
Encoding monadic computations using iterators in C# 2.0

(Supplementary material)

1. F# asynchronous workflows
The following example demonstrates how the F#

compiler translates asynchronous workflow (or any

monadic computation in general) to calls to primitive

methods provided by the computation builder such as

Bind, While and Return. The original code written by

the user looks like this:

let downloadUrl(url:string) = async {

 let req = HttpWebRequest.Create(url)

 let! rsp = req.AsyncGetResponse()

 let strm = rsp.GetResponseStream()

 let buf = Array.zeroCreate(8192)

 let state = ref 1

 while !state > 0 do

 let! read = strm.AsyncRead(buf, 0, 8192)

 Console.WriteLine("got {0}b", read);

 state := read }

The compiler translates each use of let! keyword into

a call to the Bind member that takes the rest of the

computation wrapped into a function as the last

parameter. Similarly, while loops are translated into

calls to the While member:

let req = HttpWebRequest.Create(url)

 async.Bind(req.AsyncGetResponse(), fun rsp ->

 let strm = rsp.GetResponseStream()

 let buf = Array.zeroCreate(8192)

 let state = ref 1

 async.While((fun () -> !state > 0),

 async.Bind

 (strm.AsyncRead(buf, 0, 8192), fun read ->

 Console.WriteLine("got {0}b", read);

 state := read

 async.Return())))

In some cases, the F# compiler also needs other

primitives such as Combine or Zero. These cases are

documented in the F# language specification1.

2. Case Study: Asynchronous C#
In this section, we look at simple asynchronous

method that downloads all data from a stream in a

buffered way and then interprets the data as a string.

The first listing shows how the code looks when

written using the asynchronous library presented in

the article:

IEnumerator<IAsync> ReadToEndAsync(Stream s) {

 var ms = new MemoryStream();

 byte[] bf = new byte[1024];

 int read = -1;

 while (read != 0) {

 var op = s.ReadAsync(bf, 0, 1024).AsStep();

1 Available online at:

http://research.microsoft.com/apps/pubs/default.aspx?id=79948

 yield return op;

 ms.Write(bf, 0, op.Value);

 read = op.Value;

 }

 ms.Seek(0, SeekOrigin.Begin);

 string s = new StreamReader(ms).ReadToEnd();

 yield return AsyncResult.Create(s);

}

To implement the same functionality in the usual

programming style in C#, we need to create a class

that represents a state machine. In this case, there is

only a single state, which is to read the next 1kb of

data from the stream. When the operation returns 0

bytes, meaning that the download has completed, it

converts the data into string and returns the string

(by calling a continuation), otherwise it recursively

continues downloading:

class ReadToEndState {

 MemoryStream ms = new MemoryStream();

 Stream stream;

 Action<string> k;

 // Initialize state machine for downloading stream

 public ReadToEndState

 (Stream stream, Action<string> k) {

 this.stream = stream;

 this.k = k;

 }

 internal void Step() {

 byte[] buffer = new byte[1024];

 // Read 1kb of data asynchronously

 stream.BeginRead(buffer, 0, 1024, ar => {

 var count = stream.EndRead(ar);

 ms.Write(buffer, 0, count);

 if (count == 0) {

 ms.Seek(0, SeekOrigin.Begin);

 string s = new StreamReader(ms)

 .ReadToEnd();

 // Return the parsed string via continuation

 k(s);

 } else {

 // Run the state-machine step repeatedly

 Step();

 }

 }, null);

 }

}

static void ReadToEndAsync

 (this Stream stream, Action<string> k) {

 // Construct state-machine and start the first step

 new ReadToEndState(stream, k).Step();

}

