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Abstract
Programming is usually based on an inconvenient separa-
tion between an implementation level and a user level. Self-
sustaining systems expose their implementation at their user
level so that they can be modified and improved from within.
However, the few examples that exist are tightly linked to
textual language-based accounts of compiler bootstrapping.
If we want systems to be truly open for modification, we
need to step beyond programming languages and support
more structured, visual ways of programming as well. How
the bootstrapping process can work in such an interactive
context is important yet unexplored territory.

This essay is a critical report on our first-hand experience
of building one such system named BootstrapLab. We trace
and reconstruct the steps for achieving self-sustainability in
an interactive, structured, graphical context: choose the plat-
form; design the substrate; implement temporary infrastruc-
ture; implement a high-level language; pay off outstanding
substrate debt; provide for domain-specific notations.

Throughout, we discuss the challenges involved, identi-
fying design forces that shaped the decisions and capturing
heuristics that resolved these forces in our case. Both posi-
tive and negative results are featured, including the efficacy
of the heuristics. We close by suggesting how to generalise
what worked in our particular case to alternative paths and
starting points. The enterprise as a whole takes us a further
step towards achieving open and malleable programming
systems for everyone.
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1 Introduction
In the ordinary lifecycle of software, there is a hard separa-
tion between the product and its source. The product may
be any end-user application such as a game, and is created
from the source by a producer, which is a compiler or other
similar tool built for programmers. In this arrangement, the
product’s user has little ability to re-program it, beyond set-
ting configuration parameters anticipated ahead of time. The
user’s only option is to modify the source (if it is available)
and use the producer to create a new version of the product.

Curiously, this arrangement isn’t limited to end-user prod-
ucts but also applies to most programmer-oriented products!
In the ordinary programming experience, tools like the com-
piler or editor are themselves products with a separate source
and producer. If the user of a language wants to re-program
it beyond a customisation anticipated by its designer, they
have to go and modify the compiler source code. If they are
lucky, the compiler is also written in the same language. In
this case, the user is already familiar with the language’s no-
tation and capabilities, making the task easier than learning
an entirely new language. Even so, their changes still occur
at a separate level from their ordinary use of the system.

In this context of programming, the separation between
the product and the source is particularly lamentable, as it
makes it very hard for programmers to improve their tools1.
If the language ecosystem is not created using itself, a pro-
grammer’s mastery of the language is worthless for adapting
it. Even if they get lucky as described, the burden of getting
the source code, recompiling and deploying it, and maintain-
ing a fork would prevent many from succeeding.

An alternative to this arrangement is self-sustainable sys-
tems which dissolve the distinction between the product,
source, and producer. A single environment provides not
only for using and re-programming the product, but also
for re-programming the producer, i.e. the system itself that
is used for the programming. These systems are carefully
designed to avoid “baking in” any of their behaviour. Instead,
they expose as much of their own implementation as possible
for modification at the user level. The advantage of such an
approach is that innovation and improvement in the system
can feed back into its own development.

1This is true in a global sense, but even more important in the sense of local
adaptations for their own purposes.
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For example, consider mathematical notation. It involves
many font styles and symbols as infix operators. Yet to ex-
press this in code we are limited to ASCII characters and,
in many languages, prefix functional notation for custom
operators. There are numerous domains where an improve-
ment to this notation would make code easier to follow,
such as rendering 3D graphics or computing text layout. If
we implement a user interface for entering expressions in
mathematical notation, not only would it help us program
an end-user application such as a 3D game, but the same
notation also becomes instantly available for our own use
in-system. We could re-express parts of the code for the
system’s own user interface, such as its algorithms for text
layout. In fact, we could even use our mathematical notation
to re-implement the very user interface for the mathematical
notation! This would not be the case if the end-user code
existed in a different world than the programming system.

This “innovation feedback” encourages a virtuous cycle
of improvement regarding notations and beyond. The same
can happen when we develop better debugging and testing
tools, user interface builders, provenance tracking or perfor-
mance optimisations. In other words, the development of the
system itself will benefit from any improvement made while
using the system. This is the key advantage self-sustainable
systems have over others.

2 Contributions
The goal of this essay is to lay the foundations for creating
new self-sustainable programming systems. The user of such
a system should be able to use it for building new products
and, along the way, gradually learn how tomake increasingly
complex improvements to the system itself using domain-
appropriate, often graphical, notations.

To do so, we critically analyse the process of bootstrapping
a single novel self-sustainable programming system, which
we call BootstrapLab, and identify ideas that may apply more
generally. This essay presents a rational reconstruction of
the steps of the bootstrapping process. For each step, we
describe the general task at hand, illustrate this with concrete
decisions made in the implementation of BootstrapLab and,
where appropriate, sketch possible alternative decisions and
their likely consequences. In other words, it is a depth-first
exploration of the process with some alternative branches
suggested along the way.

The essay can be read at three different levels:

• First, it tells the development story of a concrete sys-
tem. BootstrapLab is a novel self-sustainable system,
based on structured editing, built on top of the web
platform.

• Second, it presents a rational reconstruction of the
logical steps needed to bootstrap a self-sustainable
programming system.

• Third, it highlights design forces and heuristics for re-
solving them which can be used by designers of future
self-sustainable systems.

We conclude by identifying which parts of our journey
ought to be transferrable to other contexts, suggesting a gen-
eral technique for interactively bootstrapping self-sustainable
systems from any starting platform.

3 Related Work
The notion of “self-sustainable system” is difficult to discuss
purely at the programming language level, because it cru-
cially depends on how program execution and production
is interconnected. For this reason, we talk about program-
ming systems [7, 13], which include not only programming
languages, but also IDEs, programming environments with
non-textual notations, and other tools for creating software.

In the context of programming languages, the compiler
or interpreter for a language can be implemented in the lan-
guage itself. This is known as bootstrapping and it allows the
language creator to co-evolve the language and the compiler.
However, they typically have to do so outside of the envi-
ronment used for building other products. A related concept
is that of meta-circular evaluator, which is an interpreter for
a language, written using the language, that implements fea-
tures by deferring to its own inmplementation. For example,
a meta-circular interpreter for Lisp in Lisp would implement
eval by calling eval. This makes the task of writing the
interpreter easier, but it does not eliminate the distinction
between the product (application) source code and producer
(interpreter) source code.

The two best-known self-sustainable programming sys-
tems are Lisp and Smalltalk. Both are typically discussed in
programming language terms, but they are more interesting
as programming systems. In Smalltalk and many implemen-
tations of Lisp (e.g., Interlisp), the system itself (producer)
can be modified from the same environment that is used for
creating products. In other words, a Smalltalk image con-
tains both the objects that make up the product as well as the
objects that make up the Smalltalk environment itself. We
also regard Unix as a whole to be a self-sustainable system,
though the individual programs within it seldom have this
property.

Most literature discussing self-sustainability [11, 12] seems
to focus on textual languages as the way to get there. We
broaden the scope to programming systems, because this is
necessary in order to talk about interaction and graphical
capabilities. We desire to support graphical or structured
ways of expressing programs that go beyond text [4, 6, 9],
and feel that this has been neglected in prior work.

The one system that directly influenced our work is the
Combined Object Lambda Architecture or COLA [18]. The
system is described as a mutually self-implementing pair
of abstractions: a structural object model (the “Object” in
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the acronym) and a behavioural Lisp-like language (the
“Lambda”). The system aims for maximal openness to modifi-
cation, down to the basic semantics of object messaging and
Lisp expressions. The self-sustainability allows for innova-
tion feedback that the authors refer to as internal evolution:

Applying [internal evolution] locally provides
scoped, domain-specific languages in which to
express arbitrarily small parts of an application
(these might be better called mood-specific lan-
guages). Implementing new syntax and seman-
tics should be (and is) as simple as defining a
new function or macro in a traditional language.

The aim of the COLA design is to create a maximally
flexible self-sustaining system, but its exposition has three
limitations:

1. It restricts the form of notations to text, curtailing
the ambition of pervasive domain-specific adaptation.
We would prefer mood-specific notations or interfaces
generally, including but not limited to text.

2. COLA’s support of programming languages is pre-
sented as a pipeline of traditional batch-mode transfor-
mations such as parsing, analysis, and code generation.
This further steeps it in a world of linear sequence
transformations that obscure the interesting ideas.

3. The bootstrapping process of implementing such a
design is also cast in terms of batch-mode transfor-
mations of various source code files. We would rather
have the ability to gradually sculpt a system into a self-
sustainable state, interactively, through a combination
of manual actions and automatic code.

Because COLA was such a big influence on the present
work, we will refer to it repeatedly for comparison and offer
some analysis of our own.

4 Design Objectives
We follow in the spirit of COLA, but we aim to bootstrap a
graphical and interactive self-sustainable system instead of
a textual one based on batch transformations.

We want to support not just textual domain-specific lan-
guages, but visual domain-specific notations. A user of the
system should be able to express their thoughts in a diagram-
matic form if they so wish. Support for graphics should be
built-in in the system. In short, we desire notational freedom.

We also want to work with an interactive system. The user
should be able to modify the state of the running system
through manual gestures, not just programmatically.

This approach can better exploit the graphical and interac-
tive capabilities of modern computing, but it also sidesteps
the tedious accidental complexities of parsing and serialising
text. Similarly, making the system interactive will allow the
user to better understand the consequences of individual
small changes and will, in turn, support the virtuous cycle
of self-improvement.

In technical terms, we do not write an initial object system
in a language like C++. Instead, we choose as our starting
point a platform equipped with an interactive REPL as a
“blank slate”. We then gradually (in the ideal case) “sculpt”
this into a self-sustainable state.

Our desire is to make an interactive, structured “port” of
the COLA approach. This is unexplored territory. It must
be emphasised that finding the right “final design” upfront
should not be necessary and would, in fact, defeat the spirit
of the enterprise. The point is to build an initial kernel which
is then sufficient for evolving and improving itself.

In order to support interactivity, structure, and graphics,
a natural place to start is a non-self-sustainable implemen-
tation platform that already conveniently supports those
features. This will make it possible to start with a suitable
“blank slate” and, gradually, develop the system into a self-
sustainable one. At each stage, we take stock of what changes
can feasibly be achieved at the “user” level within the system,
versus those that can only be achieved at the implementation
level. We then ask ourselves: how can we imbue the user
level with control over some of these aspects?

The following sections propose key steps for evolving self-
sustainability in this way, informed by our actual experience
applying them in BootstrapLab. We will examine the forces
and heuristics that motivated these steps, and reflect on their
efficacy in light of actual practice.

4.1 Concepts and Terminology
To bootstrap a programming language is to carry out the
following sequence of steps (more or less):

1. We design a novel language NovLang that we want to
use.

2. We write NovLang source code that will compile other
NovLang source code into a runnable program.

3. We hand-translate this to C/C++ and build a compiler
for NovLang.

4. We run this to compile the NovLang source code from
step 2.

5. We obtain a runnable compiler for NovLang, which
was written in NovLang and is now “self-hosting”.

6. We can now discard the C/C++ code.

Our task is to explore the question: how do we bootstrap
interactive graphical systems?

In this essay, we use the term product system (or simply
“the system”) to refer to the programming system that we
evolve towards self-sustainability. We use the producer sys-
tem (or simply “producer”) to bootstrap the product system.
The producer is divided into two layers: the platform consists
of all the pre-existing capabilities of the producer, while the
substrate is the basis for the product system that we have to
build. We use the term in-system to refer to changes made
within the product system, by using it as a programming
system at its user level.
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Wemodel the product system as having a state that changes
over time.This is necessarily the case for any interesting inter-
active programming system, regardless of its programming
paradigm. Even in functional, declarative, reactive or logic
paradigms, the evaluation or re-computation in response to
interaction with a user produces a new (changed) state.

When discussing state, we refer to both the visible inter-
face and the hidden internal state of the programming system.
The state always consists of substructures such as byte ar-
rays, object graphs or trees. Correspondingly, a change to the
state can be decomposed into sub-changes that affect small
parts of the state.2 This gives rise to primitive instructions
that describe state change at the finest level of granularity.

By definition, what we do with a self-sustainable system is
open-ended. This essay is solely concerned with getting there
from the ordinary world, which is why we spend so much
discussion on the design of the substrate. This determines
how the product system can evolve, how soon can it become
self-sustainable and to what extent. The design is shaped by
forces that we aim to make explicit. We consider ways of
resolving competing forces and highlight these as heuristics
throughout the essay.

5 Journey Itinerary
The rest of the essay documents the steps involved in de-
signing a self-sustainable system. Be advised that the se-
quence is a rational reconstruction. The implementation of
BootstrapLab followed a more meandering path, but the fol-
lowing steps gesture at the Platonically optimal pathway for
bootstrapping a self-sustainable programming system:

1. Choose a starting platform. The platform is a pre-
existing programming system that we use to create
and run the product system.The platform cannot be re-
programmed, let alone to become self-sustainable, but
it allows us to build a self-sustainable product system.
To choose a platform, we consider its distance from
desired substrate features and personal preference.

2. Design a substrate. The substrate defines the basic
infrastructure supporting the product system: how
the state is represented and changed. The design of a
substrate re-uses parts of the platform where possible
and extends it where necessary. We must decide which
platform capabilities to use to represent the state and
how to expose graphics and interaction. We design a
minimal instruction set describing changes to the state,
which can be represented using the state. We then use
the platform to implement an engine that executes
these instructions.

2It may be argued that a very high-level programming paradigm would
make it impossible to affect only small parts of the state. This may, however,
not be a suitable starting point for a self-sustainable system.

3. Implement temporary infrastructure. Use the plat-
form to implement tools for working within the sub-
strate, most importantly a state viewer or editor. These
tools constitute the “ladder” that wewill pull up behind
us once we have ascended to in-system implementa-
tions of these tools.

4. Implement a high-level language. The substrate’s
instruction set (ASM) is cumbersome, so ensure pro-
grams can be expressed in-system via high-level con-
structs. Decide how to represent expressions as struc-
tured state and whether to interpret or compile them
into ASM. Ideally, develop such an engine in ASM
gradually and interactively. Alternatively, implement
it at the platform level and later port it to ASM or the
high-level language itself.

5. Pay off outstanding substrate debt. Port all remain-
ing temporary infrastructure into the system, taking
advantage of the infrastructure itself and the high-level
language. The result is a self-sustainable programming
system.

6. Provide for domain-specific notations.Use the self-
sustaining state editor to construct a more convenient
interface for editing high-level expressions. Add novel
notations and interfaces as needed. Use these not just
for programming new end-user applications, but also
to improve the product system itself.

What we have here looks like a Waterfall development
plan, each step strictly following from the completion of
the previous. This presentation is convenient as a summary,
but in practice, the sequencing here need not be so rigid.
Adjacent steps may overlap, or we may need to prototype
and revise a previous step in light of the result.

The general outline also resembles the (discredited) “reca-
pitulation theory” in biology. The idea was, in order for an
embryo to develop into a full organism, it passes through the
evolutionary history of its ancestors. In other words, for a
particular clump of cells to develop into an animal, it needs
to fast-track its ancestors’ evolution from a small clump of
cells in the distant past.

While this has since been rejected in biology, it is a good
summary of what is going on in our project here. The boot-
strapping of a particular self-sustainable system fast-tracks
the historical development of computing’s abstractions. It be-
gins at the machine level and ascends through to higher-level
languages, each time building the next stage in the current
one. Our work can be seen as an attempt to reconstruct pro-
gramming on top of a more structured, graphical substrate
than the byte arrays we all had to use the first time around.
With that in mind, let us now proceed to the first stage.

6 Choose a Starting Platform
The platform is a pre-existing programming sys-
tem that we use to create and run the product
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system. The platform cannot be re-programmed,
let alone to become self-sustainable, but it al-
lows us to bootstrap a self-sustainable product
system. To choose a platform, we consider its
distance from desired substrate features and per-
sonal preference.

The first step is to choose the platform that we will use
as the basis for the product system. This could be any exist-
ing high-level or low-level programming system. One key
factor is simply personal familiarity or preference for a par-
ticular platform. This plays a role during bootstrapping, but
is destined to become irrelevant once self-sustainability is
achieved.

The other consideration is the primitives provided by the
platform. They influence how we can design the substrate
on top of it in the next step. If we begin with a high-level
platform with many convenient features (or, say, graphics or
audio capabilities), then we will have to regard them as black
boxes. We may expose them as primitives in the product
system, but we will not be able to re-program them in-system
since we cannot re-program the platform. Alternatively, such
imported convenient high-level features could later be re-
implemented in the product using more basic primitives. This
would, however, delay the point from which we can work
fully in-system. This foreshadows a coming design tension
in the substrate (Section 7.2).

In early computing, such as the Altair 8800, the platform
was linear memory (state) and native CPU instructions (state
change). The platform did not provide other tooling aside
from switches to manually set memory values.

In COLA, the platform is C [19] or C++ [18] and the Unix
command-line environment; in other words, it is the Unix
programming system [13].

In BootstrapLab, we chose JavaScript and the Web plat-
form generally. This provides us with built-in Web technolo-
gies and libraries (including graphics) and the browser de-
veloper tools. This platform provides a range of convenient
tools to assist bootstrapping. Because of its large scope, we
have to carefully choose primitives to expose to the product
system.

What can be changed at the user level? At this point, there
is no product system to speak of yet.This means that nothing
can be changed in-system. The platform can, in principle,
be modified, but we assume this is so unfamiliar or uneco-
nomical that the reader has opted to make a self-sustainable
system instead!

7 Design a Substrate
The substrate defines the basic infrastructure
supporting the product system: how the state
is represented and changed. The design of a sub-
strate re-uses parts of the platform where pos-
sible and extends it where necessary. We must

Table 1. The conceptual divisions of the substrate.

Domain \ Agent Human (Manual) Computer (Automatic)

State User Interface Data structures
Change UI Controls Instructions

decide which platform capabilities to use to rep-
resent the state and how to expose graphics and
interaction. We design a minimal instruction set
describing changes to the state, which can be
represented using the state. We then use the plat-
form to implement an engine that executes these
instructions.

With the platform defined as the already-existing program-
ming system that we start from, we define the substrate as
the basic infrastructure, implemented via the platform, nec-
essary for the product system. This substrate is the part of
the system which we have control over (being programmed
by us, unlike the platform itself) yet which we do not expect
to expose from within the system. In other words, the sub-
strate is the small non-self-sustainable core that supports
the self-sustainable product on top of it.

In short, our division is as follows:

Created by us? Self-sustainable?

Platform No No
Substrate Yes, atop Platform No
Product Yes, atop Substrate Yes

The design of the substrate can be considered along two
dimensions (Figure 1). The first dimension follows the dis-
tinction between data and code, or state and state change. We
must decide how the state of the system will be represented.
Often, this is a matter of choosing an appropriate subset of
what the platform already provides. Then, we decide how
primitive changes to that state can be described and define
the instruction set.

The second dimension follows the division between the
computer and human actors. The full state of the system
will be an internal data structure, but a part of the state—
comprising the state of the user interface—can be directly
seen by the user. Similarly, change can be performed automat-
ically or manually. There must be a way to run instructions
automatically at a high speed, but the user interface must
also provide controls for a human to make changes at their
own pace.

While the foregoing model applies to programming sys-
tems generally, a special condition is required for those that
are self-sustainable. Wemust represent instructions as pieces
of state, as opposed to having “two types of things”—ordinary
data, and code—which must be viewed and edited using com-
pletely different tools. This property, conventionally known
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as homoiconicity, means instructions can be generated and
manipulated just like ordinary state, whether programmat-
ically or manually. Only if this is possible can higher-level
abstractions can be built up, in-system, from the low level.

Requirement 1 (Homoiconicity). Instructions must be read-
able and writeable as ordinary state.

7.1 COLA’s Low-Level Byte Arrays
In COLA, the substrate is quite minimal and the majority is
inherited “for free” from the low-level runtime environment
provided by Unix.

At the lowest level, state in COLA consists of an array of
bytes, addressed numerically. Some structure is imposed on
this via C’s standard memory allocation routines, refining
the model of state to a graph of fixed-size memory blocks
(plus the stack). Changes to this state are represented as
machine instructions encoded as bytes. This is the basic state
model of a C program; the sample code for COLA embellishes
this with little more than a way to associate objects to their
vtables3, and a cache for method lookups.

This bare-bones, low-level substrate does not requiremuch
development on top of the platform and so it is quicker to
complete. The ontology of state is copied from the platform,
and in this case the machine instructions can be inherited
too.4 Completing the substrate more quickly means we can
start working in-system sooner, but there is a downside: it
may be cumbersome to work with such minimal functional-
ity. The unfortunate effect would be that we speed through
a primitive substrate, only to suffer slow progress at the
beginning of in-system development.

Building back up from machine-code level may be an
impressive hacker achievement or useful for pedagogy [1].
But it is clearly not optimal, speed-wise, when we already
have a higher-level platform to program with.

In the other direction, there is no limit to how fancy we
could make the substrate in terms of high-level abstractions
and convenient features. However, these would take much
longer to implement and delay in-system development. More-
over, this risks doing a lot of work that can never benefit
from in-system innovation, because the substrate’s imple-
mentation will not be modifiable from within the system it
supports.

7.2 The Major Design Conflict
We clearly have two opposing tendencies here, which we
will formalise as follows:

3A vtable specifies object behaviour by supplying runnable code for a
requested method name. It is separate from the object “instance” so that
multiple objects can share the same behaviour.
4In general, the internal representation of code in the platform will be
unavailable to us when programming with it, so we expect not to be able to
inherit it. This low-level platform is a special case, where we do have access
to code if we are willing to write instructions using their numerical codes.

Force 1 (Avoid Boilerplate). Push complex features into the
substrate to avoid wasting in-system development time on
them.

Force 2 (Escape The Platform). Push complex features in-
system to avoid delaying in-system development and to have
them benefit from in-system innovation.

We will refer to these throughout the journey. They con-
flict over where the implementation of convenient function-
ality should reside. In any specific design, they will resolve
in some compromise. It is helpful to consider the extreme
points of this.

Force 2 wants to get the substrate over with as quickly as
possible, eager to escape the (real) limitations of the platform
and get working in a system that can be arbitrarily changed.
Force 2, left unchecked, will guide us to adopt a substrate
resembling a Turing machine: have a tape for the state; in-
structions for manually shifting left and right, reacting to the
current symbol, and writing a new one; have a user interface
in which to do these things manually. Such a substrate is so
simple it could be coded in an hour or two. Yet our first duties
in-system will be to implement extremely basic features, like
data addressing and arithmetic, in an extremely tedious way.
The endpoint of Force 2 is the Turing Tarpit.

On the other hand, if we follow Force 1 unchecked, we
spend much time and effort working with the platform to
produce, in effect, a complete novel programming system.
Any feature we would find useful in-system, we would have
already implemented outside it. Yet this means that all the im-
portant functionality could not be changed except by going
back to the source code in the platform; we’d have created a
boring old non-self-sustainable programming system. The
endpoint of Force 1 is programming-as-usual.

A symptom of the latter failure mode would be that we
never felt comfortable leaving the platform behind and con-
tinuing development from within the system. Self-sustaining
systems are meant to be grown from a small enough start-
ing point; we shouldn’t need to come up with a flawless
design ahead of time. This will only be possible if we artfully
balance Forces 1 and 2 so that the in-system programming
experience becomes tolerable in a reasonable timeframe.

7.2.1 Reflections on the Bare-Bones Approach. We
experienced something like the Force 2 absurdity for COLA
when following the sample C implementation of its object
system [19]. The code was easy enough to comprehend and
compile, but what we were left with was a system living
entirely in memory lacking even a command-line interface.
In order to develop the system, it seemed necessary to run it
in a machine-level debugger.

Even so, we would still be stuck in the low-level binary
world which is unfriendly for humans to work with. Instead
of names, we only have numbers for addressing things. Addi-
tionally, the state is flat. We cannot insert or grow something
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without physically moving other content to make space. Any
structure, such as trees or graphs, has to be faked as memory
blocks pointing to each other.

This type of substrate is still better than a Turing machine,
and was a historical necessity in the early days of computing.
But nowadays, we have the opportunity to leave this behind,
and instead build new systems on top of a “low level” that is
nevertheless minimally human-friendly.

Heuristic 1 (Minimally human-friendly low-level). Ensure
the substrate natively supports string names and substruc-
tures.This is a minimal response to Force 1 that still keeps the
substrate simple enough and thus does not strongly conflict
with Force 2.

7.3 BootstrapLab’s Simple, Structured State Model
For the design of BootstrapLab, we choose the Web platform
and JavaScript for personal preference reasons. This imposed
a number of design decisions on the substrate, due to a ten-
dency for earlier choices to determine which later ones will
feel “natural” or “fitting”.

In our high-level platform language JavaScript, state is a
graph of plain JavaScript objects acting as property dictio-
naries. Suppose we still chose a low-level binary substrate
like that of COLA. This would no doubt be possible: declare
one giant JavaScript array called state, design numerical
instruction encodings which overwrite numbers at certain
indexes, etc. Yet this would feel like a perverse waste of
something the platform was giving us for free.

JavaScript already provides the basic human affordances
of naming and substructure, so why would we throw them
away and force ourselves to implement them in-system?
The low-level COLA substrate does plausibly follow from
its base C platform. Our choice of JavaScript as the platform
encourages us to preserve its own statemodel in the substrate
we design.

Similarly, it would make no sense to represent instructions
as numbers or strings. While in the binary world, machine
instructions are byte sequences with bitfields for opcodes and
operands, in a dictionary substrate inherited from JavaScript,
it makes sense to have explicit fields for this data:
{

operation: 'copy',
from: [ alice, 'age' ],
to: [ bob, 'age' ]

}

As this example shows, addresses in a dictionary-based
state model consist of an object reference and a key name.

This “preservation” incentive pervades the journey from
platform to product system. The substrate should leverage
representations made possible by the platform, while the
instruction representation should leverage the structuring of
state provided by the substrate.This will also apply to further
subdomains expressed in the state model, such as graphics

and high-level programming expressions. We formalise this
as the following:

Force 3 (Alignment). Everything should fit: instructions,
high-level expressions, and graphics expressions should all
fit the substrate, and the substrate should fit the platform.

In the end, our substrate largely inherits the state model,
only making simplifications. For example, JavaScript objects
have prototypal inheritance, meaning that a simple “read” op-
eration of a property requires potentially traversing a chain
of objects. Our substrate here omits this, so reads are quite
simple. Additionally, JavaScript includes a special Array ob-
ject type. We omitted this, opting to represent lists as maps5
with numerical keys. This unification means that the state
model only has one type of composite entity, a fact we will
exploit later for the high-level language.

We also noticed that we would not get very far if all
our progress in-system could be wiped clean by losing our
browser tab. Our platform does not provide persistence out
of the box, so we had to implement a mechanism in the
substrate. We walk the state graph from the root node and
discover a spanning tree, specially marking cyclic or double-
parent references. We then serialise this into a JSON file
which we can load by undoing the process. This is reminis-
cent of the image-based persistence in Smalltalk, though it
is frustratingly manual. Nevertheless, it was critical to patch
this unfortunate aspect of the platform and this was enough
to do so.

Even though JavaScript is a high-level language, we con-
sider this substrate low-level relative to the platform below
it. Force 1 gave us several ideas for convenient features of a
smarter state model, but Force 2 urged us to press ahead with-
out them and see if we needed them later; see Appendix A
for details.

7.3.1 Designing the Instruction Set. While the “data”
half of the substrate may be easy to inherit from the plat-
form, the “code” half is typically not. Simply including an
interpreter for source code in JavaScript is not an option, as
this would embed a reliance on a strings and parsing in the
core of the system.

Slightly better would be an interpreter for the JavaScript
abstract syntax tree. However, Force 2 still pushes against
this. A high-level language interpreter is nontrivial even
without parsing and would delay our ability to work in-
system. Also, an interpreter is a computer program; this
program, or parts of it, might be best expressed or debugged
via particular notations; by having it in the substrate, we’d
restrict ourselves to the interface of JavaScript in our text
editor.

Instead, consider what it takes to implement the inter-
preter for Assembler, a.k.a. the Fetch-Decode-Execute cycle.

5We refer to our substrate’s basic dictionary structure as themap for brevity.
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We fetch the next small change to make to the state (an in-
struction). We do a simple case-split on the opcode field; we
carry out some small change to the state; rinse and repeat.
With this, we can surely mirror the real-world development
of higher-level languages from lower ones.

Heuristic 2 (Use Imperative Assembler). Begin from imper-
ative assembler, as this allows us to make arbitrary changes
to the state using a minimal interpreter that is quick to im-
plement. Force 2 outweighs Force 1 here.

It is important to stress that this “assembler” is relative
to the form of the substrate. If the substrate is binary mem-
ory, “assembler” will refer to machine instructions. But in
our case of a minimally human-friendly low level (Heuris-
tic 1), there is nothing binary about them. The instructions
express operations on structured objects with names and are,
themselves, represented as structured objects with names.
Similarly, “imperative” just refers to the fact that the instruc-
tions are arranged in a sequence from the point of view of the
interpreter, because it is easier to implement a fetch-execute
cycle than, say, a resolver for a dependency graph. The above
considerations lead us to Heuristic 3.

Heuristic 3 (Simple Assembler). Prefer fewer instruction
types (RISC) over more (CISC). This reduces the size of the
interpreter and will be quickest to implement. It will make
programs longer, but this can be mitigated by a high-level
programming language. Force 2 outweighs Force 1 here too.

Right away, we know there will have to be a special piece
of state for the instruction pointer. This could indicate the
current instruction or the next ; we chose the latter for Boot-
strapLab and called it next_instruction.

The value of this “register” is determined by how ex-
actly we fetch the next instruction. Perhaps each one has
a next field which we can simply follow. In this case, the
next_instructionwill simply be the instruction itself. This
also gives us convenient conditionals (e.g. fields called if_true
and if_false) but means that instruction sequences will
have a nesting structure. This latter consequence may be in-
convenient for presentation in a tree view. For BootstrapLab,
we chose the alternative of numerically indexed lists of in-
structions which easily display in a column. This choice
determined next_instruction to instead hold an address
made of container map and key name:
next_instruction: {

map: <instruction list>,
key: 1 // i.e. first instruction in the list

}

Here, the “fetch” step involves dereferencing the address
and then incrementing the key name.

Next, we turn to what types of instructions we need. Align-
ment (Force 3) means that, given a state model, obtaining an
instruction set should be more of a “derivation” than a hard
design problem. This is because some choices are obviously

inappropriate and others clearly fitting to the state model.
For example, in a tree-structured state model, it would be
foolish to have instructions that can only see the root level:
{op: 'copy', from: 'source_key', to: 'dest_key'}

Without the ability to read or write keys within an arbi-
trary tree node, as far as programmatic change is concerned,
the state becomes a de facto flat list instead of a tree. There-
fore, it is critical that anywhere in the state can be accessed
or modified by an appropriate instruction sequence.

The checklist of basic functions for an instruction set to
be Turing-complete is as follows:

1. Copy from one location to another (a “literal” is just
copied from the instruction itself)

2. Treat a value as an address and follow the reference
3. Unconditional jump (copy a value to the instruction

pointer)
4. Conditional jump (take a path based on a runtime

condition)
However, Force 1 may push us to include basic boilerplate

like arithmetic or an operand stack. Furthermore, it is advis-
able to have an “escape hatch” into the platform if possible.
In BootstrapLab, our platform language JavaScript provides
the eval() function to execute a string of JavaScript code.
We exposed this as a js instruction. This allows us to use
and store JavaScript code in the running system instead of
having to edit the source file.

The resulting instruction set for BootstrapLab was derived
from these considerations, as well as extreme application
of Heuristic 3. It uses the top-level map as a set of “regis-
ters” whose contents are immediately accessible. State that
is “further away” is accessed by following key paths from
there, or from existing map references. There are several
special registers used by instructions, but other names in the
top-level are available as local variables in user code. The
instructions are as follows:

• load fills the focus register with a literal value.
• deref treats the value in focus as naming a register

and copies the register’s value into focus.
• index expects a map in the map register and a key

name in focus. It looks up this key in map and replaces
map with the value.

• store copies the value in focus to a named register.
Alternatively, if no register is present, it copies the
value in the source register to the destination identi-
fied by map and focus, as with the index instruction.

An instruction is represented as a map with an op field
for its name and other fields for parameters. For example:
{ op: 'store', register: 'source' }

It is remarkable that these few operations really are suffi-
cent even for conditional and unconditional jumps. A jump
is achieved by overwriting next_instruction, and this can
be conditionalised by indexing a map of code paths based
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on a selector. We made the decision that index, if accessing
a key not present in the map, will try and retrieve the special
key _ instead. This supports a generic “else” or “otherwise”
clause for conditionals.

The minimal, microcode-like instruction set here was an
experiment in extreme parsimony; see Appendix C for the
gory details. Although it was interesting, certain basic oper-
ations (such as jumps) are extremely verbose, taking many
instructions. Although it was quick to implement these in-
structions in JavaScript, it was too tedious to work with them
in-system. In retrospect, it looks like we went too far with
Force 2 here and fell into its associated Turing Tarpit trap.
We thus consider an extreme interpretation of Heuristic 3
refuted for the purposes of working in-system sooner. We
recommend achieving a better balance by including direct
path arguments in instructions (e.g. “copy a.b.c to x.y.z”
as a single instruction), as well as separate (un)conditional
jump instructions.

7.3.2 Graphics and Interaction. Now we’ve covered the
computer-oriented part of the substrate, we turn to the
human-oriented user interface state and change aspects. One
way we wish to distinguish BootstrapLab from the related
work is that graphical interfaces are present from the begin-
ning and not just an afterthought. There are two factors here:
how graphics are represented in the substrate, and how they
are actually displayed.

It may be useful to see this as a microcosm of the entire
journey. First we must select a graphics library available for
our platform (i.e. the graphics platform).Thenwemust decide
how graphics are represented in our substrate (a graphics
sub-substrate) and how these graphics actually end up on
our screen.

In BootstrapLab, we chose to build off the THREE.js 3D
graphics library as our platform. As for the substrate, we face
an immediate choice between so-called “immediate mode”
and “retained mode” conventions. In immediate mode, we
draw and change graphics by issuing commands; a “code-
like” approach. In retained mode, the state of the scene is
represented as some structured arrangement of state. When
wewant to change something, we simply change the relevant
part of the state and the display should automatically update.

Immediate-mode in this case could be realised by, say,
exposing all the relevant THREE.js functions as special in-
struction types. In actuality, however, this sounded far too
tedious to work with; Force 1 won out and we opted for
retained mode instead. The rest of the design then fell out
via Alignment (Force 3).

Consider the “flat bytes” substrate in which microcom-
puter games were programmed. In this world there is a spe-
cial region of memory, the framebuffer, which is treated
as the ground truth of pixels displaying on the screen. To
draw, programs rasterise shapes into pixels and write to

Figure 1. Example of how nested tree fields are represented
(right) vs. the rendered output (left). The right-hand half is
the temporary state view discussed in Section 8.

the framebuffer.6 The framebuffer has a flat structure—two-
dimensional, yet not by any means nested—aligning with the
substrate it sits within. A natural choice for retained-mode
graphics representation can be found by inspecting the sub-
strate. In BootstrapLab’s case, a natural choice is not a flat
“framebuffer” but a tree structure of data describing shapes
and text—vector graphics.7

Heuristic 4 (In-state graphics). Make graphical interfaces
expressible as ordinary state in a special location. Having
graphics built into the substrate responds to Force 1 while
Force 3 directs us to use a representation that fits the state
model.

In BootstrapLab, this is a subtree of the state under the
top-level name scene (Figure 1). There are several special
keys (e.g. text, position, color, children) which have
graphical consequences. Other keys may be used as ordinary
state.

For interaction, we need to expose the platform’s abil-
ity to listen for user input. In BootstrapLab, we execute a
named code sequence in the substrate from JavaScript event
handlers, which now function as “device drivers” (Figure 2).

This is a basic sketch with some issues elided that a com-
plete account would cover. For example, what happens when
an input event occurs during the handling of a previous
event? Possibilities include ignoring the extra event or pro-
viding some sort of stack analogue8 for nested handlers.
Such a data structure may also be necessary for saving and
6In Commodore 64 BASIC, this would be accomplished with commands
like POKE 1024,1.
7Further rationale for this approach can be seen in [8].
8Of course, in a structured substrate, there is room for improvement on the
linear form of the low-level machine stack.
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window.onkeydown = e => {

state.set('input', 'type', 'keydown');

state.set('input', 'key', e.key);

let input_handler_code = state.get('input', 'handler');

save_context();

state.set('next_instruction', new state.Map({

map: input_handler_code, key: 1

}));

asm.execute_till_completion();

restore_context();

};

Figure 2. “Device driver” triggering a generic event handler
sequence in-system.

restoring the instruction pointer along with other context.
These concerns have analogues in interrupt handling for op-
erating system design, which could be consulted for further
guidance.

7.3.3 BootstrapLab Substrate Summary. Computer state
is a graph of maps; lists are just maps with numerical keys.
Instructions are load, deref, store, index, js. Special top-
level keys are focus, map, source and next_instruction.
User Interface state is controlled via the special scene sub-
tree of state. Each nodemay use special keys like text, width,
height, color, position, and children, as well as abritrary
other keys for user data.

What can be changed at the user level? System state can be
modified and instructions can be executed, but only using
the cumbersome capabilities of the platform. In case of Boot-
strapLab, this means using the JavaScript debugging console
to edit state and calling a function to execute a certain num-
ber of instructions.

8 Implement Temporary Infrastructure
Use the platform to implement tools for working
within the substrate, most importantly a state
viewer or editor. These tools constitute the “lad-
der” that we will pull up behind us once we have
ascended to in-system implementations of these
tools.

In most cases, the base platform will provide some way of
viewing and modifying state, but this is typically inconve-
nient to use.The next step in bootstrapping a self-sustainable
system involves implementing temporary infrastructure that
lets us work with state more conveniently.

8.1 Early Computing and COLA
Temporary infrastructure to support in-system development
can be found in many developments of self-sustainable sys-
tems. An example from the early history of computing is the
Teletype loader for the Altair 8800. Here, the base platform
was the Altair hardware with its memory and native CPU

Figure 3. The Altair 8800 microcomputer and its front panel
of switches. Image credit: [5].

instructions. The only way to modify state through the plat-
form was through the use of hardware switches at the front
of the computer (Figure 3), which could be used to read and
set values in a given range of memory.

Programming in-system looks like the tedious setting of
switches to poke numerical instructions to memory. To make
entering programs easier, the recommended first step when
using the Altair 8800 was to manually input instructions
for a boot loader that communicated over the serial port.
When finished, this could be run to load instructions from a
paper tape. From here, programmers could write instructions
more conveniently using a Teletype terminal and have them
loaded into the Altair memory.

In the COLA architecture [18], there is a four-step process
(Section 6.1, Bootstrapping), the first three of which appear to
be throwaway. This includes a compiler for their state model
in C++. This is aptly “jettisoned without remorse” once it
has been re-implemented in itself, though it is unclear how
a state model can perform computation (only after this do
they implement the “behavioural layer”). Regardless, this
clearly echoes the bootstrapping process for programming
languages (Section 4.1).

The problem with these steps is that they are hard to port
to a context involving structured, graphical notation and
interactive system evolution. Our task is to get the system
into a state where the platform, in a sense, can be “jetti-
soned” in terms of our attention, even though the platform-
implemented substrate will be running in the background.

8.2 Temporary Infrastructure in BootstrapLab
On its own, our chosen platform for BootstrapLab only has
one way to view parts of the state: issuing JavaScript com-
mands via the developer console to poll a current value. This
is almost as tedious as toggling switches on the Altair. Being
able to see a live view of all of the state would be a highly
useful facility early on. In this case, Force 1 wins relative to
Force 2 (captured by Heuristic 5) and we implemented a tree
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Figure 4. The full BootstrapLab interface. From the left:
graphics window, temporary HTML state viewer, and
browser developer tools.

view in the substrate based on an existing JavaScript library.
State editing can continue to be done via the console (see
Figure 4).

The JavaScript tree view is a complex set of functionality
set to work and display in one specific way, and all control
over this resides at the platform level. The infrastructure
cannot be modified from within the system. Therefore, we
regard this situation as temporary. It is a ladder that we climb
to end up in a state where we can implement a (better) state
editor in-system. Once a suitable in-system editor exists, we
can pull up the ladder (or if you like, “jettison it without
remorse”).

At this point of the bootstrapping process, BootstrapLab’s
interface consists of three sections (Figure 4). On the right,
we have the browser console, inherited through from the
platform’s interface. In the middle, we have the output of
the platform’s main graphics technology, the Document Ob-
ject Model (DOM), displaying the temporary state viewer.
Because we have not chosen to expose DOM control from
within the system, the system only affects this area indirectly
through ordinary state changes. Finally, on the left, we have
the THREE.js-backed graphics window, where we will later
build a state editor whose behaviour (including appearance)
will be controlled from within the system.

Ideally, we would have actually supported interactive state
editing in the temporary infrastructure, not just viewing. In
our case, however, we accepted state editing through console
commands until implementing a state editor in terms of the
left-hand graphics window (see Section 10).

Another example of temporary infrastructure is zoom-
and-pan in the graphics window. Working within a small
box is very restrictive if we want to use it for viewing and
editing the entirety of the system state. The finite region
can be opened up into an infinite workspace by adding the
ability to pan and zoom the camera with the mouse. This
was important to have early on for BootstrapLab, so once
again Force 1 overrode Force 2 and we implemented this in
JavaScript.

What can be changed at the user level? The basic activities
of viewing or editing state should be made easier by the tem-
porary infrastructure. For the Altair 8800, instruction entry
was improved. For COLA, the basic state model was made
available in the first place. For BootstrapLab, we targeted
state visibility.

Heuristic 5 (Platform editor). As soon as possible, use the
platform to implement a temporary state viewer and/or ed-
itor. This temporary infrastructure will later be discarded,
but given a capable enough platform, it is very easy to imple-
ment. For this reason, it is valuable for simplifying further
in-system development. Here, again, Force 1 outweighs Force
2.

9 Implement a High-Level Language
The substrate’s instruction set (ASM) is cum-
bersome, so ensure programs can be expressed
in-system via high-level constructs. Decide how
to represent expressions as structured state and
whether to interpret or compile them into ASM.
Ideally, develop such an engine in ASM gradu-
ally and interactively. Alternatively, implement
it at the platform level and later port it to ASM
or the high-level language itself.

The temporary infrastructure created in the preceding
step may be enough to allow limited development in-system.
However, it does not yet provide the barely tolerable pro-
gramming experience we would need in order to feel com-
fortable ditching the platform. For this, an additional step is
needed.

To make programming in-system pleasant enough, we
need a high-level programming language that executes on
top of the system substrate. This means that programs and
all their necessary runtime state will be stored in the system
state and the execution will be done either by a compiler to
the substrate’s instruction set or an interpreter.

9.1 Shortcuts for Low-Level Substrates
For a programming system built atop a limited platform
(e.g. hardware), the temporary infrastructure may be the
best tool that is available for programming. In that case, we
would write the compiler or interpreter directly using the
instruction set. However, as long as the platform has higher
capabilities or one has access to alternative platforms, this
may not be optimal. When Paul Allen and Bill Gates wrote
the famous BASIC programming language for the Altair
8800, they did not do this on the Altair 8800, but using an
Intel 8080 CPU emulator written and running on Harvard’s
PDP-10. The high-level language for Altair 8800 was thus
developed outside the system.

In COLA, it is unclear how the Lisp-like programming
language is built beyond the broad outlines. What is clear
is that the bootstrapping process is carried out by means
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Lisp:
(define fac

(lambda (n)
(if (= n 0)
1
(* n (fac (decr n)))))

(fac 3)

Masp:
apply: define, name: fac, as:

apply: lambda, arg_names: { 1: n }, body:
to: n, apply:
0: 1, _:
apply: *, 1: n, 2:
apply: fac, n:
apply: decr, 1: n

apply: fac, n: 3

Figure 5. Lisp, built around lists, vs. Masp, built around
maps.

of source code files written in some text editor. In other
words, it wisely takes advantage of the affordances of its Unix
platform, avoiding the Turing Tarpit failure mode described
in Section 7.2.

9.2 High-Level Language for BootstrapLab
If we take JavaScript, and strip away the concrete syntax,
we get a resulting tree structure of function definitions, ob-
ject literals, and imperative statements. A similar structure
with similar semantics would be obtained from other dy-
namic languages. In fact, this would largely resemble Lisp
S-expressions under Lisp semantics; hardly surprising con-
sidering Lisp’s famously minimal syntax of expression trees.
Furthermore, the evaluation procedure for Lisp is simple and
well-established.

For these reasons, we designed a Lisp-like tree language in
the substrate.This way, we provide high-level constructs (if-
else, loops, functions, recursion, etc.) for in-system program-
ming. Alignment (Force 3) encouraged us to revisit Lisp’s
design to better fit with our substrate. For example, ordinary
Lisp is based on lists whose entries have implicit meanings
based on their positions. This fits with the substrate made of
S-expressions. Our substrate comes with named labels and
suggests a language based around maps whose entries are
explicitly named, so we called it Masp.9 Figure 5 contrasts
the two.

The equivalent Masp code is more verbose when rendered
in ASCII. However, one of our key goals is to enable the use of
other, better notations if desired, which we will discuss in the
next section. Here, we start from an internal representation
that has more information (explicit named arguments) than
9This is not too hard to come up with, but we would like to credit the origin
of the name to [20] and related discussion.

Lisp, but we can choose to display this however we feel
appropriate (perhaps by showing a name label only for the
entry being edited.)

9.3 Choosing an Appropriate Implementation
There are two basic decisions for implementing the high-
level language. First, will we do it directly in-system using
the instruction set, or using richer capabilities provided by
the platform? Second, the language can be either interpreted
or compiled.The four combinations have different properties.

A platform interpreter is the easiest one to implement,
but it cannot be used to easily bootstrap itself. To “jettison”
the platform implementation, we later need to port the in-
terpreter to the ASM language. (Porting it to the high-level
language would not suffice since we would still need the
platform interpreter to actually run it.)

A platform compiler, while harder to implement, is
slightly easier to jettison because it only needs to be ported
to the newly developed high-level language. The platform
compiler can translate it to ASM, which we can already run
in-system.This compiler can then turn any high-level expres-
sions into ASM, including a modified version of its source
expressions!

Yet harder to implement is an in-system interpreter,
directly in ASM, but it will exist in-system. The interpreter
will, however, be less maintainable than if it were written in
a high-level language and will likely need to be ported to a
high-level language eventually.

Finally, an in-system compiler is the most challenging
to implement. It will allow the language to exist in-system
sooner and possibly more efficiently but, as above, will likely
need to be converted to a high-level programming language
to allow in-system improvements.

When implementing the interpreter or compiler in-system,
all its intermediate state will also be stored in-system. How-
ever, in-system state can be used even when implementing
the interpreter or compiler on the platform. This takes advan-
tage of the platform’s high-level language while leveraging
the product system for debugging and visualisation, simplify-
ing a later port to in-system implementation (see Heuristic 6).
The transition from platform to in-system implementation
can be even more gradual. Once the intermediate state is
stored in-system, it becomes possible to port parts of the
interpreter piecemeal to in-system instructions, invoking
them from the remaining parts running outside.

Heuristic 6 (In-state operation). Store high-level-language
processing state in-system even if the processor runs on the
platform. This will ease porting the processor to in-system
implementation and support a gradual transition.

9.4 Implementing Masp for BootstrapLab
In BootstrapLab, Force 2 encouraged us to get executing
Masp expressions early to get experience with the language.
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We choose to implement a platform interpreter for Masp
using JavaScript as this was the easiest way to achieve that.

A naïve implementation would simply implement the stan-
dard Lisp interpreter routines (eval and apply) as recursive
JavaScript functions. However, this would miss an opportu-
nity for visualisation and debugging that is already present
in our substrate. Instead, we followed Heuristic 6 and had
intermediate interpreter state reside in-system. This made a
later in-system port easier by doing half of the work now.

Lisp evaluation is done by walking over the expression
tree. At any point, we are looking at a subtree and will evalu-
ate it until reaching a primitive value. Ordinarily, the “current
subexpression” is an argument to eval at the top of the stack,
while the stack records our path from the original top-level
expression. Since we already had a tree visualisation, we used
that instead of a stack. We did, however, need to maintain
references to parent tree nodes (see Appendix B) in order
to backtrack towards the next unevaluated subexpression
once the current one is evaluated. Furthermore, instead of de-
structively replacing tree nodes with their “more-evaluated”
versions, we “annotate” the tree instead. This design choice
follows Subtext [6] and will make it possible to trace prove-
nance and enable novel programming experiences.

What can be changed at the user level? Depending onwhich
of the four implementation paths were chosen, the semantics
of the language may or may not (yet) be modifiable from
the user level. The user is almost able to use the high-level
language in-system for convenient programming… but may
be unable to enter the expressions conveniently in the first
place. The latter will be addressed shortly.

10 Pay Off Outstanding Substrate Debt
Port all remaining temporary infrastructure into
the system, taking advantage of the infrastruc-
ture itself and the high-level language.The result
is a self-sustainable programming system.

If we developed both the state editor and the high-level
programming language in-system, we would already have an
elementary self-sustainable system at this point. This would
have been our only option if we had been somehow stuck
with only a primitive platform, as was the case at the dawn of
computing in the 1940s. With a richer platform available, one
can choose to implement a state viewer, editor and high-level
programming language on it following Heuristic 5. Since
these will now run outside of the product system, they will
be functionally part of the substrate, yet they do not belong
there. This substrate debt, incurred due to Force 2, now needs
to be paid off.

10.1 Substrate Debt in BootstrapLab
In the ideal development journey, we would have a high-level
programming language and a basic state editor in-system by
now. This did not happen for BootstrapLab.

The Masp interpreter we developed used in-system state,
but controlled it from JavaScript. Our state viewer was also
fully implemented in JavaScript. Editing took place through
the browser development console. The alternative, creating
a Masp interpreter and state editor in-system using the low-
level ASM instructions, had been technically possible but
prohibitively tedious. The in-system tooling was far from
supplanting the existing platform interface of JavaScript in
the text editor. Continuing to use the latter was, therefore,
the only sensible choice to make progress.

Nevertheless, to make the high-level language and editor
a part of self-sustainable programming system, they ulti-
mately need to be implemented in-system. Thus we incurred
a substrate debt due to Force 2 which we now need to pay
off. The advantage of delaying this work is that we can at
least port JavaScript to Masp, which is more convenient than
using ASM. Generally, such substrate debt should be paid
off as soon as the indebted implementation is complete. In
total, we had three parts of it to pay off:

• The temporary state viewer, to be superseded by an
in-system editor

• Its replacement state editor, to be ported from JavaScript
to Masp

• The Masp interpreter, to be ported from JavaScript to
ASM

In BootstrapLab, we took a two-step approach to supplant-
ing the temporary state viewer. We first replaced a viewer
that exists fully outside of the system with an editor that
uses in-system state and graphics, but is controlled from
JavaScript. We then started to port the editor code from the
platform to in-system Masp, which is where we are at the
time of writing.

10.2 Supplanting the Temporary State Viewer
Once we could run Masp programs in the substrate, we
needed a better way of entering and editing them.We desired
a state editor in the graphics window to make the existing
state view obsolete. In-keeping with the proof-of-concept
nature of this work, we created a rudimentary tree editor
that nevertheless surpassed the existing practice of issuing
commands in the JavaScript console.

To edit state in JavaScript, we needed to either address
its parent with a full path from root, or to use a reference
prevously obtained this way. To set a primitive value, we
would type a JavaScript command including the key name
and the value. This was not a high bar to clear. Evidently, we
could greatly improve the experience by simply clicking on
the relevant key name and typing.

We implemented a basic tree view in the graphics win-
dow (Figure 6). Nodes can be expanded and collapsed, and
entries can be changed by clicking and typing. The display is
“on-demand” and breadth-first: map entries are read upon ex-
panding a node.Thismeans that cycles in our graph substrate
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Figure 6. Left: tree editor in graphics window. Right: tempo-
rary state viewer in the DOM.

do not pose a fatal problem, as they did in the temporary
state view (see Appendix B). The basic CRUD operations are
accounted for as follows:

• Update (primitive):The Tab key commits the value and
selects the next entry.

• Create: If the above runs past the end of the map, spe-
cial “new entry” fields for entering a new key and
value are created. These disappear if abandoned with-
out committing.

• Update (composite): Enter commits a new, empty map
and selects the “new entry” field within it.

• Delete: Backspace on an empty value will delete the
entry. If it was the only entry, it will be replaced with
the “new entry” field.

• Read: The display of the entry in the graphics window
provides this.

It is worth noting that Alignment (Force 3) applies here
too: the structure of the substrate clearly has implications
for the structure of the editing interface. If our substrate con-
sisted of low-level bytes, the traditional hex editor interface
would be an immediate requirement. Such an interface could
plausibly be simpler to implement than the complex nested
tree editing we needed for BootstrapLab. This suggests a po-
tential feedback into the choice of substrate: a more complex
substrate will require a more complex editor.

We might even be tempted to conclude that it only makes
sense to use a low-level substrate, since we can complete a
basic editor sooner and subsequently work in-system. This
neglects the fact, however, that the higher-level structures

of our substrate would inevitably be required at some point.
Thus we would have to do the same work anyway, but only
once we had suffered through the human-unfriendly low-
level substrate.

It is also remarkable that, in this restricted interaction do-
main, we finally did manage to surpass our default JavaScript
text editor. There is a cost to typing out concrete syntax like :
and {} for JavaScript map structures, as well as ensuring in-
dentation is correct. For entering state structures, we found
the structured editing style to be quicker. As a result, where
previously we might have added new persistent state in our
JavaScript startup code, we now directly entered it into the
system and persisted it manually.

There is a caveat to all this. The whole exercise was in the
service of paying our substrate debt from earlier—pulling
up the state viewer “ladder” that had got us to this point.
Ideally, we would have built up its replacement in-system.
Yet as pointed out, JavaScript was still the most appealing
way to program at this stage, so we used it for this editor as
well. In other words, we took on a new debt in order to pay
off the first one! To resolve it, we would port the JavaScript
to Masp—a process which is underway at the time of writing
for both the Masp interpreter and the state editor.

In general, at the end of this stage the substrate should not
contain anything that we wanted to be modifiable in-system.
Thus:

What can be changed at the user level? The structural “syn-
tax” and semantics of the high-level language can be changed.
The graphical interface of the system can also be changed, in-
cluding the concrete notation for programs and data, which
we turn to next.

11 Provide for Domain-Specific Notations
Use the self-sustaining state editor to construct a
more convenient interface for editing high-level
expressions. Add novel notations and interfaces
as needed. Use these not just for programming
new end-user applications, but also to improve
the product system itself.

Because BootstrapLab is currently in the middle of the
previous stage, this section describes our plans for when
this is complete. At such a point in the journey, the editor
implementation is now part of the product system, so we
can now modify it from within to our heart’s content.

We admitted earlier how, in BootstrapLab, we had not
managed to bring the system interface up to a level where it
became more effective than JavaScript. With the implemen-
tation of a state editor, we came closer. Indeed, for entering
general state structures, it is not obvious how to improve
on it. Yet when it comes specifically to Masp expression
structures, we must enter their verbose details even though
they are highly regular and could be captured through fewer
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interactions. If we streamline this subdomain of the Boot-
strapLab interface, it would make Masp programming just
as convenient as typing JavaScript, if not more so—and we
could finally escape the text editor entirely.

11.1 A Taster
First, we propose a restricted proof-of-concept of notational
variation from within the system. We choose to target a
small part of the problem: the Masp apply node, a frequent
enough occurence that a small improvement will be helpful.

In the general state editor, one must type each of these
key-value pairs for a function application:

apply: setColor
red: 11
green: 22
blue: 33

Instead, we desire something like autocomplete for pa-
rameters. Instead of typing apply, we press a and enter
setColor. Subsequent tabbing should fill in the parameter
names automatically and let us type the arguments. Further-
more, as a small notational difference we will omit the word
apply:

setColor
red: _
green: _
blue: _

The underscores represent unfilled fields right after this
structure gets created.

To reprogram the editor to work like this, we would do
the following from within the editor. Navigate to the Masp
code structures for the editor that synthesise the graphics
structures to display a given state node. Enter Masp code that
checks for the key apply in the given node and, if present,
only renders the value of the key instead of the key itself.10
Then, navigate to the code that handles key input. Add code
that, when a is pressed, will insert a new map containing
the apply key, render this to the graphics, and send text
input to its value text box. Finally, navigate to the code that
commits an entry on a Tab keypress. Change this to detect if
it is for an apply key and, if so, to look up the symbol in the
value node and treat it as a Masp function closure. For each
entry in the arg_names field, add an entry to the map with
a dummy value, render this to graphics, and then proceed
with the default behaviour (highlight the next entry in the
map). Depending on the precise implementation, it may be
the case that only subsequent edits will be rendered this way.
Otherwise, care may be necessary to refresh and re-render
the entire editor state.

10Admittedly, this will display all structures with an apply key this way,
but further discretion is just as achievable with further programming. The
point is that this can be changed at the user level.

11.2 A More Ambitious Novel Interface
The above “taster” is a simple example of an interface that
could be plausibly implemented early in BootstrapLab’s self-
sustaining lifetime. Beyond this, it points to a more general
class of extensions which would support projectional editing.
Projectional editors are a class of programming interfaces
that provide domain-specific interfaces for certain program
subexpressions, such as LATEX-stylemathematical expressions
to replace ASCII renderings. We would do well to import
such ideas into BootstrapLab.We proceed to sketch how such
an interface would be added to the system, and how its ram-
ifications are different from ordinary non-self-sustainable
projectional editors.

As an example, suppose we want to program some fancy
graphics. Fancy graphics require sophisticated vector math-
ematical formulae. In textual programming languages, these
are expressed as ASCII with limited infix notation. The Gezi-
ra/Nile project [2, 3] attempted to improve on this with Uni-
code mathematical syntax. Obviously the extreme endpoint
would be LATEX. All we have at the moment is something
worse than all of these: verbose, explicit tree views spanning
multiple lines.

We think ahead with a view towards making the fancy
graphics programming more pleasant. Suppose we decide
that we would ideally like to implement them with the aid
of concise mathematical notation, as opposed to our current
state of verbose trees. How can we achieve this?

The broad approachwould be similar to our previous taster
example. We would have to start, again, at the code that ren-
ders state into graphics. Add a condition that checks for a
math key, which we would use as a tag to hint at this dis-
play preference. Enter code to translate operator names to
Unicode symbols, place them at infix positions, place paren-
theses appropriately, and render the whole thing to a single
line in the tree view (ideally keeping the tree structure of the
expressions in the graphics state). Then, modify the input
handling and tree navigation code to appropriately work on
this inline tree structure. And so on.

The above points are, of course, a high-level sketch, but it
is programming all the same and is plausible to achieve with
a high-level language. Techniques from the literature would
be helpful, such as Hazel’s calculus for editing structures
with holes [17], or bi-directional synchronisation between
the rendered graphics and the state’s ground truth [10].

11.3 The Key Takeaway
In the non-self-sustainable world, a projectional editor is im-
plemented in some traditional programming language and
interface; say, Java. The domain-specific notations can bene-
fit a wide variety of programs created using the editor. Yet,
this range of beneficiaries nevertheless forms a “light cone”
emanating out from the editor, never including the editor
itself. For example, any vector formulae used to render the
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interface of the editor will remain as verbose Java expres-
sions, along with any code for new additions to the editor.
The tragedy of non-self-sustainable programming is that it
can never benefit from its own innovations.

Conversely, in BootstrapLab, the benefits of the new no-
tation spread across the whole system; the “light cone” in-
cludes the editor implementation itself. If we previously had
to squint and parse verbose maths trees in the implementa-
tion of the maths rendering, we can now open up the code
again and see it rendered in the more readable way that it
itself implements!

In COLA, notational variation appears to be limited to vari-
ation in concrete syntax. Our uncompromising insistence
on explicit, non-parsed structure at the core of BootstrapLab,
while costly in terms of interface implementation, was pre-
cisely in order to be free of such a restriction in the end.
While one could implement a multiline text field with syntax
highlighting in BootstrapLab, it is at least crystal-clear that
a vast array of other interfaces are possible, unimpeded by
any privileging of text strings.

12 Future Work
The final two steps of the journey described in the previ-
ous two sections constitute our own future work. There is,
however, plenty of opportunity for follow-up work in the
spirit of this essay and the project it has documented. At
every step of the journey, there were choice points where we
naturally could only move forward with one of the options.
The obvious task for interested parties would be to explore
the other branches. We can’t provide an exhaustive listing
here, but will give some important examples.

At the first step (Choose A Platform), all sorts of other
platforms could be chosen. While COLA built on top of one
“slice” of Unix—files, build tools and process memory—we see
another possibility in focusing on the hierarchical file system
as a state model to inherit through to a substrate. This is one
obvious structured substrate lurking within Unix and some of
our work here is no doubt applicable to it: directories act as
maps, filenames as keys and file contents as values. Symlinks
could add graph structure to this tree where needed.

We acknowledge that it might feel perverse to have files
contain “primitive” values, such as a single number, or to
represent instructions as directory trees, since files are nor-
mally used as “large” objects. However, it must be noted that
there is precedent for using them more generally for data
large and small, such as in Plan 9 and procfs. If this was still
too much to stomach, the default option for “code”, i.e. shell
scripts, could simply be inherited (with the caveat that this
would impose a text dependency at the core of the system).
What is most unclear is how graphics would be displayed
and interacted with—possibly requiring a special binary as
part of the substrate, for opening and synchronising a main
window.

If we accept our chosen web-based platform, we can con-
sider alternative substrates. One obvious possibility is inher-
iting the DOM as the state model. This is the choice made
by Webstrates [15], which stores textual JavaScript code for
programmatic change. Following our approach, we might
want a lower-level and structured instruction set instead.
This would, at the very least, need to be capable of changing
parent/child/sibling relationships, node attributes, and inner
textual content. One warning is that the rest of the DOM
API that would need to be exposed, in order to be able to
produce a functional modern web page or web app, is some-
what daunting in scope. It would also be necessary to have
some way of listening for changes to DOM nodes so that
any constraints can be maintained or dependencies can be
updated. Webstrates does provide synchronisation between
networked clients on the same page, so perhaps its methods
could be adapted.

As mentioned, we would also recommend going for an
instruction set that is convenient enough to use that imme-
diately building programs in-system is a worthwhile endeav-
our. Our own wild adventure in minimality was a mistake
in this regard, causing us to stay in JavaScript, implement
the high-level language there and port it later. It would be
interesting to see the process of gradually building each
component of a high-level language engine interactively in-
system. Out of the four posibilities in Section 9.3, we chose
the platform interpreter, so exploring the others would be
illuminating—particularly the platform compiler, which could
self-host relatively quickly.

Finally, it would certainly be interesting to forego any tem-
porary infrastructure at all, or build up entirely in-system
without using platform tools. This would require more care-
ful substrate design to get this process going effectively.
While this could give some insight or appreciation for the
hardships of early computing, its practical value in the mod-
ern environment is unclear and may be best considered a
challenge for hacker wizardry.

13 Conclusions
The process of developing a self-sustainable programming
system that we followed in this essay roughly mirrors the
historical development of programming that shaped much of
how we do things today. Technology like the assembler and
the compiler was born from a truly impoverished platform
of flat memory, numerical instructions, printed output and
rows of switches. Self-sustainable programming systems like
Unix were gradually raised out of this primordial world, yet
it still has a tendency to show through and force human
minds to wrangle with it.

This essay can be seen as a sketch of how we might build
similar infrastructure on the back of modern computing
environments with structured representation of data and
graphical interfaces. In other words, we investigate what
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programming could look like if it were re-bootstrapped today,
not on top of flat memory, but on a richer base platform such
as that provided by web technologies.

In his 1997 OOPSLA keynote “The Computer Revolution
Hasn’t Happened Yet” [14], Alan Kay hoped that future users
of Squeak/Smalltalk would use it to start a virtuous cycle of
innovation: “Think of how you can obsolete the damn thing
by using its own mechanisms for getting the next version
of itself.” It appears that these hopes were not answered in
the 25 years since his keynote. Our modest contribution is to
broaden the scope. If we weren’t able to obsolete the damn
status quo of text-only programming from Squeak, perhaps
we can do it from any other platform—by following a handy
sequence of steps.

A The Cutting Room Floor
Force 2 directed us to do without several advanced substrate
features we were tempted to include. For example, it would
be useful to attach state change listeners to keep parts of
the state in sync with others. We could go even further and
include constraint-based programming features.

On another note, our substrate is based on “maps” without
a predefined ordering of the entries. However, there is always
some order in which they will be displayed:
{ red: 100, green: 255, blue: 0 }

Thus it might be nice to be able to set this on a per-map
basis. A convenient way to expose this in-system would be
via another map, or “order map” which would be a list map
of key names:
{ 1: 'red', 2: 'green', 3: 'blue' }

A practical use of this is for enabling iteration through a
map’s keys or entries. If we wish to be rigorous, the order
map itself would have an ordermap, whichwould (by default)
be the same for all order maps:
{ 1: 1, 2: 2, 3: 3 }

Of course, with such a conceptually infinite sequence of
order maps, care must be taken to implement it in a finite, on-
demand way. Perhaps some clever circular reference would
work, as COLA does for its vtable relation [19]. This raises
the question of how to obtain an order map in-system. If we
make it an ordinary key on all maps, we must be careful to
render it only on-demand and to exclude it from ordinary
iteration through keys. Plus, would we want the visual clut-
ter of always displaying it? It might be better to make it
accessible through a special instruction order-map.

We then face a further synchronisation problem, where
we must alter the display order whenever the order map is
changed, and insert or remove entries from the order map
to match its source.

Other thoughts along these lines included parent maps for
delegating lookups (similar to JavaScript’s prototype system),
inverse maps, and meta maps for possibly collecting all of

these (drawing inspiration from Lua’s metatables). Of these,
we will only discuss inverse maps in more detail.

Inverse maps come from the view of a map as a mathemat-
ical function from key names to values. Often in advanced
data structures (such as those for graphical diagrams) it is
essential to know “who points to me” via some key. For exam-
ple, the question “Is this node the source of anyone else?” is
a natural one, but normally it is impossible to answer based
on ordinary dictionary keys. In ordinary programming lan-
guages, this information needs to be kept track of separately;
say, in a manually synchronised list called sources that lives
on the node. It is frustrating that the “forward” question is
trivially answered by just following a map entry, yet the
“backward” question has to be hacked around like this.11

An inverse map would somehow collect all references
to a map from other ones. A user-level “map” would be
implemented by two dictionary structures, the forward and
backward halves, which are automatically kept in sync by
the substrate implementation. The previously mentioned
issues of access, mutation and others also rear their ugly
heads here, so we can be forgiven for discarding the idea
for the sake of making progress. Still, a properly worked
out implementation would provide a valuable service for a
high-level substrate.

B Graphs vs. Trees
A classic debate in the world of explicit structure is whether
to use restricted tree structures or to allow arbitrary graphs.
A tree has the advantage that every node has a single parent,
which is a useful canonical answer to the question “what
context am I in?”. On the other hand, many practical prob-
lems do not fit inside a tree structure; either because they
are DAGs, and a node can have multiple parents, or because
they involve cyclic relations. Because we did not know what
sort of things we would require in BootstrapLab, we erred
on the side of freedom and supported full graph relations.
This bit back at us in two ways, both involving the graphics
domain.

Firstly, cyclic structures need to be rendered with care; a
naïve depth-first search will never terminate. For a long time,
we did not have any cyclic structures and got away with a
depth-first approach to DOM generation in the temporary
state view (Section 8.2).

Secondly, while this was the case, the graphics sub-region
of state needed to be a tree. Spatial containment and other
visual nesting (e.g. for the tree editor) is a tree structure, as is
the underlying parent-child relationship of THREE.js objects.
Many aspects of rendering the tree editor required the ability
to ask “what context am I in?” but this is unanswered by
default in a graph substrate. Providing a “parent” key for
each node would not do—this would be a cyclic reference.

11Norvig’s “Relation” pattern [16] for dynamic languages is relevant to this
sort of concern.
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Instead, we kludged it: the first map to reference another
map becomes its “parent”, and this lasts until the reference is
deleted. This parent property is available from JavaScript; as
we port the tree editor to Masp, we will have to decide how to
expose it in-system (probably through a special instruction).

Of course, we eventually did require cyclic structures—
for the tree editor! Each graphics node in the editor has a
source key providing a way for edits to propagate back to
the source state node. All edit nodes live in the graphics tree,
including the one corresponding to the root node of the state.
In this case, the source points all the way upwards to this
root node. This cycle broke our state view and there was
much gnashing of teeth to hack around this. Eventually, we
bit the bullet and improved the state view JavaScript to cope
with cycles—having previously hoped we were done with
this temporary infrastructure.

Let this be a warning that Alignment (Force 3) will come
for you in the end. If your substrate allows cycles, your state
view must tolerate them!

C The Minimal Random-Access Instruction
Set (And Its Perils)

Recall Heuristic 3 which instructed us to pursue an easy-
to-implement instruction set. We pursued this goal to the
extreme out of curiosity for what was possible. Of course, it
turned out that the corresponding explosion in the number
of instructions necessary to do a simple thing outweighed
any implementation advantage…

We did this by breaking down higher-level instructions
to their component operations until we felt we could go no
further. This led to a sort of “microcode” level where each
instruction’s implementation corresponded to some single-
line JavaScript operation. In other words, the platform itself
blocked any further decomposition.

Our method for achieving this can be illustrated if we start
with a hypothetical complex instruction, e.g. copy a.b.c
to x.y.z. The actual work involved in executing this in
JavaScript would involve three steps:

1. Traverse the path a, b, c and save the value in a local
variable

2. Traverse the path x, y and save the (map) value too
3. Set the key z in the map to the saved value.

If we score strictly by JavaScript implementation size (a
mistake, in hindsight), we could improve by simply splitting
up these steps into instructions of their own. Any other
“complex” instructions that used some of the same steps
(e.g. path traversal) will also be covered by these, and the
total JavaScript will be reduced.

For the first path traversal, we start at the root map (or
more generally, any given starting map) and follow each of
the keys in turn. We have only one step here (follow key)
repeated three times. That’s another micro-instruction!

At this stage, we have this truly simple instruction: follow-
key k. It clearly relies on some implicit state register for the
current map, and takes a single parameter. We pushed the
limits of sanity by going further, factoring the parameter out
into another state register, so the resulting instruction is just
follow-key (we called it index). In other words, we applied
the following heuristic:

Heuristic 7 (Registers for parameters). Factor out instruc-
tion “parameters” into special state registers where possible.

The motivation for this is a vague intuition about shar-
ing parameter values. Under a parameter scheme, copying
the same thing to multiple destinations will duplicate the
“source” parameter many times, even though the only thing
that’s changing is the destination.The converse is true for op-
erations with the same destination—maybe not overwriting
copies, but arithmetic or other accumulating operations. By
breaking these parameters into state, we set a source or desti-
nation once only. This has a subjective aesthetic appeal from
the point of view of minimality, and an even more dubious
efficiency value. We emphasise that it was an experiment
and advise against it for the purposes of implementing a
system quickly.

As mentioned at the end of Section 7.3.1, we end up with
only four registers (next_instruction, focus, map, source)
and five12 core instructions (load, store, deref, index, js).
These have a structural representation in-system, but also a
convenient textual syntax for brevity in textual media (like
this essay).

Combinations of these express the expected copying and
jumping operations. For example, load source-reg, deref,
store dest-reg copies the value in top-level source-reg
to dest-reg. The first instruction loads the literal string
source-reg into the focus; the second replaces focus with
the contents of its named register; the third copies the focus
to the named destination.13

The copy a.b.c to x.y.z from earlier would decom-
pose as follows:

1. load a, deref, store map, load b, index, load c,
index, load map, deref, store source

2. load x, deref, store map, load y, index
3. load z, store
(Recall that index replaces mapwith the result of following

its key named by focus, and store without any arguments
copies from source to the focus key entry within map.)

12Or six, if we analyse the overloaded store instruction as store-reg and
store-map.
13It turns out that, if you extract the destination parameter from store, you
meet an infinite regress and will be unable to store to any top-level register.
For example, if we extract the parameter to dest_reg, we have to somehow
give it the value it previously took in the instruction—but this is precisely a
store operation and we’re already in the middle of one.
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A jump is accomplished by overwriting the address in
next_instruction (i.e. a map containing a map field and a
key field). The map or the key can be overwritten in a single
instruction, but if an entirely new address is required, this
needs to be built up separately and overwritten atomically. In
other words, we cannot overwrite the map and then overwrite
the key. The ugly reality is, after overwriting the map, it will
have jumped to a different instruction somewhere else!

A conditional jump is sneaked in by indexing a map to
obtain the new list of instructions (which is the map that will
overwrite the map under next_instruction). For example,
in the following register snapshot:
...
weather: 'stormy'
map: {

sunny: { ... sunny code sequence ... }
rainy: { ... rainy code sequence ... }
_: { ... other code sequence ... }

}

One of the three code paths will be selected according
to whatever happens to be in the weather register via the
following instructions: load weather, deref, store focus,
index. The map register will hold the result, in this case the
“other” code sequence (recall that the special key _ is used as
an “else” clause for lookups). What remains is then to copy
this within next_instruction.

It is easy to see how this applies for strict equality match-
ing, but what about comparisons? We simply turn the condi-
tion into one of a fixed set of constants. For 3 < 7 we would
subtract to get −4 and then apply the mathematical sign
function to obtain −1 (the other possibilities being 0 or 1).
we would then index a map containing keys -1, 0 and 1.

Finally, operations like subtraction and sign were in-
cluded as special instructions or achieved via the js es-
cape hatch into JavaScript. We continued to experiment with
other arithmetic instructions, including vector arithmetic
(useful for graphics), but never got round to implementing
an operand stack.
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