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The confusion of languages 
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What is a type provider? 

  



DEMO: Accessing World Bank 

 

Comparing university enrollment rate in 

Czech Republic and OECD countries 



Problems with data access 

Data is not types with members 

Use dynamic languages? 

Need to know names of properties 

Use code generation and static languages? 

Enormous scale of data sources 

Types need to be generated “on demand” 



Components of a type provider 

Type provider 
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Research problems 

Mapping data sources to types 

What is a type? What is a value? 

Types are provided on demand 

Cannot generate all indicator types at once! 

Representing data source properties as types 

Physical units, provenance, temporal properties 

Adapting to schema change 

Type soundness is relative w.r.t. data source changes 



Mapping data source to types 

  

Country 

Year Indicator 
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WB.DataContext = Countries : delay (…) WB.DataContext = Countries : Country list 

Gamma, The Forgotten 

Standard typing judgments 

 

Gamma on steroids 

 

Reducing delayed context 

Γ ⊢ 𝑒: 𝜏 ⇒ Γ’ 

Γ ⊢ 𝑒: 𝜏 

Γ = …,  WB.DataContext 
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DEMO: XML Type Provider 

 

Working with XML data and  

adapting to schema change 



Related Work 

Compile-time meta-programming 

Types generated eagerly, not on demand 

Dependently typed languages 

Type-level computation in the IO monad?? 

Multi-stage computations 

Focus on performance vs. data access 



For more information 

Upcoming technical report 

Don Syme, et al. Strongly-Typed Language 

Support for an Information-Rich World 

Workshop on related topics 

Data Driven Functional Programming 

Workshop, Co-located with POPL 2013 



Summary 

Mismatch between data and types 

Type providers bridge the gap 

Development-time, compile-time & run-time 

Interesting future questions 

Relative type safety and schema change 

Capturing meta-data with types 
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DEMO: FreeBase Type Provider 

 

Working with chemistry data  

and units of measure 



Structure of a Simple Provider 

  
[<TypeProvider>] 
type SampleTypeProvider(config: TypeProviderConfig) =  
  inherit TypeProviderForNamespaces() 
 
  // Define new type Samples.GeneratedType 
  let thisAssembly = Assembly.GetExecutingAssembly() 
  let providedType = ProvidedTypeDefinition( ... ) 
  do 
    // Add property 'Hello' that just returns a string 
    ProvidedProperty 
      ( "Hello", typeof<string>, IsStatic = true, 
        GetterCode = fun args -> <@@ Runtime.lookup "Hello" @@>) 
    |> providedType.AddMember  
 
    // Register the type with the compiler 
    this.AddNamespace(namespaceName, [ providedType ]) 



Compile-Time vs. Run-time 
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Queries in F# 

Can be turned to quotations 

 

Extensible query language 

query { for movie in netflix.Titles do 
        where (movie.Name.Contains(search))  
        select movie } 

query { for index in Numbers do 
        reverse 
        takeWhile index > 10 } 


