected values ((), {(x , 45), (y , "hello world.")}).

While the type of test2 can be inferred (if we give a signature
on 3, e.g., 3 :: Int), we include an explicit type signature here as
GHC has a habit of expanding type synonym definitions, making
the inferred type a bit inscrutable.

Subeffecting Since sets appear in a positive position in our
Writer data type, subeffecting overapproximates what is written,
requiring a superset operation for writer effects. At the value level,
we fill these additional writer cells with unit of the corresponding
monoid (mempty), thus completing the use of monoids in this ex-
ample (rather than just semigroups). We define a binary predicate
Superset with a superset method:

class Superset s t where superset :: Set s → Set t

instance Superset ‘[] ‘[] where superset = Empty

instance (Monoid a,Superset ‘[] s)⇒
Superset ‘[] ((v :→ a) ‘: s) where

superset = Ext (Var :→mempty) (superset Empty)

instance Superset s t ⇒
Superset ((v :→ a) ‘: s) ((v :→ a) ‘: t) where

superset (Ext x xs) = Ext x (superset xs)

The subeffecting operation for Writer is then:

instance Superset s t ⇒ Subeffect Writer s t where
sub (Writer (a,w)) = Writer (a, (superset w) :: (Set t))

To illustrate, we apply sub to our earlier example:

test3 :: Writer ‘["x" :→ Int , "y" :→ String , "z" :→ Int] ()
test3 = sub (test2 test ′)

which evaluates to the following showing the 0 value given to "z"
coming from the additive monoid for Int :

*Main> runWriter test3
((),(x, 45), (y, "hello world."), (z, 0))

Using plain lists A simpler, but less useful version of writer ef-
fects uses just type-level lists, rather than sets. This provides a
write-once writer where values can be written but with no accu-
mulating behaviour. We elide this example here as it is less useful,
but it can be found in Control.Effect.WriteOnceWriter.

4.1 Update effects
An alternate form of writer effect provides an updateable mem-
ory cell, without any accumulating behaviour. This corresponds
to the usual writer monad with the monoid over Maybe: writing
a value wrapped by the Just constructor updates the cell, writ-
ing Nothing leaves the cell unmodified. With a parametric effect
monad we can treat the type of the cell as an effect annotation,
providing a heterogeneously-typed update monad. The standard
monadic definition must have the same type throughout the com-
putation. Thus, this effect system is more about generalising the
power of the monad than program analysis per se.

This parametric effect monad is defined by lifting the Maybe-
monoid to types. We define a GADT parameterised by Maybe
promoted to a kind:

data Eff (w :: Maybe ∗) where
Put :: a → Eff (Just a)
NoPut :: Eff Nothing

The effect-parameterised version of the update monad is then:

data Update w a = U {runUpdate :: (a,Eff w)}
instance Effect Update where

type Unit Update = Nothing

type Plus Update s Nothing = s
type Plus Update s (Just t) = Just t

return x = U (x ,NoPut)
(U (a,w))>>= k = U (update w (runUpdate $ k a))

update :: Eff s → (b,Eff t)→ (b,Eff (Plus Update s t))
update w (b,NoPut) = (b,w)
update (b,Put w ′′) = (b,Put w ′′)

put :: a → Update (Just a) ()
put x = U ((),Put x)

where update combines value- and type-level Maybe monoid be-
haviour. Note that we don’t have to use the GADT approach. We
could equivalently define two data types Put and NoPut and im-
plement the type-dependent behaviour of update using a type class.

The effect-parameterised writer monad therefore provides a
heterogeneously-typed memory cell, where the final type of the
state for a computation is that of the last write, e.g.

foo :: Update (Just String) ()
foo = do {put 42; put "hello"}

This parametric effect monad is a little baroque, but it serves to
demonstrate the heterogeneous behaviour possible with parametric
effect monads and gives an example effect system that is not based
on sets (of which there are more examples later).

5. Reader effects
The classic reader monad provides a read-only value (or parame-
ter) that is available throughout a computation. The data type of the
reader monad is a function from the read-only state to a value:

data Reader r a = Reader {runReader :: r → a }

Similarly to the previous section, we can generalise this monad
to a parametric effect monad providing an effect system for read
effects and allowing multiple different reader values, solving the
composition problem for multiple reader monads. The generalised
type and parametric effect monad instance are defined:

data Reader s a = R {runReader :: Set s → a }
instance Effect Reader where

type Inv Reader s t = (IsSet s, IsSet t ,
Split s t (Union s t))

type Unit Reader = ‘[]
type Plus Reader s t = Union s t

return x = R (λEmpty → x)
(R e)>>= k = R (λst → let (s, t) = split st

in (runReader $ k (e s)) t)

A pure computation therefore reads nothing, taking the empty set
as an argument. For the composition of effectful computations, we
define a computation that takes in a set st :: Set (Union s t) and
then splits it into two parts s ::Set s and t ::Set t which are passed
to the subcomputations e :: Set s → a and k (e s) : Set t → b.

Although set union is not an injective operation (i.e., not invert-
ible), the split operation here provides the inverse of Union s t

since s and t are known, provided by the types of the two subcom-
putations. We define split via a type class that is parameterised by
its parameter set and return sets:

class Split s t st where split :: Set st → (Set s,Set t)

instance Split ‘[] ‘[] ‘[] where
split Empty = (Empty ,Empty)

instance Split s t st ⇒ Split (e ‘: s) (e ‘: t) (e ‘: st) where
split (Ext x st) = let (s, t) = split st in (Ext x s,Ext x t)

instance Split s t st ⇒ Split (x ‘: s) t (x ‘: st) where
split (Ext x st) = let (s, t) = split st in (Ext x s, t)

instance Split s t st ⇒ Split s (x ‘: t) (x ‘: st) where
split (Ext x st) = let (s, t) = split st in (s,Ext x t)

The first instance provides the base case. The second provides the
case when an element of a Union f g appears in both f and g .
The third and fourth instances provide the cases when an element
of Union f g is only in f or only in g .

The constraint Split s t (Union s t) in the Effect instance
enforces that Split is the inverse of Union .

Once we have the above parametric effect monad, the usual ask
operation takes a variable as a parameter and produces a computa-
tion with a singleton effect for that variable:

ask :: Var v → Reader ‘[v :→ t] t
ask Var = R (λ(Ext (Var :→ x) Empty)→ x)

The following gives an example program, whose type and effects
are easily inferred by GHC, so we do not give a type signature here:

foo = do x ← ask (Var :: (Var "x"))
xs ← ask (Var :: (Var "xs"))
x ′ ← ask (Var :: (Var "x"))
return (x : x ′ : xs)

init1 = Ext (Var :→ 1) (Ext (Var :→ [2, 3]) Empty)
runFoo = runReader foo init1

The inferred type is foo :: Reader ‘["x" :→ a, "xs" :→ [a]] [a]
and runFoo evaluates to [1, 1, 2, 3].

Note that we have not had to add a case for the Nubable type
class with the nub method to removing duplicates in sets. This
is because Reader does not use union (sets appear in a negative
position, to the left of the function arrow). Instead, the idempotent
behaviour is encoded by the definition of split /Split .

Sub effecting Since sets appear in negative positions, we can use
the subset function defined earlier for subeffecting:

instance Subset s t ⇒ Subeffect Reader s t where
sub (R e) = R (λst → let s = subset st in e s)

The following overapproximates the effects of the above example:

bar :: (Subset ‘["x" :→ Int , "xs" :→ [Int]] t)⇒ Reader t [Int]
bar = sub foo

This can be run by passing ⊥ into the additional slot in the incom-
ing reader set with initial reader state:

init2 :: Set ‘["x" :→ Int , "xs" :→ [Int], "z" :→ a]
init2 = Ext (Var :→ 1) (Ext (Var :→ [2, 3])

(Ext (Var :→⊥) Empty))

where runReader bar init2 evaluates to [1, 1, 2, 3]. The explicit
signature on init2 is required for the subeffecting function to be
correctly resolved.

This effect system resembles the implicit parameters extension
of Haskell [14], providing most of the same functionality. However,
some additional structure is need to fully replicate the implicit

parameter behaviour. This is discussed in Section 8 where we
briefly discuss the dual notion of coeffect systems.

6. State effects
The earliest effect systems were designed specifically to track side-
effects relating to state, with sets of triples marking read, write,
and update effects on typed locations. We combine the approaches
thus far for reader and writer effects to define a parametric state
effect monad with state effect system. As before, we will use sets
for effects, but this time with additional type-level information
for distinguishing between reads, writes, and updates (read/write),
given by the Eff type:

data Eff = R |W | RW

data Effect (s :: Eff) = Eff

where the Effect type uses Eff as a data kind and provides a data
constructor that acts as a proxy for Eff . These effects markers are
associated with types, describing the effect performed on a value of
a particular type, with the constructor:

data (:!) (a :: ∗) (s :: Eff) = a :! (Effect s)

Effect annotations will be sets of mappings of the form (v :→ t :! f)
meaning variable v has type t and effect action f (drawn from Eff).

The parametric effect monad data type State is analogous to
usual definition of state s → (a, s):

data State s a = State
{runState :: Set (Reads s)→ (a,Set (Writes s))}

where Reads and Writes refine the set of effects into the read and
write effects respectively. Read is defined:

type family Reads t where
Reads ‘[] = ‘[]
Reads ((v :→ a :! R) ‘: s) = (v :→ a :! R) ‘: (Reads s)
Reads ((v :→ a :! RW) ‘: s) = (v :→ a :! R) ‘: (Reads s)
Reads ((v :→ a :! W) ‘: s) = Reads s

thus read-write effects RW are turned into read effects, and all
write effects are ignored. The Writes operation (not shown here)
removes R actions and turns RW actions into W actions.

Previously, set union combined effect sets, but now we need
some additional behaviour in the case where both sets contain ef-
fects on a variable v but with different effect actions. For example,
we require the behaviour that:

Union ‘[v :→ t :! R] ‘[v :→ t :! W] = ‘[v :→ t :! RW]

i.e., if one computation reads v and the other writes v the overall
effect is a read-write effect (possible update). We thus redefine the
previous Nub definition:

type family Nub t where
Nub ‘[] = ‘[]
Nub ‘[e] = ‘[e]
Nub (e ‘: e ‘: s) = Nub (e ‘: s)
Nub ((v :→ a :! f) ‘: (v :→ a :! g) ‘: s) =

Nub ((v :→ a :! RW) ‘: s)
Nub (e ‘: f ‘: s) = e ‘: Nub (f ‘: s)

Again, closed type families are used to match against types in the
given order. The definition is the same as before in Section 3, apart
from the third case which is new: if there are two different effects
f and g on variable v then these are combined into one effect
annotation with action RW . The value level is straightforward and
analogous to the type-level (see Control.Effect.State) and is
similar to the previous definition in Section 3. The union of two sets
is defined as before, using sorting and the above version of Nub. To

distinguish this union from the previous (which is an actual union),
we define type UnionS s t = Nub (Sort (Append s t)).

A final operation is required to sequentially compose write ef-
fects of one computation with read effects of another. This amounts
to a kind of intersection of two sets, between a set of write effects
and a set of read w ∩ r where at the type level this equals r , but
at the value level any reads in r that coincide with writes in w are
replaced by the written values. We define this operation by first ap-
pending the two sets, sorting them, then filtering with intersectR:

type IntersectR s t = (Sortable (Append s t),
Update (Append s t) t)

intersectR :: (Writes s∼s,Reads t∼t , IntersectR s t)
⇒ Set s → Set t → Set t

intersectR s t = update (bsort (append s t))

The constraints here restrict us to just read effects in s and write
effects in t . The update function replaces any reader values with
written values (if available). This is defined by the Update class:

class Update s t where update :: Set s → Set t

instance Update xs ‘[] where update = Empty

instance Update‘[e]‘[e] where update s = s

instance Update ((v :→ a :! R) ‘: as) as ′ ⇒
Update ((v :→ a :! W) ‘: (v :→ b :! R) ‘: as) as ′ where
update (Ext (v :→ (a :!)) (Ext xs)) =

update (Ext (v :→ (a :! (Eff :: (Effect R)))) xs)

instance Update ((u :→ b :! s) ‘: as) as ′ ⇒
Update ((v :→ a :! W) ‘: (u :→ b :! s) ‘: as) as ′ where
update (Ext (Ext e xs)) = update (Ext e xs)

instance Update ((u :→ b :! s) ‘: as) as ′ ⇒
Update ((v :→ a :! R) ‘: (u :→ b :! s) ‘: as)

((v :→ a :! R) ‘: as ′) where
update (Ext e (Ext e ′ xs)) = Ext e (update (Ext e ′ xs)

The first two instances provide the base cases. The third instance
provides the intersection behaviour of replacing a read value with a
written value. Since sorting is defined on the symbols used for vari-
ables, the ordering of write effects before read effects is preserved,
hence we only need consider this case of a write preceding a read.
The fourth instance ignores a write that has no corresponding read.
The fifth instance keeps a read that has no overwriting write effect.

Finally, we can define the full state parametric effect monad:

instance Effect State where
type Unit State = ‘[]
type Plus State s t = UnionS s t

return x = State (λEmpty → (x ,Empty))

(State e)>>= k = State (λst →
let (sR, tR) = split st

(a, sW) = e sR
(b, tW) = (runState (k a)) (sW ‘intersectR‘ tR)

in (b, sW ‘union‘ tW))

Thus, a pure computation has no reads and no writes. When com-
posing computations, an input state st is split into the reader states
sR and tR for the two subcomputations. The first computation is
run with input state sR yielding some writes sW as output state.
These are then intersected with tR to give the input state to (k a)
which produces output state tW . This is then unioned with sW to
get the final output state.

The definition for Inv is elided (see Control.Effect.State)
since it is quite long but has no surprises. As before it constrains
s and t to be in the set format, and includes various type-class
constraints for Unionable , Split and IntersectR.

We can now encode the examples of the introduction. For the
stream processing example, we can define the operations as:

varC = Var :: (Var "count")
varS = Var :: (Var "out")

incC :: State ‘["count" :→ Int :! RW] ()
incC = do {x ← get varC ; put varC (x + 1)}
writeS :: [a]→ State ‘["out" :→ [a] :! RW] ()
writeS y = do {x ← get varS ; put varS (x ++ y)}
write :: [a]→ State ‘["count" :→ Int :! RW ,

"out" :→ [a] :! RW] ()
write x = do {writeS x ; incC }

7. Monads as parametric effect monads
As explained in the introduction, all monads are parametric effect
monads with a trivial singleton effect. This allows us to embed
existing monads into parametric effect monads with a wrapper:

import qualified Prelude as P

data Monad m t a where
Wrap :: P .Monad m ⇒ m a → Monad m () a

unWrap :: Monad m t a → m a
unWrap (Wrap m) = m

instance (P .Monad m)⇒ Effect (Monad m) where
type Unit (Monad m) = ()
type Plus (Monad m) s t = ()

return x = Wrap (P .return x)
(Wrap x)>>= f = Wrap ((P .>>=) x (unWrap ◦ f))

This provides a pathway to entirely replacing the standard Monad
class of Haskell with Effect .

8. Implicit parameters and coeffects
The parametric effect reader monad of Section 5 essentially embeds
an effect system for implicit parameters into Haskell, an existing
extension of Haskell [14]. Implicit parameters provide dynamically
scoped variables. For example, the following function sums three
numbers, two of which are passed implicitly (dynamically):

sum3 :: (Num a, ?x :: a, ?y :: a)⇒ a → a
sum3 z = ?x + ?y + z

where implicit parameters are syntactically introduced by a pre-
ceding question mark. Any implicit parameters used in an expres-
sion are represented in the expression’s type as constraints (shown
above). These implicit parameter constraints are a kind of effect
analysis, similar to that of our reader effect monad. In our approach,
a similar definition to sum3 is:

sum3 :: (Num a)⇒ a → Reader ‘["?x" :→ a, "?y" :→ a] a
sum3 z = do x ← ask (Var :: (Var "?x"))

y ← ask (Var :: (Var "?y"))
return (x + y + z)

This is longer than the implicit parameter approach since the do-
notation is needed to implement effect sequencing and the symbol
encoding of variables is required, but the essence is the same.

However, the two approaches have a significant difference.
Our effect-parameterised reader monad provides fully dynamically
scoped variables, that is, they are bound only when the computa-
tion is run. In contrast, implicit parameters allow a mix of dynamic
and static (lexical) scoping. For example, we can write:

sum2 :: (Num a, ?y :: a)⇒ a → a
sum2 = let ?x = 42 in λz → ?x + ?y + z

where the let binds the lexically scoped ?x inside of the λ-
expression, but ?y remains dynamically scoped, as shown by the
type. Without entering into the internals of Reader we cannot (yet)
implement the same behaviour with the monadic approach. This il-
lustrates how the implicit parameters extension is not an instance of
an effect system or monadic semantics approach, in the traditional
sense. The main difference is in the treatment of λ-abstraction.

Recall the standard type-and-effect rule for λ-abstraction [9],
which makes all effects latent. Unifying effect systems with
monads via parametric effect monads gives the semantics [12]:

JΓ, x : σ ` e : τ, F K = g : Γ× σ → MF τ

JΓ ` λx.e : σ
F−→ τ, ∅K = return(uncurry g) : Γ→ M∅(σ → MF τ)

where the returned function is pure (as defined by return).
This contrasts with the abstraction rule for implicit parame-

ters [14]. Lewis et al. describe implicit parameter judgments of the
formC; Γ ` e : τ whereC augments the usual typing relation with
a set of constraints. The rule for abstraction is then:

(abs)
C; Γ, v : σ ` e : τ

C; Γ ` λv.e : τ

If constraints C are thought of as effect annotations, then we see
that the λ-abstraction is not pure in the sense that the constraints of
the body e are now the constraints of the λ-abstraction (no latent
effects). When combined with their rule for discharging implicit
parameters, this allows lexically scoped implicit parameters.

The semantics of these implicit parameters has been described
separately in terms of a comonadic semantics for implicit parame-
ters with a coeffect system [21].

Comonads and coeffects Comonads dualise monads, revealing a
structure of the following form (taken from Control.Comonad):

class Comonad c where
extract :: c a → a
extend :: (c a → b)→ c a → c b

where extract is the dual of return and extend is the infix dual
of (>>=). Comonads can be described as capturing input impurity,
input effects, or context-dependent notions of computation.

Recently, coeffect systems have been introduced as the comonadic
analogues of effect systems for analysing resource usage and
context-dependence in programs [4, 8, 21]. The semantics of theses
systems each include a dual to parametric effect monads (in various
forms), which we call here parametric coeffect comonads (earlier
called indexed comonads [21]).

We write coeffect judgments as Γ?R ` e : τ , meaning an ex-
pression e has coeffects (or requirements) R. The key distinguish-
ing feature between (simple) coeffect systems, shown in [21], and
effect systems is the abstraction rule, which has the form:

(abs)
Γ, x : σ?F ⊗G ` e : τ

Γ?F ` λx.e : σ
G−→ τ

for some binary operation ⊗ on coeffects. Thus, in a coeffect
system, λ-abstraction is not “pure”. Instead, reading the rule top-
down, coeffects of the body are split between the declaration site
(immediate coeffects) and the call site (latent coeffects); reading
bottom up, the contexts available at the declaration site and call site
are merged to give the context of the body.

In the semantics of coeffect systems, coeffect judgments are
interpreted as morphisms: JΓ?F ` e : τK : DF JΓK → JτK where
DF is a parametric coeffect comonad. The semantics of abstrac-
tion requires an additional monoidal operation on D of type
merge : DFA× DGB → DF⊗G(A×B), giving the rule:

JΓ, x : σ?F ⊗G ` e : τK = g : DF⊗G(Γ× σ)→ τ

JΓ?F ` λx.e : σ
G−→ τK = uncurry(g ◦ merge) : DFΓ→ (DGσ → τ)

Implicit parameters as coeffects A coeffect system (with the
above abstraction rule) with coeffects as sets of variable-type pairs
provides the constraints behaviour of implicit parameters [21]. This
allows the sum2 example for implicit parameters to be typed, with
additional syntax for binding implicit parameters:

(let?)

(abs)
Γ, z : a ? {?x : a, ?y : a} ` ?x + ?y + z : a

Γ ? {?x : a} ` λz.?x+ ?y + z : a
{?y:a}−−−−→ a

Γ ? ∅ ` let? ?x = e in (λz.?x+ ?y + z) : a
{?y:a}−−−−→ a

Thus, the requirements of the function body are split, with {?x : a}
becoming an immediate coeffect which is discharged by the let?
binding, and {?y : a} remaining latent.

The semantics can be given in terms of a coeffect-parameterised
product comonad on PFA = A × F , and an operation merge :
PFA× PGB → PF∪G(A×B) taking the union of the coeffects.

Reader as a monad or comonad By (un)currying, functions of
type PFA → B (e.g., denotations of the coeffect semantics) are
isomorphic to functionsA→ Reader F B of our parametric effect
reader, i.e., curry :: ((A× F)→B)→ (A→ (F→B)), and vice
versa by uncurry. Thus, we can structure sequential reader compu-
tations using either the comonadic or monadic approach. The dif-
ference is in the treatment of abstraction, as we have seen above
with merge . However, we can recover the mixed lexical/dynamic
behaviour of the implicit parameters extension by providing the iso-
morphic version of merge for the Reader type:

merge :: (Unionable s t)⇒ (a → Reader (Union s t) b)
→ Reader s (a → Reader t b)

merge k = R (λs → λa →
R (λt → runReader (k a) (union s t)))

This merges the immediate requirements/effects that occur before
the function is applied and latent requirements/effects for when the
function is applied, providing requirements Union s t . We see
here the merging behaviour described above in the coeffect setting,
where the union of two implicit parameter environments is taken.

Therefore, merge allows mixed lexical/dynamic scoping of im-
plicit parameters with Reader . For example, sum2 (which used
implicit parameters) can now be equivalently expressed as:

sum2 :: Num a ⇒ a → Reader ‘["?y" :→ a] a
sum2 = let x = (Ext ((Var :: (Var "?x")) :→ 42) Empty)

in runReader
(merge (λz → do x ← ask (Var :: (Var "?x"))

y ← ask (Var :: (Var "?y"))
return (x + y + z))) x

Thus, we lexically scope ?x via merge with our original sum3
definition, leaving only the requirement for ?y.

We have seen here that Haskell’s implicit parameters are a
kind of coeffect analysis, or an effect analysis with some addi-
tional structure borrowed from the coeffect/comonadic approach.
Furthermore, we can use the same approach to encode type
class constraints, where dictionaries are encoded via the effect-
parameterised reader monad. The mechanism for implicitly dis-
charging constraints is not provided here, but our discussion shows
how parametric effect monads could be used to emulate implicit
parameters and type-class constraints or to give their semantics.

9. Program analysis and specification
In our examples so far, effect indices have had value-level counter-
parts. For example, the effect set for the reader monad corresponds
to the set of values being read. However, we may not necessarily
want, or need, to have a semantic, value-level counterpart to our

indices – they may be purely syntactic, used for analysis of pro-
gramming properties and subsequent specifications for verifying
program invariants. We show two examples in this section.

9.1 Data access
Stencil computations are a common idiom for array programming,
in which an array is calculated by applying a function at each pos-
sible index of the array to compute a new cell value, possibly based
on the neighbouring cells related to the current index. For example,
convolution operations and the Game of Life are stencil compu-
tations. One-dimensional stencil computations can be captured by
functions of type (Array Int a, Int)→ b which describe the local
behaviour of the stencil, e.g. (ignoring boundary cases here):

localMean :: (Array Int Float , Int)→ Float
localMean (x , c) = (x ! (c + 1) + x ! c + x ! (c − 1)) / 3.0

Promoting this operation to work over all indices of an array is
provided by the extend operation of a comonad (see the previous
section) on “cursored arrays” [18]. Stencil computations can be
a source of low-level errors, especially when stencils are large,
performing many indexing operations (as is common). Here we use
our approach to embed an effect system that tracks the indexing
operations relative to the cursor index (c above). We define the
following parameterised, cursored array data type CArray and
Stencil which captures stencil computations on CArray :

data CArray (r :: [∗]) a = A (Array Int a, Int)
data Stencil a (r :: [∗]) b = S (CArray r a → b)

The parameter r has no semantic meaning; we will use effect an-
notations purely for analysis, and not for any computation. Stencil
has a parametric effect monad definition with the set union monoid
over indices and the standard reader definition at the value level.

instance Effect (Stencil a) where
type Plus (Stencil a) s t = Union s t
type Unit (Stencil a) = ‘[]

return a = A (\ → a)
(S f)>>= k = S (λa → let (S f ′) = k (f a) in f ′ a)

Our key effectful operation is an operation for relative indexing
which induces an effect annotation containing the relative index:

ix :: (Val (IntT x) Int)⇒ IntT x → Stencil a ‘[IntT x] a
ix n = S (λ(A (a, c))→ a ! (c + toVal n))

with lifting of the kind Nat of natural numbers types to a type of
integers IntT with a sign kind over Nat :

data Sign n = Pos n | Neg n
data IntT (n :: Sign Nat) = IntT

Thus, the effect system collects a set of relative indices. We can
then redefine localMean as:

localMean :: Stencil Float
‘[IntT (Neg 1), IntT (Pos 0), IntT (Pos 1)] Float

localMean = do a ← ix (IntT :: (IntT (Pos 0)))
b ← ix (IntT :: (IntT (Pos 1)))
c ← ix (IntT :: (IntT (Neg 1)))
return $ (a + b + c) / 3.0

We observe that, in practice, many stencils have a very regular
shape to some fixed depth. We can therefore define type-level
functions for generating stencil specifications of these shapes. For
example, we define “forward” oriented stencils to depth d as:

type Forward d = AsSet ((IntT (Pos 0)) ‘: (Fwd d))

type family Fwd d where

Fwd 0 = ‘[]
Fwd d = (IntT (Pos n)) ‘: (Fwd (d − 1))

We can similarly define a backwards definition, and together form
the common symmetrical stencil pattern:

type Symm d =
AsSet ((IntT (Pos 0)) ‘: (Append (Fwd d) (Bwd d)))

We can then give localMean the shorter signature:

localMean :: Stencil Float (Symm 1) Float

Such signatures provide specifications on stencils from which the
type system checks whether the stencil function is correctly imple-
mented, i.e., not missing any indices. The type system will reveal
to us any omissions. For example, the following buggy definition
raises a type error since the negative index −1 is missing:

localMean :: Stencil Float (Symm 1) Float
localMean = do a ← ix (Pos Z)

b ← ix (Pos (S Z))
return $ (a + b + b) / 3.0

In this effect system, effects are ordered by the superset relation
since we want to recognise when indices are omitted. For exam-
ple, the effect of localMean is a subset of (Symm 1) as an in-
dex is missing, therefore localMean’s effect is not a subeffect of
(Symm 1) hence cannot be ‘upcast’ to it. Thus, effects are overap-
proximated here by the subset.

9.2 Counter
Prior to the work on effect parameterised monads, Danielsson pro-
posed the Thunk “annotated monad” type [6], which is parame-
terised with natural numbers: 0 for return , and addition on the nat-
ural number parameters for (>>=). We call this the counter effect
monad as it can be used for counting aspects of computation, such
as time bounds in the case of Danielsson, or computation steps.

data Counter (n :: Nat) a = Counter {forget :: a }
instance Effect Counter where

type Unit Counter = 0
type Plus Counter n m = n + m

return a = Counter a
(Counter a)>>= k = Counter . forget $ k a

tick :: a → Counter 1 a
tick x = Counter x

Thus we can use tick to denote some increment in computation
steps or time. This effect system can be used to prove complexity
bounds on our programs. For example, we can prove that the map
function over a sized vector is linear in its size:

data Vector (n :: Nat) a where
Nil :: Vector 0 a
Cons :: a → Vector n a → Vector (n + 1) a

map :: (a → Count m b)
→ Vector n a → Count (n ∗m) (Vector n b)

map f Nil = return Nil
map f (Cons x xs) = do x ′ ← f x

xs ′ ← map f xs
return (Cons x ′ xs ′)

i.e., if we apply a function which takes m steps to a list of n
elements, then this takes n ∗m steps.

The above is a slight simplification of the actual implementation
(which can be found in Control.Effect.Counter) since type-
checking operations on type-level natural numbers are currently a
little under powered: the above does not type check. Instead, if we

implement our own inductive definitions of natural numbers, and
the corresponding + and ∗ operations, then the above type checks,
and the type system gives us a kind of complexity proof. The only
difference to the implementation and the above is that we do not
get the compact natural number syntax in the types.

10. Category theory definition
Previous theoretical work introduced parametric effect monads [12,
19] (where in [19] we called them indexed monads). For complete-
ness we briefly show the formal definition, which shows that para-
metric effect monads arise as a mapping between a monoid of ef-
fects (I, •, I) and the monoid of endofunctor composition (which
models sequential composition).

Parametric effect monads comprise a functor T : I → [C, C]
(i.e., an indexed family of endofunctors) where I is the category
providing effect annotations. This category I is taken as a strict
monoidal category (I, •, I), i.e., the operations on effect annota-
tions are defined as a binary functor • : I × I → I and an object
I ∈ I. The T functor is then a parametric effect monad when it is
a lax monoidal functor, mapping the strict monoidal structure on I
to the strict monoid of endofunctor composition ([C, C], ◦, IC).
The operations of the lax monoidal structure are thus:

η1 : IC
.−→ T1 µF,G : TF ◦ TG

.−→ T(F •G)

These lax monoidal operations of T match the shape of the regular
monad operations. Furthermore, the standard associativity and uni-
tality conditions of the lax monoidal functor give coherence con-
ditions to η1 and µF,G which are analogous to the regular monad
laws, but with added indices, e.g., µ1,G ◦ (η1)TG = idTG.

In our definition here, we have used the “extension form” in
terms of (>>=), as is traditional in Haskell. This is derived from the
µ (join) operation by x >>= f = (Tf ◦ µ)x.

Indexed monads collapse to regular monads when I is a single-
object monoidal category. Thus, indexed monads generalise mon-
ads. Note that indexed monads are not indexed families of monads.
That is, for all indices F ∈ obj(I) then TF may not be a monad.

11. Related notions
Parameterised monads and indexed monads Katsumata used the
phrase parametric effect monads [12], which we adopted here. In
previous work, we referred to such structures as indexed mon-
ads [19], but we recognise this clashes with other earlier uses of
the term. Most notably, Haskell already has an “indexed monad” li-
brary (Control.Monad.Indexed) which provides an interface for
Atkey’s notion of parameterised monad [1] with operations:

ireturn :: a → m i i a
ibind :: (a → m j k b)→ m i j a → m i k b

The second and third indices on m can be read like Hoare triples
(which McBride shows when embedding a similar definition to the
above in Haskell [16]), where m i j a is the triple {i} a {j}, i.e.,
a computation starts with pre-condition i, and computes a value
of type a providing post-condition j. An alternate view is that m
here is indexed by the source and target types of morphisms, where
ireturn is indexed by identities and ibind exhibits composition.

We can encode the same approach with our Effect class. Using
data kinds, we define a kind of morphisms Morph inhabited by
either the identity Id or a morphism M a b with source a and
target b. The type, together with the effect monad are defined as:

data Morph a b = M a b | Id

newtype T (i :: Morph ∗ ∗) a = T a

instance Effect (T :: ((Morph ∗ ∗)→ ∗ → ∗)) where
type Unit T = Id

type Plus T (M a b) (M c d) = M a d
type Plus T Id (M a b) = M a b
type Plus T (M a b) Id = M a b
type Inv T (M a b) (M c d) = c∼d

return a = T a
(T x)>>= k = let T y = k x in T y

We use the Inv constraint family to force the target type of the left
morphism to match the source type of the right morphism. Thus,
Hoare logic-style reasoning can be encoded in our framework, but
further exploring program logics is a topic for future work.

Effect handlers Algebraic effects handlers provide a representa-
tion of effects in terms of effectful operations (rather than an encod-
ing as with monads) and equations on these (e.g., [2, 23]). This is
a change of perspective. The monadic approach tends to start with
the encoding of effects, and later consider the effect-specific opera-
tions. The algebraic effects approach starts with the operations and
later considers the encoding as the free structure arising from the
operations and their equations. This provides a flexible solution to
the problems of granularity and compositionality for monads.

Recent work by Kammar, Lindley, and Oury embeds a system of
effect handlers in Haskell with a DSL [11]. The aims are similar to
ours, but the approach is different. Our approach can be embedded
in GHC as is, without any additional macros for encoding handlers
as in the approach of Kammar et al., and it provides rich type
system information, showing the effects of a program. There are
also some differences in power. For example, the heterogeneous
typing of state provided by parametric effect monads is not possible
with the current handler approach; we could not encode the update
writer example from Section 4.1. However, effect handlers offer
much greater compositionality, easily allowing different kinds of
effect to be combined in one system.

It is our view that parametric effect monads are an intermediate
approach between using monads and full algebraic effects.

As mentioned in the introduction, an alternate solution to the
coarse-granularity of monads is to introduce type classes for each
effectful operations where type class constraints act as effect an-
notations (see e.g. [15]). A similar approach is taken by Kiselyov
et al. in their library for extensible effects, which has similarities
to the effect handlers approach [13]. By the type-class constraint
encoding, these effect systems are based on sets with union and or-
dering by subsets. Our approach allows effect systems based on dif-
ferent foundations (an arbitrary monoid with a preorder), e.g., the
number-indexed counter monad (Section 9.2), the Maybe-indexed
update monad (Section 4.1), and the ordering of effects by super-
sets for array indexing effects (Section 9.1).

12. Epilogue
A whole menagerie of type system features were leveraged in this
paper to give a shallow embedding of effect systems in Haskell
types (without macros or custom syntax). The newest closed family
extension to GHC was key to embedding sets in types, which was
core to some of our examples.

While there is a great deal of power in the GHC type system,
a lot of boilerplate code was required. Frequently, we have made
almost identical type- and value-level definitions. Languages with
richer dependent types are able to combine these. Going forward,
it seems likely, and prudent, that such features will become part of
Haskell, although care must be taken so that they do not conflict
with other aspects of the core language. We also advocate for built-
in type-level sets which would significantly simplify our library.

Further work is to extend our approach to allow different kinds
of effect to be combined. One possible approach may be to define

a single monad type, parameterised by a set of effect annotations
whose elements each describe different notions of effect.

Acknowledgements Thanks to the anonymous reviewers for their
helpful feedback, Alan Mycroft for subeffecting discussions, An-
drew Rice for stencil computation discussion, Michael Gale for
comments on an earlier draft of this manuscript, and participants
of Fun in the Afternoon 2014 (Facebook, London) for comments
on a talk based on an early version. Thanks also to Andy Hopper
for his support. This work was partly supported by CHESS.

References
[1] Robert Atkey. Parameterised notions of computation. In Proceedings

of the Workshop on Mathematically Structured Functional Program-
ming. Cambridge Univ. Press, 2006.

[2] Andrej Bauer and Matija Pretnar. Programming with algebraic effects
and handlers. Journal of Logical and Algebraic Methods in Program-
ming, 2014.

[3] Max Bolingbroke. Constraint Kinds for GHC, 2011. http://blog.
omega-prime.co.uk/?p=127 (Retreived 24/06/14).

[4] Aloı̈s Brunel, Marco Gaboardi, Damiano Mazza, and Steve
Zdancewic. A core quantitative coeffect calculus. In Proceedings of
ESOP, volume 8410 of LNCS, pages 351–370. Springer, 2014.

[5] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Associated type synonyms. In Proceedings of 10th International
Conference on Functional Programming, pages 241–253. ACM, 2005.

[6] Nils Anders Danielsson. Lightweight semiformal time complexity
analysis for purely functional data structures. In ACM SIGPLAN
Notices, volume 43, pages 133–144. ACM, 2008.

[7] Richard A Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and
Stephanie Weirich. Closed type families with overlapping equations.
In Proceedings of POPL 2014, pages 671–684, 2014.

[8] Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource
semiring. In Proceedings of ESOP, volume 8410 of LNCS, pages 331–
350. Springer, 2014.

[9] David K. Gifford and John M. Lucassen. Integrating functional and
imperative programming. In Proceedings of Conference on LISP and
func. prog., LFP ’86, 1986.

[10] Pierre Jouvelot and David Gifford. Algebraic reconstruction of types
and effects. In Proceedings of the symposium on Principles of Pro-
gramming Languages, pages 303–310. ACM, 1991.

[11] Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action.
In Proceedings of the 18th International Conference on Functional
Programming, pages 145–158. ACM, 2013.

[12] Shin-ya Katsumata. Parametric effect monads and semantics of effect
systems. In Proceedings of symposium Principles of Programming
Languages, pages 633–646. ACM, 2014.

[13] Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects:
an alternative to monad transformers. In Proceedings of 2013 sympo-
sium on Haskell, pages 59–70. ACM, 2013.

[14] J.R. Lewis, J. Launchbury, E. Meijer, and M.B. Shields. Implicit
parameters: Dynamic scoping with static types. In Proceedings of
Principles of Programming Languages, page 118. ACM, 2000.

[15] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and
modular interpreters. In Proceedings of 22nd symposium on Principles
of Programming Languages, pages 333–343. ACM, 1995.

[16] Conor McBride. Functional pearl: Kleisli arrows of outrageous for-
tune. Journal of Functional Programming (to appear), 2011.

[17] Flemming Nielson and Hanne Nielson. Type and effect systems.
Correct System Design, pages 114–136, 1999.

[18] Dominic Orchard, Max Bolingbroke, and Alan Mycroft. Ypnos:
declarative, parallel structured grid programming. In Proceedings
of 5th workshop on Declarative Aspects of Multicore Programming,
pages 15–24. ACM, 2010.

[19] Dominic Orchard, Tomas Petricek, and Alan Mycroft. The semantic
marriage of monads and effects. arXiv:1401.5391, 2014.

[20] Dominic Orchard and Tom Schrijvers. Haskell type constraints un-
leashed. In Functional and Logic Programming, volume 6009/2010,
pages 56–71. Springer Berlin, 2010.

[21] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects:
Unified static analysis of context-dependence. In ICALP (2), volume
7966 of LNCS, pages 385–397. Springer, 2013.

[22] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Ge-
offrey Washburn. Simple unification-based type inference for GADTs.
In Proceedings of ICFP, pages 50–61. ACM, 2006.

[23] G. Plotkin and M. Pretnar. A logic for algebraic effects. In Logic in
Computer Science, 2008. LICS’08, pages 118–129. IEEE, 2008.

[24] Philip Wadler and Peter Thiemann. The marriage of effects and
monads. ACM Trans. Comput. Logic, 4:1–32, January 2003.

[25] Brent A Yorgey, Stephanie Weirich, Julien Cretin, Simon Pey-
ton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães. Giving
Haskell a promotion. In Proceedings of workshop on Types in lan-
guage design and implementation, pages 53–66. ACM, 2012.

A. Typed value-level list sorting
The following gives the value-level definitions of sorting to nor-
malise lists for the set representation, referenced from Section 3.

The top-level bubble function is defined by a type class:

class Bubbler s s ′ where
bubble :: Set s → Set s ′ → Set (Bubble s s ′)

instance Bubbler s ‘[] where
bubble s Empty = s

instance (Bubbler s t ,Passer (Bubble s t))
⇒ Bubbler s (e ‘: t) where

bubble s (Ext t) = pass (bubble s t)

The individual bubble sort pass is defined also by a type class, so
that the embedded constraints in the ‘swapping’ case are captured:

class Passer s where pass :: Set s → Set (Pass s)

instance Passer ‘[] where pass Empty = Empty

instance Passer ‘[e] where
pass (Ext e Empty) = Ext e Empty

instance (Passer ((Max e f) ‘: s),OrdH e f)
⇒ Passer (e ‘: f ‘: s) where

pass (Ext e (Ext f s)) =
Ext (minH e f) (pass (Ext (maxH e f) s))

B. Value comparison of variable-value mappings
Section 4 uses mappings v :→ t between variables and values.
Here, we add the value-level comparison operation. Scoped type
variables are used along with the data type Proxy used for giving
a value-level proxy to a type of kind k , i.e., Proxy :: Proxy k .

select :: forall j k a b . (Chooser (CmpSymbol j k))⇒
Var j → Var k → a → b → Select j k a b

select x y = choose
(Proxy :: (Proxy (CmpSymbol j k))) x y

instance (Chooser (CmpSymbol u v))⇒
OrdH (u :→ a) (v :→ b) where

minH (u :→ a) (v :→ b) = Var :→ (select u v a b)
maxH (u :→ a) (v :→ b) = Var :→ (select u v b a)

class Chooser (o :: Ordering) where
choose :: (Proxy o)→ p → q → (Choose o p q)

instance Chooser LT where choose p q = p
instance Chooser EQ where choose p q = p
instance Chooser GT where choose p q = q

http://blog.omega-prime.co.uk/?p=127
http://blog.omega-prime.co.uk/?p=127

	Introduction
	Parametric effect monads
	Defining type-level sets
	Writer effects
	Update effects

	Reader effects
	State effects
	Monads as parametric effect monads
	Implicit parameters and coeffects
	Program analysis and specification
	Data access
	Counter

	Category theory definition
	Related notions
	Epilogue
	Typed value-level list sorting
	Value comparison of variable-value mappings

