
Programming as Architecture, Design, and Urban Planning

Tomas Petricek
 School of Computing, University of Kent, UK

tomas@tomasp.net

ABSTRACT
Our thinking about software is shaped by basic assumptions and
metaphors that we rarely question. Computer science has the term
science in its very name; we think of programming languages as formal
mathematical objects and we hope to make better software by treating
it as an engineering discipline. Those perspectives enabled a wide range
of useful developments, but I believe they have outlived their
usefulness. We need new ways of thinking about software that are able
to cope with ill-defined problems and the increasing complexity of
software. In this essay, I draw a parallel between the world of software
and the world of architecture, design and urban planning. I hope to
convince the reader that this is a well-justified parallel and I point to a
number of discussions in architecture, design and urban planning from
which the software world could learn. What kind of software may we
be able to build if we think of programming as a design problem and
aim to create navigable and habitable software for all its users?

CCS CONCEPTS
• Software and its engineering → Software creation and management →
Designing software.

KEYWORDS
Software design, Architecture, Design, Urban Planning

ACM Reference format:

Tomas Petricek. 2021. Programming as Architecture, Design and Urban Plan-
ning. In Proceeding of the 2021 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward! 2021). ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3486607.3486770

1 Kuhn (1962)
2 Lakoff and Johnson (2008)

Formal order (…) is always and to some considerable degree parasitic on
informal processes, which the formal scheme does not recognize, without
which it could not exist, and which it alone cannot create or maintain.

James C. Scott, Seeing Like a State (1998)

1 History of Software Metaphors
Our thinking is shaped by basic assumptions that we rarely question. In
the context of science, research paradigms1 determine what are the
legitimate research questions and what are the scientific methods that
should be employed for studying them. In the context of software
development, a similar role is played by metaphors that we use for
talking about programming and software. Metaphors are apparent in
the language we use. The term language in programming language is an
allusion to both natural language and formal languages in logic2. When
we talk about software engineering or software maintenance, we are using
terminology deliberately adopted to treat software development as an
engineering discipline. But are those metaphors inevitable? How could
programming look if it were shaped by different metaphors?

1.1 Programming Languages and Software Engineering
There are at least two metaphors that shape our thinking about
programming and software development that are so ubiquitous that we
often forget they exist. The first views programming languages as
formal languages in a sense derived from formal logic. The second
views software development as an engineering discipline. Both of these
are a result of historical developments that could have gone differently.

At the beginning of 1950s, computers were programmed in idio-
syncratic machine codes. Early compilers were able to translate higher-
level pseudo-code to low-level machine code, but the pseudo-code and
the interpretative routine doing the translation were still machine-
specific3. We can see the linguistic metaphor slowly appearing in the
language through the use of words such as “translation”, but this was
initially inspired by cybernetics, which saw computers as human-like
agents and compilers as “translating code to a language a machine can
understand.”4 The term language started to be used in late 1950s and
the 1957 FORTRAN manual talks about the “FORTRAN language”,

3 For example, see Hopper (1955)
4 For a detailed historical account, see Nofre et al. (2014)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than the author(s)
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.

Onward! '21, October 20–22, 2021, Chicago, IL, USA
© 2021 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-9110-8/21/10…$15.00
https://doi.org/10.1145/3486607.3486770

WOODSTOCK’18, June, 2018, El Paso, Texas USA Tomas Petricek

2

even though the language is still not a stand-alone object, independent
from the machine. The adoption of the language metaphor was
completed with the 1958 report on the International Algebraic
Language (IAL). The report presented IAL (later ALGOL 58) as a
stand-alone mathematical object, independent from any specific
machine, using a formal language of the Backus normal form (BNF)
notation inspired by work on formal languages in logic. The birth of the
idea of a programming language served the academic community by
giving them an object that could be analyzed using rigorous
mathematical methods5. It was also motivated by commercial needs,
because it detached programs from specific machines and allowed (at
least some form of) program portability. The metaphor provided
computer science with a powerful perspective and it made it possible
to think about questions such as language syntax and semantics. It made
possible the very field of theoretical programming language research.

The second prominent metaphor for thinking about software
development is often associated with the 1968 NATO Software
Engineering Conference. The conference was motivated by growing
concerns about managing large software projects and the new metaphor
for thinking about software development was embedded in its very
name. It aimed to turn the “black art of programming” of 1950s and
1960s into a new, soon to be developed, “science of software
engineering”. The follow-up conference held in 1969 showed that
there was much disagreement about what exactly the science of
software engineering should be, but the new metaphor stuck.
Management found itself a new domain to transform and applied its
preexistent process models to it. Software development started to be
treated as a structured activity with independent phases such as
software design, development, testing and maintenance. It also shifted
focus to issues such as production, reliability, requirements gathering or
management.6

1.2 Software as Architecture, Design and Urban Planning
Despite the many virtuous developments enabled by the language and
engineering metaphors, they force us to accept simplifying assumptions
that are not (always) true about programming. This is inevitable and
any research paradigm or a metaphor has to do so. At the same time, it is
valuable to be aware of those assumptions and investigate whether
another metaphor would be more suitable, especially as the nature and
practice of software development keeps evolving and changing.

The language metaphor lets us treat programs as entities of formal
logic, but terms that are typically analyzed in formal logic are smaller
than even the simplest computer programs and much smaller than the
code behind large software systems. Consequently, the nature of proofs
about programs is different than the nature of proofs in formal logic,

5 For a detailed historical account, see Priestley (2012)
6 Apparent in the NATO 1968 Conference Proceedings headings (Naur and Randell, 1969)
7 This kind of problems is also known as “Wicked problems” (Rittel and Webber, 1973)
8 Reference to Alexander’s work (Notes on the Synthesis of Form) appears as early as 1968

in the NATO 1968 Conference Proceedings; initial work adapting the concept of design
patterns is by Beck and Cunningham (1987), which is quite different than the widely
known later work by Gamma et al. (1995).

which has been a source of a program verification controversies in the
1970s and 1980s. The quantitative difference in size gives rise to a
qualitative difference and so the metaphor may not be suitable for
thinking about large and complex software systems. The engineering
metaphor lets us focus on the right process for building software, but it
is largely inspired by the kind of engineering used when solving well-
defined problems. Unfortunately, many problems that software
developers face are ill-defined, change during the development and are
such that their framing often determines the solution7.

What metaphor should we use if we want to talk about software
development that involves large complex systems that address ill-
defined problems? In this essay, I suggest framing the problems of
programming and software development in terms of ideas borrowed
from architecture, design and urban planning. I hope to convince the
reader that this perspective is at least as productive as using ideas from
logic and engineering.

I am, of course, not the first to suggest linking software develop-
ment with architecture, design and urban planning. The idea of design
patterns, popular in object-oriented programming, was inspired by the
work of Christopher Alexander,8 although a deeper look at the work of
Christopher Alexander suggests that the standard software design
patterns are a trivialized and not very useful version of the idea9. A
number of people also acknowledged the role of design in software
engineering. Just like actual engineers sometimes solve ill-defined
design problems,10 software engineers also do so, at least in the early
phase of the software engineering process and researchers studied how
the design aspects of software development are done in practice,11
reflect on the design work12 and propose new approaches13.

My goal in this essay is to convince the reader that there are good
grounds for using architecture, design and urban planning as a source of
ideas for software development. I will look at a number of aspects
where there is a striking similarity between issues discussed in the
world of architecture, design and urban planning and the world of
software. The responses to those issues in the context of architecture,
design and urban planning may well prove a useful inspiration for work
that we need to do in the context of software.

We may wish for easier, all-purpose analyses, and for simpler, magical all-
purpose cures, but wishing cannot change these problems into simpler
matters (…) no matter how much we try to evade the realities and to handle
them as something different.

Jane Jacobs, The Death and Life of Great American Cities (1961)

9 For a more critical perspective, see Gabriel (1996).
10 My understanding of actual engineering work follows Vincenti (1990)
11 Baker (2010)
12 Petre and Van Der Hoek (2019)
13 Jackson (2015) and Kaijanaho (2017)

Programming as Architecture, Design and Urban Planning WOODSTOCK’18, June, 2018, El Paso, Texas USA

3

2 The Nature of Software
Software has been likened to a wide range of other human activities and
research fields including cooking, writing, gardening and the study of
biological eco-systems.14 The reader can surely imagine other possible
analogies. What makes architecture, design and urban planning a better
perspective? I believe the answer is that those disciplines, like software
development, deal with complex systems and ill-defined problems.

2.1 Designerly Ways of Knowing Software
Design is a very broad area and many software practitioners already
think of software design as being a design activity. Making the connection
more explicitly is still useful. Doing so reveals the assumptions that we
are making about software if we treat it as a design problem.

In his analysis of “designerly ways of knowing,”15 Nigel Cross
views design as a third culture of human knowledge, complementing
those of science and humanities. He contrasts the three by looking at
what each study, what their methods are and what each culture values:
– Sciences study the natural world; using controlled experiments,

classification and analysis; aiming for neutrality and the ‘truth’.
– Humanities study the human experience; using analogies and

metaphors; aiming for subjectivity, imagination and a ‘justice’.
– Design studies the artificial world; using modelling and synthesis;

aiming for practicality, ingenuity and ‘appropriateness’.
The domain in which computer programs belong in this classification is
clear. Programs are a prime example of the artificial,16 modelling is a
major concern of many software development methodologies,17 and
software is often built from smaller pieces through the method of
synthesis. Like designers, software developers rarely worry about
truth or justice, but rather focus on finding developing appropriate
solutions.

As discussed later, viewing software as a design problem makes us
realize that we are often dealing with ill-defined problems that have
very diverse but still appropriate solutions. It also suggests design-
inspired approaches to solving those problems. The classification by
Cross is also interesting in that the design category would likely
encompass both traditional engineering and also mathematics. This
suggests that the shift from thinking about programming as engineering
or as mathematics to thinking about programming as design may not be
as dramatic as it may at first seem.

2.2 What Kind of Problem Software Is
Drawing an analogy between software and urban planning is certainly a
less obvious move than likening software to design, but it will prove
revealing. Like programmers, urban planners often deal with very
complex problems that are difficult to reduce and simplify.

14 For cooking, see e.g., a quote by Grace Hopper in April 1967 issue of the Cosmopolitan

magazine (Mandel, 1967). For writing, gardening and biological systems, see e.g.,
Hermans and Aldewereld (2017), Papapetrou (2015) and Northrop et al. (2006)

15 Cross (2007)

The point has been made very clearly by Jane Jacobs, who studies
the complex and subtle ways in which large American cities work.18
To answer the question “what kind of problem city is”, Jacobs refers to
an essay on science and complexity,19 which looks at three stages of
development in the history of scientific thought, based on the kinds of
problems that science was able to tackle:
– Problems of simplicity are problems with small number of variables

that admit a precise analytical solution, such as how a gas pressure
depends on the volume of the gas.

– Problems of disorganized complexity have a large number of variables,
such as laws of thermodynamics derived from statistical analysis of
the motion of atoms. The behavior is sufficiently random, making it
possible to get useful insights using statistics and probability.

– Problems of organized complexity are the most challenging ones. They
involve complex structures that cannot be abstracted away using
statistics. For example, how is the genetic code reflected in the
characteristics of a developed organism?

According to Jacobs, urban planning is a problem of organized
complexity and many issues with earlier theories follow from the fact
that urban planners treat them as problems of simplicity or
disorganized complexity. Urban planning involves many different
problems, interconnected through a large number of variables. For
example, how a park is used depends on how it is designed, but also
who lives around it and what businesses exist in the neighborhood,
which, in turn, depends on the size of blocks and the age of buildings in
the surroundings. To learn anything useful about a park, you have to
study this highly sophisticated network of factors in its full complexity.

Like cities, software systems are problems of organized complexity.
They involve a large number of variables and processes that influence
each other in subtle ways. David Parnas captured this well in his 1985
critique of the Strategic Software Defense Initiative20. To explain the
difficulties with producing reliable software, he presents a categoriza-
tion of computer systems that is remarkably similar to that of Weiner:
– Analog systems can be modelled as continuous functions. This means

that they can contain no hidden surprises. A small change in the
input will cause a correspondingly small change in the output.

– Repetitive digital systems such as a CPU have a very large number of
states, but they consist of many copies of small subsystems that can
be analyzed and tested exhaustively.

– Non-repetitive digital systems such as software systems cannot be
modelled as continuous functions and have a very large number of
states that cannot be exhaustively analyzed and tested.

The two categorizations are remarkably similar. Problems of simplicity
and analog systems can be understood in full. Problems of disorganized
complexity and repetitive digital systems can be reduced, either using

16 This view is advocated, for example, by Simon (1969)
17 For example, see work on Domain-driven design such as Evans and Evans (2004)
18 Jacobs (1961)
19 Weaver (1958)
20 Parnas (1985)

WOODSTOCK’18, June, 2018, El Paso, Texas USA Tomas Petricek

4

statistical methods or using logic. But problems of organized complex-
ity and non-repetitive digital systems are both too large to be analyzed
in full and cannot be reduced to smaller problems. As Jacobs puts it,
“the large number of interrelated variables form an organic whole”.

Programming language and systems researchers have done a fair
amount of work towards being able to analyze complex systems with
increasing number of states, mostly by building tools that exploit
various heuristics to reduce the number of states.21 However, the
number of states in non-repetitive digital systems grows faster than the
size of the system and our tools are bound to be limited. Urban planners
never attempted to model every little detail about how cities work,
yet, they have learned valuable knowledge about cities. Perhaps there
is something to be learned from them.

2.3 Structures Obtained by Gradual Development
In engineering, the right way to construct a structure is to correctly de-
sign it and then build it according to the plan. This is the case for most
architecture designed by architects too22, but not all architects agree
that this leads to the best results. A notable dissenting voice is Christo-
pher Alexander. In an interview with Stewart Brand, he argues that23:

Things that are good have a certain kind of structure. You can’t get that
structure except dynamically. Period. In nature you’ve got continuous very-
small-feedback-loop adaptation going on, which is why things get to be
harmonious. That’s why they have the qualities that we value.

Brand develops the idea further and suggests that many great buildings
achieved their greatness by gradual stepwise evolution over time. New
buildings need to be designed so that they can evolve when they
outlive their initial use or when the needs of their users change. This
should be done, for example, by making sure that changing the space
layout in the building is possible without changing its structure.

In the world of software, agile methodologies treat software
development as an evolutionary process,24 but the key point has already
been made in 1969 by Joseph Weizenbaum when discussing the
feasibility of designing software for an anti-ballistic missile (ABM)
system. Weizenbaum argues that “large computing systems are products of
evolutionary development" and that they only become reliable through a
process of slow testing and gradual adaptation to an operational
environment.25 This means that building an ABM system is infeasible,
because the environment with which the software interfaces evolve at a
faster rate than the rate at which the software can be adapted.

The idea that buildings achieve greatness by evolution may be
controversial, but evolutionary metaphors are commonplace in urban
planning.26 Perhaps we could use vernacular architecture and
evolutionary urban planning to learn how to build adaptable software.

21 A prime example of this line of work is the ongoing research done on the

Z3 SMT solver (De Moura and Bjørner, 2008)
22 A counter-example has been the MoMA 1964-67 exhibition “Architecture without

Architects” and the accompanying book Rudofsky (1987)
23 Brand (1994)
24 This has been observed by Christian (2003)
25 Quoted in Slayton (2013)

The pseudoscience of city planning and its companion, the art of city design,
have not yet broken with the specious comfort of wishes, familiar supersti-
tions, oversimplifications, and symbols, and have not yet embarked upon the
adventure of probing the real world.

Jane Jacobs, The Death and Life of Great American Cities (1961)

3 Beautiful Theories
Jane Jacobs’ work on urban planning is a critique of utopian planning
theories of the early 20th century including Le Corbusier’s Ville
Radieuse and Ebenezer Howard’s Garden City movement. The theories
were based on simple and rational principles, supported by reasonable
arguments. Cities should be legible, spacious with many green areas,
organized by function and support effective transportation. The only
issue is, as Jacobs and others document, that such theories do not work.
They treat cities as a problem of simplicity or disorganized complexity
and, consequently produce cities that lack the vital complex processes
that make a city a lively and attractive place for living.

Software development and computer science abound with beautiful
rational theories. We uncritically praise abstraction even when it leads
to failures,27 we religiously follow principles such as information
hiding even if that hinders long-term maintainability.28 If we want to
design a programming language with a well-defined behavior, we
define a small formal model that captures the essential properties of the
language. Except that it often turns out that the omitted non-essential
aspects were equally important for the usability of the language.29

There are a number of methods and ideas, developed by designers
and urban planners, that the world of software could explore.

3.1 What Works Despite Theory
Jane Jacobs’ critique of utopian theories of urban planning is so power-
ful, because it gives a detailed account of specific city districts that are
safe, attractive and lively, yet should not work at all according to the
utopian theories and were, in fact, candidates for being torn down.

Her two examples are Greenwich Village in New York and North
End in Boston in 1950s. Both have little green space, are dense and
feature a messy mix of housing, shops and entertainment venues. To
understand how the district works, Jacobs looks at the details. Thanks
to its mixed-use buildings, there is an active sidewalk life, which
provides informal safety; a combination of older and newer buildings
allows people who start earning more money stay in the neighborhood
and uplift it. The details add up to a complex, but functioning whole.

26 For example, see a review by Mehmood (2010)
27 The case of abstraction is studied in a recent Onward! Essay by Steimann (2018)
28 A point made by Clark and Basman (2017)
29 As pointed out in private communication by Jeremy Gibbons, there is a difference here

in that utopian models in urban planning were intended to be used for actual building
whereas computer scientists use them merely for analysis.

Programming as Architecture, Design and Urban Planning WOODSTOCK’18, June, 2018, El Paso, Texas USA

5

The world of programming is full of systems that work remarkably
well, despite being completely wrong according to our utopian
theories. Popular programming environments like PHP, JavaScript and
R are the most obvious examples. There are some attempts to explain
why30, but we mostly just disregard those saying that they got popular
by accident31. For a community that prides itself in being thorough and
scientific, this is a very shallow argument. To quote Peter Naur:32

It is curious to observe how the authors in this field, who in the formal
aspects of their work require painstaking demonstration and proof, in the
informal aspects are satisfied with subjective claims that have not the
slightest support, neither in argument nor in verifiable evidence. Surely
common sense will indicate that such a manner is scientifically unacceptable.

Following Jacobs, we should study existing programming environ-
ments that work despite theory. This work will need to be partly
technical and partly sociological, because technical characteristics often
enable certain ways of using a system. For example, during the 1990s
era of JavaScript, many learned how to program by copying other
people’s rollover or mouse-follow effects. This would not be possible if
the language was compiled or if the relevant code was not easy to
isolate and copy.

This kind of research is being done in human-computer interaction,
for example, looking at the specifics of how an eco-farming community
in Aarhus used an evolving range of computing systems and tools over a
number of years to manage their work.33 Looking at programming
systems through this perspective is rarer, but Colin Clark and Antranig
Basman make the first step by documenting how the MIDI interface
achieved longevity precisely because it implemented no form of
information hiding.34

3.2 Seeking for Unaverage Clues
Jane Jacobs criticizes utopian theories, because they treat cities as
problems of unorganized complexity and assume they can be reduced
and understood using statistical methods:35

In the form of statistics, [citizens] could be dealt with intellectually like
grains of sand, or electrons, or billiard balls. (...) It became possible to map
out master plans for the statistical city, and people take these more seriously,
for we are all accustomed to believe that maps and reality are necessarily
related, or if they are not, we can make them so by altering reality.

In the world of software, logic has been a powerful tool for reducing
accidental complexity, i.e., that which exists primarily inside the
computer and is relatively isolated from the outside world. However,
most complexity in software is caused by the outside world, as pointed
out by Fred Brooks in his famous “No Silver Bullet” essay:36

30 For example, Meyerovich and Rabkin (2012) study sociology of language adoption
31 For example, Ghica (2016).
32 Naur (1992)
33 Bødker et al. (2016)
34 Clark and Basman (2017)
35 Jacobs (1961)

Much of the complexity a [software engineer] must master is arbitrary com-
plexity, forced with-out rhyme or reason by the many human institutions
and systems to which [their] interfaces must conform. These differ from
interface to interface, and from time to time, not because of necessity but only
because they were designed by different people (…).

I suspect that computer scientists often think about accidental comp-
lexity in software and, based on this experience, come to believe that
all software complexity is reducible. But this is not the case with the
organized (essential) complexity imposed by the outer world.

If software systems are largely systems of unorganized complexity,
what can we do to understand them? Let’s see what Jacobs
recommends for understanding other such systems:37

In the case of understanding cities, I think the most important habits of
thought are these: (1) to think about processes; (2) to work inductively;
(3) to seek for ‘unaverage’ clues involving very small quantities, which
reveal the way larger and more ‘average’ quantities are operating.

I believe the interesting methodological point is the call to look for
‘unaverage’ clues. As an example, Jacobs describes a chain of five
bookshops. Four stay open until 10pm or midnight, but the one in
Brooklyn downtown closes at 8pm. The management clearly keeps its
stores open if there is any business to be had, which gives us a clear sign
that downtown Brooklyn is deserted by 8pm, a valuable insight for an
urban planner.

When studying programming languages, we often attempt to
reduce them to their essence, such as a simple formal calculus. We then
end up looking at a simplified version of the problem that eliminates
interesting unaverage properties. Instead of trying to prove universal
properties about such simple models, we should be looking for unique
cases that illustrate something interesting about the system. On the
formal side, a counter-example program showing that a type system is
unsound is exactly this,38 but we should take a more non-reductionist
point of view and document interesting examples, applications or use-
cases that show, for example, how and why a particular programming
language works (or could work). The 10 PRINT
CHR$(205.5+RND(1)); : GOTO 1039 book does this by taking a
well-known BASIC program as a starting point, but using it to discuss
broader range of technical and cultural issues.

3.3 Treating All Problems as Ill-defined
Jane Jacobs helps us understand how we should study systems. Her
work also offers some points about better city design, but those are
largely specific to the problem of cities. If we abandon appealing, but
wrong, utopian theories, how should we approach software design?

This is where we can learn from professional designers. First of all,
most problems that designers face are ill-defined or wicked.40 The

36 Brooks (1995)
37 Jacobs (1961)
38 This has been shown for Java and Scala by Amin and Tate (2016)
39 Montfort et al. (2014)
40 Rittel and Webber (1973)

WOODSTOCK’18, June, 2018, El Paso, Texas USA Tomas Petricek

6

designer does not (and cannot) have access to all relevant information,
there is no clear success metric and exhaustive analysis of such prob-
lems is not possible. Many problems in software are equally ill-defined,
especially if we do not see them from a purely technical perspective,
but consider them in the actual context in which it will be used.41

According to Cross, designers follow a solution-oriented approach
to problem solving. Rather than starting with a detailed analysis, they
quickly iterate on a number of possible solutions and explore the
problem through the perspectives offered by those solutions. Seeing a
problem in this way lets designers reframe (and even change) it. Good
designers are distinguished by their ability to come up with a strong
framing, utilizing their past experience and or a range of theoretical
principles. However, perhaps the most interesting observation by
Cross is that designers approach all problems they face as ill-defined.
Even when solving a problem that can be treated as well-defined,
designers still proceed by changing the problem goals and constraints.

The engineering-inspired approach to software development starts
with a specification. It implicitly assumes that the problem it faces is
well-defined and can have an exhaustive description. If we start
treating problems as ill-defined, we instead need a broader project
brief that explains the problem together with its context, but does not
limit the space of possible solutions.

Agile development methodologies42 already eliminated some of the
up-front planning in software development, but a more fundamental
shift in our thinking is needed before we start treating all problems as
ill-defined and, hopefully, use software design not just as a way of
building software, but as rethinking problems we are solving. For this,
we will also need the equivalent of designer’s sketches, i.e., a quick
way to see what the solution would look like in order to be able to
explore its consequences.43

The fact that the layout of the city [like Bruges], having developed without
any overall design, lacks a consistent geometric logic does not mean that it
was at all confusing to its inhabitants.

James C. Scott, Seeing Like a State (1998)

4 Conceptual Coherence
Let’s now shift our attention from the outside perspective of planning a
city or software to the inside perspective of navigating through or
making sense of a city or software. Navigability and understandability
of a city allows its inhabitants to use it well. Similarly, a codebase
needs to be understandable and navigable if it is to be modified,
extended or used by other programmers.

41 This is a perspective adopted by the analysis of Ultra-large-scale

systems by Northrop et al. (2006)
42 The perspective has been outlined by Floyd (1987), but has later been popularized by the

Agile Manifesto published by Beck et al. (2001)

Figure 1. Two cities – Manhattan, New York (above) and Prague (below)

(source: Bing Maps: https://www.bing.com/maps)

Note that navigability of a city is equally important for its designers
and users whereas navigability of a codebase is only a concern for the
programmers. This may seem like a flaw in the analogy, but perhaps it
also points to new possibilities. What if we built software so that it is
open and navigable to its users, as well as to its programmers?

The issue of developing understandable software has been
discussed at length by Fred Brooks in his essays.44 Brooks argued that
the most important characteristic that determines understandability of
a software system is conceptual coherence. In a conceptually coherent
system, every part reflects the same design philosophies and the same
balancing of forces. Brooks suggests that conceptual coherence is best
achieved if a system is designed by a single person, but this does not
scale to very large systems:

Conceptual integrity (..) dictates that the design must proceed from one
mind, or from a very small number of agreeing resonant minds.

Any product that is sufficiently big (...) must be conceptually coherent to the
single mind of the user and at the same time designed by many minds.

Brooks suggests a number of methods for achieving conceptual cohe-
rence, such as separating architecture from implementation or a team
structure where a small group of individuals is responsible for the
conceptual design. But are navigable and understandable cities
conceptually coherent and produced by a single mind with clear vision?

43 For user interface design, this is achieved by wireframing tools, but what I propose here
is more focused on functionality and interaction than just (static) user interfaces.

44 Brooks (1995)

Programming as Architecture, Design and Urban Planning WOODSTOCK’18, June, 2018, El Paso, Texas USA

7

4.1 Two Kinds of Cities
Cities exist in a variety of forms. As Figure 1 shows, some are visibly
more conceptually coherent than others. Manhattan got much of its
structure from an early 20th century plan and is a product of a small
number of minds. Prague developed organically since its founding in 7th
century and although some of its parts have been rebuilt with structure
in mind, it follows no overall plan. But as Scott observes,45 the fact that
a city developed without any overall design does not mean that it has to
be confusing to its inhabitants. A city that lacks conceptual integrity
can still be understandable to its inhabitants, but it will be illegible to
outsiders. In words of Scott, “it privileges local knowledge over outside
knowledge”. The two kinds of knowledge play a very different role.
While local knowledge is used by the inhabitants living in the city to
move around, the outside knowledge is used by the outside authorities,
strangers and the military. It lets the government effectively plan public
services such as transportation, garbage collection and, in the past, tax
collection. But it also allows the military to move more smoothly
through the city. To quote Scott again, “the relative illegibility of some urban
neighborhoods has provided a vital margin of political safety from control by outside
elites”.

In the case of cities, conceptual coherence only serves certain users
and purposes. The same seems to be the case for software. Moreover,
software systems such as large open-source ecosystems are very
unlikely to achieve conceptual coherence, because they are simply a
product of too many minds. Perhaps cities can teach us how to make
such systems understandable, despite the lack of conceptual coherence.

4.2 The Image of the City
A perfect starting point for looking at how inhabitants understand the
cities where they live is a study by Kevin Lynch.46 A good city needs
to be legible to its inhabitants, but this does not need to be achieved
through a conceptually coherent master plan. Legibility is the result of
interactions between a number of aspects of a city. A legible city is one
whose districts or landmarks or pathways are easily identifiable and are easily
grouped into an overall pattern. Software developers should strive to
produce software that is legible, both to its users and its developers and
future contributors. My primary focus here is on the legibility of a
codebase, but I believe many ideas will be equally relevant to legible
design for users of a system.

To study legibility, we must consider not just the city as a thing in itself,
but the city being perceived by its inhabitants. Lynch looks at how people
navigate around three cities, Boston, New Jersey and Los Angeles, and
identifies a number of aspects that are important for its legibility, such
as paths, districts and landmarks. The interactions between those allow
inhabitants to navigate around a city. For example, the inhabitant may
be able to identify a district from the characteristic features of its
buildings (e.g., red bricks) and find their way from the district by
following a path towards a visible landmark (such as an easily
identifiable church tower).

45 Scott (1999)

Figure 2. Prague metro map – an example of a structure that makes a city legible

(source: https://pid.cz/ke-stazeni/?type=mapy)

Although concepts such as paths, districts and landmarks are
notions from urban planning, we can easily imagine similar ideas in the
context of software systems. There are multiple types of paths that one
might follow through software. One path may be the execution order
while another may be based on data dependencies. Some paths may be
disconnected, such as when looking for all references to a given
definition. Software may also have different districts if it consists of
multiple components. Contrary to established wisdom, inconsistent
coding styles may be, in fact, useful as one indicator that can be used for
identifying code district in which a programmer finds themselves. The
programmer may then understand that they are in a “bad neighbor-
hood” where any code change is likely to break the system.

There are two points in Lynch’ analysis that may be particularly
relevant to making sense of software. The first is that more knowledge-
able people typically rely on paths whereas visitors tend to rely more on
districts. Even if the low-level structure is illegible to outsiders, the
high-level structure of districts can provide a basic guide for navigation.
This may provide a valuable alternative to utopian ideas about building
of software. We may not need to enforce strict separation of concerns
or structure our software into independent layers as long as our prog-
ramming system provides enough hints about the districts in which
code lives (to let newcomers find their place in a codebase) and makes
it easy to follow the paths that exist in the software (to allow experts
to efficiently move around).

The second point is that there are often multiple overlapping images
of a city. One may be provided by the layout of districts, while another
may be derived from a particular path. Figure 2 shows one such
example – a map of the Prague metro. A coherent city or software
makes it easier to keep a full image of the system in mind, because it can
be efficiently abstracted and compressed. But you do not need to keep a
full image of the system in mind, as long as there is a basic structure,
such as the path defined by the public transport, from which you can
start when you need to make sense of a particular new part.

46 The Image of the City by Lynch (1960)

WOODSTOCK’18, June, 2018, El Paso, Texas USA Tomas Petricek

8

A range of observers of architecture are now suggesting that the field may
be bankrupt (…) the methods inapplicable to contemporary design tasks [and
that] collectively they are incapable of producing pleasant, liveable and hu-
mane environments, except perhaps occasionally and then only by chance.

C. Thomas Mitchell, Redefining Designing (1997)

5 Adaptable Software
Is there an alternative to software development based on utopian
theories or unattainable ideals of conceptual coherence? I believe my
essay shares this question with some of the work of Richard P.
Gabriel,47 who was himself inspired by the architect Christopher
Alexander. Gabriel argues that software should be habitable. In archi-
tecture, habitability makes a place livable, like home. In the case of software:

Habitability is the characteristic of source code that enables programmers,
coders, bug-fixers, and people coming to the code later in its life to understand
its construction and intentions and to change it comfortably and confidently.

The ideas on how we navigate around cities and around software that I
discussed in the previous section are closely related to habitability. A
habitable city or a software does not need to be conceptually coherent,
but it must be navigable and understandable.

However, there is more to habitability than just understanding.
Habitability is also about being able to change the system. This idea is
equally important to urban planners, enlightened architects and
software developers. In particular, Jane Jacobs, who wrote about cities
that work despite not being designed according to utopian theories also
writes about the conditions that enable inhabitants uplift their city
districts, while Stewart Brand writes about how inhabitants adapt
their buildings.

As Gabriel points out, a New England farmhouse is habitable and [a] new
owner feels just as comfortable changing or adapting that farmhouse as the first
farmer was. But how do we achieve this for software?48

[H]ow do you enable a programmer to feel responsible for software developed
earlier? Here is where habitability comes in. Just as with a house, you don’t
have to have built or designed something to feel at home in it. Most people
buy houses that have been built and designed by someone else.

If we want to build long-lasting software that adapts to changing requi-
rements and contexts and improves over time, we need to make sure it
is habitable and adaptable. I will first look at the case of buildings,
before exploring what ideas can be relevant in the context of software.

5.1 How Buildings Learn
Christopher Alexander49 distinguishes between unself-conscious design
that achieves a good fit between context and form through gradual

47 Especially essays collected in Patterns of Software (Gabriel 1996)
48 Gabriel (1996)

Figure 3. Barn window with wood siding. An example of a material that “looks
bad before it goes bad” (source: https://pxhere.com/en/photo/569328)

adaptation and self-conscious design that aims to achieve theoretical
understanding of the complexity of the system and design a solution.

The invention of architecture, as a self-conscious design method,
destroyed the old process of building, but it has not always been for the
better. Adaptability is one of the aspects that self-conscious architec-
ture often gets wrong. Stewart Brand offers a damning summary:50

Almost no buildings adapt well. They’re designed not to adapt; also budgeted
and financed not to, constructed not to, administered not to, maintained not
to, regulated and taxed not to, even remodelled not to. But all buildings (...)
adapt anyway, however poorly, because the usages in and around them are
changing constantly.

The same could be said about software. Software is often designed
with the implicit assumption that it won’t need to be modified once it
is complete, yet, the context evolves and software needs to evolve too.

Brand does not give simple advice on how to design an adaptable
building, but he starts from an interesting analysis. He documents how
different types of buildings evolved over time, distinguishing two
kinds of buildings: Low Road buildings, such as a former warehouse, are
flexible, cheap to modify and can easily adapt to a very different
purpose. High Road buildings, such as an English manor house, adapt
slowly with more respect to their history, are more expensive to
maintain, but they develop a unique character.

A similar distinction might exist in the world of software. On the
one hand, some software provides a minimal robust core structure and
can be easily adapted and modified within this structure. On the other
hand, there are software systems that evolved more slowly, have longer
history that they have to respect and are more expensive to maintain,
but can reliably provide services that are complex and cannot be easily
replaced.

More generally, Brand’s work suggests that we have much to learn
about software by undertaking a detailed analysis of past software
systems. When talking about utopian urban planning theories, I pointed
out that we should follow the example of Jane Jacobs and document
software systems that work well despite theory. Similarly, we should

49 In Notes on the Synthesis of Form (Alexander, 1964)
50 Brand (1995)

Programming as Architecture, Design and Urban Planning WOODSTOCK’18, June, 2018, El Paso, Texas USA

9

follow the example of Stewart Brand and document how software
systems evolve over time. Only then we can meaningfully start looking
for various patterns in such evolutions and use these to design more
adaptable software systems.

5.2 Maintenance and Materials
Until a thorough analysis of the evolution of software is completed, the
best we can do is to see whether there are any specific ideas in the
world of architecture that could be equally relevant to the design of
adaptable software. I believe there are two such ideas in Stewart
Brand’s writing. The two ideas focus on maintenance practices and
building materials.

Just like software systems, any building requires maintenance over
time. And just like with software systems, building owners are often
bad at performing the necessary maintenance:51

Too often a new building is a teacher of bad maintenance habits. After the
initial shakedown period, everything pretty much works, and the owner and
inhabitants gratefully stop paying attention to the place. Once attention is
deferred, deferring of maintenance comes naturally.

Brand’s answer is to design buildings so that they teach good mainte-
nance habits. One way to do this is to make some parts of the initial
design intentionally ephemeral. If there are parts that will require
maintenance within a year, the owners will get into a good habit that
will be necessary once the building is older. The same seems to be a
very good suggestion for building software systems. If we build our
systems in a way that intentionally makes some parts degrade more
quickly, we will establish the right methods and processes for
maintenance that will be valuable in the long run. One step in this
direction is chaos engineering,52 which improves system resilience by
intentionally disabling random services, in order to ensure that the
rest of the system recovers from such failures. This focuses on opera-
tional aspects of distributed systems, but perhaps we can imagine a
form of chaos engineering for other aspects of the software
development process?

The maintainability of a building (and software) also crucially
depends on the material from which it is built. Brand mentions the
cautionary tale of vinyl siding, which is often used to cover wooden
walls with peeling paint. The problem is that vinyl siding blocks
moisture and the humidity behind it can cause structural damage to the
building. The peeling paint on a wooden wall, illustrated in Figure 3, is
a desirable property of the material:53

The question is this: do you want material that looks bad before it acts bad,
like shingles or clapboard, or one that acts bad long before it looks bad, like
vinyl siding?

The case poses an interesting question about the materials we use to
build software. What is the software equivalent of a material that looks
bad before it acts bad? How can we build software such that it
gracefully degrades rather than abruptly stops working?

51 dtto.
52 First developed at Netflix by Basiri et al. (2016)

Figure 4. Musgum mud hut. An example of well-adapted vernacular
architecture (source: https://en.wikipedia.org/wiki/Musgum_mud_huts)

F# type providers for accessing external data54 may be one step in
this direction. A type provider may generate types based on an external
schema, making type safety conditional on the external world. When
the external data source changes (the environment degrades), the
programmer will get a compile-time error (material looks bad) before a
runtime error occurs (material goes bad).

5.3 Vernacular Architecture
Concerns like materials and maintenance habits are important for self-
conscious architecture where the architect first analyzes the problem to
understand its requirements, such as adaptability, and then proposes a
design that achieves those objectives.

A very different process for obtaining buildings with desirable
properties takes place in the context of unself-conscious or vernacular
architecture, which broadly refers to buildings built by non-architects.
Vernacular architecture achieves desirable properties without the same
theoretical understanding of the problem. Instead, it works by gradual
step-wise adaptation of a design over longer period of time. Crucially,
vernacular architecture works without reinventing the architectural
form of a building.

A New England farmhouse, used earlier as an example of a habita-
ble building by Gabriel is one case of vernacular architecture. When
building a new farmhouse, the farmers do not invent a new form from
scratch. Instead, they mostly follow the structure of other farmhouses,
but make small adaptations based on recent experience. The use of
existing structure ensures that the new building will work; small
adaptations ensure that the design improves over time. Another

53 Quoted from Brand (1995)
54 Petricek et al. (2016)

WOODSTOCK’18, June, 2018, El Paso, Texas USA Tomas Petricek

10

example, mentioned by Christopher Alexander55 are traditional mud
huts built by Musgum people. Despite developing without theoretical
foundations, the huts use a mathematically ideal catenary arch and are
extremely good at keeping houses cool inside on hot summer days.

Vernacular design restricts the scope of the problem by limiting
architectural ideas to what is typically used in the local context. This
reduces the design task and allows the builder to focus on skillful
solutions to specific problems rather than at reinventing forms. Such
architecture might appear homogeneous and unified at first, but is rich
and diversified in details. As Alexander acknowledges, unself-
conscious architecture never faces the problem of complexity that
modern architects face, but it is still worth studying because it has a
very efficient way of solving problems in a narrower context.

In the world of software, we typically start by reinventing the form
and, consequently, we have to face a very wide range of design
problems. Are there cases of software construction that are more akin
to the vernacular or unselfconscious design? When do we create
software by taking an existing solution and gradually adapting it?

I believe there is a number of areas in software development where
the basic architecture is fixed and no reinvention of form takes place.
One example is large enterprise software such as SAP. The basic
structure is fixed, but the system is adapted to local context through
configuration and extensions. Another example might be spreadsheet
systems like Excel. Spreadsheets define a relatively fixed form and
allow the user to focus on skillful solutions to specific problems.
Thanks to the fixed form, such specific problem solutions often transfer
well between different applications.

We can also find the vernacular approach to software construction
also in creative applications that were enabled by programming systems
which made it easy to copy and adapt existing code. Two such
examples include HyperCard (where stacks were frequently copied
and modified) and the 1990s web which made it easy to remix ideas
from existing web pages. Indeed, some of my own first programming
experience involved copying JavaScript code for “roll-over” image
effects and “cursor trailer” animations.

Vernacular software development may only be achievable with
sufficiently open software that can, in fact, be copied and adapted. But
it could lead to software systems that very efficiently solve recurrent
problems and allow us to focus on the specific of the problem, rather
than on the challenging and wasteful process of reinventing the form.

6 Conclusions
The kind of software that we need to build is increasingly complex and
it addresses ill-defined problems. Yet, our thinking about software and
programming is rooted in small mathematical models of programming
languages and methods for solving well-defined engineering problems.
In this essay, I argue that we should instead model our way of thinking
about software after architecture, design and urban planning.

55 The example is taken from Alexander (1964)

If you were hoping for a plan of a new research paradigm, then I’m
sorry to disappoint you. This essay identified a number of methods,
characteristics and specific ideas that would be a part of such paradigm,
but I openly admit that the paradigm in which those ideas all come
together remains elusive. As much as I find this new imagined way of
thinking about software relevant for the software we are building
today, I expect that we may need to wait for a broader change in the
socio-technological context first.

To clarify, let’s look at two past changes in how software is built. 56
The first change is the emergence of software engineering and the focus
on rigorous development methodologies after the 1968 NATO Soft-
ware Engineering Conference. The change was not triggered by the
conference itself, but instead by a broader software crisis. The increa-
sing computer power and availability meant that programmers started
solving more complex problems and an increasing number of companies
wanted to build software. The kind of software that needed to be built
changed first, the change in thinking about software followed.

The second change is the appearance of lightweight software
development methods like Scrum and Extreme Programming in the
1990s. Again, the change was triggered by a broader change in the kind
of software that was required at the time. With the growing popularity
of affordable personal computers, companies started envisioning new
ways of using computers and wanted to build those before their
competition would. Again, the kind of software that needed to be built
changed first, the change in thinking about the development process
followed. The history thus suggests that a new way of thinking about
software comes hand in hand with the shift in what kind of programs
need to be built. But what kind of programs would be best built using
the methods inspired by architecture, design and urban planning?

First, my discussion often blurred the distinction between a user
and a programmer. This was not an accident. Livable cities are shaped
not just by urban planners, but also by their inhabitants. Adaptable
buildings are modified by their non-architect occupiers. The future
software requiring new thinking will allow gradual progression from
user to a programmer. Habitability, i.e., the ability to understand and
modify the system, will apply equally to users and programmers.

Second, much of what I have written requires software that is more
open than most systems today. The navigability of software should
make it understandable to both programmers and users. However, this
cannot happen if the user remains outside of the city walls. We need to
let the user in and do not hide the structure of the software from them.

Third, many of my parallels suggest that good software takes time
and is built by less organized development methods than we are used
to. Buildings arising from vernacular architecture are built and refined
by generations of their users. A planning change in Greenwich Village
happens when a local community organizes itself and stages a protest.
Just like inhabitants own their buildings and cities, inhabitants of
software need to own and be able to adapt their software.

56 The 1960s crisis has been documented by Ensmenger (2012); my account of the history of
lightweight development methods is based on that of Varhol (2019)

Programming as Architecture, Design and Urban Planning WOODSTOCK’18, June, 2018, El Paso, Texas USA

11

It remains to be seen if the next software crisis results in software
that does not strictly separate users from programmers, allows users
and programmers to become joint owners of systems and does not
artificially leave anyone outside of the city walls. If this happens, and I
sincerely hope it will, then software engineers will need to become
(actual) software architects, software designers and software
urban planners.

Acknowledgements
The author is grateful to the members of the Temporary Comp
Collective and the associated reading group that brought my attention
to a number of the references used in this essay. A number of ideas
discussed here took their final form during discussion at Salon
Littéraire 2021 at the virtual ‹Programming› 2021 conference and
during a virtual visit to the MIT Software Design Group. The essay is
based on an earlier blog post57 and the follow-up online discussions also
contributed to this revised version. Last but not least, the reviewers
provided invaluable feedback and numerous additional corrections and
references, including the intriguing reference to Christopher
Alexander’s work in the proceedings of the NATO 1968 conference.

REFERENCES
Alexander, C. (1964). Notes on the Synthesis of Form (Vol. 5).
Harvard University Press.

Amin, N., Tate, R. (2016). Java and Scala’s type systems are unsound: The
existential crisis of null pointers. In Proceedings of OOPSLA, ACM.

Baker, A. T. (2010). Theoretical and Empirical Studies of Software
Development's Role as a Design Discipline. University of California, Irvine.

Basiri, A., Behnam, N., De Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J.,
Rosenthal, C. (2016). Chaos engineering. IEEE Software, 33(3), 35-41.

Beck, K. (1987). Using pattern languages for object-oriented programs.
Technical report CR-87-43. Available at: http://c2.com/doc/oopsla87.html.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,... Sutherland, J. (2001).
Agile Manifesto. Available at: https://agilemanifesto.org/

Brand, S. (1995). How Buildings Learn: What Happens After They’re Built.
Viking Press

Brooks Jr, F. P. (1995). The mythical man-month: essays on software
engineering. Pearson Education.

Bødker, S., Korsgaard, H., & Saad-Sulonen, J. (2016). ‘A Farmer, a Place and at
least 20 Members’ The Development of Artifact Ecologies in Volunteer-based
Communities. In Proceedings of the 19th ACM Conference on Computer-
Supported Cooperative Work & Social Computing (pp. 1142-1156).

Christian, E. F. (2003). Stewart Brand showed “How Buildings Learn”, So
Why Can’t Software? Available at: http://www.manasclerk.com/blog
/2003/07/23/brands-how-buildings-learn-and-why-cant-software/

57 Available at http://tomasp.net/blog/2020/cities-and-programming/

Clark, C., Basman, A. (2017). Tracing a paradigm for externalization: Avatars
and the GPII Nexus. In Companion to the first International Conference on the
Art, Science and Engineering of Programming (pp. 1-5).

Cross, N. (2007). Designerly ways of knowing. Birkhäuser.

De Moura, L., & Bjørner, N. (2008, March). Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems (pp. 337-340). Springer, Berlin, Heidelberg.

Evans, E., & Evans, E. J. (2004). Domain-driven design: tackling complexity in
the heart of software. Addison-Wesley Professional.

Ensmenger, N. L. (2012). The computer boys take over: Computers,
programmers, and the politics of technical expertise. Mit Press.

Floyd, C. (1987). Outline of a paradigm change in software engineering. In
Computers and Democracy: A Scandanavian Challenge, Brookfield, VT:
Gower Publishing Company, pp. 191–210.

Gabriel, R. P. (1996). Patterns of software. Oxford University Press.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Publishing.

Ghica, D. (2016). What else are we getting wrong? Available at:
http://danghica.blogspot.com/2016/09/what-else-are-we-getting-wrong.html

Hermans, F., Aldewereld, M. (2017). Programming is writing is programming.
In Companion to the first International Conference on the Art, Science and
Engineering of Programming (pp. 1-8).

Hopper, M. (1955). Automatic coding for digital computers. Remington Rand
Incorporated. Available online at:
http://www.bitsavers.org/pdf/univac/HopperAutoCodingPaper_1955.pdf

Jackson, D. (2015). Towards a theory of conceptual design for software. In 2015
ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward!) (pp. 282-296).

Jacobs, J. (1961). The Death and Life of Great American Cities. Random House

Kaijanaho, A. J. (2017). Concept analysis in programming language research:
done well it is all right. In Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (pp. 246-259).

Kuhn, T. S. (1962), The Structure of Scientific Revolutions.
University of Chicago Press.

Lakoff, G., Johnson, M. (2008). Metaphors we live by.
University of Chicago Press.

Lynch, K. (1960). The image of the city (Vol. 11). MIT press.

Mandel, L. (1967). The Computer Girls. Cosmopolitan. April 1967 issue.

Mehmood, A. (2010). On the history and potentials of evolutionary metaphors
in urban planning. Planning Theory, 9(1), 63-87.

Meyerovich, L. A., Rabkin, A. S. (2012). Socio-PLT: Principles for program-
ming language adoption. In Proceedings of the ACM symposium on New ideas,
new paradigms, and reflections on programming and software (pp. 39-54).

Montfort, N., Baudoin, P., Bell, J., Douglass, J., Bogost, I. (2014). 10 PRINT
CHR$(205. 5+RND(1));: GOTO 10. MIT Press.

Naur, P., Randell, B. (1969). Software engineering: Report of a conference
sponsored by the nato science committee, Garmisch, 7th-11th October 1968.

WOODSTOCK’18, June, 2018, El Paso, Texas USA Tomas Petricek

12

Naur, P. (1992). The place of strictly defined notation in human insight. In
Computing: A Human Activity, ACM Press

Nofre, D., Priestley, M., Alberts, G. (2014). When technology became
language: The origins of the linguistic conception of computer programming,
1950–1960. Technology and culture, 40-75.

Northrop, L., Feiler, P., Gabriel, R. P., Goodenough, J., Linger, R., Longstaff,
T., ... Wallnau, K. (2006). Ultra-large-scale systems: The software challenge of
the future. Carnegie-Mellon Univ, Software Engineering Institute.

Papapetrou, P. (2015). Software Gardening: Yet Another
Crappy Analogy or a Reality? Available online at:
https://www.methodsandtools.com/archive/softwaregardening.php

Parnas, D. L. (1985). Software aspects of strategic defense systems.
Communications of the ACM, 28(12), 1326-1335.

Petre, M., Van Der Hoek, A. (Eds.). (2019). Software Designers in Action: A
Human-Centric Look at Design Work. Chapman and Hall/CRC.

Petricek, T., Guerra, G., & Syme, D. (2016). Types from data: making structured
data first-class citizens in F#. In Proceedings of PLDI 2016, ACM.

Priestley, M. (2011). A science of operations: machines, logic and the invention
of programming. Springer Science & Business Media.

Rittel, H. W., Webber, M. M. (1973). Dilemmas in a general theory of planning.
Policy sciences, 4(2), 155-169.

Rudofsky, B. (1987). Architecture without architects: a short introduction to
non-pedigreed architecture. UNM Press.

Scott, J. C. (1999). Seeing Like a State: How Certain Schemes to Improve the
Human Condition Have Failed. Yale University Press.

Simon, H. A. (1969). The sciences of the artificial. MIT Press.

Slayton, R. (2013). Arguments that Count: Physics, Computing, and Missile
Defense, 1949-2012. MIT Press.

Steimann, F. (2018). Fatal abstraction. In Proceedings of the 2018 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (pp. 125-130).

Varhol, P. (2019). To agility and beyond: The history—and legacy—of agile
development. Available at: https://techbeacon.com/app-dev-testing/agility-
beyond-history-legacy-agile-development

Vincenti, W. G. (1990). What Engineers Know and How They Know It:
Analytical Studies from Aeronautical History. John Hopkins University Press

Weaver, W. (1958). A Quarter Century in the Natural Sciences. In The
Rockefeller Foundation Annual Report, 1958. Available online at: https://
rockefellerfoundation.org/wp-content/uploads/Annual-Report-1958-1.pdf

