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Abstract  

The F# language includes a feature called “F# 3.0 Type Provid-
ers” to support the integration of internet-scale information 
sources into a strongly typed functional-first programming envi-
ronment. In this position paper we describe the key themes in 
information-rich functional programming that we have observed 
during this work. Our contribution is to document these themes 
and highlight future challenges and opportunities, in the context of 
a recently released, practical, open-source system for information-
rich functional programming. We believe that this area is rich in 
excellent opportunities for future language and tooling research, 
information-space integration and schematization techniques. 

Categories and Subject Descriptors D.3.3 [Programming 

Languages]: Language Constructs and Features – data structures,  
D.2.12. Interoperability – data mapping. 

General Terms Languages, Design 

Keywords functional programming; Freebase; semantic web; 
data services; connected programming; LINQ; ontology; F# 

1. Introduction 

Over the last 3 years the F# language team have designed and 
implemented a programming language feature called “F# 3.0 
Type Providers” to support the integration of internet-scale infor-
mation sources into a strongly typed programming environment 
[8]. In this position paper we describe the key themes in infor-
mation-rich functional programming that we have observed dur-
ing this work. Our contribution is to document these themes and 
highlight future challenges and opportunities, in the context of a 
recently released, practical, open-source system for information-
rich functional programming, We believe that this area is rich in 
excellent opportunities for future language and tooling research, 
information-space modeling, schematization techniques, and usa-
bility analysis. 

By way of introduction, a type provider is a compile-time 
component that, given optional static parameters identifying an 
external information space and a way of accessing that infor-
mation space, provides two things to the host F# compiler/tooling: 

a representation of a provided component signature that acts as the 
programming interface to that information space, and a provided 
component implementation of the component signature. Both the 
signature and implementation are computed on-demand (i.e. lazi-
ly), when required by the language tooling for the program being 
compiled. The implementation is given by a pair of erasure func-
tions giving representation types and representation expressions 
for the provided types and values respectively. Put most simply, a 
type provider is an adapter component that reads schematized data 
and services and transforms them into types in the target pro-
gramming language in an on-demand and scalable way. Type 
providers are about using an on-demand provider model for the 
“type import” logic of the host language compiler or tooling.  

A mini-formalization of a calculus related to type providers is 
described in [8], along with the low-level API for type providers. 

The specific F# 3.0 implementation of the type provider design 
has the following characteristics: 

 The mechanism scales to information sources containing 
extremely large quantities of metadata. 

 The examples in [8] show how the mechanism can be ap-
plied effectively to internet-scale information services in-
cluding web data protocols (OData), web ontologies 
(Freebase), web-based data markets (Azure Data Market) 
and web information services (World Bank).  

 The mechanism enables the use of code completion and in-
teractive type checking to increase programmer efficiency 
when working with rich information sources. 

 The mechanism interacts with strongly typed tooling such 
as documentation assistance and completion lists and uses 
these as the primary way of exploring and understanding 
the information sources being used. 

 The programming experience is code focused and inte-
grates well with strongly typed data scripting REPL envi-
ronments (e.g. F# Interactive).  

 The programming infrastructure is neutral with regard to 
the protocol and data formats used. F# itself, as a language, 
has no specific dependency on external data sources or 
formats. 

 The mechanism uses an open architecture, so one can easi-
ly add new type providers that consume a different kind of 
schematized data. 

 The mechanism integrates technically with advanced fea-
tures of type systems such as units of measure. Further, it 
multiplies the value of these features because of the quanti-
ty and importance of unitized data available in external in-
formation sources.  



An example of using a type provider to explore the “Sports” sec-
tion of the Freebase knowledge graph is shown in Figure 1. 

1.1 Some Definitions 

Before we go further, we offer some definitions to aid discussion. 
An information space is a loose notion that captures data 

sources, external to the programming language, optionally anno-
tated with meta-data.  

Information-rich programming is programming where one or 
more information spaces are integral to the operation of the pro-
grams being constructed.  

An information space schema is a (often formal) structure that 
characterizes the common names, shapes, operations and con-
straints for an external information space.  

A (strongly-typed) information-rich programming language is 
a language that allows the integration of external information 
sources, where the schema and content of these sources are pre-
sented in a (strongly-typed) idiomatic form. This form must re-
flect the information space schema of the information space in the 
strongly-typed representation on the programming language side.  

A component signature is the signature of software component 
or information space in the host programming language. The sig-
nature typically will contain types, methods and properties and 
additional metadata such as documentation. 

A type-bridging technique is a mechanism and/or methodology 
to take specified information spaces and produce programming 
language projections of those, including both a component signa-
ture and a component implementation.  

A language integrated query mechanism is a way of writing 
queries in the host programming language which are then passed 
to external information sources. This frequently involves author-
ing the queries using some form of meta-programming. 

2. Themes and Challenges 

In this section, we state the primary themes and challenges we 
have encountered for strongly-typed information-rich functional 
programming for internet scale information spaces. We refer the 
reader to [8] for more detailed descriptions. 

Theme: The size and number of information spaces is growing 

rapidly, with respect to both data and metadata. Stable, orga-
nized information spaces of enormous size are now available 
through networked services. Importantly, these spaces are both 
huge in terms of absolute amounts of data (e.g. total number of 
data points or tuples), and in absolute amounts of metadata (e.g. 
total size of organized schemas, names and documentation associ-
ated with the data).  

Theme: Few existing programming languages are able to seam-

lessly integrate external internet-scale information sources in a 

scalable way. A repeated surprise in this work has been that al-
most no existing languages have scalable architectures for the 
direct integration of stable external information spaces as strong-
ly-typed components. Existing language/tool architectures gener-
ally use code generation or eager macros, techniques which scale 
poorly because they are not on-demand. 

The current industry alternative to static type bridging is to use 
dynamically typed information representations (often in a dynam-
ically typed language). This scales well but discards the benefits 
of strongly-typed programming. This is particularly disturbing 
when working against schematized information sources that come 
equipped with fully stable, high-value schemas – in this situation 
there seems no reason, per se, why strong typing should not be 
applicable. It also loses the performance, tooling, correctness and 
cross-component interoperability benefits associated with strong 
types.    

Theme: There will never be a single universal schema language 

or protocol.  Schematization and protocols for organized infor-
mation are a rapidly developing milieu of overlapping technolo-
gies and standards (SQL, XML, Web Services, CORBA, DCOM, 
Linked Data, OData, GData, Atom, REST, RSS, JSON, RDF, 
Protocol Buffers…). Our natural instinct as computer scientists is 
to seek a single, unifying transport standard for data sources, and 
the history of software is littered with such attempts. In the end 
technologies often trend towards lowest-common-denominator 
approaches such as XML or JSON. Our programming languages 
need information integration architectures that are open, rather 
than tied to these representations. A provider model avoids the 
lowest common denominator by opening the programming lan-
guage to work with multiple standards in a scalable way. 

Theme: A strongly-typed, functional-first language is an excel-

lent starting point for strongly-typed information-rich pro-
gramming. This is for these reasons:  
 Type inference. F# and all strongly-typed functional languages 

use type-inference extensively, requiring considerably fewer 
type annotations than C#, C++ or Scala, and many fewer than 
Java. For example, type annotations are not needed on return 
types for F# functions, and are rarely needed at value declara-
tions. This is particularly crucial when dealing with provided 
information spaces that contain thousands or millions or types, 
as these types rarely need to be explicitly named, and instead 
flow from provided values through the code. 

 The Best of OO, the Best of Functional.  Mixed functional/OO 
languages use functional constructs for data manipulation and 
OO for data representation. OO techniques are unrivalled for 
representing large library designs, so it makes sense that they 
are used for this role when representing even larger infor-
mation spaces. Functional techniques are unrivalled for data 
transformation, query languages and compositional control ab-
stractions. For examples, provided collections use functional 
abstractions such as sequences, LINQ queries [5], and the F# 
asynchronous programming model [9]. 

 Interactive Execution.  The combination of type providers 
with a REPL (in our case F# Interactive) gives a code-focused, 
data-scripting experience for tasks using large data sources. 

 Prior data paucity. Functional programming languages have 
historically been data-deficient, in the sense that accessing ex-
ternal data sources has been hard, partly due to the lack of li-
braries, and also due to the philosophical roots these languages 
have in elegant closed-world mathematical systems. The 
needy feel the benefit of type providers very strongly! 

 Meta-programming foundations. At the API level, F# type 
providers utilize several .NET and F# meta-programming idi-Figure 1. Exploring the Baseball Domain on Freebase 



oms, including F# quotations [6].  The pre-existence of these 
facilities was an important factor in making the type provider 
implementation possible within reasonable resource con-
straints. 

Theme: Design-time assistance. Modern development environ-
ments use types to simplify the implementation of “design time” 
tooling, including Interactive type checking during development 
(“red squigglies”), provision of context-sensitive declaration lists 
(“auto-completion”), type-directed information and documenta-
tion on gestures such as mouse-hover (“quick info”), type and 
name-directed help systems (“F1 help”), and safe refactorings. 

Some design choices of F# type providers are very much driv-
en with the design-time experience in mind. The value of F# type 
providers lies very much in being able to use design-time tooling 
to navigate and explore information spaces. Design-time assis-
tance also has a strong influence on information-space design, as 
much of the time in developing a type provider is spent in improv-
ing the usability of the completion lists offered to the data engi-
neer. Further, individual providers sometimes show sample data in 
provided documentation, and completion-list filtering provides a 
simple search mechanism. 

Theme: Connected programming. “Connected programming” is 
where connectivity to remote information sources is required dur-
ing program development and/or execution.  Connected pro-
gramming is a common theme in language-integration of large 
information sources because these sources are normally (though 
not always) hosted remotely. 

In the case of this work, connected programming means we 
can assume type providers can access live data sources at design-
time, giving the developer an up-to-date schematization during 
development. 

In many cases it also makes sense to provide off-line support.  
For instance, a developer working from home may wish to work 
with a type provider configured to target an inaccessible corporate 
database server.  To support a range of realistic scenarios, type 
providers are frequently designed to locally cache schema infor-
mation when accessing a live service and to rely on that infor-
mation if the service is unavailable.  Often, the type provider uses 
a configurable caching policy (e.g. “always connect to the server” 
vs. “use a cached schema if the service is unavailable”) since 
some developers may prefer not to rely on a potentially stale local 
cache even when a connection can’t be made. 

Theme: Bringing Simplicity and Consistency across Infor-
mation Spaces. One aim of F# type providers is that da-
ta/information programming experience is consistent across 
different data services. This can be seen from the seemingly dis-
parate examples in [8]. Users can work with disparate sources of 
data without learning each tool or web API individually.  As more 
type providers are created, we expect that certain patterns and 
conventions that apply across a wide variety of type providers will 
emerge.  Some design patterns for type providers are provided by 
Microsoft [7]. 

Theme/Challenge: Schema Change. One of the most important 
questions when working with rich information spaces is that of 
schema change. From the perspective of the F# type provider 
mechanism, schema change manifests itself as: 

 changes in the information space schema and thus the provid-
ed component signature, and 

 changes in the provided implementations of methods support-
ing the execution of provided type implementations (i.e. 
changes in the results of erasure functions)  

We note that there is a strong trend to towards stable, rich infor-
mation sources delivered through the internet [8]. Further, in typi-
cal enterprises there are many information sources with relatively 
stable schemas that make up the “information base” of a modern 
enterprise. This trend is partly based on basic economics: stability 
attracts developers, developers are crucial for information provid-
ers, and so information providers are increasingly in the business 
of providing schema-stability guarantees in order to attract and 
satisfy developers. So, while information sources change, in prac-
tice a growing number of information sources don’t change quite 
as much as one might think. 

Type providers address some aspect of schema changes in the-
se ways: 

 When the space of provided types logically changes 
through the coding process itself, a provider may raise an 
invalidation signal which resets type-checking for client 
tools.  

 When the space of provided types changes between coding 
sessions, the strong types and immediate auto-complete of-
fered by type providers gives good feedback on how to 
correct the program.  

 The (optional) use of type erasure for a type provider can 
reduce and clarify the set of assumptions baked into pro-
vided code, making compiled code more resilient to 
changes at runtime 

 Deprecation (“obsolete”) attributes can be propagated from 
external information sources. If a continuous integration 
build process (e.g. nightly) is used, then schema change or 
deprecation is detected as soon as a typecheck is per-
formed against the modified schema. This potentially al-
lows for early detection and remediation of problems 
arising from schema change. 

We advocate that type providers come with a schema change 
specification, i.e. how their behavior is affected by schema 
change, particularly w.r.t. source compatibility and binary com-
patibility. The view that a space of provided types is “just like a 
library” can be helpful here. We are already familiar with how 
changing libraries (versioning) exposes the developer to source 
compatibility and binary compatibility issues both practically and 
theoretically, and how to factor this into formalisms for software 
upgrades e.g. [2, 3, 1].  

The F# 3.0 type provider mechanism does not itself provide 
any means to adjust program execution state based on schema 
change. This means we normally assume we are working with 
information sources where there is no schema change during pro-
gram execution, or in scripting environments where restarting or 
reloading data is reasonable once schema change occurs. Extend-
ed architectures that adjust program execution state are imagina-
ble, though they would depend greatly on the underlying 
execution techniques being used. The literature on hot-swapping 
and dynamic software update may be relevant here [1]. 

Theme: Queries. Many information-rich data sources provide 
special query languages (e.g. SQL for relational databases).  Fre-
quently, it is more efficient to use such queries to execute filters, 
joins, or projections on the server before retrieving data as op-
posed to executing equivalent logic on the client side.  Therefore, 
it will often be beneficial for type providers to include mecha-
nisms for creating and executing queries over provided types.  In 
some cases, this can be achieved using the standard .NET LINQ 
IQueryable abstraction [5], but in other cases provider authors 
may wish to use different abstractions (e.g. if the set of supported 
query operators differs greatly from those provided by IQueryable 
sources).  Orthogonal to type providers, F# 3.0 also includes a 
mechanism for embedding arbitrary query languages, which gives 



type provider authors more flexibility when addressing these con-
cerns. 

Theme: Security boundaries in schema information. Connected 
programming introduces the themes of security and authentication 
when accessing both schema (at design-time) and data (at 
runtime). For most of the work described in [8] we assume that 
schemas are freely available to all parties at design-time, and that 
a provider gives a way of specifying credentials for authentication 
at runtime. However, this assumption breaks down for many in-
teresting and reasonable applications of type-bridging mecha-
nisms (imagine, for example, a type provider providing 
information from a multi-security-level classified data source). 
Our view of compiler/tool architecture and of “what is a program” 
may need a radical overhaul once we acknowledge that even writ-
ing and checking a program may require a range of credentials. 

Theme: Granularity of Schematization. A common theme in 
accessing data in a strongly-typed way relates to the granularity of 
the schematization of the data. The question is not just “schema-
tized” v. “unschematized” but rather “how much schema”? For 
example, [8] describes a bespoke type provider for World Bank 
data, where schematization is at the granularity of individual 
countries and indicators, where the Azure Data Market version of 
this provider applies a much coarser schematization, where indi-
vidual country and indicator names are not part of the schema. 

Individual providers can provide multiple granularities over 
the same data sources – this is common and supports the transi-
tions between “production” programming over whole sets of data 
and “investigative” programming against individual items. How-
ever, the initial decision of how much schematization to expose is 
a non-trivial one that requires careful thought and design. This is 
especially true given the new power that scalable type spaces 
introduce. 

Theme: Providing Additional Metadata (units). Many schema-
tized data sources include data that is described in terms of physi-
cal units of measure (e.g. time in seconds, or mass in kilograms).  
F# contains unit-of-measure support within its type system [4], so 
it makes sense to propagate this information in the types provided 
by a type provider. Providing further metadata and constraints into 
the type system is an important open question and direction for 
future research. 

Theme: Completeness of the Provider Mechanism with respect 

to Host Language Constructs. The F# 3.0 type provider mecha-
nism allows for the provision of most, but not all .NET object-
model constructs, including classes, interfaces, methods, proper-
ties, fields, events and attributes. However, there are some re-
strictions: for example, F#-specific constructs such as modules, 
union types and active patterns may not be provided. Also, gener-
ic type definitions may not be provided, though instantiations of 
existing generic type definitions may be, including instantiations 
with units-of-measure. One reason for this was simple resourcing: 
adjusting the F# compiler for on-demand provision required work 
and testing for each of these different constructs. Further, to some 
extent we wished to avoid an eco-system of type providers that 
relied on F#-specifics, because the type providers themselves may 
be more generally useful in other contexts. However, over time 
we expect to lift the remaining restrictions. 

Our experience indicates completeness of possible provided 
elements w.r.t. the host language (F#) is not a firm requirement 

for provider mechanisms: one can proceed without it, and there 
may be social or interoperability reasons for doing so. 

3. Summary and Future Directions 

If the web and multi-core were the pervasive issues of program-
ming in the first decade 21st century, the biggest challenge for the 
programming landscape of  the next 10 years is to integrate inter-
net-scale information services directly into programming lan-
guages in ways that improve programmer productivity, 
performance, application robustness and application maintainabil-
ity. The work we have described here represents a contribution 
(though by no means a final one) in that direction 

Automated type bridging mechanisms radically expand the 
role for names and types. In the examples explored in [8], types 
are used much more extensively than in the equivalent loosely-
typed information access using XML, strings or JSON. Expanding 
the role of types brings many benefits, but challenges existing, 
comfortable assumptions about what types are, what role they 
serve, what soundness result they guarantee, how they are selected 
and what temporal properties they should have.   

Many future opportunities exist for applying strong typing 
when interacting with external information spaces. Some of these 
avenues are implied by addressing the themes and challenges 
outlined in this paper. Some avenues represent new ways to think 
about the interplay between language and tools architecture: for 
example, providers could give search functionality, recommenda-
tions, sample data or metadata-edit functionality for the provided 
metadata space. 
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