
The Gamma: Programmatic Data
Exploration for Non-programmers

Tomas Petricek
University of Kent, UK and Charles University, Czech Republic

tomas@tomasp.net

Abstract—Data exploration tools based on code can access any
data source, result in reproducible scripts and encourage users
to verify, reuse and modify existing code. Unfortunately, they are
hard to use and require expert coding skills. Can we make data
exploration tools based on code accessible to non-experts?

We present The Gamma, a novel text-based data exploration
environment that answers the question in the affirmative. The
Gamma takes the idea of code completion to the limit. Users
create transparent and reproducible scripts without writing code,
by repeatedly choosing from offered code completions.

The Gamma is motivated by the needs of data journalists and
shows that we may not need to shy away from code for building
accessible, reproducible and transparent tools that allow a broad
public to benefit from the rise of open data.

Index Terms—data exploration, data journalism

I. INTRODUCTION

Despite the advances on visual tooling, programmatic data
exploration remains the choice of expert analysts. It is flexibile,
offers greater reusability and leads to transparent analyses. The
design of a programmatic data exploration tool that would
be accessible to data journalists poses a number of design
challenges. First, the tool needs to have a low barrier to entry
to support first-time users without training. Second, it needs
to support multiple data sources in a uniform way to allow
transfer of knowledge across domains. Finally, users need to
be able to learn by looking at existing data analyses.

We present The Gamma, a text-based data exploration tool
for non-experts that is based on a single, easy to understand
interaction principle. It provides a uniform access to data
tables, graph databases and data cubes and leads to transparent
analyses that can be easily reproduced, encouraging learning
and critical engagement with data.

The Gamma is based on iterative prompting, which turns
code completion from a programmer assistance tool into
a non-expert programming mechanism that allows users to
construct all valid data exploration scripts just by repeatedly
choosing an item from a list of offered options. The design
favors recognition over recall and allows non-programmers
to construct entire scripts without first learning to code. Yet,
the result remains a transparent and reproducible script. A
crucial feature is that iterative prompting only offers operations
that are valid in a given context and that it offers all such
operations; it is both correct and complete.

The Gamma focuses on tasks that a data journalist may want
to complete (Figure 1). The user accesses data available in a

Fig. 1: Obtaining teams with the greatest number of gold medals from Rio
2016 Olympics: (1) Reproducible The Gamma script; (2) contextual iterative
prompting offering ways of sorting the data; (3) an instant preview of results.

structured format. They make several experiments to find an
interesting insight, e.g. by applying different aggregations or
filters. They visualize the results using a table or a chart before
publishing their analysis. The Gamma makes such program-
matic data exploration simple enough for non-programmers.
Scraping and cleaning of messy data or building custom data
visualizations is outside of the scope of our work, but exposing
such functionality using iterative prompting is an interesting
and worthwhile future challenge.

In this paper, we describe and evaluate the design principles
behind The Gamma project:

• We introduce the iterative prompting principle in The
Gamma (Section III) and show how it can be used for
querying of distinct data sources including data tables,
graph databases and data cubes (Section IV).

• We illustrate the expressiveness of the system through
a case study (Section V) and evaluate it through a user
study (Section VI), confirming that non-programmers can
use The Gamma to construct non-trivial data queries.

• We reflect how our design lowers barriers to entry,
supports learning without experts and offers a complete
and correct program construction method (Section VII).

The Gamma is available at http://thegamma.net, both as an
open-source library and a hosted data exploration service.

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

http://thegamma.net

II. RELATED WORK

We aim to make recent advances on information-rich program-
ming [1] available to non-programmers [2], [3], in the context
of data journalism [4]. Our work features a novel combination
of characteristics in that our iterative prompting interaction
principle is centered around code, but reduces the conceptual
complexity of coding to a single basic kind of interaction.

Code Completion for Data Science: The Gamma utilizes
type providers [1], [5], which integrate external data into a
static type system. This enables auto-completion [6], which we
turn into a tool for non-programmers. Similar systems based
on machine learning and domain specific languages [7], [8] do
not guarantee completeness, i.e. it is unclear whether the user
can create all possible scripts. Approaches based on natural
language are effective [9], [10], [11], but hide the underlying
structure and do not help users understand the exact operations
performed. Code completion based on machine learning [12],
[13] also exists for general-purpose programming languages
used by data scientists such as Python [14], but this focuses
on providing assistance to expert programmers.

Notebooks and Business Intelligence Tools: Notebooks such
as Jupyter [15] are widely used data exploration environments
for programmers. The Gamma targets non-experts, but could
be integrated with a multi-language notebook system [16].
Spreadsheets, business intelligence [17], [18] and other visual
data analytics tools [19], [20] do not involve programming,
but require mastering a complex GUI. In contrast, in The
Gamma, all operations can be completed through a single
kind of interaction. Several systems [21], [22], [23] record
interactions with the GUI as a script that can be modified by
the user. Unlike in The Gamma, the generated code does not
guide the user in learning how to use the system.

Easier Programming Tools: Many systems aim to make
programming easier. Victor [24] inspired work on live envi-
ronments environments [25], [26], [27] that help program-
mers understand how code relates to output; exploratory
systems [28], [29] assist with completing open-ended tasks;
and system combining code with visualization also exists for
graph querying [30]. The Gamma is live in that our editor gives
an instant preview of the results. To avoid difficulties with
editing code as text, some systems use structured editors [31],
[32], [33], [34], [35]. Many systems simplify programming
by offering high-level abstractions, e.g. for interactive news
articles [36], statistical analyses [37], data visualization [38],
[39]. The Gamma provides high-level abstractions for data
querying, but supporting other tasks remains future work.

Programming without Writing Code: In programming by
example [40], used for example in spreadsheets [41], [42],
the user gives examples of desired results. In direct manipula-
tion [43], a program is specified by interacting with the output.
This has been used in the visual domain [44], but also for data
querying [45], [46], [47]. Direct manipulation can also support
data exploration by letting users partially edit queries, e.g. by
changing quantifiers as in DataPlay [48].

III. OVERVIEW

The Gamma is a text-based system that allows non-experts to
explore data using iterative prompting – by repeatedly select-
ing an item from an auto-complete list. The study presented in
Section VI confirms that the kind of data exploration shown
in the next section can be successfully done by non-experts.

We introduce The Gamma by walking through a typical
data exploration task. A data journalist from Kent is exploring
travel expense claims by members of the House of Lords
published by the UK government [49]. After importing the
CSV file through a web interface, the environment is initialized
with code that refers to the imported data as expenses using
the type provider for tabular data (Section IV). The journalist
types ‘.’ (dot) to start exploring the data:

1 expenses.

The type provider offers a list of operations that the journalist
can perform. To find House of Lords members from Kent, the
journalist chooses filter data. She is then offered a list of
columns based on the schema of the CSV file and chooses
County is. The completion lists counties in the data set:

1 expenses.’filter data’.’County is’.

The journalist chooses Kent. The Gamma evaluates the code
on-the-fly and shows a preview of results.

1 expenses.’filter data’.’County is’.Kent

The journalist decides to compare travel costs. She finishes
specifying the filtering condition by choosing then and is
offered the same list of querying operations as in the first step.
She selects sort data and is offered a list of sorting options:

1 expenses.’filter data’.’County is’.Kent.then.
2 ’sort data’.

The journalist chooses then and is, again, offered the list of
querying operation. She uses paging to get the top 4 records,
which requires typing 4 as the argument. She then uses the

get series operation to obtain a data series associating travel
expenses with a name, which is automatically visualized:

1 expenses.’filter data’.’County is’.Kent.then
2 .’sort data’.’by Travel Costs descending’.then
3 .paging.take(4).’get series’
4 .’with key Name’.’and value Travel Costs’

The code is not unlike an SQL query, except that the whole
script is constructed using iterative prompting, by repeatedly
selecting one of the offered members. Those represent both
operations, such as sort by and arguments, such as Kent. The
only exception is when the analyst needs to type the number
4 to specify the number of items to take.

IV. SYSTEM DESCRIPTION

A program in The Gamma is a sequence of commands that can
be either a variable declarations or an expression that evaluates
to a value. An expression is a reference to a data source
followed by a chain of member accesses. Each expression has
a type that is used to generate options in auto-completion.
A type defines a list of members that, in turn, have their
own types. The types are not built-in, but are generated by
type providers for individual data sources. The syntax and
semantics of the language has been described elsewhere [50].

A new data source can be supported by implementing a
type provider, which defines a domain specific language for
exploring data of a particular kind. A type provider generates
object types with members (such as paging or Kent) that are
accessed via iterative prompting. We outline type providers
for exploring data cubes (inspired by Syme et al. [1]), tabular
data (formalized elsewhere [52]), and graph databases.

Data Cube Provider: Data cubes are multi-dimensional
arrays of values. For example, the World Bank collects a
range of indicators about many countries each year while
the UK government expenditure records spending for different
government services, over time, with different adjustments:

1 worldbank.byCountry.’United States’.
2 ’Climate Change’.’CO2 emissions (kt)’
3

4 expenditure.byService.Defence.inTermsOf.GDP

The dimensions of the worldbank cube are countries, years
and indicators, whereas the dimensions of expenditure are
government services, years and value type (adjusted, nominal,
per GDP). Figure 2a illustrates how the provider allows users
to slice the data cube. Choosing byCountry.'United States',
restricts the cube to a plane and 'CO2 emissions (kt)'

then gives a series with years as keys and emission data
as values. Similarly, we could first filter the data by a year
or an indicator. The same mechanism is used to select UK
government spending on defence in terms of GDP.

Graph Database Type Provider: Graph databases store
nodes representing entities and relationships between them.
The following example explores a database of Doctor Who
characters and episodes. It retrieves all enemies of the Doctor
that appear in the Day of the Moon episode:

1 drwho.Character.Doctor.’ENEMY OF’.’[any]’
2 .’APPEARED IN’.’Day of the Moon’

We start from the Doctor node and then follow two rela-
tionships. We use 'ENEMY OF'.'[any]' to follow links to all
enemies of the Doctor and then specify 'APPEARED IN' to select
only enemies that appear in a specific episode. The query is
illustrated in in Figure 2b. The members are generated from
the data; ENEMY OF and APPEARED IN are labels of relations
and Doctor and Day of the Moon are labels of nodes. The
[any] member defines a placeholder that can be filled with
any node with the specified relationships. The results returned
by the provider is a table of properties of all nodes along the
specified path, which can be further queried and visualized.

Tabular Data Provider: Unlike the graph and data cube
providers, the type provider for tabular data does not just allow
selecting a subset of the data, but it can be used to construct
SQL-like query. Consider the example of querying expense
claims from Section III, which filters and then sorts the data.

When using the provider, the user specifies a sequence of
operations. Members such as 'filter data' or 'sort data'

determine the operation type. Those are followed by members
that specify operation parameters. For example, when filtering
data, we first select the column and then choose a desired
value. Unlike SQL, the provider only allows users to choose
from pre-defined filtering conditions, but this is sufficient for
constructing a range of practical queries.

(a) Exploring World Bank data using the data cube type provider, users choose values from
two dimensions to obtain a data series.

(b) To query graph data, the user specifies a path through the data, possibly with
placeholders to select multiple nodes.

Fig. 2: Type providers for exploring cube and graph data.

Fig. 3: Who does the Dr Who fight most frequently?

V. CASE STUDY

The Gamma aims to simplify programmatic data exploration
while keeping enough expressive power to allow users to
create interesting data explorations. To show what can be
achieved by interactive prompting, we present a case study
that explores a graph database with Dr Who series data.1.

The following constructs a chart (Figure 3) of top Dr Who
villains by the number of episodes in which they appear. This
case is interesting as it combines the graph database provider
for fetching the data with the tabular data provider:

1 drWho.Character.Doctor.’ENEMY OF’.’[any]’
2 .’APPEARED IN’.’[any]’.explore
3 .’group data’.’by Character name’
4 .’count distinct Episode name’.then
5 .’sort data’.’by Episode name descending’.then
6 .paging.take(8).’get series’
7 .’with key Character name’
8 .’and value Episode name’

Line 1 use the graph provider to find all paths linking the
Doctor with any character linked via ENEMY OF, followed by
any episode linked by APPEARED IN. This produces a table that
can be analysed using the tabular data provider by selecting
explore. For each character (the villain) we count the number
of distinct episodes. The result is shown in Figure 3. Despite
performing a sophisticated data analysis that involves a graph
database query, followed by an SQL-like data aggregation, the
code can be constructed using iterative prompting, with the
exception of the numbers in paging.

VI. USER STUDY

Data exploration environments are complex systems that do
not yield to simple controlled experimentation [54]. Rather
than comparing our work with other tools, we evaluate whether
The Gamma can be successfully used by non-programmers.

We performed a between-subjects study to assess whether
non-programmers are able to complete a simple data explo-
ration task using The Gamma. We recruited 13 participants (5
male, 8 female) from a business team of a research institute
working in non-technical roles (project management, commu-
nications). Only one participant (#12) had prior programming
experience. We split participants into 4 groups and asked each
group to complete a different task. We gave participants a brief
overview of The Gamma. The participants then worked for 30

1See: http://gallery.thegamma.net/87/. We also used The Gamma for
projects exploring the UK government expenditure, activities of a research
institute and Olympic medal winners, available at http://turing.thegamma.net
and http://rio2016.thegamma.net

minutes, after which we conducted a semi-structured group
interview. We offered guidance if participants were unable to
progress for more than 5 minutes. The four tasks were:

• Expenditure. Participants were shown the worldbank data
cube and were asked to compare UK spending on ‘Public
order and safety” and “Defence” using another data cube.

• Lords. Participants were shown worldbank and were
asked to use the expenses data table provider to sort
London House of Lords members by their travel costs.

• Worldbank. Participants were given a minimal iterative
prompting demo and a code sample using worldbank.
They were asked to solve another worldbank task.

• Olympics. Participants were given a demo using olympics
that did not involve grouping. They were asked to solve
a problem involving grouping and aggregation.

Our primary hypothesis was that non-programmers will be
able to use The Gamma to explore data. This was tested by
all four tasks for one of the supported data sources.

The tasks expenditure and lords further test if knowledge
can be transferred between different data sources by using one
sources in the introduction and another in the task; worldbank
explores whether users can learn how to use a data source
from just code samples; and lords lets us study to what extent
participants form a correct mental model of the more complex
query language used in the tabular data source.

Can non-programmers explore data with The Gamma? All
participants were able to complete, at least partially, a non-
trivial data exploration task and only half of them required
further guidance. Participants spent 10–25 minutes (average
17) working with The Gamma and 12 out of 13 completed
the task; 6 required assistance, but 3 of those faced the same
issue related to operations taking arguments (discussed later).

A number of participants shared positive comments in the
group interviews. Participant #3 noted that “this is actually
pretty simple to use,” participant #2 said that The Gamma al-
leviated their unease about code: “for somebody who does not
do coding or programming, this does not feel that daunting.”
and participant #5 suggested that the system could be used as
an educational tool for teaching critical thinking with data.

How users learn The Gamma? There is some evidence that
knowledge can be transferred between different data sources.
In expenditure and lords, participants were able to complete
tasks after seeing a demo using another data source. Participant
#2 “found it quite easy to translate what you showed us in the
demo to the new dataset.”. However, the lords task has been
more challenging as it involves a more complex data source.

There is also some evidence that, once a user understands
iterative prompting, they can learn from just code samples. All
three participants were able to complete the worldbank task,
where they were given printed code samples, but no demo
using any data source. When discussing suitable educational
materials for The Gamma, participant #7 also confirmed that
“a video would just be this [i.e. a code sample] anyway”.

http://gallery.thegamma.net/87/
http://turing.thegamma.net
http://rio2016.thegamma.net

How users understand complex query languages? The tab-
ular type provider uses a member then to complete the spec-
ification of a current operation, for example when specifying
a list of aggregation operations. Two participants (#12 and
#13) initially thought that then is used to split a command
over multiple lines, but rejected the idea after experimenting.
Participant #12 then correctly concluded that it “allows us
to chain together the operations” of the query. While iterative
prompting allows users to start exploring new data sources, the
structures exposed by more complex data sources have their
own further design principles that the users need to understand.

What would make The Gamma easier to use? Three partic-
ipants (#11, #12, #13) struggled to complete a task using the
tabular data source, because they attempted to use operation
that takes a numerical parameter and thus violates the iterative
prompting principle. This could be avoided by removing such
operations or by hiding them under an “advanced” tab.

The Gamma uses an ordinary text editor and most partici-
pants had no difficulty navigating around code, making edits
or deleting fragments, which is harder in a structure editor.
Some participants used the text editor effectively, e.g. leverag-
ing copy-and-paste. However, two participants struggled with
indentation and a syntax error in an unrelated command. This
could likely be alleviated through better error reporting.

VII. DISCUSSION

As a text-based programming environment for non-program-
mers, The Gamma examines an unexplored point in the design
space of tools for data exploration. It has been particularly
motivated by the use of data in journalism. The Gamma has the
potential to enable journalists to make factual claims backed
by data more commonplace and enable wider audience to en-
gage with such claims, satisfying the importance criteria [54]
for advancing the state of the art. It also satisfies a number of
design goals important in the data journalism context.

Learning without experts: Our design aims to make The
Gamma suitable for users who cannot dedicate significant
amount of time to learning it in advance and may not have
access to experts, satisfying the empowering new participants
criteria [54]. This is supported in two ways.

First, the iterative prompting principle makes it easy for
users to start experimenting. The user needs to select an initial
data source and then repeatedly choose an item from a list
of choices. This is easier to use than a command line or a
REPL (read-eval-print-loop) interface, because it follows the
recognition over recall usability heuristic. The users are not
required to recall and type a command. They merely need to
select one from a list of options.

Second, the resulting code serves as a trace of how the
analysis was created. It provides the user with all information
that they need to recreate the program, not just by copying it,
but also by using iterative prompting. Such design has been
called design for percolation [55] and it supports learnability.
In Excel, studied by Sarkar [55], users learn new features when
their usage is apparent in a spreadsheet, e.g. different functions

in formulas, but learning how to use a wizard for creating
charts is hard because the operation does not leave a full trace
in the spreadsheet.

Lowering barriers to entry: Data exploration has a cer-
tain irreducible essential complexity [56]. To make a system
usable, this complexity needs to be carefully stratified. The
Gamma uses a two level structure. The first level consists of
the language itself with the iterative prompting mechanism.
The second level consists of the individual members generated
by a type provider. This can be seen as a domain specific
language, embedded in The Gamma language. Although the
complexity of individual domain specific languages differs, the
user can always start exploring through iterative prompting,
even when faced with an unfamiliar data source.

In tackling complexity, The Gamma satisfies two criteria
proposed by Olsen [54]: generality in that it can be used
uniformly with a wide range of data sources, and expressive
leverage in that it factors out common aspects of different
data queries into the core language (first level) and leaves the
specifics of each data source to the second level.

Correctness and completeness: An important characteristic
of our design is that the iterative prompting mechanism is both
correct and complete with respect to possible data exploration
scripts. The two properties are a consequence of the fact
that a program is a formed by a chain of operations and
that the auto-completion leverages a static type system. When
invoking iterative prompting at the end of a well-typed script,
a selected option, which is a valid object member, is added to
the end of the script, resulting in another well-typed script.
This distinguishes our system from auto-completion based
on machine learning, which may offer members not valid
in a given context. Auto-completion lists offered via iterative
prompting contain all available members and so the user can
construct all possible scripts. Two exceptions to completeness
in our current design are the let binding and specifying
numerical parameters as in take(5).

VIII. CONCLUSIONS

Exploring data in a programming environment that makes the
full source code available increases transparency, reproducibil-
ity and empowers users to ask critical questions about the
data analysis. But can we make those features accessible to
non-programmers? In this paper, we presented The Gamma,
a simple data exploration environment for non-programmers
that answers this question in the affirmative.

The Gamma is based on a single interaction principle,
iterative prompting. It can be used to complete a range of
data exploration tasks using tabular data, data cubes and graph
databases. The design lowers the barrier to entry for program-
matic data exploration and makes it easy to learn the system
independently through examples and by experimentation. We
implemented The Gamma, make it available as open source
and conducted a user study, which lets us conclude that The
Gamma can be used by non-programmers to construct non-
trivial data exploration scripts.

ACKNOWLEDGMENTS

We thank to May Yong and Nour Boulahcen for their
contributions to The Gamma type providers. The author is also
grateful to Don Syme, James Geddes, Jonathan Edwards and
Roly Perera for numerous discussions about data science tool-
ing and type providers, as well as Luke Church for discussions
about human-computer interaction and Clemens Klokmose for
numerous suggestions on framing of this paper. Anonymous
reviewers of this and earlier versions of the paper also provided
valuable feedback. This work was partly supported by The
Alan Turing Institute under the EPSRC grant EP/N510129/1
and by a Google Digital News Initiative grant.

REFERENCES

[1] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Petricek,
“Themes in information-rich functional programming for internet-scale
data sources,” in Proceedings of Workshop on Data Driven Functional
Programming. ACM, 2013, pp. 1–4.

[2] B. A. Myers, A. J. Ko, and M. M. Burnett, “Invited research
overview: end-user programming,” in Extended Abstracts Proceedings
of the 2006 Conference on Human Factors in Computing Systems,
CHI ’06. ACM, 2006, pp. 75–80. [Online]. Available: https:
//doi.org/10.1145/1125451.1125472

[3] B. A. Nardi, A small matter of programming: perspectives on end user
computing. MIT press, 1993.

[4] J. Gray, L. Chambers, and L. Bounegru, The data journalism handbook:
how journalists can use data to improve the news. O’Reilly, 2012.

[5] T. Petricek, G. Guerra, and D. Syme, “Types from data: Making
structured data first-class citizens in F#,” in Proceedings of Conference
on Programming Language Design and Implementation, ser. PLDI ’16.
ACM, 2016, pp. 477–490.

[6] G. E. Kaiser and P. H. Feiler, “An architecture for intelligent assistance
in software development,” in Proceedings of the 9th International
Conference on Software Engineering, ser. ICSE ’87. Washington, DC,
USA: IEEE Computer Society Press, 1987, p. 180–188.

[7] J. Heer, J. M. Hellerstein, and S. Kandel, “Predictive interaction for data
transformation,” in CIDR, 2015.

[8] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer, “Proactive wrangling:
Mixed-initiative end-user programming of data transformation scripts,”
in Proceedings of the 24th annual ACM symposium on User interface
software and technology, 2011, pp. 65–74.

[9] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X.
Chang, “Eviza: A natural language interface for visual analysis,” in
Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, UIST ’16. ACM, 2016, pp. 365–377. [Online].
Available: https://doi.org/10.1145/2984511.2984588

[10] X. Rong, S. Yan, S. Oney, M. Dontcheva, and E. Adar, “Codemend:
Assisting interactive programming with bimodal embedding,” in Pro-
ceedings of the 29th Annual Symposium on User Interface Software and
Technology, UIST ’16. ACM, 2016, pp. 247–258.

[11] E. Fast, B. Chen, J. Mendelsohn, J. Bassen, and M. S. Bernstein, “Iris:
A conversational agent for complex tasks,” in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, CHI 2018,
Montreal, QC, Canada, April 21-26, 2018. ACM, 2018, p. 473.

[12] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples
to improve code completion systems,” in Proceedings of the 7th joint
meeting of the European Software Engineering Conference and the
ACM International Symposium on Foundations of Software Engineering.
ACM, 2009.

[13] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion
with statistical language models,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14.
ACM, 2014, pp. 419–428. [Online]. Available: https://doi.org/10.1145/
2594291.2594321

[14] A. Svyatkovskiy, Y. Zhao, S. Fu, and N. Sundaresan, “Pythia:
Ai-assisted code completion system,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’19. ACM, 2019, pp. 2727–2735. [Online]. Available:
https://doi.org/10.1145/3292500.3330699

[15] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,
“Jupyter notebooks-a publishing format for reproducible computational
workflows,” in 20th International Conference on Electronic Publishing,
F. Loizides and B. Schmidt, Eds., 2016, pp. 87–90.

[16] T. Petricek, J. Geddes, and C. A. Sutton, “Wrattler: Reproducible, live
and polyglot notebooks,” in 10th USENIX Workshop on the Theory and
Practice of Provenance, TaPP 2018, London, UK, July 11-12, 2018.,
M. Herschel, Ed., 2018.

[17] R. Wesley, M. Eldridge, and P. T. Terlecki, “An analytic data engine
for visualization in tableau,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data. ACM, 2011, pp.
1185–1194.

[18] Microsoft Corporation. (2020) Microsoft power bi. [Online]. Available:
https://powerbi.microsoft.com/en-us/

[19] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman,
T. Roth, and P. J. Haas, “Interactive data analysis: the control project,”
Computer, vol. 32, no. 8, pp. 51–59, 8 1999.

[20] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska,
“Vizdom: Interactive analytics through pen and touch,” Proceedings of
the VLDB Endownment, vol. 8, no. 12, pp. 2024–2027, Aug. 2015.

[21] V. Raman and J. M. Hellerstein, “Potter’s wheel: An interactive data
cleaning system,” in VLDB, vol. 1, 2001, pp. 381–390.

[22] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive
visual specification of data transformation scripts,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,
2011, pp. 3363–3372.

[23] A. Satyanarayan and J. Heer, “Lyra: An interactive visualization design
environment,” in Computer Graphics Forum, vol. 33, no. 3, 2014, pp.
351–360.

[24] B. Victor. (2012) Inventing on principle. [Online]. Available:
http://worrydream.com/InventingOnPrinciple

[25] P. Rein, S. Ramson, J. Lincke, R. Hirschfeld, and T. Pape, “Exploratory
and live, programming and coding,” The Art, Science, and Engineering
of Programming, vol. 3, no. 1, 2019.

[26] J. Kubelka, R. Robbes, and A. Bergel, “The road to live programming:
Insights from the practice,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York, NY,
USA: ACM, 2018, pp. 1090–1101.

[27] C. Granger. (2012) Lighttable: A new IDE con-
cept. [Online]. Available: http://www.chris-granger.com/2012/04/12/
light-table-a-new-ide-concept/

[28] M. B. Kery, A. Horvath, and B. Myers, “Variolite: Supporting ex-
ploratory programming by data scientists,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. ACM,
2017, p. 1265–1276.

[29] M. B. Kery and B. A. Myers, “Exploring exploratory programming,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), A. Henley, P. Rogers, and A. Sarma, Eds. IEEE,
2017, pp. 25–29.

[30] E. Adar, “GUESS: a language and interface for graph exploration,” in
Proceedings of the 2006 Conference on Human Factors in Computing
Systems, CHI 2006. ACM, 2006, pp. 791–800. [Online]. Available:
https://doi.org/10.1145/1124772.1124889

[31] G. Szwillus and L. Neal, Structure-based editors and environments.
Academic Press, Inc., 1996.

[32] C. Omar, I. Voysey, R. Chugh, and M. A. Hammer, “Live functional
programming with typed holes,” PACMPL, vol. 3, no. POPL, 2019.

[33] E. Lotem and Y. Chuchem. (2018) Lamdu project. [Online]. Available:
https://github.com/lamdu/lamdu

[34] J. Edwards, “Subtext: uncovering the simplicity of programming,” ACM
SIGPLAN Notices, vol. 40, no. 10, pp. 505–518, 2005.

[35] ——. (2018, 6) Direct programming. [Online]. Available: https:
//vimeo.com/274771188

[36] M. Conlen and J. Heer, “Idyll: A markup language for authoring
and publishing interactive articles on the web,” in The 31st
Annual ACM Symposium on User Interface Software and Technology,
UIST ’18. ACM, 2018, pp. 977–989. [Online]. Available: https:
//doi.org/10.1145/3242587.3242600

[37] E. Jun, M. Daum, J. Roesch, S. Chasins, E. Berger, R. Just, and
K. Reinecke, “Tea: A high-level language and runtime system for
automating statistical analysis,” in Proceedings of the 32nd Annual ACM
UIST Symposium 2019. ACM, 2019, pp. 591–603.

https://doi.org/10.1145/1125451.1125472
https://doi.org/10.1145/1125451.1125472
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/3292500.3330699
https://powerbi.microsoft.com/en-us/
http://worrydream.com/InventingOnPrinciple
http://www.chris-granger.com/2012/04/12/light-table-a-new-ide-concept/
http://www.chris-granger.com/2012/04/12/light-table-a-new-ide-concept/
https://doi.org/10.1145/1124772.1124889
https://github.com/lamdu/lamdu
https://vimeo.com/274771188
https://vimeo.com/274771188
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.1145/3242587.3242600

[38] A. Satyanarayan, K. Wongsuphasawat, and J. Heer, “Declarative
interaction design for data visualization,” in The 27th Annual
ACM Symposium on User Interface Software and Technology,
UIST ’14. ACM, 2014, pp. 669–678. [Online]. Available: https:
//doi.org/10.1145/2642918.2647360

[39] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-
lite: A grammar of interactive graphics,” IEEE transactions on visual-
ization and computer graphics, vol. 23, no. 1, pp. 341–350, 2016.

[40] H. Lieberman, Your wish is my command: Programming by example.
Morgan Kaufmann, 2001.

[41] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” Communications of the ACM, vol. 55, no. 8, pp. 97–
105, 2012.

[42] V. Le and S. Gulwani, “Flashextract: a framework for data extraction
by examples,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2014, pp. 542–
553.

[43] E. L. Hutchins, J. D. Hollan, and D. A. Norman, “Direct manipulation
interfaces,” Human–Computer Interaction, vol. 1, no. 4, pp. 311–338,
1985.

[44] B. Hempel, J. Lubin, and R. Chugh, “Sketch-n-sketch: Output-
directed programming for SVG,” in Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology,
UIST ’19. ACM, 2019, pp. 281–292. [Online]. Available: https:
//doi.org/10.1145/3332165.3347925

[45] B. Shneiderman, C. Williamson, and C. Ahlberg, “Dynamic queries:
Database searching by direct manipulation,” in Conference on Human
Factors in Computing Systems, CHI ’92. ACM, 1992, pp. 669–670.
[Online]. Available: https://doi.org/10.1145/142750.143082

[46] I. Bretan, R. Nilsson, and K. S. Hammarstrom, “V: a visual query
language for a multimodal environment,” in Conference on Human
Factors in Computing Systems, CHI ’94, C. Plaisant, Ed. ACM,
1994, pp. 145–147. [Online]. Available: https://doi.org/10.1145/259963.
260174

[47] M. Derthick, J. Kolojejchick, and S. F. Roth, “An interactive
visual query environment for exploring data,” in Proceedings of
the 10th Annual ACM Symposium on User Interface Software and
Technology, UIST ’97. ACM, 1997, pp. 189–198. [Online]. Available:
https://doi.org/10.1145/263407.263545

[48] A. Abouzied, J. M. Hellerstein, and A. Silberschatz, “Dataplay: inter-
active tweaking and example-driven correction of graphical database
queries,” in The 25th Annual ACM Symposium on User Interface
Software and Technology, UIST ’12. ACM, 2012, pp. 207–218.

[49] UK Parliment. (2021) Members’ allowances and expenses.
[Online]. Available: https://www.parliament.uk/mps-lords-and-offices/
members-allowances/house-of-lords/holallowances/

[50] T. Petricek, “Foundations of a live data exploration environment,” Art
Sci. Eng. Program., vol. 4, no. 3, p. 8, 2020. [Online]. Available:
https://doi.org/10.22152/programming-journal.org/2020/4/8

[51] Microsoft Corporation. (2021) Monaco editor. [Online]. Available:
https://microsoft.github.io/monaco-editor/

[52] T. Petricek, “Data exploration through dot-driven development,” in 31st
European Conference on Object-Oriented Programming, 2017.

[53] G. Myre. (2021) If michael phelps were a country, where would
his gold medal tally rank? [Online]. Available: https://www.npr.org/
sections/thetorch/2016/08/14/489832779/

[54] D. R. O. Jr., “Evaluating user interface systems research,” in
Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology, UIST ’07. ACM, 2007, pp. 251–258.
[Online]. Available: https://doi.org/10.1145/1294211.1294256

[55] A. Sarkar and A. D. Gordon, “How do people learn to use spreadsheets?
(work in progress),” in Proceedings of the 29th Annual Conference of
the Psychology of Programming Interest Group (PPIG 2018), Sep. 2018,
pp. 28–35.

[56] J. Brooks, F.P., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, pp. 10 –19, april 1987.

[57] J. Cheney, S. Chong, N. Foster, M. I. Seltzer, and S. Vansummeren,
“Provenance: a future history,” in Companion to the 24th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA ’09. ACM, 2009, pp. 957–964.

https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/142750.143082
https://doi.org/10.1145/259963.260174
https://doi.org/10.1145/259963.260174
https://doi.org/10.1145/263407.263545
https://www.parliament.uk/mps-lords-and-offices/members-allowances/house-of-lords/holallowances/
https://www.parliament.uk/mps-lords-and-offices/members-allowances/house-of-lords/holallowances/
https://doi.org/10.22152/programming-journal.org/2020/4/8
https://microsoft.github.io/monaco-editor/
https://www.npr.org/sections/thetorch/2016/08/14/489832779/
https://www.npr.org/sections/thetorch/2016/08/14/489832779/
https://doi.org/10.1145/1294211.1294256

	Introduction
	Related Work
	Overview
	System description
	Case Study
	User Study
	Discussion
	Conclusions
	Acknowledgments
	References

