
Joinads

A retargetable control-flow construct for reactive,

parallel and concurrent programming

Tomáš Petříček (tomas.petricek@cl.cam.ac.uk)
University of Cambridge, UK

Don Syme (don.syme@microsoft.com)
Microsoft Research, Cambridge, UK

The two key points of the talk

Language extension

We add language support for concurrent, parallel

and reactive programming

Multi purpose

We do this without committing the language to one

particular programming model

We extend F# computation expressions

Similar approach could be used in other functional

languages (especially Haskell’s do-notation)

Reactive, concurrent and parallel

Programming with futures

 Running in background and eventually gives a result

 Language support in Manticore (Fluet et al. 2008)

Event-based programming

 Lightweight threads, communicating using events

 Functional Reactive Programming (Elliott 2000)

Join-calculus

 Joins execute when certain channels contain values

 Both languages (Conchon, Fessant 1999) and libraries (Russo 2007)

Bringing programming models to practice

Language-based solutions

 Language supports only one model

Library-based encodings

 Restricted syntax is limiting

Our approach: Support a recurring pattern

 Successfully used by monads (and arrows & idioms)

 One syntactic extension works for many libraries

Overview

Background

Computation expressions overview

Our extension

Choosing between computations

Merging computations

What are joinads?

Interesting relations

Joinads and other computation types

Computation expressions by example

 Event is modeled as a sequence of time-value pairs

let rec counter n = event {
 let! args = btn.Click
 let! time = Event.sleep 1000
 return n + 1
 return! counter (n + 1) }

btn.Click

counter 0 1 2

sleep 1000

sleep 1000

F# computation expressions

Computation expression syntax

Notation for writing computations (‘do’ in Haskell)

 Translates to primitive function calls

 bind : M<a> → (a → M) → M

 unit : a → M<a>

 combine : M<a> → M<a> → M<a>

cexpr = let pat = expr in cexpr Binding value

 | let! pat = expr in cexpr Binding computation

 | return expr Returning value

 | return! expr Returning computation

 | match expr-list with … Pattern matching on values

F# computation expressions

Computation expression syntax

Our extension adds the obvious

 …and two primitive functions for the translation

 They specify what match! actually means

cexpr = let pat = expr in cexpr Binding value

 | let! pat = expr in cexpr Binding computation

 | return expr Returning value

 | return! expr Returning computation

 | match expr-list with … Pattern matching on values

 | match! expr-list with … Pattern matching on computations

Overview

Background

Computation expressions overview

Our extension

Choosing between computations

Merging computations

What are joinads?

Interesting relations

Joinads and other computation types

Choosing between computations

Operation choose composes multiple clauses

 Wait for events in parallel & run the first enabled body

let rec counter n = event {
 match! btn.Click, win.KeyDown with
 | !_, _ -> let! _ = Event.sleep 1000
 return n + 1
 return! counter (n + 1)
 | _, !Esc -> return 0
 return! counter 0 }

btn.Click

counter 0 0 1

sleep 1000

win.KeyDown

0

Esc EscA Esc

What patterns can we write?

New syntactic category computation pattern

Note the difference between “_” and “!_”

 !Esc is a non-exhaustive computation binding

 !_ is exhaustive but needs a value to match on

 _ matches even if we don’t have a value

cexpr = match! expr-list with Pattern matching on computations

 cpat-list → cexpr | … with a list of clauses

cpat = _ Ignore computation pattern

 | !pat Bind computation using standard pattern

Merging computations

Binding values from multiple computations

 All clauses so far had only single binding pattern

 Operation merge combines computations

let put = new Channel<int>()
let get = new Channel<ReplyChan<string>>()

let buffer = join {
 match! put, get with
 | !num, !chnl ->
 reply chnl (sprint "re %d" num)

1
re 1

re 3

2

3

put get

re 2

What is a joinad?

The match! syntax translates to these

 merge – Combines two computations into a single

 choose – Finds the first enabled computation from a list

of clauses and returns computation that runs the body

Call to Action: Formalization of Joinads

 Are these the simplest primitives we can use?

 How to find complete laws about the primitives?

map : (a → b) → M<a> → M

merge : M<a> → M → M<a * b>

choose : list<M<option<M<a>>>> → M<a>

Overview

Background

Computation expressions overview

Our extension

Choosing between computations

Merging computations

What are joinads?

Interesting relations

Joinads and other computation types

Joinads and monads

Joinads do not imply monads or otherwise

 Many computations are both joinad and monad

Can we get merge inside monad for free?

 The type is M<a> → M → M<a * b>

 Want commutativity merge u v ≡ map swap (merge v u)

let merge ma mb = m { let merge ma mb = m {
 let! a = ma let! b = mb
 let! b = mb ≡ let! a = ma
 return a, b } return a, b }

let merge ma mb = m {
 let! a = ma
 let! b = mb
 return a, b }

Summary & Questions?

Language extension for multiple models

 Reactive based on events (similar to FRP)

 Parallel based on futures (related to Manticore)

 Concurrent based on join calculus (JoCaml, Cω)

 …and possibly many others

Theoretically interesting

 More work to be done on the formal model…

tomas.petricek@cl.cam.ac.uk

The end of the universe

Joinad computations for futures

Future is computation running in background

 Binding means waiting for the completion

let multiply f1 f2 = future {
 match! f1, f2 with
 | !a, !b -> return a * b
 | !0, _ -> return 0
 | _, !0 -> return 0 }

Case !a, !b

Case !0, _

Desugaring of computation expressions

Functions are associated with the event builder

 return and let! translate to Return and Bind

 Sequencing of expressions translates to Combine

let rec counter n = event {
 let! _ = btn.Click
 let! _ = Event.sleep 1000
 return n + 1
 return! counter (n + 1) }

let rec counter n =
 event.Bind(btn.Click, fun _ ->
 event.Bind(Event.sleep 1000, fun _ ->
 event.Combine
 (event.Return(n + 1),
 counter (n + 1))))

Desugaring of joinads

let putInt = new Channel<int>()
let putString = new Channel<string>()
let get = new Channel<ReplyChannel<string>>()

let buffer =
 join { match! get, putInt, putString with
 | !chnl, !n, _ ->
 chnl.Reply("Number: " + n.ToString())
 | !chnl, _, !s ->
 chnl.Reply("String:" + s) }

1

N:1 S:a S:b N:3

2

a b

3

N:2

putInt

putString

get

let putInt = new Channel<int>()
let putString = new Channel<string>()
let get = new Channel<ReplyChannel<string>>()

let buffer =
 join.Choose
 [join.Merge(get, putInt) |> join.Map (fun (chnl, n) ->
 join { chnl.Reply("Number: " + n.ToString()) });
 join.Merge(get, putString) |> join.Map (fun (chnl, s) ->
 join { chnl.Reply("String:" + s) })]

Choose operation explained

Type signature resembles monadic join

 Should behave the same for singleton list with “Some”

 Outer computation

 Maps matching inputs into clauses to be executed

 Inner computation

 Represents the body

val choose : list<M<option<M<'a>>>> → M<'a>

List of clauses Body to run when selected

Produces bodies of a clause Runs the selected body

Joinad laws: Where do they come from?

Transformations that shouldn’t change meaning

match! m with !var -> expr ≡ let! var = m in expr

match! m { return e1 },

 m { return e2 } with

| !var1, !var2 -> cexpr

≡
match e1, e2 with

| var1, var2 -> cexpr

match! …, mp(i), … with
| …, cpat1, p(i), … -> cexpr1
| …
| …, cpatk, p(i), … -> cexprk

≡

match! …, mi, … with
| …, cpat1, i, … -> cexpr1
| …
| …, cpatk, i, … -> cexprk

match! m with

| !var1 -> <cexpr>1

| !var2 -> <cexpr>2

≡
match! m with

| !var1 -> <cexpr>1

Joinad laws: Simplified form

Merge operation (written as ⦷)

 Commutativity is related to commutative monads

 u ⦷ (v ⦷ w) ≡ map assoc ((u ⦷ v) ⦷ w) (associativity)
 u ⦷ v ≡ map swap (v ⦷ u) (commutativity)
 unit (u, v) ≡ (unit u) ⦷ (unit v) (unit merge)

 where assoc ((a, b), c) = (a, (b, c)) and swap (a, b) = (b, a)

Choose operation

 Should always select the first enabled clause

(formal definition doesn’t make things much simpler)

 For monads, should generalize bind operation

Translation of Joinads

Merge inputs for pattern matching and map

Translate clauses using ⟨ – ⟩ and apply choose

