

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGPLAN’05 June 12–15, 2005, Location, State, Country.

Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Themes in Information-Rich Functional Programming for
Internet-Scale Data Sources

Don Syme, Keith Battocchi, Kenji

Takeda

Microsoft Research
Cambridge, UK

dsyme@microsoft.com

Donna Malayeri

Microsoft Corporation
Redmond, WA, USA

donnam@microsoft.com

Tomas Petricek

University of Cambridge
Cambridge, UK

tomas.petricek@cl.cam.ac.uk

Abstract

The F# language includes a feature called “F# 3.0 Type Provid-
ers” to support the integration of internet-scale information
sources into a strongly typed functional-first programming envi-
ronment. In this position paper we describe the key themes in
information-rich functional programming that we have observed
during this work. Our contribution is to document these themes
and highlight future challenges and opportunities, in the context of
a recently released, practical, open-source system for information-
rich functional programming. We believe that this area is rich in
excellent opportunities for future language and tooling research,
information-space integration and schematization techniques.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features – data structures,
D.2.12. Interoperability – data mapping.

General Terms Languages, Design

Keywords functional programming; Freebase; semantic web;
data services; connected programming; LINQ; ontology; F#

1. Introduction

Over the last 3 years the F# language team have designed and
implemented a programming language feature called “F# 3.0
Type Providers” to support the integration of internet-scale infor-
mation sources into a strongly typed programming environment
[8]. In this position paper we describe the key themes in infor-
mation-rich functional programming that we have observed dur-
ing this work. Our contribution is to document these themes and
highlight future challenges and opportunities, in the context of a
recently released, practical, open-source system for information-
rich functional programming, We believe that this area is rich in
excellent opportunities for future language and tooling research,
information-space modeling, schematization techniques, and usa-
bility analysis.

By way of introduction, a type provider is a compile-time
component that, given optional static parameters identifying an
external information space and a way of accessing that infor-
mation space, provides two things to the host F# compiler/tooling:

a representation of a provided component signature that acts as the
programming interface to that information space, and a provided
component implementation of the component signature. Both the
signature and implementation are computed on-demand (i.e. lazi-
ly), when required by the language tooling for the program being
compiled. The implementation is given by a pair of erasure func-
tions giving representation types and representation expressions
for the provided types and values respectively. Put most simply, a
type provider is an adapter component that reads schematized data
and services and transforms them into types in the target pro-
gramming language in an on-demand and scalable way. Type
providers are about using an on-demand provider model for the
“type import” logic of the host language compiler or tooling.

A mini-formalization of a calculus related to type providers is
described in [8], along with the low-level API for type providers.

The specific F# 3.0 implementation of the type provider design
has the following characteristics:

 The mechanism scales to information sources containing
extremely large quantities of metadata.

 The examples in [8] show how the mechanism can be ap-
plied effectively to internet-scale information services in-
cluding web data protocols (OData), web ontologies
(Freebase), web-based data markets (Azure Data Market)
and web information services (World Bank).

 The mechanism enables the use of code completion and in-
teractive type checking to increase programmer efficiency
when working with rich information sources.

 The mechanism interacts with strongly typed tooling such
as documentation assistance and completion lists and uses
these as the primary way of exploring and understanding
the information sources being used.

 The programming experience is code focused and inte-
grates well with strongly typed data scripting REPL envi-
ronments (e.g. F# Interactive).

 The programming infrastructure is neutral with regard to
the protocol and data formats used. F# itself, as a language,
has no specific dependency on external data sources or
formats.

 The mechanism uses an open architecture, so one can easi-
ly add new type providers that consume a different kind of
schematized data.

 The mechanism integrates technically with advanced fea-
tures of type systems such as units of measure. Further, it
multiplies the value of these features because of the quanti-
ty and importance of unitized data available in external in-
formation sources.

An example of using a type provider to explore the “Sports” sec-
tion of the Freebase knowledge graph is shown in Figure 1.

1.1 Some Definitions

Before we go further, we offer some definitions to aid discussion.
An information space is a loose notion that captures data

sources, external to the programming language, optionally anno-
tated with meta-data.

Information-rich programming is programming where one or
more information spaces are integral to the operation of the pro-
grams being constructed.

An information space schema is a (often formal) structure that
characterizes the common names, shapes, operations and con-
straints for an external information space.

A (strongly-typed) information-rich programming language is
a language that allows the integration of external information
sources, where the schema and content of these sources are pre-
sented in a (strongly-typed) idiomatic form. This form must re-
flect the information space schema of the information space in the
strongly-typed representation on the programming language side.

A component signature is the signature of software component
or information space in the host programming language. The sig-
nature typically will contain types, methods and properties and
additional metadata such as documentation.

A type-bridging technique is a mechanism and/or methodology
to take specified information spaces and produce programming
language projections of those, including both a component signa-
ture and a component implementation.

A language integrated query mechanism is a way of writing
queries in the host programming language which are then passed
to external information sources. This frequently involves author-
ing the queries using some form of meta-programming.

2. Themes and Challenges

In this section, we state the primary themes and challenges we
have encountered for strongly-typed information-rich functional
programming for internet scale information spaces. We refer the
reader to [8] for more detailed descriptions.

Theme: The size and number of information spaces is growing

rapidly, with respect to both data and metadata. Stable, orga-
nized information spaces of enormous size are now available
through networked services. Importantly, these spaces are both
huge in terms of absolute amounts of data (e.g. total number of
data points or tuples), and in absolute amounts of metadata (e.g.
total size of organized schemas, names and documentation associ-
ated with the data).

Theme: Few existing programming languages are able to seam-

lessly integrate external internet-scale information sources in a

scalable way. A repeated surprise in this work has been that al-
most no existing languages have scalable architectures for the
direct integration of stable external information spaces as strong-
ly-typed components. Existing language/tool architectures gener-
ally use code generation or eager macros, techniques which scale
poorly because they are not on-demand.

The current industry alternative to static type bridging is to use
dynamically typed information representations (often in a dynam-
ically typed language). This scales well but discards the benefits
of strongly-typed programming. This is particularly disturbing
when working against schematized information sources that come
equipped with fully stable, high-value schemas – in this situation
there seems no reason, per se, why strong typing should not be
applicable. It also loses the performance, tooling, correctness and
cross-component interoperability benefits associated with strong
types.

Theme: There will never be a single universal schema language

or protocol. Schematization and protocols for organized infor-
mation are a rapidly developing milieu of overlapping technolo-
gies and standards (SQL, XML, Web Services, CORBA, DCOM,
Linked Data, OData, GData, Atom, REST, RSS, JSON, RDF,
Protocol Buffers…). Our natural instinct as computer scientists is
to seek a single, unifying transport standard for data sources, and
the history of software is littered with such attempts. In the end
technologies often trend towards lowest-common-denominator
approaches such as XML or JSON. Our programming languages
need information integration architectures that are open, rather
than tied to these representations. A provider model avoids the
lowest common denominator by opening the programming lan-
guage to work with multiple standards in a scalable way.

Theme: A strongly-typed, functional-first language is an excel-

lent starting point for strongly-typed information-rich pro-
gramming. This is for these reasons:
 Type inference. F# and all strongly-typed functional languages

use type-inference extensively, requiring considerably fewer
type annotations than C#, C++ or Scala, and many fewer than
Java. For example, type annotations are not needed on return
types for F# functions, and are rarely needed at value declara-
tions. This is particularly crucial when dealing with provided
information spaces that contain thousands or millions or types,
as these types rarely need to be explicitly named, and instead
flow from provided values through the code.

 The Best of OO, the Best of Functional. Mixed functional/OO
languages use functional constructs for data manipulation and
OO for data representation. OO techniques are unrivalled for
representing large library designs, so it makes sense that they
are used for this role when representing even larger infor-
mation spaces. Functional techniques are unrivalled for data
transformation, query languages and compositional control ab-
stractions. For examples, provided collections use functional
abstractions such as sequences, LINQ queries [5], and the F#
asynchronous programming model [9].

 Interactive Execution. The combination of type providers
with a REPL (in our case F# Interactive) gives a code-focused,
data-scripting experience for tasks using large data sources.

 Prior data paucity. Functional programming languages have
historically been data-deficient, in the sense that accessing ex-
ternal data sources has been hard, partly due to the lack of li-
braries, and also due to the philosophical roots these languages
have in elegant closed-world mathematical systems. The
needy feel the benefit of type providers very strongly!

 Meta-programming foundations. At the API level, F# type
providers utilize several .NET and F# meta-programming idi-Figure 1. Exploring the Baseball Domain on Freebase

oms, including F# quotations [6]. The pre-existence of these
facilities was an important factor in making the type provider
implementation possible within reasonable resource con-
straints.

Theme: Design-time assistance. Modern development environ-
ments use types to simplify the implementation of “design time”
tooling, including Interactive type checking during development
(“red squigglies”), provision of context-sensitive declaration lists
(“auto-completion”), type-directed information and documenta-
tion on gestures such as mouse-hover (“quick info”), type and
name-directed help systems (“F1 help”), and safe refactorings.

Some design choices of F# type providers are very much driv-
en with the design-time experience in mind. The value of F# type
providers lies very much in being able to use design-time tooling
to navigate and explore information spaces. Design-time assis-
tance also has a strong influence on information-space design, as
much of the time in developing a type provider is spent in improv-
ing the usability of the completion lists offered to the data engi-
neer. Further, individual providers sometimes show sample data in
provided documentation, and completion-list filtering provides a
simple search mechanism.

Theme: Connected programming. “Connected programming” is
where connectivity to remote information sources is required dur-
ing program development and/or execution. Connected pro-
gramming is a common theme in language-integration of large
information sources because these sources are normally (though
not always) hosted remotely.

In the case of this work, connected programming means we
can assume type providers can access live data sources at design-
time, giving the developer an up-to-date schematization during
development.

In many cases it also makes sense to provide off-line support.
For instance, a developer working from home may wish to work
with a type provider configured to target an inaccessible corporate
database server. To support a range of realistic scenarios, type
providers are frequently designed to locally cache schema infor-
mation when accessing a live service and to rely on that infor-
mation if the service is unavailable. Often, the type provider uses
a configurable caching policy (e.g. “always connect to the server”
vs. “use a cached schema if the service is unavailable”) since
some developers may prefer not to rely on a potentially stale local
cache even when a connection can’t be made.

Theme: Bringing Simplicity and Consistency across Infor-
mation Spaces. One aim of F# type providers is that da-
ta/information programming experience is consistent across
different data services. This can be seen from the seemingly dis-
parate examples in [8]. Users can work with disparate sources of
data without learning each tool or web API individually. As more
type providers are created, we expect that certain patterns and
conventions that apply across a wide variety of type providers will
emerge. Some design patterns for type providers are provided by
Microsoft [7].

Theme/Challenge: Schema Change. One of the most important
questions when working with rich information spaces is that of
schema change. From the perspective of the F# type provider
mechanism, schema change manifests itself as:

 changes in the information space schema and thus the provid-
ed component signature, and

 changes in the provided implementations of methods support-
ing the execution of provided type implementations (i.e.
changes in the results of erasure functions)

We note that there is a strong trend to towards stable, rich infor-
mation sources delivered through the internet [8]. Further, in typi-
cal enterprises there are many information sources with relatively
stable schemas that make up the “information base” of a modern
enterprise. This trend is partly based on basic economics: stability
attracts developers, developers are crucial for information provid-
ers, and so information providers are increasingly in the business
of providing schema-stability guarantees in order to attract and
satisfy developers. So, while information sources change, in prac-
tice a growing number of information sources don’t change quite
as much as one might think.

Type providers address some aspect of schema changes in the-
se ways:

 When the space of provided types logically changes
through the coding process itself, a provider may raise an
invalidation signal which resets type-checking for client
tools.

 When the space of provided types changes between coding
sessions, the strong types and immediate auto-complete of-
fered by type providers gives good feedback on how to
correct the program.

 The (optional) use of type erasure for a type provider can
reduce and clarify the set of assumptions baked into pro-
vided code, making compiled code more resilient to
changes at runtime

 Deprecation (“obsolete”) attributes can be propagated from
external information sources. If a continuous integration
build process (e.g. nightly) is used, then schema change or
deprecation is detected as soon as a typecheck is per-
formed against the modified schema. This potentially al-
lows for early detection and remediation of problems
arising from schema change.

We advocate that type providers come with a schema change
specification, i.e. how their behavior is affected by schema
change, particularly w.r.t. source compatibility and binary com-
patibility. The view that a space of provided types is “just like a
library” can be helpful here. We are already familiar with how
changing libraries (versioning) exposes the developer to source
compatibility and binary compatibility issues both practically and
theoretically, and how to factor this into formalisms for software
upgrades e.g. [2, 3, 1].

The F# 3.0 type provider mechanism does not itself provide
any means to adjust program execution state based on schema
change. This means we normally assume we are working with
information sources where there is no schema change during pro-
gram execution, or in scripting environments where restarting or
reloading data is reasonable once schema change occurs. Extend-
ed architectures that adjust program execution state are imagina-
ble, though they would depend greatly on the underlying
execution techniques being used. The literature on hot-swapping
and dynamic software update may be relevant here [1].

Theme: Queries. Many information-rich data sources provide
special query languages (e.g. SQL for relational databases). Fre-
quently, it is more efficient to use such queries to execute filters,
joins, or projections on the server before retrieving data as op-
posed to executing equivalent logic on the client side. Therefore,
it will often be beneficial for type providers to include mecha-
nisms for creating and executing queries over provided types. In
some cases, this can be achieved using the standard .NET LINQ
IQueryable abstraction [5], but in other cases provider authors
may wish to use different abstractions (e.g. if the set of supported
query operators differs greatly from those provided by IQueryable
sources). Orthogonal to type providers, F# 3.0 also includes a
mechanism for embedding arbitrary query languages, which gives

type provider authors more flexibility when addressing these con-
cerns.

Theme: Security boundaries in schema information. Connected
programming introduces the themes of security and authentication
when accessing both schema (at design-time) and data (at
runtime). For most of the work described in [8] we assume that
schemas are freely available to all parties at design-time, and that
a provider gives a way of specifying credentials for authentication
at runtime. However, this assumption breaks down for many in-
teresting and reasonable applications of type-bridging mecha-
nisms (imagine, for example, a type provider providing
information from a multi-security-level classified data source).
Our view of compiler/tool architecture and of “what is a program”
may need a radical overhaul once we acknowledge that even writ-
ing and checking a program may require a range of credentials.

Theme: Granularity of Schematization. A common theme in
accessing data in a strongly-typed way relates to the granularity of
the schematization of the data. The question is not just “schema-
tized” v. “unschematized” but rather “how much schema”? For
example, [8] describes a bespoke type provider for World Bank
data, where schematization is at the granularity of individual
countries and indicators, where the Azure Data Market version of
this provider applies a much coarser schematization, where indi-
vidual country and indicator names are not part of the schema.

Individual providers can provide multiple granularities over
the same data sources – this is common and supports the transi-
tions between “production” programming over whole sets of data
and “investigative” programming against individual items. How-
ever, the initial decision of how much schematization to expose is
a non-trivial one that requires careful thought and design. This is
especially true given the new power that scalable type spaces
introduce.

Theme: Providing Additional Metadata (units). Many schema-
tized data sources include data that is described in terms of physi-
cal units of measure (e.g. time in seconds, or mass in kilograms).
F# contains unit-of-measure support within its type system [4], so
it makes sense to propagate this information in the types provided
by a type provider. Providing further metadata and constraints into
the type system is an important open question and direction for
future research.

Theme: Completeness of the Provider Mechanism with respect

to Host Language Constructs. The F# 3.0 type provider mecha-
nism allows for the provision of most, but not all .NET object-
model constructs, including classes, interfaces, methods, proper-
ties, fields, events and attributes. However, there are some re-
strictions: for example, F#-specific constructs such as modules,
union types and active patterns may not be provided. Also, gener-
ic type definitions may not be provided, though instantiations of
existing generic type definitions may be, including instantiations
with units-of-measure. One reason for this was simple resourcing:
adjusting the F# compiler for on-demand provision required work
and testing for each of these different constructs. Further, to some
extent we wished to avoid an eco-system of type providers that
relied on F#-specifics, because the type providers themselves may
be more generally useful in other contexts. However, over time
we expect to lift the remaining restrictions.

Our experience indicates completeness of possible provided
elements w.r.t. the host language (F#) is not a firm requirement

for provider mechanisms: one can proceed without it, and there
may be social or interoperability reasons for doing so.

3. Summary and Future Directions

If the web and multi-core were the pervasive issues of program-
ming in the first decade 21st century, the biggest challenge for the
programming landscape of the next 10 years is to integrate inter-
net-scale information services directly into programming lan-
guages in ways that improve programmer productivity,
performance, application robustness and application maintainabil-
ity. The work we have described here represents a contribution
(though by no means a final one) in that direction

Automated type bridging mechanisms radically expand the
role for names and types. In the examples explored in [8], types
are used much more extensively than in the equivalent loosely-
typed information access using XML, strings or JSON. Expanding
the role of types brings many benefits, but challenges existing,
comfortable assumptions about what types are, what role they
serve, what soundness result they guarantee, how they are selected
and what temporal properties they should have.

Many future opportunities exist for applying strong typing
when interacting with external information spaces. Some of these
avenues are implied by addressing the themes and challenges
outlined in this paper. Some avenues represent new ways to think
about the interplay between language and tools architecture: for
example, providers could give search functionality, recommenda-
tions, sample data or metadata-edit functionality for the provided
metadata space.

References

[1] G. Bierman, M. Parkinson, and J. Noble. UpgradeJ: Incremental
Typechecking for Class Upgrades. In ECOOP, pages 235–259. 2008.

[2] S. Drossopoulou, D. Wragg, and S. Eisenbach. What is Java binary
compatibility? OOPSLA ’98, pages 341–361. ACM, 1998.

[3] S. Eisenbach and C. Sadler. Changing Java Programs. In ICSM 2001,
Florence, Italy, November 2001.

[4] A. Kennedy. Types for units-of-measure in F#: invited talk. In Pro-
ceedings of the 2008 ACM SIGPLAN workshop on ML, ML ’08, pag-
es 1–2, New York, NY, USA, 2008. ACM.

[5] E. Meijer, B. Beckman, and G. Bierman. LINQ: reconciling object,
relations and XML in the .NET framework. In SIGMOD ’06: Int.
ACM Conf. on Mgmt. of Data. ACM, 2006.

[6] D. Syme. Leveraging .NET meta-programming components from F#:
integrated queries and interoperable heterogeneous execution. In
Proceedings of the 2006 workshop on ML, ML ’06, pages 43–54,
New York, NY, USA, 2006. ACM.

[7] D. Syme and K. Battocchi. Tutorial: Creating a type provider in F#,
January 2012. http://msdn.microsoft.com/en-
us/library/hh361034%28v=vs.110%29.aspx, retrieved 1 Aug 2012.

[8] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, J. Fisher, J. Hu,
T. Liu, B. McNamara, D. Quirk, M. Taveggia, W. Chae,
U. Matsveyeu, and T. Petricek. F#3.0 - Strongly-Typed Language
Support for Internet-Scale Information Sources. Technical Report
MSR-TR-2012-101, Microsoft Research, 2012.

[9] D. Syme, T. Petricek, and D. Lomov. The F# asynchronous pro-
gramming model. In Proceedings of the 13th international confer-
ence on Practical Aspects of Declarative Languages, PADL’11, pag-
pages 175–189, Berlin, Heidelberg, 2011. Springer-Verlag.

