
Information-rich programming in F#

Tomas Petricek, University of Cambridge

Don Syme and the F# team, Microsoft

The confusion of languages

The confusion of languages

What is a type provider?

DEMO: Accessing World Bank

Comparing university enrollment rate in

Czech Republic and OECD countries

Problems with data access

Data is not types with members

Use dynamic languages?

Need to know names of properties

Use code generation and static languages?

Enormous scale of data sources

Types need to be generated “on demand”

Components of a type provider

Type provider

IDE

IntelliSense for

Provided Types

Compiler

Type-Check

Provided Types

Compile using

Type Provider

Research problems

Mapping data sources to types

What is a type? What is a value?

Types are provided on demand

Cannot generate all indicator types at once!

Representing data source properties as types

Physical units, provenance, temporal properties

Adapting to schema change

Type soundness is relative w.r.t. data source changes

Mapping data source to types

Country

Year Indicator

Research problems

Mapping data sources to types

What is a type? What is a value?

Types are provided on demand

Cannot generate all indicator types at once!

Representing data source properties as types

Physical units, provenance, temporal properties

Adapting to schema change

Type soundness is relative w.r.t. data source changes

WB.DataContext = Countries : delay (…) WB.DataContext = Countries : Country list

Gamma, The Forgotten

Standard typing judgments

Gamma on steroids

Reducing delayed context

Γ ⊢ 𝑒: 𝜏 ⇒ Γ’

Γ ⊢ 𝑒: 𝜏

Γ = …, WB.DataContext

Research problems

Mapping data sources to types

What is a type? What is a value?

Types are provided on demand

Cannot generate all indicator types at once!

Representing data source properties as types

Physical units, provenance, temporal properties

Adapting to schema change

Type soundness is relative w.r.t. data source changes

DEMO: XML Type Provider

Working with XML data and

adapting to schema change

Related Work

Compile-time meta-programming

Types generated eagerly, not on demand

Dependently typed languages

Type-level computation in the IO monad??

Multi-stage computations

Focus on performance vs. data access

For more information

Upcoming technical report

Don Syme, et al. Strongly-Typed Language

Support for an Information-Rich World

Workshop on related topics

Data Driven Functional Programming

Workshop, Co-located with POPL 2013

Summary

Mismatch between data and types

Type providers bridge the gap

Development-time, compile-time & run-time

Interesting future questions

Relative type safety and schema change

Capturing meta-data with types

Research problems

Mapping data sources to types

What is a type? What is a value?

Types are provided on demand

Cannot generate all indicator types at once!

Representing data source properties as types

Physical units, provenance, temporal properties

Adapting to schema change

Type soundness is relative w.r.t. data source changes

DEMO: FreeBase Type Provider

Working with chemistry data

and units of measure

Structure of a Simple Provider

[<TypeProvider>]
type SampleTypeProvider(config: TypeProviderConfig) =
 inherit TypeProviderForNamespaces()

 // Define new type Samples.GeneratedType
 let thisAssembly = Assembly.GetExecutingAssembly()
 let providedType = ProvidedTypeDefinition(...)
 do
 // Add property 'Hello' that just returns a string
 ProvidedProperty
 ("Hello", typeof<string>, IsStatic = true,
 GetterCode = fun args -> <@@ Runtime.lookup "Hello" @@>)
 |> providedType.AddMember

 // Register the type with the compiler
 this.AddNamespace(namespaceName, [providedType])

Compile-Time vs. Run-time

 Type Provider

Data
source

Executable

Runtime API

Provided code

Generates

Uses Accesses

Accesses

Provider

Compile-Time vs. Run-time

 Type Provider

Executable

Generates

Accesses

ProviderRuntime API

Provided code

Data
source

Queries in F#

Can be turned to quotations

Extensible query language

query { for movie in netflix.Titles do
 where (movie.Name.Contains(search))
 select movie }

query { for index in Numbers do
 reverse
 takeWhile index > 10 }

