
C O N T E X T- AWA R E P R O G R A M M I N G L A N G U A G E S

tomas petricek

March 2017

Clare Hall, University of Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy.

D E C L A R AT I O N

This dissertation is my own work and includes nothing which is the out-
come of work done in collaboration with others except where specifically
indicated in the text. This dissertation does not exceed the regulation length
of 60,000 words, including tables and footnotes.

A B S T R A C T

The development of programming languages needs to reflect important
changes in the way programs execute. In recent years, this has included
the development of parallel programming models (in reaction to the multi-
core revolution) or improvements in data access technologies. This thesis is
a response to another such revolution – the diversification of devices and
systems where programs run.

The key point made by this thesis is the realization that an execution en-
vironment or a context is fundamental for writing modern applications and
that programming languages should provide abstractions for programming
with context and verifying how it is accessed.

We identify a number of program properties that were not connected
before, but model some notion of context. Our examples include tracking
different execution platforms (and their versions) in cross-platform devel-
opment, resources available in different execution environments (e. g. GPS
sensor on a phone and database on the server), but also more traditional
notions such as variable usage (e. g. in liveness analysis and linear logics) or
past values in stream-based dataflow programming. Our first contribution
is the discovery of the connection between the above examples and their
novel presentation in the form of calculi (coeffect systems). The presented
type systems and formal semantics highlight the relationship between dif-
ferent notions of context.

Our second contribution is the definition of two unified coeffect calculi
that capture the common structure of the examples. In particular, our flat co-
effect calculus models languages with contextual properties of the execution
environment and our structural coeffect calculus models languages where the
contextual properties are attached to the variable usage. We define the se-
mantics of the calculi in terms of category theoretical structure of an indexed
comonad (based on dualisation of the well-known monad structure), use it
to define operational semantics and prove type safety of the calculi.

Our third contribution is a novel presentation of our work in the form
of web-based interactive essay. This provides a simple implementation of
three context-aware programming languages and lets the reader write and
run simple context-aware programs, but also explore the theory behind the
implementation including the typing derivation and semantics.

v

A C K N O W L E D G E M E N T S

Thanks to:

ALAN MYCROFT

TARMO UUSTALU

DAN GHICA

JEREMY GIBBONS

MARCELO FIORE

DOMINIC ORCHARD

DON SYME

RAOUL GABRIEL URMA

STEPHEN KELL

ANTRANIG BASMAN

SAM AARON

LIESBETH DE MOL

GIUSEPPE PRIMIERO

CLARE HALL

MATFYZ

DANIELA PETRICKOVA

MIROSLAV PETRICEK

And most importantly:

.............

H D N O R A A M P M M

A O A R D E L I E Y Y

L M T N A O A R T C O

L I O A I O N O R R R

G N W L R E U S I O C

I I F I G M L L C F H

S C U E C H O A K T A

T M A S L L I V O E R

E E P B E L A C V P D

P G E E M P E R A R O

H I T T Y L P K E I L

E N R H S E S E U M E

N A I Y Z I N N L I C

E R C M Y R O A A E R

R T E E F B B M T R A

O N K R T A B S S O M

I A V E A G I A U E R

F L I J M N G B U A U

C O N T E N T S

i context-aware programming 1

1 why context-aware programming matters 3

1.1 Why context-aware programming matters 4

1.1.1 Context awareness #1: Platform versioning 5

1.1.2 Context awareness #2: System capabilities 6

1.1.3 Context awareness #3: Confidentiality and provenance 7

1.1.4 Context-awareness #4: Checking array access patterns 7

1.2 Towards context-aware languages 8

1.2.1 Context-aware languages in action 9

1.2.2 Understanding context with types 9

1.3 Theory of context dependence 11

1.4 Thesis outline . 13

2 pathways to coeffects 15

2.1 Coeffects via static and dynamic binding 15

2.1.1 Variable binding . 15

2.1.2 Implicit parameter binding 16

2.1.3 Resolving ambiguity . 17

2.2 Coeffects via type and effect systems 19

2.2.1 Simple effect system. 19

2.2.2 Simple coeffect system. 20

2.3 Coeffects via language semantics 20

2.3.1 Effectful languages and meta-languages 21

2.3.2 Marriage of effects and monads 22

2.3.3 Context-dependent languages and meta-languages . . 23

2.4 Coeffects via substructural and bunched logics 26

2.4.1 Substructural type systems. 27

2.4.2 Bunched type systems. 27

2.5 Context oriented programming 29

2.6 Summary . 29

3 context-aware systems 31

3.1 Structure of coeffect systems 31

3.1.1 Effectful lambda abstraction 32

3.1.2 Notions of context . 32

3.1.3 Scalars and vectors . 34

3.2 Flat coeffect systems . 35

3.2.1 Implicit parameters and type classes 35

3.2.2 Distributed computing 40

3.2.3 Liveness analysis . 43

3.2.4 Dataflow languages . 48

3.2.5 Permissions and safe locking 53

3.3 Structural coeffect systems . 54

3.3.1 Liveness analysis revisited 54

3.3.2 Bounded variable use 59

3.3.3 Dataflow languages revisited 62

3.3.4 Security, tainting and provenance 65

3.4 Beyond passive contexts . 66

3.5 Summary . 68

ix

x contents

ii coeffect calculi 69

4 types for flat coeffect calculus 73

4.1 Introduction . 73

4.1.1 A unified treatment of lambda abstraction 74

4.2 Flat coeffect calculus . 74

4.2.1 Flat coeffect algebra . 75

4.2.2 Type system . 77

4.2.3 Understanding flat coeffects 77

4.2.4 Examples of flat coeffects 78

4.3 Choosing a unique typing . 80

4.3.1 Implicit parameters . 80

4.3.2 Dataflow and liveness 83

4.4 Syntactic equational theory . 84

4.4.1 Syntactic properties . 84

4.4.2 Call-by-value evaluation 85

4.4.3 Call-by-name evaluation 87

4.5 Syntactic properties and extensions 90

4.5.1 Subcoeffecting and subtyping 90

4.5.2 Typing of let binding . 91

4.5.3 Properties of lambda abstraction 92

4.5.4 Language with pairs and unit 93

4.6 Summary . 94

5 semantics of flat coeffect calculus 95

5.1 Introduction and safety . 96

5.2 Categorical motivation . 97

5.2.1 Comonads are to coeffects what monads are to effects 97

5.2.2 Categorical semantics 97

5.2.3 Introducing comonads 98

5.2.4 Generalising to indexed comonads 99

5.2.5 Flat indexed comonads 101

5.2.6 Semantics of flat calculus 104

5.3 Translational semantics . 106

5.3.1 Functional target language 107

5.3.2 Safety of functional target language 107

5.3.3 Comonadically-inspired translation 109

5.4 Safety of context-aware languages 111

5.4.1 Coeffect language for dataflow 112

5.4.2 Coeffect language for implicit parameters 114

5.5 Generalized safety of comonadic embedding 118

5.6 Related categorical structures 120

5.6.1 Indexed categorical structures 120

5.6.2 When is a coeffect not a monad 121

5.6.3 When is coeffect a monad 122

5.7 Summary . 124

6 structural coeffect calculus 125

6.1 Introduction . 126

6.1.1 Related work . 126

6.2 Structural coeffect calculus . 126

6.2.1 Structural coeffect algebra 127

6.2.2 Structural coeffect types 128

6.2.3 Understanding structural coeffects 130

6.2.4 Examples of structural coeffects 130

6.3 Choosing a unique typing . 131

contents xi

6.3.1 Syntax-directed type system 131

6.3.2 Properties . 133

6.4 Syntactic properties and extensions 134

6.4.1 Let binding . 134

6.4.2 Subcoeffecting . 135

6.5 Syntactic equational theory . 135

6.5.1 From flat coeffects to structural coeffects 136

6.5.2 Holes and substitution lemma 137

6.5.3 Reduction and expansion 138

6.6 Categorical motivation . 139

6.6.1 Indexed comonads, revisited 140

6.6.2 Structural indexed comonads 140

6.6.3 Semantics of structural calculus 141

6.6.4 Examples of structural indexed comonads 143

6.7 Translational semantics . 146

6.7.1 Comonadically-inspired language extensions 147

6.7.2 Comonadically-inspired translation 148

6.7.3 Structural coeffect language for dataflow 150

6.8 Summary . 153

iii towards practical coeffects 155

7 implementation 157

7.1 From theory to implementation 158

7.1.1 Type checking and inference 158

7.1.2 Execution of context-aware programs 159

7.1.3 Supporting additional context-aware languages 160

7.2 Case studies . 160

7.2.1 Typing context-aware programs 161

7.2.2 Comonadically-inspired translation 161

7.3 Interactive essay . 163

7.3.1 Explorable language implementation 164

7.3.2 Implementation overview 166

7.4 Related work . 167

7.5 Summary . 168

8 unified coeffect systems 169

8.1 The unified coeffect calculus . 169

8.1.1 Shapes and containers 170

8.1.2 Structure of coeffects . 171

8.1.3 Unified coeffect type system 173

8.1.4 Structural coeffects . 175

8.1.5 Flat coeffects . 176

8.2 Coeffect meta-language . 178

8.2.1 Coeffects and contextual modal type theory 178

8.2.2 Coeffect meta-language 179

8.2.3 Embedding flat coeffect calculus 181

8.3 Related and future work . 181

8.3.1 Embedded context-aware DSLs 181

8.3.2 Extending the theory of coeffects 183

8.4 Summary . 184

9 conclusions 185

9.1 Contributions . 185

9.2 Summary . 187

xii contents

bibliography 189

a appendix a 197

a.1 Coeffect typing for implicit parameters 197

a.2 Coeffect typing for liveness . 197

a.3 Coeffect typing for dataflow . 198

b appendix b 203

b.1 Substitution for flat coeffects 203

b.2 Substitution for structural coeffects 205

Part I

C O N T E X T- AWA R E P R O G R A M M I N G

The computing ecosystem is becoming increasingly heterogeneous
and rich. Modern programs need to run on a variety of devices
that are all different, but provide unique rich capabilities. For ex-
ample, an application running on a phone can access the GPS
sensor, while a service running in the cloud can access GPU
computing resources. Both diversity and richness can only be
expected to increase with trends such as the internet of things.

In this thesis, we argue that creating programming languages
that allow the programmer to better work with the environment
or context in which applications execute is the next big challenge
for programming language designers.

We start with a detailed discussion of the motivation for the the-
sis and an overview of our methodology (Chapter 1). Next, we
discuss previous programming language research that leads to
the work presented in this thesis (Chapter 2) and we examine a
number of practical context-aware systems in detail (Chapter 3),
identifying two kinds of context that we later capture by flat and
structural coeffects.

1W H Y C O N T E X T- AWA R E P R O G R A M M I N G M AT T E R S

Many advances in programming language design are driven by practical
motivations. Sometimes, these practical motivations are easy to see – for
example, when they come from an external change such as the rise of multi-
core processors. Sometimes, discovering the practical motivations is a diffi-
cult task – perhaps because we are so used to a certain way of doing things
that we do not even see the flaws of our approach.

Before exploring the motivations for to this thesis, we briefly consider two
recent practical concerns that have led to the development of new program-
ming languages. This helps to explain why context-aware programming is
important. The examples are by no means exhaustive, but they are represen-
tative of the various kinds of motivations.

parallel programming . The rise of multi-core CPUs is a clear exam-
ple of an external development influencing programming language research.
As multi-core and multi-processor systems became ubiquitous, languages
had to provide better abstractions for parallel programming. This led to the
industrial popularity of immutable data structures (and functional program-
ming in general), software transactional memory [45], data-parallelism and
also asynchronous computing [105].

In this case, the motivation is easy to see – writing multi-core programs
using earlier abstractions, such as threads and locks, is difficult and error-
prone. At the same time, multi-core CPUs became a standard very quickly
and so the lack of good language abstractions was apparent.

data access . Accessing “big data” is an example of a more subtle chal-
lenge. Initiatives like open government data make more data available, but
to access the data, one has to parse CSV and Excel files, issue SQL or
SPARQL queries (to query database and the semantic web, respectively).

Technologies like LINQ [65] make querying data significantly easier. But
perhaps because accessing data became important more gradually, it was
not easy to see that SQL queries, embedded as parameterized strings1, are
a poor solution before better approaches were developed.

This is even more the case for type providers – a recent feature in F# that
integrates external data sources directly into the type system of the lan-
guage and thus makes data explorable directly from the source code editor
(through features such as auto-completion on object members). It is not easy
to see the limitations of standard techniques (using HTTP requests to query
REST services or parsing CSV files and using string-based lookup) until one
sees just how much type providers change the data-scientist’s workflow2.

context-aware programming . In this thesis, we argue that the next
important practical challenge for programming language designers is de-
signing languages that are better at working with (and understanding) the
context in which programs are executed.

1 The dominant approach is demonstrated, for example, by a review of SQL injection prevention
techniques by Clarke [24]

2 This is difficult to explain in writing and so the reader is encouraged to watch a video showing
type providers for the WorldBank and CSV data sources [81].

3

4 why context-aware programming matters

This challenge is of the kind that is not easy to see, perhaps because we
are so used to doing things in certain ways that we cannot see their flaws.
In this chapter, we aim to expose such flaws. We look at a number of basic
programs that rely on contextual information, we explain why the currently
dominant solutions are inappropriate.

the thesis . Our key claim is that the theory of coeffects that we develop
in this thesis provides a uniform and less error-prone way of writing pro-
grams that rely on the context, or execution environment, in which they
run. Perhaps most importantly, coeffects provide a single conceptual frame-
work that can capture a wide range of previously disconnected notions of
context-awareness and thus make understanding of context easier.

Thanks to coeffects, programming languages for rich and diverse execu-
tion environments will be able to offer a simple, safe and unified program-
ming model for interacting with the environment. In this thesis, we develop
the theoretical foundations for such languages and we develop a prototype
implementation that illustrates the benefits of coeffects, but also serves as a
rich guide for future langauge implementers.

1.1 why context-aware programming matters

The phrase context in which programs are executed sounds rather abstract and
generic. What notions of context can be identified in modern software sys-
tems? Different environments provide different resources (e. g. a database or
GPS sensors), environments are increasingly diverse (e. g. different mobile
platforms with multiple partially incompatible versions). Web applications
are split between client, server and mobile components; mobile applications
must be aware of the physical environment while the “internet of things”
makes the environment even more heterogeneous. At the same time, appli-
cations access rich data sources and need to be aware of provenance infor-
mation and respect the security policies from the environment.

Writing such context-aware (or environment-aware) applications is a fun-
damental problem of modern software engineering. The state of the art re-
lies on ad-hoc approaches – using hand-written conditions or pre-processors
for conditional compilation. Common problems that developers face include:

• System capabilities. Libraries such as LINQ [65] let developers write
code in a host language like C# and then cross-compile it to multi-
ple targets (including SQL, OpenCL or JavaScript [60]). Part of the
compilation (e. g. generating the SQL query) occurs at runtime and
developers have no guarantee that it will succeed until the program is
executed, because only subset of the host language is supported.

• Platform versions. When developing cross-platform applications, dif-
ferent platforms (and different versions of the same platform) provide
different API functions. Writing a cross-platform code usually relies on
(fragile) conditional compilation or (equally fragile) dynamic loading.

• Security and provenance. When working with data (be it sensitive
database or social network data), we may have permission to access
only some of the data and we may want to track provenance informa-
tion. However, this is not checked statically – if a program attempts to
access unavailable data, the access will be refused at run-time.

1.1 why context-aware programming matters 5

for header, value in header do

match header with

| "accept"→ req.Accept← value

#if FX_NO_WEBREQUEST_USERAGENT

| "user-agent"→ req.UserAgent← value

#else

| "user-agent"→ req.Headers.[HttpHeader.UserAgent]← value

#endif

#if FX_NO_WEBREQUEST_REFERER

| "referer"→ req.Referer← value

#else

| "referer"→ req.Headers.[HttpHeader.Referer]← value

#endif

| other→ req.Headers.[other]← value

Figure 1: Conditional compilation in the HTTP module of the F# Data library

• Resources & data availability. When creating a mobile application,
the program may (or may not) be granted access to device capabili-
ties such as GPS sensor, social updates or battery status. We would
like to know which of the capabilities are required and which are op-
tional (i. e. enhance the user experience, but there is a fallback strategy).
Equally, on the server-side, we might have access to different database
tables, depending on the role of the user.

Most developers do not perceive the above as programming language flaws.
They are simply common programming problems (at most somewhat an-
noying and tedious) that have to be solved. However, this is because it is not
apparent that a suitable language extension could make the above problems
significantly easier to solve. As the number of distinct contexts and their
diversity increases, these problems will become even more commonplace.

The following sub-sections explore 4 examples in more detail. The ex-
amples are chosen to demonstrate two distinct forms of contexts that are
studied in this thesis – the first two are related to the program environment
and the latter two are associated with individual variables of the program.

1.1.1 Context awareness #1: Platform versioning

The diversity across devices means that developers need to target an increas-
ing number of platforms and possibly also multiple versions of each plat-
form. For Android, there is a number called API level [41] which “uniquely
identifies the framework API revision offered by a version of the Android
platform”. Most changes in the libraries (but not all) are additive.

Equally, in the .NET ecosystem, there are multiple versions of the .NET
runtime, mobile and portable versions of the framework etc. The differences
may be subtle – for example, some instance methods and properties are
omitted to make the mobile version of the library smaller, some functionality
is not available at all, but naming can also vary between versions.

For example, the Figure 1 shows an excerpt from the Http module in
the F# Data library3. The example uses conditional compilation to target

3 The file version shown here is available at: https://github.com/fsharp/FSharp.Data/blob/
b4c58f4015a63bb9f8bb4449ab93853b90f93790/src/Net/Http.fs

https://github.com/fsharp/FSharp.Data/blob/b4c58f4015a63bb9f8bb4449ab93853b90f93790/src/Net/Http.fs
https://github.com/fsharp/FSharp.Data/blob/b4c58f4015a63bb9f8bb4449ab93853b90f93790/src/Net/Http.fs

6 why context-aware programming matters

multiple versions of the .NET framework. Such code is difficult to write – to
see whether a change is correct, it had to be recompiled for all combinations
of pre-processor flags – and maintaining the code is equally hard. The above
example could be refactored and the .NET API could be cleaner, but the
fundamental issue remains. If the language does not understand the context
(here, the different platforms and platform versions), it cannot provide any
static guarantees about the code.

As an alternative to conditional compilation, developers can use dynamic
loading. For example, on Android, programs can access API from higher
level platform dynamically using techniques like reflection and writing wrap-
pers. This is even more error prone. As noted in an article4 introducing the
technique “Remember the mantra: if you haven’t tried it, it doesn’t work.”
Again, it would be reasonable to expect that statically-typed languages can
provide a better solution.

1.1.2 Context awareness #2: System capabilities

Another example related to the previous one is when libraries use meta-
programming techniques, such as LINQ [65, 23] or F# quotations [102], to
translate code written in a subset of a host language to some other target
language, such as SQL, OpenCL or JavaScript. For database access, this is
a recently developed technique replacing embedded SQL discussed in the
introduction, but it is a more broadly applicable technique for programming
in heterogeneous environments. It lets developers target multiple runtimes
that have limited execution capabilities.

For example, the following LINQ query written in C# queries a database
and selects those product names where the first upper case letter is “C”:

var db = new NorthwindDataContext();

from p in db.Products

where p.ProductName.First(λc→ Char.IsUpper(c)) == "C"

select p.ProductName;

This appears as a perfectly valid code and the C# compiler accepts it. How-
ever, when the program is executed, it fails with the following error:

Unhandled Exception: System.NotSupportedException: Sequence op-
erators not supported for type System.String.

The problem is that LINQ can only translate a subset of normal C# code. The
above snippet uses the First method to iterate over characters of a string,
which is not supported. This is not a technical limitation of LINQ, but a
fundamental problem of an approach where code written using libraries for
one execution environment is translated and run in another, more limited,
execution environment.

When cross-compiling to a limited environment, we cannot always sup-
port the full source language. The example with LINQ and SQL demon-
strates the importance of this problem. As of March 2014, Google search
returns 11,800 results for the message above and even more results (44,100)
for a LINQ error message “Method X has no supported translation to SQL”
caused by a similar limitation.

4 Retrieved from: http://android-developers.blogspot.com/2009/04/backward-
compatibility-for-android.html

http://android-developers.blogspot.com/2009/04/backward-
compatibility-for-android.html

1.1 why context-aware programming matters 7

1.1.3 Context awareness #3: Confidentiality and provenance

The previous two examples were related to the non-existence of some library
functions in a different execution environment. Another common factor was
that they were related to the execution context of the whole program or a
function scope. However, contextual properties can also be associated with
specific variables.

For example, consider the following code sample that accesses a database
by building a SQL query using string concatenation. For the purpose of the
demonstration, this example does not use LINQ, but an older approach with
a parameterized SQL query written as a string:

let query = sprintf "SELECT * FROM Products WHERE Name='%s'" name

let cmd = new SqlCommand(query)

let reader = cmd.ExecuteReader()

The code compiles without error, but it contains a major security flaw called
SQL injection [24]. An attacker could enter "'; DROP TABLE Products --" as
the name and delete the database table “Products”. For this reason, most
libraries discourage building SQL commands by string concatenation, but
there are still many systems that do so.

Again, this example demonstrates a more general property. Sometimes, it
is desirable to track additional metadata about values that are in some ways
special. Such metadata can determine how the values can be used. Here, the
value stored in name comes from the user input. This information about the
value should be propagated to query. The SqlCommand object should then
require arguments that can not directly contain user input.

Similarly, if we had password or creditCard variables in a client/server web
application, these should be annotated as sensitive and it should not be
possible to send their values over an unsecured network connection.

In the security context, such marking of values (but at run-time) is called
tainting [44], but the technique is a special case of more general provenance
tracking [22]. This can be useful when working with data in other contexts.
For example, data journalists might want to propagate metadata about the
quality and the information source – is the source trustworthy? Is the data
up-to-date? Such metadata could propagate to the result and tell us impor-
tant information about the calculated results.

1.1.4 Context-awareness #4: Checking array access patterns

The final example leaves the topic of cross-platform and distributed comput-
ing. We focus on checking how arrays are accessed. This is a simpler version
of the dataflow programming examples used later in the thesis.

Consider a simple programming language with arrays where the nth el-
ement of an array arr is accessed using arr[n]. We focus on writing stencil
computations (such as image blurring, Conway’s game of life or convolu-
tion) where all arrays are of the same size and the system provides a cursor
pointing to a current location in the stencil. We assume that the keyword
cursor returns the current location in the stencil.

8 why context-aware programming matters

The following example implements a simple one-dimensional cellular au-
tomaton, reading from the input array and writing to output:

let sum = input[cursor− 1] + input[cursor] + input[cursor+ 1]

if sum = 2 || (sum = 1 && input[cursor− 1] = 0)

then output[cursor]← 1 else output[cursor]← 0

In this example, we use the term context to refer to the values in the array
around the current location provided by cursor. The interesting question is,
how much of the context (i. e. how far in the array) does the program access.

This is contextual information attached to individual (array) variables. In
the above example, we want to track that input is accessed in the range
〈−1, 1〉 while output is accessed in the range 〈0, 0〉. When calculating the
ranges, we need to be able to compose ranges 〈−1,−1〉, 〈0, 0〉 and 〈1, 1〉
(based on the three accesses on the first line).

Access patterns can be used to efficiently compile the computation by
preallocating the necessary space (as we know which sub-range of the array
might be accessed). It also allows better handling of boundaries [77]. For
example, to simplify wrap-around behaviour we could pad the input with a
known number of elements from the other side of the array.

1.2 towards context-aware languages

The four examples presented in the previous section cover different kinds of
context. The context includes notions such as execution environment, capa-
bilities provided by the environment or input and metadata about the input
and variables through which it is accessed.

The different applications can be broadly classified into two categories –
those that speak about the environment and those that speak about indi-
vidual inputs (variables). In this thesis, we refer to them as flat coeffects and
structural coeffects, respectively:

• Flat coeffects represent additional data, resources and metadata that
are available in the execution environment (regardless of how they
are accessed in a program). Examples include resources such as GPS
sensors and battery status (on a phone), databases (on the server), or
software framework (or library) version.

• Structural coeffects capture additional metadata related to inputs.
This can include provenance (source of the input value), usage infor-
mation (how often is the value accessed and in what ways) or security
information (whether it contain sensitive data or not).

This thesis follows the tradition of statically typed programming languages.
As such, we attempt to capture such contextual information in the type
system of context-aware programming languages. The type system should
provide both safety guarantees (as in the first three examples) and also static
analysis useful for optimization (as in the last example).

Although the main focus of this thesis is on the underlying theory of
coeffects and on their structure, the following section briefly demonstrates
the features that a practical context-aware language, based on the theory of
coeffects, can provide.

1.2 towards context-aware languages 9

let fetchNews(loc) =

let cmd = sprintf "SELECT * FROM News WHERE Location='%s'" loc

query(cmd, password)

let fetchLocalNews() =

let loc = gpsLocation()

remote fetchNews(loc)

let iPhoneMain() =

createiPhoneListing(fetchLocalNews)

let windowsMain() =

createWindowsListing(fetchLocalNews)

Figure 2: Client/server news reader app implemented in a context-aware language

1.2.1 Context-aware languages in action

As an example, consider a news reader app consisting of a server-side com-
ponent (which stores the news in an SQL database) and a number of clients
applications for popular platforms (iPhone, Windows Phone, etc.). A sim-
plified code excerpt that might appear somewhere in the implementation is
shown in Figure 2.

We assume that the language supports cross-compilation and splits the
single program into three components: one for the server-side and two
for the client-side, for iPhone and Windows Phone, respectively. The cross-
compilation could be done in a way similar to Links [26], but we do not
require explicit annotations specifying the target platform.

If we were writing the code using current mainstream technologies, we
would have to create three completely separate components. The server-
side would include the fetchNews function, which queries the database. The
iPhone version would include fetchLocalNews, which gets the current GPS
location and performs a call to the remote server and iPhoneMain, which
constructs the user-interface. For Windows, we would also need fetchLocal-

News, but this time with windowsMain. When using a language that can be
compiled for all of the platforms, we would need a number of #if blocks to
delimit the platform-specific parts.

To support cross-compilation, the language needs to be context-aware.
Each of the function has a number of context demands. The fetchNews func-
tion needs to have access to a database; fetchLocalNews needs access to a
GPS sensor and to a network (to perform the remote call). However, it does
not need a specific platform – it can work on both iPhone and Windows.
The last two platform-specific functions inherit the requirements of fetchLo-
calNews and additionally also require a specific platform.

1.2.2 Understanding context with types

The approach advocated in this thesis is to track information about context
demands using the type system. To make this practical, the system should
also provide at least a partial support for automatic type inference, as the
information about context demands makes the types more complex. An
inspiring example might be the F# support for units of measure [52] – the

10 why context-aware programming matters

user has to explicitly annotate constants, but the rest of the information is
inferred automatically.

Furthermore, integrating contextual information into the type system can
provide information for modern developer tools. For example, many edi-
tors for F# display inferred types when placing the mouse pointer over an
identifier. For fetchLocalNews, the tip could appear as follows:

fetchLocalNews

unit @ { gps, rpc }→ (news list) async

Here, we use the notation τ1@ c → τ2 to denote a function that takes an
input of type τ1, produces a result of type τ2 and has additional context
demands specified by c. In the above example, the annotation c is simply a
set of required resources or capabilities. However, a more complex structure
could be used as well, for example, including the Android API level as an
integer.

The following summary shows the types of the functions from the code
sample in Figure 2. These guide code generation by specifying which func-
tion should be compiled for which of the platforms, but they also provide
documentation for the developers. In addition to function annotations, we
also show the annotation attached to the password variable:

password : string @ sensitive

fetchNews : location @ { database }→ news list

gpsLocation : unit @ { gps }→ location

fetchLocalNews : location @ { gps, rpc }→ news list

iPhoneMain : unit @ { ios, gps, rpc }→ unit

windowsMain : unit @ { windows, gps, rpc }→ unit

The example combines two separate notions of context. The variable pass-

word is annotated with a single (per-variable) annotation specifying tainting
while functions are annotated with a set of resource requirements.

The concrete syntax is just for illustration and some information could
even be mapped to other visual representations – for example, differently
coloured backgrounds for platform-specific functions. The key point is that
the type provides a number of pieces of useful information:

• The password variable is available in the context (we assume it has been
declared earlier), but is marked as sensitive, which restricts how it can
be used. In particular, we cannot return it as a result of a function that
is called via a remote call (e. g. fetchNews) as that would leak sensitive
data over an unsecured connection.

• The fetchNews function requires database access and so it can only run
on the server-side (or on a thick client with a local copy of the database,
such as a desktop computer with an offline mode).

• The gpsLocation function accesses the GPS sensor and since we call
it from fetchLocalNews, this function also requires GPS (the require-
ment is propagated automatically).

• We can compile the program for two client-side platforms – the entry
points are iPhoneMain and windowsMain and require iOS and Windows
user-interface libraries, together with GPS and the ability to perform
remote calls over the network.

1.3 theory of context dependence 11

The details of how the cross-compilation would work are out of the scope of
this thesis. However, one can imagine that the compiler would take multiple
sets of references (representing the different platforms), expose the union of
the functions, but annotate each with the required platform. Then, it would
produce multiple different binaries – here, one for the server-side (contain-
ing fetchNews), one for iPhone and one for Windows.

In this scenario, the main benefit of using an integrated context-aware
language would be the ability to design appropriate abstractions using stan-
dard mechanisms of the language. For cross-compilation, we can structure
code using functions, rather than relying on #if directives. Similarly, the
splitting between client-side, server-side and shared code can be done us-
ing ordinary functions and modules (with shared functions reused) – rather
than having to split the application into separate independent libraries or
projects.

The purpose of this section was to show that many modern programs
rely on the context in which they execute in non-trivial ways. Thus design-
ing context-aware languages is an important practical problem for language
designers. The sample serves more as a motivation than as a technical back-
ground for this thesis. We explore more concrete examples of properties that
can be tracked using the systems developed in this thesis in Chapter 3.

1.3 theory of context dependence

The previous section introduced the idea of context-aware languages from
the practical perspective. As already discussed, we approach the problem
from the perspective of statically typed programming languages. This sec-
tion outlines how can contextual information be integrated into the standard
framework of static typing. This section is intended only as an informal
overview and complete review of related work is available in Chapter 2.

type systems . A type system is a form of static analysis that is usually
specified by typing judgements such as Γ ` e : τ. The judgement specifies that,
given some variables described by the context Γ , the expression e has a type
τ. The variable context Γ is necessary to determine the type of expressions.
Consider an expression x+y. In many languages, including Java, C# and F#,
the type could be int, �oat or string, depending on the types of the variables.
For example, the following is a valid typing judgement in F# [108]:

x : int, y : int ` x+ y : int

This judgement assumes that the type of x and y is int and so the result must
also be int. The expression might also be typeable in a context x : string, y :
string, but not in a context where types of x and y do not match.

tracking evaluation effects . Type systems can be extended in nu-
merous ways. The types can be more precise, for example, by specifying the
range of an integer. However, it is also possible to track what program does
when executed. In ML-like languages, the following is a valid judgement:

x : int ` print x : unit

The judgement states that the expression print x has a type unit. This is cor-
rect, but it ignores the important fact that the expression has a side-effect and
prints a number to the console. In purely functional languages, this would
not be possible. For example, in Haskell, the type would be IO unit meaning

12 why context-aware programming matters

that the result is a computation that performs I/O effects and then returns
unit value. Here, we look at another option for tracking effects, which is
to extend the judgement with additional information about the effects. The
judgement in a language with effect system would look as follows:

x : int ` print x : unit & {console}

Effect systems add effect annotation as another component of the typing
judgement. In the above example, the return type is unit, but the effect an-
notation informs us that the expression also accesses console as part of the
evaluation. To track such information, the compiler needs to understand the
effects of primitive built-in functions – such as print.

The crucial part of type systems is dealing with different forms of com-
position. Assume we have a function read that reads from the console and a
function send that sends data over the network. The type system should cor-
rectly infer that the effects of an expression send(read()) are {console, network}.

Effect systems are an established idea, but they are suitable only for track-
ing properties of a certain kind. They can be used for properties that de-
scribe how programs affect the environment. For context-aware languages,
we instead need to track what programs require from the environment. This
intuitive distinction is made more precise in Section 5.6.

tracking context demands . The systems for tracking of context de-
mands developed in this thesis are inspired by the idea of effect systems.
To demonstrate our approach, consider the following call from the sample
program shown earlier – first using standard ML-like type system:

password :string, cmd :string ` query(cmd, password, time) : news list

The expression queries a database and gets back a list of news based on the
spefieid time. There are three pieces of contextual information that are desir-
able to track for this expression. First, the call to the query primitive requires
database access. Second, the password argument needs to be marked as sensi-
tive value to avoid sending it over an unsecure network connection. Third,
the expression uses a special construct time, which requires access to system
clock. The coeffect systems developed in this thesis capture this information in
the following way (we slightly refine the notation later):

(password :string @ sensitive, cmd :string) @ {database, clock}
` query(cmd, password, time) : news list

The typing judgement includes an additional annotation that now captures
contextual requirements of the expression. The annotation is attched to the
variable context Γ . As discussed later (Section 4.2.3), this better reflects how
contextual information are used in the type system, but it also matches the
semantics (Section 5.2). Rather than attaching additional information to the
resulting type, we attach them to the variable context Γ .

In other words, the context in coeffect systems consists of the available
variables, but also tracks detailed information about the execution environ-
ment. In the above example, the system tracks metadata about the variables
and annotates password as sensitive and it tracks requirements about the
execution environment, for example, that the execution requires clock.

The example demonstrates the two kinds of coeffect systems outlined ear-
lier. The tracking of whole-context information (such as environment require-
ments) is captured by the flat coeffect calculus developed in Chapter 4, while
the tracking of per-variable information is captured by the structural coeffect
calculus developed in Chapter 6.

1.4 thesis outline 13

context demands and lambda abstraction. The difference be-
tween effects and coeffects becomes apparent when we consider lambda
abstraction. Given an effectful expression such as print "hi", the function
λx.print "hi" is an effect free value that delays all effects. The message is
printed when we run the function, but not when the function is declared.

Contextual properties do not follow this pattern. As discussed in Sec-
tion 3.1.1, context demands cannot always be delayed. For example, consider
a context-aware expression time that requires access to system clock. If we
create this function on a server in a distributed system, send it to a client
and then run it, the function body can access the clock in two ways. It can
use the clock of the server (when the function was created), or it can use
the clock of the client (when the function was executed). We return to this
example in Section 3.2.2.

Another important difference between effects and coeffects becomes ap-
parent when we consider their semantics. It is well-known fact that effects
correspond to monads and languages such as Haskell use monads to pro-
vide a limited form of effect system. An interesting observation made in
this thesis is that coeffects, or systems for tracking contextual information,
correspond to the category theoretical dual of monads called comonads. The
details are explained throughout the thesis.

1.4 thesis outline

This chapter shows why capturing how programs rely on the context, or
execution environment, in which they execute is an important problem. We
looked at a number of properties related to context that are currently han-
dled in ad-hoc and error-prone ways. Next, we considered the properties in
a simplified, but realistic example of a client/server application for display-
ing local news.

Tracking of contextual properties may not be initially perceived as a major
problem – perhaps because we are so used to write code in certain ways that
prevent us from seeing the flaws. The purpose of this chapter was to expose
the flaws and convince the reader that there should be a better solution.
Finding the foundations of such better solution is the goal of this thesis:

• In Chapter 2, we give an overview of related work. Most importantly,
we show that the idea of context-aware computations can be naturally
approached from a number of directions developed recently in the
theory of programming languages (including type and effect systems,
categorical semantics and substructural logics).

• In Chapter 3, we present the first contribution of the thesis – the dis-
covery of the connection between a number of existing programming
language features that are related to context. The chapter presents
type systems and semantics for a number of systems and analyses
(including dataflow, liveness analysis, distributed programming and
Haskell’s type classes). Our novel presentation reveals their similarity.

• In Chapter 4 and Chapter 6, we capture important contextual prop-
erties using a simple theoretical models. We develop the flat coeffect
calculus that captures per-context properties and structural coeffect cal-
culus that captures per-variable properties. We give a type system for
the calculi and study their equational properties.

14 why context-aware programming matters

• In Chapter 5 we give categorical semantics of the flat coeffect calculus.
This provides a unified way of defining the semantics of context-aware
languages. We use the categorical semantics as a basis for categorically-
inspired translation that turns context-aware programs into programs
in a simple functional language. We prove that well-typed context-
aware programs are translated to programs that “do not get stuck”.
The development is repeated for structural coeffects in Chapter 6.

• In Chapter 7, we use the translation as a basis for a prototype imple-
mentation of three simple context-aware programming languages. We
use a format of web-based interactive essay (available at http://tomasp.

net/coe�ects), which shows how coeffects simplify programming with
context by allowing the reader to write and run simple context-aware
programs, but also explore the theory behind the implementation in-
cluding the typing derivation and the translation.

• Related work is presented in Chapter 2 and, together with further
work, throughout the thesis. Two important directions deserve further
exploration. In Chapter 8, we outline a unified coeffect system that is
capable of capturing both flat and structural properties. We also in-
clude a brief discussion of a different approach to tracking contextual
information that arises from modal logics.

If there is a one thing that the reader should remember from this thesis, it is
the fact that there is a unified notion of context, capturing many common sce-
narios in programming, and that programming language designers need to
provide ways for working with this context. This greatly reduces the num-
ber of distinct concepts that software developers need to keep in mind of
when building applications for the rich and diverse execution environments
of the future.

http://tomasp.net/coeffects
http://tomasp.net/coeffects

2PAT H WAY S T O C O E F F E C T S

There are many different directions from which the concept of coeffects can
be approached and, indeed, discovered. In the previous chapter, we moti-
vated it by practical applications, but coeffects also naturally arise as an
extension to a number of programming language theories. Thanks to the
Curry-Howard-Lambek correspondence, we can approach coeffects from
the perspective of type theory, logic and also category theory. This chapter
gives an overview of the most important directions.

We start (Section 2.1) by discussing how coeffects arise from the most
common notion of context-dependence – variable binding. Next, we look at
coeffects as the dual of effect systems (Section 2.2) and we extend the duality
to category theory, looking at comonads (Section 2.3). We also consider type
systems inspired by linear and bunched logic, which are closely related
to our structural coeffects (Section 2.4). Finally, we also consider practical
motivations for context-aware programming (Section 2.5).

This chapter serves two purposes. Firstly, it provides a high-level overview
of the related work, although technical details are often postponed until later.
Secondly it recasts existing ideas in a way that naturally leads to the coef-
fect systems developed later in the thesis. For this reason, we are not always
faithful to the referenced work. We present the work through the coeffect
view and so we sometimes focus on aspects that authors consider unimpor-
tant or we present the work differently than originally intended. When we
do so, this is explicitly stated in the text.

2.1 coeffects via static and dynamic binding

Accessing a variable is arguably the simplest form of context-dependence,
to the extent that we do not normally think of variables as a notion of con-
text. However, variables fit well with our earlier description of context in
programming: a block of code that accesses a variable can only be executed
in an environment where the variable is available.

In this section, we look at variable binding through the perspective of
context-requirements. We discuss ordinary variable binding and Haskell’s
implicit parameters [59], which provide an interesting point in the design
space. Implicit parameters give an example of an ambiguity that arises more
generally in context-aware programming, as well as one way of resolving it
through type-directed semantics.

For a more general context-aware programming example, consider a pro-
gram running on a laptop that accesses an implicit parameter representing
a printer. When printing, the text may appear on my home printer (corre-
sponding to static binding), or it may appear on the nearest printer based
on my physical location (corresponding to dynamic binding).

2.1.1 Variable binding

Variable access represents a form of context-dependence. For example, an
expression x+ y can be only evaluated if the environment provides values
for variables x and y. A variable requirement can be satisfied in two standard

15

16 pathways to coeffects

ways that are characterized as dynamic and static (or lexical) variable binding.
Consider the following simple program:

let x = 10 in

let f = λy→ x+ y in

let x = 5 in

f 0

The program can be evaluated in two ways, depending on the variable bind-
ing mechanism:

• Static (lexical) binding. In a language with static binding (such as
ML or Java), the variable x inside the body of the lambda function is
statically bound to the declaration in the lexical scope – that is, the
variable on the second line – and the expression evaluates to 10.

• Dynamic binding. In a language with dynamic binding (some vari-
ants of LISP), the variable value is dynamically bound to the topmost
value for the available kept on the stack during program execution.
Thus, the x variable inside the lambda function refers to x defined on
line 5 of the sample and the expression evaluates to 5.

When we view variable access as a context requirement, we can see that
the body of the function (x+ y) requires a context that provides values for
variables x and y. In static binding, the context demands of the body can be
placed on the scope in which the function is defined (declaration site). In
dynamic binding, the requirements are delayed and are placed on the scope
in which the function is called (call site).

In static and dynamic scoping, all variable requirements are always placed
on one site. However, those are not the only two options. It is conceivable
that a language would use a mechanism that splits variable requirements
differently and combines aspects of dynamic and static binding. For exam-
ple, the language could use static binding by default, but resort to dynamic
binding if a variable is not available in the lexical scope. One such system is
implicit parameters discussed in the next section.

Languages with static scoping resolve variable bindings at compile-time.
In contrast, languages with dynamic variable binding cannot resolve vari-
ables at compile-time. They typically perform runtime checks – if a program
attempts to access a variable that is not available in the environment, a run-
time error occurs. Implementing static checking for dynamic binding is also
possible, but it requires a more sophisticated type system (Section 2.2.2),
while implementing static binding without checking would be cumbersome
and so dynamically scoped languages are often dynamically typed.

2.1.2 Implicit parameter binding

Haskell uses static binding for ordinary variables, but GHC additionally
provides a feature named implicit parameters [59] that adds a special kind
of variables, written as ?param, which use a particular combination of static
and dynamic binding.

The following two examples are variations on the one discussed in Sec-
tion 2.1.1, obtained by replacing a variable x with an implicit parameter ?x.
On the left, the implicit parameter is declared both in the static scope and
in the dynamic scope. On the right, the implicit parameter is available only
in the dynamic scope:

2.1 coeffects via static and dynamic binding 17

let f =

let ?x = 10 in

λy→ ?x+ y in

let ?x = 5 in

f 0

let f =

λy→ ?x+ y in

let ?x = 5 in

f 0

The binding rules for Haskell’s implicit parameters can be summarized as
“static binding when possible, dynamic binding when needed”. If an implicit pa-
rameter is available in static scope, then the value is statically bound and
the context requirement is satisfied using the declaration site context. Oth-
erwise, the context requirement is delayed and has to be satisfied at the call
site. In the example on the left, ?x is bound to 10 and so the function f has
no delayed context demands and thus the expression evaluates to 10. On
the right, the context demand for ?x is delayed and is satisfied via dynamic
binding when calling the function. The expression evaluates to 5.

In Haskell, the type system checks that bindings for all required implicit
parameters are available and so no runtime errors can occur. The type of
the function f on the left is int → int, while the type of the f function
on the right is {?x : int} ⇒ int → int. The part before ⇒ specifies the
required implicit parameters that need to be available in the environment
when calling the function. It is worth noting that the syntax is similar to the
one used by type-class constraints. Those can be viewed as context demands
too (Section 3.2.1).

thesis perspective . The three different binding mechanisms discussed
so far can be seen as different ways of splitting context demands of a particu-
lar kind into static and dynamic parts. Dynamic and static binding represent
the opposite ends of the design spectrum and Haskell’s implicit parameters
are an interesting point inside the wider spectrum.

In this thesis, we consider various notions of context, using implicit pa-
rameters as one of several motivating examples. Implicit parameters are a
particularly valuable example, because they clearly illustrate the ambiguity
inherent in context-aware programs – the context demands of a function can
be satisfied using the context available at declaration site or using the con-
text available at the call site. Recall our earlier printer example – a language
that provides access to resources in the context needs to provide enough flex-
ibility in handling such ambiguities, be it implicit parameter values available
in scope or printers available in the physical environment.

We aim to find a description of context-aware languages that does not
make ad-hoc decisions about how context demands are split between the
declaration site and the call site. While Haskell’s solution for implicit pa-
rameters might be the most reasonable one for that particular case, this
thesis argues that other notions of context require different domain-specific
choices and the general framework of context-aware programming should
make that possible.

2.1.3 Resolving ambiguity

In many practical programming languages, the value and semantics of an
expression depends on its type derivation. In order to assign unique seman-
tics to an expression, the choice is typically hidden behind a mechanism that
selects one preferred type derivation.

18 pathways to coeffects

This mechanism serves as an inspiration for our approach to resolving
ambiguity inherent in context-aware programs. This section discusses a brief
example using the F# language [108], before revisiting the implicit parame-
ters example.

Consider an F# lambda expression (λx→ x.Length), which takes an object
x and returns the value of its Length property. F# is a nominally-typed lan-
guage meaning that, in isolation, the function has an ambiguous meaning1.
It can be a function taking an array, it can be a function taking a string, or it
can be a function taking one of the other .NET types that are equipped with
the Length property.

The semantics of the function depends on the typing derivation. For ex-
ample, for arrays, it is compiled using the ldlen intermediate language (IL)
instruction, while or strings, it is compiled using call instruction (calling the
property getter). In F#, the compiler chooses an appropriate typing deriva-
tion. For example:

["hello"; "world"] |> List.map (λs→ s.Length)

[Array.empty; Array.create 100 0] |> List.map (λs→ s.Length)

The |> operator passes the value on the left to the function on the right.
In the first case, the compiler infers that the type of the input is a list of
strings and so the type of the lambda function becomes string → int. In
the second case, the list contains two arrays (an empty array and an array
containing one hundred zero values) and so the type of the lambda function
is int[]→ int. The important points about the example are:

1. The semantics of the function (λx→ x.Length) depends on its type. For
arrays, it is compiled using a special IL instruction, while for strings,
it calls a property getter.

2. The compiler chooses an appropriate typing derivation. In the above
case, this is done based on the context in which the expression ap-
pears, but other options are possible (in some cases, there is a default
resolution; often, the compiler requires an explicit typing annotation).

3. An expression without a type derivation does not have semantics. For
example, given List.map (λs→ s.Length), the F# compiler fails to infer a
type; the expression is not well-typed and does not have a semantics.2

The function λy→ ?x+ y in Haskell also has multiple possible typing deriva-
tions and its semantics varies depending on its type. If the lexical scope
contains a binding for ?x, the function type is int → int and it captures
the value from the lexical scope. Otherwise, the type of the function is
{?x : int} ⇒ int → int and it reads the parameter value from a hidden
dictionary that is passed together with the input from the call site.

thesis perspective . Just like the F# function in the above example,
certain expressions in context-aware languages developed in this thesis have
multiple valid typing derivations and their semantics depends on the type.
In F#, the compiler determines a unique typing derivation based on other
parts of the program (if type is not uniquely determined, it either chooses

1 In contrast, in a structurally-typed language, the function would have a unique typing in isola-
tion. In OCaml, the type would be 〈Length : 'a〉 → 'a.

2 Alternatively, the compiler could choose default typing among multiple options. The F# com-
piler does this for the + operator, which can be used on �oat and int types, but the compiler
chooses int as the default.

2.2 coeffects via type and effect systems 19

(var)
x :τ ∈ Γ
Γ ` x : τ, ∅

(write)
Γ ` e : τ, r l : refρ τ ∈ Γ
Γ ` l← e : unit, r∪ {write(ρ)}

(abs)
Γ , x :τ1 ` e : τ2, r

Γ ` λx.e : τ1
r−→ τ2, ∅

(app)
Γ ` e1 : τ1

r−→ τ2, s Γ ` e2 : τ1, t
Γ ` e1 e2 : τ2, r∪ s∪ t

Figure 3: Simple effect system

a default or fails). In our languages, we also determine a unique typing
derivation. However, rather than relying on type information from other
parts of the program, we explicitly define an algorithm that chooses the
preferred unique derivation (Section 4.3 and Section 6.3).

This approach decouples two important aspects of context-aware pro-
gramming and lets us study them independently – the semantics of context-
aware programs and the domain-specific way of resolving ambiguities in
how context demands are satisfied. In our treatment of implicit parameters,
we consider multiple typing derivations (representing a range with static
and dynamic scoping at opposite ends), but we uniquely choose one pre-
ferred typing (mimicking the behaviour of GHC for implicit parameters).

2.2 coeffects via type and effect systems

Introduced by Gifford and Lucassen [38, 62], type and effect systems have
been designed to track effectful operations performed by computations. Ex-
amples include tracking of reading and writing from and to memory loca-
tions [106], communication in message-passing systems [50] and atomicity
in concurrent applications [34].

Type and effect systems are usually specified as judgements of the form
Γ ` e : τ, r, meaning that the expression e has a type τ in a (free-variable)
context Γ and additionally may have effects described by r. Effect systems
are typically added to a language that already supports effectful operations
as a way of increasing the safety – the type and effect system provides
stronger guarantees than a plain type system. Filinski [33] refers to this
approach as descriptive3.

2.2.1 Simple effect system.

The structure of a simple effect system4 is demonstrated in Figure 3. The
example shows typing rules for a simply typed lambda calculus with an
additional (effectful) operation l← e that writes the value of e to a mutable
location l. The type of locations (refρ τ) is annotated with a memory region
ρ of the location l. The effects tracked by the type and effect system over-
approximate the actual effects and memory regions provide a convenient

3 In contrast to prescriptive effect systems that implement computational effects in a pure lan-
guage – such as monads in Haskell.

4 Most work on effect systems uses σ or F for effect annotations. We use letters r,s, t and also
distinguish effect or coeffect annotations by colour.

20 pathways to coeffects

way to build such over-approximation. The effects are represented as a set
of effectful actions that an expression may perform and the effectful action
(write) adds a primitive effect write(ρ).

The remaining rules are shared by a majority of effect systems. Variable
access (var) has no effects, application (app) combines the effects of both
expressions, together with the latent effects of the function to be applied.
Finally, lambda abstraction (abs) is a pure computation that turns the actual
effects of the body into latent effects of the created function.

2.2.2 Simple coeffect system.

When writing the judgements of coeffect systems, we want to emphasize
the fact that coeffect systems talk about context rather than results. For this
reason, we write the judgements in the form Γ @ r ` e : τ, associating the
additional information with the context (left-hand side) of the judgement
rather than with the result (right-hand side) as in Γ ` e : τ, r. This change
alone would not be very interesting – we simply used different syntax to
write a predicate with four arguments. The more interesting difference is
how the lambda abstraction rule looks.

The language in Figure 4 extends simple lambda calculus with resources
and with a construct access e that obtains the resource specified by the ex-
pression e. Most of the typing rules correspond to those of effect systems.
Variable access (var) has no context demands, application (app) combines
context demands of the two sub-expressions and latent context-requirements
of the function. The (abs) rule is different than the corresponding rule for ef-
fect systems – the resource requirements of the body r∪ s are split between
the immediate context-requirements associated with the current context Γ @ r

and the latent context-requirements of the function.
This is where context-aware languages permit multiple valid typing deriva-

tions as discussed in Section 2.1.3. In the example here, a resource can be
captured when a function is declared (e.g. when it is constructed on the
server-side where database access is available), or when a function is called
(e. g. when a function created on server-side requires access to current time-
zone, it can use the resource available on the client-side). In other words,
resources in this example support both static (lexical) and dynamic scoping.
Out of the multiple valid typing derivation, we would choose one – for ex-
ample, capturing only those server-side resources that are not available on
the client-side5. We discuss this system in detail in Section 3.2.1.

2.3 coeffects via language semantics

Another pathway to coeffects leads through the semantics of effectful and
context-dependent computations. In a pioneering work, Moggi [67] showed
that effects (including partiality, exceptions, non-determinism and I/O) can
be modelled using the category theoretic notion of monad.

When using monads, we distinguish effect-free values τ from programs,
or computations Mτ. The monad M abstracts the notion of computation and
provides a way of constructing and composing effectful computations:

Definition 1. A monad over a category C is a triple (M, unit, bind) where:

• M is a mapping on objects (types) M : C→ C

5 This can be characterized as “dynamic binding when possible, static binding when needed” and it is,
quite curiously, the opposite choice than the one used by Haskell’s implicit parameters.

2.3 coeffects via language semantics 21

(var)
x :τ ∈ Γ

Γ @ ∅ ` x : τ

(access)
Γ @ r ` e : resρ τ

Γ @ r∪ {access(ρ)} ` access e : τ

(abs)
(Γ , x :τ1) @ r∪ s ` e : τ2
Γ @ r ` λx.e : τ1

s−→ τ2

(app)

Γ ` e1 : τ1
r−→ τ2, s

Γ ` e2 : τ1, t
Γ ` e1 e2 : τ2, r∪ s∪ t

Figure 4: Simple coeffect system

• unit is a mapping α→Mα

• bind is a mapping (α→Mβ)→ (Mα→Mβ)

such that, for all f : α→Mβ and g : β→Mγ:

bind unit = id (left identity)

bind f ◦ unit = f (right identity)

bind (bind g ◦ f) = (bind f) ◦ (bind g) (associativity)

Without providing much details, we note that well known examples of mon-
ads include the partiality monad (Mα = α+⊥) also corresponding to the
Maybe type in Haskell and list monad (Mτ = 1+(τ×Mτ)). In programming
language semantics, monads can be used in two distinct ways.

2.3.1 Effectful languages and meta-languages

Moggi uses monads to define two formal systems. In the first formal system,
a monad is used to model the language itself. This means that the semantics
of a language is given in terms of a one specific monad and the semantics
can be used to reason about programs in that language. To quote “When rea-
soning about programs one has only one monad, because the programming language
is fixed, and the main aim is to prove properties of programs” [67, p. 5].

In the second formal system, monads are added to the programming lan-
guage as type constructors, together with additional constructs correspond-
ing to monadic bind and unit. A single program can use multiple monads,
but the key benefit is the ability to reason about multiple languages. To
quote “When reasoning about programming languages one has different monads,
one for each programming language, and the main aim is to study how they relate
to each other” [67, p. 5].

In this thesis, we generally follow the first approach – this means that we
work with an existing programming language without needing to add addi-
tional constructs corresponding to the primitives of our semantics (the alter-
native is discussed in Section 8.2). To clarify the difference, the following two
sections show a minimal example of both formal systems. We follow Moggi
and start with language where judgements have the form x :τ1 ` e : τ2 with
exactly one variable6.

6 This simplifies the examples as we do not need strong monad, but that is an orthogonal issue
to the distinction between language semantics and meta-language.

22 pathways to coeffects

language semantics . When using monads to provide semantics of
a language, we do not need to extend the language in any way – we as-
sume that the language already contains the effectful primitives (such as
the assignment operator x ← e). A judgement of the form x : τ1 ` e : τ2 is
interpreted as a morphism τ1 →Mτ2, meaning that any expression is inter-
preted as an effectful computation. The semantics of variable access and the
application of a primitive function f is interpreted as follows:

Jx :τ1 ` x : τ1K = unitM

Jx :τ1 ` f e : τ3K = (bindM f) ◦ JeK

Variable access is an effect-free computation, that returns the value of the
variable, wrapped using unitM. In the second rule, we assume that e is
an expression using the variable x and producing a value of type τ2 and
that f is a (primitive) function τ2 → Mτ3. The semantics lifts the function
f using bindM to a function Mτ2 → Mτ3 which is compatible with the
interpretation of the expression e.

meta-language interpretation. When designing a meta-language
based on monads, we need to extend the lambda calculus with additional
type(s) and expressions that correspond to monadic primitives:

τ := num | τ1 → τ2 |Mτ

e := x | f e | returnM e | letM x⇐ e1 in e2

The types consist of the primitive type, function type and a type constructor
that represents monadic computations. Thus the expressions in the language
can create both effect-free values, such as τ and computations Mτ. The ad-
ditional expression returnM is used to create a monadic computation (with
no effects) from a value and letM sequences effectful computations. In the
semantics, monads are not needed to interpret variable access and applica-
tion, they are only used in the semantics of additional (monadic) constructs:

Jx :τ ` x : τK = id

Jx :τ1 ` f e : τ3K = f ◦ JeK
Jx :τ1 ` returnM e :Mτ2K = unitM ◦ JeK

Jx :τ1 ` letM y⇐ e1 in e2 :Mτ3K = bindM Je2K ◦ Je1K

In this system, the interpretation of variable access becomes a simple iden-
tity function and application is just composition. Monadic computations are
constructed explicitly using returnM (interpreted as unitM) and they are
also sequenced explicitly using the letM construct. As noted by Moggi, the
first formal system can be easily translated to the latter by inserting appro-
priate monadic constructs.

Moggi regards the meta-language system as more fundamental, because
“its models are more general”. This is a valid and reasonable perspective. Yet,
we follow the first style, precisely because it is less general. Our aim is to de-
velop concrete context-aware programming languages (together with their
type systems and semantics) rather than to build a general framework for
reasoning about languages with contextual properties.

2.3.2 Marriage of effects and monads

The work on effect systems and monads both tackle the same problem –
representing and tracking of computational effects. The two lines of research

2.3 coeffects via language semantics 23

have been joined by Wadler and Thiemann [124]. This requires extending the
categorical structure. A monadic computation τ1 → Mτ2 means that the
computation has some effects while the judgement x : τ1 ` e : τ2, r specifies
what effects the computation has.

To solve this mismatch, Wadler and Thiemann use a family of monads
Mrτ with an annotation that specifies the effects that may be performed by
the computation. In their system, an effectful function τ1

r−→ τ2 is modelled
as a pure function returning monadic computation τ1 → Mrτ2. Similarly,
the semantics of a judgement x : τ1 ` e : τ2, r can be given as a function
τ1 → Mrτ2. The precise nature of the family of monads has been later
called indexed monads by Tate [107] and further developed by Atkey [7] in
his work on parameterized monads and Katsumata [51].

thesis perspective . The key takeaway for this thesis from the outlined
line of research is that, if we want to develop a language with type system
that captures context-dependent properties of programs more precisely, the
semantics of the language also needs to be a more fine-grained structure
(akin to indexed monads). While monads have been used to model effects,
an existing research links context-dependence with comonads – the categori-
cal dual of monads.

2.3.3 Context-dependent languages and meta-languages

The theoretical parts of this thesis extend the work of Uustalu and Vene who
use comonads to give the semantics of dataflow computations [113] and
more generally, notions of context-dependent computations [114]. The compu-
tations discussed in the latter work include streams, arrays and containers.
This is a more diverse set of examples, but they all mostly represent forms
of collections. Ahman et al. [4] discuss the relation between comonads and
containers [3] in more details.

The utility of comonads has been explored by a number of authors before.
Brookes and Geva [17] use computational comonads for intensional seman-
tics7. In functional programming, Kieburtz [54] proposed to use comonads
for stream programming, but also handling of I/O and interoperability.

Biermann and de Paiva used comonads to model the necessity modality
� in intuitionistic modal S4 [11], linking programming languages derived
from modal logics to comonads. One such language has been reconstructed
by Pfenning and Davies [88]. Nanevski et al. extend this work to Contextual
Modal Type Theory (CMTT) [70], which again shows the importance of
comonads for context-dependent computations.

While Uustalu and Vene use comonads to define the language semantics
(the first style of Moggi), Nanevski, Pfenning and Davies use comonads as
part of meta-language, in the form of � modality, to reason about context-
dependent computations (the second style of Moggi). Before looking at the
details, we use the following definition of comonad:

Definition 2. A comonad over a category C is a triple (C, counit, cobind) where:

• C is a mapping on objects (types) C : C→ C

• counit is a mapping Cα→ α

• cobind is a mapping (Cα→ β)→ (Cα→ Cβ)

7 The structure of a computational comonad has been also used by the author of this thesis to
abstract evaluation order of monadic computations [80].

24 pathways to coeffects

such that, for all f : Cα→ β and g : Cβ→ γ:

cobind counit = id (left identity)

counit ◦ cobind f = f (right identity)

cobind (g ◦ cobind f) = (cobind g) ◦ (cobind f) (associativity)

The definition is dual to a monad. Intuitively, the counit operation extracts
a value α from a value that carries additional context Cα. The cobind opera-
tion turns a context-dependent function Cα → β into a function that takes
a value with context, applies the context-dependent function to value(s) in
the context and then propagates the context. The next section makes this in-
tuitive definition more concrete. More detailed discussion about comonads
can be found in Orchard’s PhD thesis [76].

language semantics . To demonstrate the approach of Uustalu and
Vene, we consider the non-empty list comonad Cτ = τ+ (τ×Cτ). A value
of the type is either the last element τ or an element followed by another
non-empty list τ×Cτ (consisting of the head τ and the tail Cτ). Note that the
list must be non-empty, otherwise counit would not be a complete function
(it would be undefined on empty list). In the following, we write (l1, . . . , ln)
for a list of n elements:

counit (l1, . . . , ln) = l1

cobind f (l1, . . . , ln) = (f(l1, . . . , ln), f(l2, . . . , ln), . . . , f(ln))

The counit operation returns the current (first) element of the (non-empty)
list. The cobind operation creates a new list by applying the context-dependent
function f to the entire list, to the suffix of the list, to the suffix of the suffix
and so on. Interestingly, it preserves the shape of the list as it turns a list of
n elements into another list of n elements.

In causal dataflow, we can interpret the list as a list consisting of past val-
ues, with the current value in the head. Then, the cobind operation calculates
the current value of the output based on the current and all past values of
the input; the second element is calculated based on all past values and the
last element is calculated based just on the initial input (ln). In addition to
the operations of comonad, the model also uses some operations that are
specific to causal dataflow:

prev (l1, . . . , ln) = (l2, . . . , ln)

The operation drops the first element from the list. In the dataflow interpre-
tation, this means that it returns the previous state of a value.

Now, consider a simple dataflow language with single-variable contexts,
variables, primitive built-in functions and a construct prev e that returns the
previous value of the computation e. We omit the typing rules, but they are
simple – assuming e has a type τ, the expression prev e has also type τ. The
fact that the language models dataflow and values are lists (of past values)
is a matter of semantics, which is defined as follows:

Jx :τ ` x : τK = counitC

Jx :τ1 ` f e : τ3K = f ◦ (cobindC JeK)
Jx :τ1 ` prev e : τ2K = prev ◦ (cobindC JeK)

The semantics follows that of effectful computations using monads. A vari-
able access is interpreted using counitC (extract the variable value); compo-

2.3 coeffects via language semantics 25

sition uses cobindC to propagate the context to the function f and prev is
interpreted using the primitive prev (which takes a list and returns a list).
For example, the judgement x : τ ` prev (prev x) : τ represents an expres-
sion that expects context with variable x and returns a stream of values
before the previous one. The semantics of the term expresses this behaviour:
(prev ◦ prev ◦ (cobindC counitC)). Note that the first operation is simply an
identity function thanks to the comonad laws discussed earlier.

In the outline presented here, we ignored lambda abstraction. Similarly
to monadic semantics, where lambda abstraction requires a strong monad,
the comonadic semantics also requires additional structure called symmetric
(semi)monoidal comonads. This structure is responsible for the splitting of
context-requirements in lambda abstraction. Note that this is what happens
in the unusual (abs) rule in Figure 4, which distinguishes coeffect systems
from effect systems.

We return to this topic when discussing lambda abstraction in Section 3.1.1
and semantics of flat coeffect systems in Section 5.2.

meta-language interpretation. To demonstrate the approach that
employs comonads as part of a meta-language, we look at an example in-
spired by the work of Pfenning et al. [88, 70]. We do not attempt to provide
a precise overview of their work. The main purpose of the following discus-
sion is to provide a different intuition behind comonads, and to present an
example of a language that includes comonad as a type constructor, together
with language primitives corresponding to comonadic operations8.

In languages inspired by modal logics, types can have the form �τ. In the
work of Pfenning and Davies, this is the type of a term that is provable with
no assumptions. In the ML5 language by Murphy et al. [68, 69], the �τ type
means mobile code, that is code that can be evaluated at any node of a dis-
tributed system (the evaluation corresponds to the axiom �τ → τ). Finally,
Davies and Pfenning [30] consider staged computations and interpret �τ as
a type of unevaluated expressions of type τ (with no free variables).

In Contextual Modal Type Theory, the modality � is further annotated
with the free variables of the (unevaluated) expression. We write �Ψτ for
a type of expressions that requires a context Ψ. The type is a comonadic
counterpart to indexed monads used by Wadler and Thiemann when linking
monads and effect systems and, indeed, it gives rise to a language that tracks
context-dependence of computations in a type system.

In staged computation, the type CΨτ represents an expression that re-
quires the context Ψ (i.e. the expression is an open term that requires vari-
ables Ψ). The Figure 5 shows two typing rules for such language. The rules
directly correspond to the two operations of a comonad and can be inter-
preted as follows:

• (eval) corresponds to counit : C∅α → α. It indicates that we can evalu-
ate a closed (unevaluated) term and obtain a value. Interestingly, the
rule requires a specific context annotation (empty set of free variables).
It is not possible to evaluate an open term.

• (letbox) corresponds to cobind : (CΨα→ β)→ CΨ,Φα→ CΦβ. Given a
term which requires variable context Ψ,Φ (expression e1) and a func-
tion that turns a term needing Ψ into an evaluated value (expression
e2), we can construct a term that requires just Φ.

8 In fact, Pfenning et al. never mention comonads explicitly. This is done in later work by Gabbay
et al. [36], but the connection between the language and comonads is not as direct as in case of
monadic or comonadic semantics covered in the previous section.

26 pathways to coeffects

(eval) Γ ` e : �∅τ
Γ `!e : τ

(letbox)
Γ ` e1 : �Φ,Ψτ1 Γ , x :�Φτ1 ` e2 : τ2

Γ ` let box x = e1 in e2 : �Ψτ2

Figure 5: Typing for a comonadic language with contextual staged computations

The fact that the (eval) rule requires a specific context is an interesting re-
laxation from ordinary comonads where counit needs to be defined for all
values. Here, the indexed counit operation needs to be defined only on values
annotated with ∅.

The annotated cobind operation that corresponds to (letbox). An interesting
aspect is that it propagates the context-requirements “backwards”. The in-
put expression (second parameter) requires a combination of contexts that
are required by the two components – those required by the input of the
function (first argument) and those required by the resulting expression (re-
sult). This is another key aspect that distinguishes coeffects from effect sys-
tems. We return back to the meta-language approach of embedding comon-
ads in Section 8.2.

thesis perspective . As mentioned earlier, we are interested in design-
ing context-dependent languages and so we use comonads for language se-
mantics. Uustalu and Vene present a semantics of context-dependent compu-
tations in terms of comonads. We provide the rest of the story known from
the marriage of monads and effects. We develop coeffect calculus with a
type system that tracks the context demands more precisely (by annotating
the types) and we add indexing to comonads and link the two by giving
a formal semantics. The indexing allows us to capture applications that do
not fit into the model provided by plain comonads.

The meta-language approach of Pfenning et al. is closely related to our
work. Most importantly, Contextual Modal Type Theory (CMTT) uses in-
dexed � modality which corresponds to indexed comonads (in a similar
way in which effect systems correspond to indexed monads). The relation
between CMTT and comonads has been suggested by Gabbay et al. [36],
but the meta-language employed by CMTT does not directly correspond to
comonadic operations. For example, our (letbox) typing rule from Figure 5 is
not a primitive of CMTT and would correspond to box(Ψ, letbox(e1, x, e2)).
Nevertheless, the indexing in CMTT provides a useful hint for adding in-
dexing to the work of Uustalu and Vene.

2.4 coeffects via substructural and bunched logics

In the coeffect system for tracking resource usage outlined earlier, we associ-
ated additional contextual information (set of available resources) with the
variable context of the typing judgement: Γ @ r ` e : τ. In other words, our
work focuses on what is happening on the left hand side of `.

In the case of resources, the additional information about the context is
added to the variable context (as a product), but we will later look at contex-
tual properties that affect how variables are represented. More importantly,
structural coeffects link additional information to individual variables in the
context, rather than the context as a whole.

2.4 coeffects via substructural and bunched logics 27

(exchange)
Γ , x :τ1,y :τ2 ` e : γ
Γ ,y :τ2, x :τ1 ` e : γ

(weakening)
Γ ,∆ ` e : γ

Γ , x :τ,∆ ` e : γ

(contraction)
Γ , x :τ1,y :τ1,∆ ` e : τ2
Γ , x :τ1,∆ ` e[y← x] : τ2

Figure 6: Exchange, weakening and contraction typing rules

In this section, we look at type systems that reconsider Γ in a number of
ways. First of all, substructural type systems [125] restrict the use of vari-
ables in the language. Most famously linear type systems introduced by
Wadler [122] can guarantee that a variable is used exactly once. This has
interesting implications for memory management and I/O.

In bunched typing developed by O’Hearn [73], the variable context is a
tree formed by multiple different constructors (e.g. one that allows sharing
and one that does not). Most famously, bunched typing has contributed to
the development of separation logic [74] (starting a fruitful line of research
in software verification), but it is also interesting on its own.

2.4.1 Substructural type systems.

Traditionally, Γ is viewed as a set of assumptions and typing rules admit (or
explicitly include) three transformations that manipulate the variable con-
texts which are shown in Figure 6. The (exchange) rule allows reordering of
variables (which is implicit when assumptions are treated as set); (weaken-
ing) makes it possible to discard an assumption – this has the implication
that a variable may be declared but never used. Finally, (contraction) makes
it possible to use a single variable multiple times (in the rule, this is done
explicitly by joining multiple variables into a single one using substitution).

In substructural type systems, the assumptions are typically treated as a
list. As a result, they have to be manipulated explicitly. Different systems
allow different subsets of the rules. For example, affine systems allows ex-
change and weakening, leading to a system where variable may be used
at most once; in linear systems, only exchange is permitted and so every
variable has to be used exactly once.

When tracking context-dependent properties associated with individual
variables, we need to be more explicit in how variables are used. Substruc-
tural type systems provide a way to do this. Even if we allow all three
operations, we can use a variation on the three rules (exchange, weakening
and contraction) to track which variables are used and how (and to track
additional contextual information about variables).

2.4.2 Bunched type systems.

Bunched typing makes one more refinement to how Γ is treated. Rather
than having a list of assumptions, the context becomes a tree that contains
variable typings (or special identity values) in the leaves and has multiple
different types of nodes. The context can be defined, for example, as follows:

Γ ,∆,Σ := x :α | I | Γ , Γ | 1 | Γ ; Γ

28 pathways to coeffects

(exchange1)
Γ(∆,Σ) ` e : α
Γ(Σ,∆) ` e : α

(exchange2)
Γ(∆;Σ) ` e : α
Γ(Σ;∆) ` e : α

(weakening)
Γ(∆) ` e : α
Γ(∆;Σ) ` e : α

(contraction)
Γ(∆;Σ) ` e : α

Γ(∆) ` e[Σ← ∆] : α

Figure 7: Exchange, weakening and contraction rules for bunched typing

The values I and 1 represent two kinds of “empty” contexts. More interest-
ingly, non-empty variable contexts may be constructed using two distinct
constructors – Γ , Γ and Γ ; Γ – that have different properties. In particular,
weakening and contraction is only allowed for the ; constructor, while ex-
change is allowed for both.

The structural rules for bunched typing are shown in Figure 7. The syntax
Γ(∆) is used to mean an assumption tree that contains ∆ as a sub-tree and
so, for example, (exchange1) can switch the order of contexts anywhere in
the tree. The remaining rules are similar to the rules of linear logic.

One important note about bunched typing is that it requires a different
interpretation. The omission of weakening and contraction in linear logic
means that variable must be used exactly once. In bunched typing, variables
may still be duplicated, but only using the “;” separator. The type system
can be interpreted as specifying whether a variable may be shared between
the body of a function and the context where a function is declared.

The system introduces two distinct function types τ1 → τ2 and τ1 –∗ τ2
(corresponding to “;” and “,” respectively). The key property is that only the
first kind of functions can share variables with the context where a function
is declared, while the second restricts such sharing. We do not attempt to
give a detailed description here as it is not immediately related to coeffects
– for more information, refer to O’Hearn’s introduction [73].

thesis perspective . From the perspective of substructural and bunched
types, our work can be viewed as annotating bunches. Such annotations
then specify additional information about the context – or, more specifically,
about the sub-tree of the context. Although this is not the exact definition
used in Chapter 6, we could define contexts as follows:

Γ ,∆,Σ := x :α | 1 | Γ , Γ | Γ @ r

Now we can not only annotate an entire context with some information (as
in the simple coeffect system for tracking resources that used judgements
of a form Γr ` e : τ). We can also annotate individual components. For
example, a context containing variables x,y, z where only x is used could be
written as (x :τ1) @ used, (y :τ2, z :τ3) @ unused.

For the purpose of this introduction, we ignore important aspects such
as how are nested annotations interpreted. The main goal is to show that
coeffects can be easily viewed as an extension to the work on bunched logic.
Aside from this principal connection, structural coeffects also use some of the
proof techniques from the work on bunched logics.

2.5 context oriented programming 29

2.5 context oriented programming

The importance of context-aware computations is perhaps most obvious
when considering mobile application, client/server web applications or even
the internet of things. A pioneering work in the area using functional lan-
guages has been done by Serrano [98, 60] (which also inspired the moti-
vating example presented in Chapter 1). His HOP language supports cross-
compilation and programs execute in different contexts. However, HOP is
not statically type checked.

In the software engineering community, a number of authors have ad-
dressed the problem of context-aware computations. Hirschfeld et al. pro-
pose Context-Oriented Programming (COP) as a methodology [48]. The COP
paradigm has been later implemented by programming language features.
Costanza [27] develops a domain-specific LISP-like language ContextL and
Bardram [8] proposes a Java framework for COP.

Finally, the subject of context-awareness has also been addressed in work
focusing on the development of mobile applications [10, 32]. Here, the con-
text focuses more on concrete physical context (obtained from the device
sensors) than context as an abstract language feature.

We approach the problem from a different perspective, building on the
tradition of statically-typed functional programming languages, focusing on
type systems as the primary way of capturing contextual properties.

2.6 summary

This chapter presented four different pathways leading to the idea of coef-
fects. We also introduced the most important related work, although pre-
senting related work was not the primary goal of the chapter. The primary
goal was to present the idea of coeffects as a logical follow up to a number
of research directions. For this reason, we highlighted only certain aspects
of the discussed related work – the remaining aspects as well as important
technical details are covered throughout the thesis.

The first pathway follows as a generalization of static and dynamic vari-
able binding. Variable binding can be seen as the most primitive form of
context-dependence and coeffects provide a generalization that can capture
different binding mechanisms in a unified way. In the second pathway, we
looked at the dual of well-known work on effect systems. However, this
is not simply a syntactic transformation. As we further discuss in the next
chapter, coeffect systems treat lambda abstraction differently. The third path-
way follows by extending comonadic semantics of context-dependent com-
putations with indexing and building a type system analogous to effect sys-
tem from the “marriage of effects and monads”. Finally, the fourth pathway
starts with substructural type systems. Coeffect systems naturally arise by
annotating bunches in bunched logics with additional information. In this
thesis, we mostly follow the first two approaches.

3C O N T E X T- AWA R E S Y S T E M S

Software developers as well as programming language researchers choose
abstractions based not just on how appropriate they are. Other factors in-
clude social aspects – how well is the abstraction known, how well is it
documented and whether it is a standard tool of the research programme1

that the researcher unconsciously subscribes to.
For tracking of effects, such standard tools are well known. When faced

with an effectful computation, programming language designers immedi-
ately pick monads. For context-aware computations, there are no standard
tools. Thus contextual properties may, at first, appear as a set of discon-
nected examples. Existing systems that capture contextual properties use a
wide range of methods including special-purpose type systems, approaches
arising from modal logic S4, as well as techniques based on abstractions
designed for other purpose, most frequently monads.

This chapter reviews some of the existing context-aware programming ab-
stractions and presents them in a uniform way. We start with disconnected
examples, but at the end, we will see that they share a common pattern2.

chapter structure and contributions

• We characterize contextual properties – Section 3.1 explains what is a
coeffect and contrasts it with a better known notion of effect. It explains
what is the nature of properties that can be tracked using coeffect
systems presented in this thesis.

• We describe a number of simple calculi for tracking a wide range of
contextual properties. The systems are adapted from diverse sources
(type systems, static analyses, logics) and apply to various domains
(cross-compilation, liveness, distributed computing, dataflow, security),
but share a common structure.

• The uniform presentation of the systems is the key contribution of
this chapter. We distinguish between flat coeffect systems (Section 3.2)
and structural coeffect systems (Section 3.3). This common structure is
precisely captured by the two coeffect calculi in the upcoming chapters.

• In addition, the coeffect systems for tracking the number of accessed
past values in dataflow languages (Sections 3.2.4 and 3.3.3) presents
novel results and can be used to optimize dataflow programs.

3.1 structure of coeffect systems

When introducing coeffect systems in Section 2.2.2, we related coeffect sys-
tems with effect systems. Effect systems track how a program affects the
environment, or, in other words capture some output impurity. In contrast,
coeffect systems track what a program requires from the execution environ-
ment, or input impurity.

1 A research programme, as introduced by Lakatos [57], is a network of scientists sharing the
same basic assumptions and techniques.

2 The different properties captured by monads may appear similarly disconnected at first!

31

32 context-aware systems

(pure)
Γ , x :τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

(effect)
Γ , x :τ1 ` e : τ2&σ

Γ ` λx.e : τ1
σ−→ τ2& ∅

Figure 8: Lambda abstraction for pure and effectful computations

Effect systems generally use judgements of the form Γ ` e : τ & σ, as-
sociating effects σ with the output type. We write coeffect systems using
judgements of the form Γ @σ ` e : τ, associating the context demands with
Γ . Thus, we extend the traditional notion of free-variable context Γ with
richer notions of context. This notation emphasizes the right intuition, but
there are more important differences between effects and coeffects.

3.1.1 Effectful lambda abstraction

As outlined in Section 1.3, the difference between effects and coeffects be-
comes apparent when we consider lambda abstraction. The typical lambda
abstraction rule for effect systems looks as (effect) in Figure 8. Wadler and
Thiemann [124] explain how the effect analysis works as follows:

In the rule for abstraction, the effect is empty because evaluation imme-
diately returns the function, with no side effects. The effect on the func-
tion arrow is the same as the effect for the function body, because apply-
ing the function will have the same side effects as evaluating the body.

This is the key property of output impurity. The effects are only produced
when the function is evaluated and so the effects of the body are attached
to the function. A recent work by Tate [107] uses the term producer effect
systems for such standard systems and characterises them as follows:

Indeed, we will define an effect as a producer effect if all computations
with that effect can be thunked as “pure” computations for a domain-
specific notion of purity.

The thunking is typically performed by a lambda abstraction – given an
effectful expression e, the function λx.e is an effect free value (thunk) that
delays all effects. As shown in the next section, contextual properties do not
follow this pattern.

3.1.2 Notions of context

We look at three notions of context. The first is the standard free-variable
context in λ-calculus. This is well understood and we use it to demonstrate
how contextual properties behave. Then we consider two notions of context
introduced in this thesis – flat coeffects refer to overall properties of the en-
vironment and structural coeffects refer to properties attached to individual
variables. We could track properties associated with values in data struc-
tures (e. g. fields of a tuple), but this is left as future work.

variable coeffects . As discussed in Section 2.1, variable access can
be seen as a basic form of context requirement in λ-calculus. The expression
x is typeable only in a context that contains x : τ for some type τ.

3.1 structure of coeffect systems 33

In lexically scoped languages, lambda abstraction (pure), as shown in Fig-
ure 8, splits the free-variable context of an expression into two parts. At
runtime, the value of the parameter has to be provided by the call site (dy-
namic scope) and the remaining values are provided by the declaration site
(lexical scope). In the type checking, the splitting is determined syntactically.
The notation λx.e names the variable whose value comes from the call site.

Flat and structural coeffects also split context-requirements between the
declaration site and the call site. The flat and structural coeffects capture
two different ways of doing this.

flat coeffects . In Section 1.2.1, we used resources in a distributed sys-
tem as an example of flat coeffects. These could be, for example, a database,
GPS sensor or access to the current time. We also outlined that such con-
text demands can be tracked as part of the typing assumption, for example,
say we have an expression e that requires GPS coordinates and the current
time. The variable context of such expression will be annotated with a set of
required resources, i. e. Γ @ { gps, time }.

The interesting case is when we construct a lambda function λx.e, mar-
shall it and send it to another node. In systems such as Acute [99], the
context requirements can be satisfied in a number of ways. When the same
resource is available at the target machine (e. g. current time), we can transfer
the function with a context requirement and rebind the resource. However,
if the resource is not available (e. g.. GPS on the server), we need to capture
remote reference.

In the example discussed here, λx.e would require GPS sensor from the
declaration site (lexical scope) where the function is declared, which is at-
tached to the current context as Γ @ { gps }. The current time is required
from the caller of the function. So, the context requirement on the call site
(dynamic scope) will be r = { time }. In coeffect systems, we attach this infor-
mation to the function, writing τ1

r−→ τ2.
We look at resources in distributed programming in more detail in Sec-

tion 3.2.2. The important point here is that in flat coeffect systems, contextual
requirements are split between the call site and declaration site. Furthermore,
there is no syntactic structure that determines how the requirements are
split. As mentioned in Section 2.1.3, we decouple the definition of semantics
from the domain-specific choice that determines how context demands are
satisfied. We capture the choice in the type and give semantics over a typing
derivation. A domain-specific algorithm then chooses the desirable typing –
for example, by preferring resources available on the client over resources
available on the server.

structural coeffects . On the one hand, variable context provides a
fine-grained tracking mechanism of how context (variables) are used. On the
other hand, flat coeffects let us track additional information about the context.
The purpose of structural coeffects is to reconcile the two and to provide a
way for fine-grained tracking of additional information linked to variables
in programs. Structural coeffects follow the lexical scoping structure deter-
mined by the typing rules.

In Section 1.1.4, we used an example of tracking array access patterns. For
every variable, the additional coeffect annotation keeps a range of indices,
relative to the current cursor, that may be accessed. For example, consider
an expression x[cursor] = y[cursor− 1] + y[cursor+ 1].

34 context-aware systems

Here, the variable context Γ contains two variables, both of type Arr. This
means Γ = x :Arr, y :Arr. For simplicity, we treat cursor as a language primi-
tive. The coeffect annotations will be (0, 0) for x and (−1, 1) for y, denoting
that we access only the current value in x, but we need access to both left
and right neighbours in the y array. The context annotation is written as:
x :Arr, y :Arr @ 〈(0, 0), (−1, 1)〉.

Note that we attach the per-variable information as a vector of annotations
associated with a vector of variables, which makes it possible to treat flat and
structural coeffects uniformly (Section 6.6 and 5.2) and unify them into a
single system (Section 8.1), which is capable of tracking both flat per-context
coeffects and structural per-variable coeffects. Attaching structural coeffect
annotations directly to individual variables would simplify some aspects of
our formalism; we choose not to follow that approach as we envision that
a fully unified theory of coeffects (which we attempt to approach in this
thesis) would be able to capture variables, flat and structural coeffects using
just a single mechanism.

In structural systems, the splitting of context is determined by the name
(variable) binding. For example, consider a function that takes y and con-
tains the above body: λy.x[cursor] = y[cursor − 1] + y[cursor + 1]. Here,
the declaration site contains x and needs to provide access at least within a
range (0, 0). The call site provides a value for y, which needs to be accessible
at least within (−1, 1). In this way, structural coeffects remove the ambiguity
arising from the splitting of requirements in flat coeffect systems.

3.1.3 Scalars and vectors

The λ-calculus is asymmetric. It maps a context with multiple variables to a
single result. An expression with n free variables of types τi can be modelled
by a function τ1 × . . . × τn → τ with a product on the left, but a single
value on the right. In both effect systems and coeffect systems, we write
the annotation as part of the function arrow. However, in the underlying
categorical model, effects are attached to the result τ, while coeffects are
attached to the context τ1 × . . .× τn.

Structural coeffects have one annotation per variable. Thus, the annotation
consists of multiple values – one belonging to each variable. To distinguish
between the overall annotation and individual (per-variable) annotations,
we call the overall coeffect a vector consisting of scalar coeffects. This asym-
metry also explains why coeffects are not trivially dual to effects.

It is useful to clarify how vectors are used in this thesis. Suppose we have
a set C of scalars ranged over by r, s, t. A vector R over C is a tuple 〈r1, . . . , rn〉
of scalars. We use bold face letters like r, s, t for vectors and normal face r, s, t
for scalars. We also say that a shape of a vector len(r) (or more generally
any container) determines the set of positions in a vector. So, a vector of a
shape (length) n has positions {1, 2, . . . ,n}. We discuss containers and shapes
further in Section 8.1 and also discuss how our use relates to containers of
Abbott, Altenkirch and Ghani [3].

Just as in the usual pointwise multiplication of a vector by a scalar, we
lift any binary operation on scalars into a scalar-vector one. For a binary
operation on scalars ◦ : C × C → C, we define s ◦ r = 〈s ◦ r1, . . . , s ◦ rn〉
and r ◦ s = 〈r1 ◦ s, . . . , rn ◦ s〉. Relations on scalars can be also lifted to
vectors. Given two vectors r, s of the same shape with positions {1, . . . ,n}
and a relation ∝⊆ C× C we define r ∝ s ⇔ (r1 ∝ s1)∧ . . .∧ (rn ∝ sn)

Finally, we often concatenate vectors, for example, when joining two vari-

3.2 flat coeffect systems 35

able contexts. Given vectors r, s with (possibly different) shapes {1, . . . ,n}
and {1, . . . ,m}, the associative operation for concatenation ++ is defined as
r ++ s = 〈r1, . . . , rn, s1, . . . , sm〉.

We note that an environment Γ containing n uniquely named, typed
variables is also a vector, but we continue to write ‘,’ for the product, so
Γ1, x :τ, Γ2 should be seen as Γ1 ++ 〈x :τ〉++ Γ2.

3.2 flat coeffect systems

In flat coeffect systems, the additional contextual information is indepen-
dent of lexically scoped variables. As such, flat coeffects capture properties
where the execution environment provides some additional data, resources
or information about the execution context.

As mentioned in the introduction, coeffect systems in this chapter may ap-
pear as a disconnected set of examples at first. Indeed, this section covers a
diverse set of calculi including Haskell’s implicit parameters (Section 3.2.1),
distributed computing and cross-compilation (Section 3.2.2), liveness analy-
sis (Section 3.2.3) and dataflow (Section 3.2.4).

For three of the examples, we present a type system and a simple seman-
tics (given inductively over the typing derivation). We informally discuss
how preferred typing derivation is chosen (to resolve the inherent ambigu-
ity), but leave details to later chapters. Although the examples are not new,
our novel presentation of the systems (and the fact that they appear side-
by-side) makes it possible to see that they share a common structure. The
structure is captured by a unified flat coeffect calculus in Chapter 4.

3.2.1 Implicit parameters and type classes

Haskell provides two examples of flat coeffects – type class constraints and
implicit parameter constraints [123, 59]. Both of the features introduce ad-
ditional constraints on the context requiring that the environment provides
certain operations for a type (type classes) or that it provides values for
named implicit parameters. In the Haskell type system, constraints C are
attached to the types of top-level declarations, such as let-bound functions.
The Haskell notation Γ ` e : C⇒ τ corresponds to our notation Γ @C ` e : τ.

In this section, we present a type system for implicit parameters in terms
of the coeffect typing judgement. We briefly consider type classes, but do
not give a full type system.

implicit parameters . As discussed in Section 2.1.2, implicit parame-
ters are a special kind of variables that support dynamic scoping. They make
it possible to parameterise a computation (involving a long chain of func-
tion calls) without passing parameters explicitly as additional arguments of
all involved functions.

The dynamic scoping means that if a function uses a parameter ?param

then the caller of the function must set a value of ?param before calling
the function. However, implicit parameters also support lexical scoping. If
the parameter ?param is available in the lexical scope where a function is
defined, then the function will not require a value from the caller.

A simple language with support for implicit parameters has an expression
?param to read a parameter and an expression3 letdyn ?param = e1 in e2

3 Haskell uses let ?p = e1 in e2, but we use a different keyword to avoid confusion.

36 context-aware systems

that sets a parameter ?param to the value of e1 and evaluates e2 in a context
containing ?param.

The fact that implicit parameters support both lexical and dynamic scop-
ing becomes interesting when we consider nested functions. The following
function does some pre-processing and then returns a function that builds
a formatted string based on two implicit parameters ?width and ?size:

let format = λstr →
let lines = formatLines str ?width in

(λrest → append lines rest ?width ?size)

The body of the outer function accesses the parameter ?width, so it certainly
requires a context {?width}. The nested function (returned as a result) uses
the parameter ?width, but in addition also uses ?size. Where should the pa-
rameters used by the nested function come from?

To keep examples in this chapter uniform, we do not use the Haskell
notation and instead write τ1

r−→ τ2 for a function that requires implicit
parameters specified by r. We also assume that implicit parameters are of
type num, so the annotation can be a simple set of names (rather than map-
ping from names to types). In a purely dynamically scoped system, implicit
parameters would have to be defined when the user invokes the nested func-
tion. However, implicit parameters behave as a combination of lexical and
dynamic scoping. This means that the nested function can capture the value
of ?width and require just ?size. The following shows the two options:

string
{?width}−−−−−→ (string

{?width,?size}−−−−−−−−−→ string) (dynamic)

string
{?width}−−−−−→ (string

{?size}−−−−→ string) (mixed)

This is not a complete list of possible typings, but it demonstrates the op-
tions. The (dynamic) case requires the parameter ?width twice (the caller may
provide different value, in which case, the semantics needs to specify which
value is preferred). In the (mixed) case, the nested function captures the
?width parameter available from the declaration site. Using the latter typing,
the function can be called as follows:

let formatHello = (letdyn ?width = 5 in format "Hello")

in (letdyn ?size = 10 in formatHello "world")

For different typings of format, different ways of calling it are valid. This
illustrates the point made in Section 3.1.1 – flat coeffect programs have mul-
tiple typing derivations and the semantics depends on the domain-specific
choice of preferred typing. The following section shows how this looks in
the type system for implicit parameters.

type system . Figure 9 shows a type system that tracks the set of expres-
sion’s implicit parameters. The type system uses judgements of the form
Γ @ r ` e : τ meaning that an expression e has a type τ in a free-variable con-
text Γ with a set of implicit parameters specified by r. The annotations r, s, t
are sets of names, i. e. r, s, t ⊆ Names. The expressions include ?param to read
implicit parameter and letdyn to bind an implicit parameter. The types are
standard, but functions are annotated with the set of implicit parameters
that must be available on the call site, i. e. τ1

s−→ τ2.
Accessing an ordinary variable (var) does not require any implicit param-

eters. The rule that introduces primitive context demands is (param). Access-
ing a parameter ?param requires it to be available in the context. The context

3.2 flat coeffect systems 37

(var)
x : τ ∈ Γ
Γ @ ∅ ` x : τ

(param)
Γ @ {?param : τ} ` ?param : τ

(sub)
Γ @ r ′ ` e : τ
Γ @ r ` e : τ (r ′ ⊆ r)

(app)
Γ @ r ` e1 : τ1

t−→ τ2 Γ @ s ` e2 : τ1
Γ @ r∪ s∪ t ` e1 e2 : τ2

(let)
Γ @ r ` e1 : τ1 Γ , x : τ1 @ s ` e2 : τ2
Γ @ r∪ s ` let x = e1 in e2 : τ2

(abs)
Γ , x : τ1 @ r∪ s ` e : τ2
Γ @ r ` λx.e : τ1

s−→ τ2

(letdyn)
Γ @ r ` e1 : τ1 Γ @ s ` e2 : τ2

Γ @ r∪ (s \ {?p : τ1}) ` letdyn ?p = e1 in e2 : τ2

Figure 9: Coeffect rules for tracking implicit parameters

may provide more (unused) implicit parameters thanks to the subcoeffect-
ing rule (sub).

When we read the rules from the top to the bottom, application (app) and
let binding (let) simply union the context demands of the sub-expressions.
However, lambda abstraction (abs) is where the example differs from effect
systems. The implicit parameters required by the body r ∪ s can be freely
split between the declaration site (Γ @ r) and the call site (τ1

s−→ τ2) and thus
an expression may have multiple valid typing derivations. Finally, (letdyn)
removes the bound parameter from the set of requirements.

The union operation ∪ is not a disjoint union, which means that the values
for implicit parameters can also be provided by both sites. For example,
consider a function with a body ?a+ ?b. Assuming that the function takes
and returns int, the following list shows 4 out of 9 possible valid typing. Full
typing derivations can be found in Appendix A.1:

Γ @ {?a : int} ` λx.?a+ ?b : int
{?b:int}−−−−−→ int (1)

Γ @ {?b : int} ` λx.?a+ ?b : int
{?a:int}−−−−→ int (2)

Γ @ {?a : int} ` λx.?a+ ?b : int
{?a:int,?b:int}−−−−−−−−→ int (3)

Γ @ ∅ ` λx.?a+ ?b : int
{?a:int,?b:int}−−−−−−−−→ int (4)

The first two examples demonstrate that the system does not have the prin-
cipal typing property. Both (1) and (2) are valid typings and they may both
be desirable in certain contexts where the function is used.

The next typing derivation (3) requires the parameter ?a from both the
declaration site and the call site. This means that, at runtime, two values
will be available. Our semantics for the system describes dynamic rebinding,
meaning that when the caller provides a value for a parameter that is already
specified by the declaration site, the new value hides the old one. This means
that only the value from the call site is actually used. This (4) gives a more
precise typing for this situation.

38 context-aware systems

JΓ @ r ` xi : τiK = λ((x1, . . . , xn), _).xi
(var)

JΓ @ r ` ?p : numK = λ(_, f).f ?p
(param)

JΓ @ r ′ ` e : τK = f

JΓ @ r ` e : τK = λ(x,g).f (x,g|r ′)
(sub)

JΓ ,y : τ1 @ r∪ s ` e : τ2K = f

JΓ @ r ` λy.e : τ1
s−→ τ2K =

λ((x1, . . . , xn),g1).λ(y,g2).
f ((x1, . . . , xn,y),g1] g2)

(abs)

JΓ @ r ` e1 : τ1
t−→ τ2K = f1

JΓ @ s ` e2 : τ1K = f2

JΓ @ r∪ s∪ t ` e1 e2 : τ2K =
λ(x,g).
(f1 (x,g|r)) (f2 (x,g|s),g|t)

(app)

JΓ @ r ` e1 : numK = f1

JΓ @ s ` e2 : τ2K = f2

JΓ @ r∪ (s \ {?p}) `
letdyn ?p = e1 in e2 : τ2K

=
λ(x,g).f2 (x,g|s\{?p}]

{?p 7→ (f1 (x,g|r))})

(letdyn)

Assuming the following auxiliary definitions:

f|r = {(p, v) | (p, v) ∈ f, p ∈ r}
f] g = f| dom(f)\dom(g) ∪ g

Figure 10: Semantics of a language with implicit parameters

semantics . Implicit parameters can be implemented by passing around
a hidden dictionary that provides values to the implicit parameters. Ac-
cessing a parameter then becomes a lookup in the dictionary and the new
letdyn construct extends the dictionary. To elucidate how such hidden dic-
tionaries are propagated through the program when using lambda abstrac-
tions and applications, we present a simple semantics for implicit parame-
ters. The goal here is not to prove properties of the language, but simply
to provide a better explanation. A detailed semantics in terms of indexed
comonads is shown in Chapter 5.

Given an expression e of type τ that requires free variables Γ and implicit
parameters r, the semantics is a function that takes a product of variables
from Γ together with a dictionary of implicit parameters and returns τ:

Jx1 :τ1, . . . , xn :τn @ r ` e : τK : (τ1 × . . .× τn)× (r→ num)→ τ

The dictionary is represented as a function from r to num. This means that it
provides a num value for all implicit parameters that are required according
to the typing. Note that the domain of the function is not the set of all
possible implicit parameter names, but only the finite subset of names that
are required according to the typing.

The dictionary is also attached to the inputs of all functions. That is, a
function τ1

s−→ τ2 is interpreted by a function that takes τ1 together with a
dictionary that defines values for implicit parameters in s:

Jτ1
s−→ τ2K = τ1 × (s→ num)→ τ2

3.2 flat coeffect systems 39

The definition of the semantics is shown in Figure 10. We use a notation
that emphasizes the fact that the semantics is given over a typing derivation.
On the left-hand side of =, we show the applied typing rule. The right-
hand side of = then shows the semantic functions assigned to the individual
assumptions and the resulting semantics for the consequent.

The (var) and (param) rules are simple – they project the appropriate vari-
able and implicit parameter, respectively. When an expression requires im-
plicit parameters r, the semantics always provides a dictionary defined ex-
actly on r. To achieve this, the (sub) rule restricts the function to r ′ (which is
valid because r ′ ⊆ r).

The most interesting rules are (abs) and (app). In abstraction, we get two
dictionaries g1 and g2 (from the declaration site and call site, respectively),
which are combined and passed to the body of the function. The semantics
prefers values from the call site, which is captured by the] operation. In
application, we first evaluate the expression e1, then e2 and finally call the
returned function. The three calls use (possibly overlapping) restrictions of
the dictionary as required by the static types.

Finally, the (letdyn) rule specifies the semantics of the letdyn construct,
which assigns a value to an implicit parameter. This is similar to (app), be-
cause it needs to evaluate the sub-expression first. After evaluating e1, the
result is added to the dictionary using]. The semantics of ordinary let
binding is omitted, because let binding can be treated as a syntactic sugar
for (λx.e2) e1.

Without providing a proof here, we note that the semantics is sounds with
respect to the type system – when evaluating an expression, it provides it
with a dictionary that is guaranteed to contain values for all implicit param-
eters that may be accessed. This can be easily checked by examining the
semantic rules (and noting that the restriction and union always provide
the expected set of parameters). This idea is captured more formally by the
soundness proof for the operational semantics given in Chapter 5.

monadic semantics . Implicit parameters are related to the reader monad.
The type τ1 × (r → num) → τ2 is equivalent to τ1 → ((r → num) → τ2)

through currying. Thus, we can express the function as τ1 → Mτ2 for
Mτ = (r → num) → τ. Indeed, the reader monad can be used to model
dynamic scoping. However, there is an important distinction from implicit
parameters. The usual monadic semantics models fully dynamic scoping,
while implicit parameters combine lexical and dynamic scoping.

When using the usual monadic semantics based on the reader monad, the
semantics of the (abs) rule would be modified as follows:

JΓ ,y : τ1 @ r ` e : τ2K = f

JΓ @ ∅ ` λy.e : τ1
t−→ τ2K =

λ((x1, . . . , xn), _).λ(y,g).
f ((x1, . . . , xn,y),g)

Note that the declaration site dictionary is ignored and the body is called
with only the dictionary provided by the call site. This is a consequence
of the fact that monadic functions are always pure values created using
monadic unit, which turns a function τ1 →Mrτ2 into a monadic computa-
tion with no side-effects M∅τ1 →Mrτ2.

As we discuss later in Section 5.6.3, the reader monad can be extended
to model rebinding. However, later examples in this chapter, such as live-
ness in Section 3.2.3 show that other context-aware computations cannot be
captured by any monad.

40 context-aware systems

type classes . Another type of constraints in Haskell that is closely re-
lated to implicit parameters are type class constraints [123]. They provide a
principled form of ad-hoc polymorphism (overloading). When code uses an
overloaded operation (e. g. comparison or numeric operators) a constraint is
placed on the context in which the operation is used. For example:

twoTimes :: Num α⇒ α→ α

twoTimes x = x+ x

The constraint Num α on the function type arises from the use of the +

operator. Similarly to implicit parameters, type classes can be implemented
using a hidden dictionary. In the above case, the function twoTimes takes an
additional dictionary that provides an operation + of type α×α→ α.

Type classes could be modelled as a coeffect system. The type system
would annotate the context with a set of required type classes. The typing
of the body of twoTimes would look as follows:

x :α @ {Numα} ` x+ x : α

Similarly, the semantics of a language with type class constraints can be de-
fined in a way similar to implicit parameters. The interpretation of the body
is a function that takes α together with a hidden dictionary of operations:
α×Numα → α.

Type classes and implicit parameters show two important points about
flat coeffect systems. First, the context demands are associated with some
scope, such as the body of a function. Second, they are associated with the
input. To call a function that takes an implicit parameter or has a type-class
constraint, the caller needs to pass a (hidden) parameter together with the
function inputs.

summary. Implicit parameters are the simplest example of a system where
function abstraction does not delay all impurities of the body. Here, the term
“delay” refers to the fact that some implicit parameters may be captured
(from the declaration site) at the time when the function is defined, but be-
fore it is executed. As discussed in Section 3.1.1, this is the defining feature
of coeffect systems.

In this section, we have seen how this affects both the type system and the
semantics of the language. In the type system, the (abs) rule places context-
requirements on both the declaration site and the call site. For implicit pa-
rameters, this rule means there the system does not have the pincipal type
property, because the parameters can be split arbitrarily. As we show in the
next section, this is not always the case. Semantically, lambda abstraction
merges two parts of context (implicit parameter dictionaries) that are pro-
vided by the call site and declaration site.

3.2.2 Distributed computing

Distributed programming was used as one of the motivating examples for
coeffects in Chapter 1. This section explores the use case. We look at re-
bindable resources and cross-compilation. Both of these could be seen as
an instance of implicit parameters, but we present them separately to illus-
trate other forms that coeffect systems can have. The examples given later
(e. g. in Section 3.2.4) show coeffects that cannot be easily seen as implicit
parameters.

3.2 flat coeffect systems 41

// Checks that input is valid; can run on both server and client

let validateInput = λname→
name 6= "" && forall isLetter name

// Searches database for a product; must run on the server-side

let retrieveProduct = λname→
if validateInput name then Some(queryProductDb name)

else None

// Client-side function to show price or error (for invalid inputs)

let showPrice = λname→
if validateInput name then

match (remote retrieveProduct()) with

| Some p→ showPrice (getPrice p)

| None → showError "Invalid input on the server"

else showError "Invalid input on the client"

Figure 11: Sample client-server application with input validation

rebindable resources . The need for parameters that support dynamic
scoping also arises in distributed computing. To quote an example discussed
by Bierman et al. [12]: “Dynamic binding is required in various guises, for exam-
ple when a marshalled value is received from the network, containing identifiers that
must be rebound to local resources.”

Rebindable parameters are identifiers that refer to some specific resource.
When a function value is marshalled and sent to another machine, rebind-
able resources can be handled in two ways. If the resource is available on
the target machine, the parameter may be rebound to the resource on the
new machine. This is captured by the dynamic scoping rule. If the resource
is not available on the target machine, the resource is either marshalled or a
remote reference is created. This is captured by the lexical scoping rule.

A practical language that supports rebindable resources is for example
Acute [99]. In the following example, we use the construct access Res to
represent access to a rebindable resource named Res. The following simple
function accesses a database together with a current date; then it filters from
the database based on the date:

let localNews = λ()→
let db = access News in

query db "SELECT * WHERE Location = %1" (access GPS)

When localNews is created on the server and sent to the client, a remote ref-
erence to the database (available only on the server) must be captured. If
the client device supports a GPS, then GPS can be locally rebound to pro-
vide news for the reader’s area. Otherwise, the default location needs to be
obtained from the server.

The type system and semantics for rebindable resources are essentially
the same as those for implicit parameters. Primitive requirements are intro-
duced by the access keyword. Lambda abstraction splits the requirements
between declaration site (capturing remote reference) and call site (repre-
senting rebinding). For this reason, we do not discuss the system in detail
and instead look at other uses.

42 context-aware systems

cross-compilation. A related issue with distributed programming is
the need to target an increasing number of diverse platforms. Modern ap-
plications often need to run on multiple platforms (iOS, Android, Windows
or as JavaScript) or multiple versions of the same platform. Many program-
ming languages are capable of targeting multiple different platforms. For
example, functional languages that can be compiled to native code and
JavaScript include, among others, F#, Haskell and OCaml [118].

Links [26], F# WebTools and WebSharper [104, 82], ML5 and QWeSST [68,
95] and Hop [60] go further and allow including code for multiple distinct
platforms in a single source file. A single program is then automatically split
and compiled to multiple target runtimes. This poses additional challenges –
it is necessary to check where each part of the program can run and statically
guarantee that it will be possible to compile code to the required target
platform (safe multi-targetting).

We demonstrate the problem by looking at input validation. In applica-
tions that communicate over an unsecured HTTP channel, user input needs
to be validated interactively on the client-side (to provide immediate re-
sponse) and then again on the server-side (to guarantee safety).

Consider the client-server example in Figure 11. The retrieveProduct func-
tion represents the server-side, while showPrice is called on the client-side
and performs a remote call to the server-side function (how this is imple-
mented is not our concern here). To ensure that the input is valid both func-
tions call validateInput – however, this is fine, because validateInput uses only
basic functions and language features that can be cross-compiled to both
client-side and server-side.

In Links [26], functions can be annotated as client-side, server-side and
database-side. F# WebTools [82] supports cross-compiled (mixed-side) func-
tions similar to validateInput. However, these are single-purpose language
features and they are not extensible. A practical implementation needs to
be able to capture multiple different patterns – sets of environments (client,
server, mobile) for distributed computing, but also Android API level [31]
to cross-compile for multiple versions of the same platform.

type systems . Cross-compilation is similar to resource tracking (and
thus to the tracking of implicit parameters), but it demonstrates a couple
of new ideas that are important for flat coeffect systems. Unlike with im-
plicit parameters, we will not give a full type system in this section, but we
briefly look at two examples that explore the range of possibilities.

In the first system, shown in Figure 12 (a), the coeffect annotations are
sets of execution environments, i. e. r, s, t ⊆ {client, server, database}. Subcoef-
fecting (sub) lets us ignore some of the supported execution environments;
application (app) can be only executed in the intersection of the environments
required by the two expressions and the function value.

Subcoeffecting and application are the same as the rules for implicit pa-
rameters. We just track supported environments using intersection as op-
posed to tracking required parameters using union. However, this symme-
try does not hold for lambda abstraction (abs), which still uses union. This
models the case when there are two ways of executing the function:

• The function is represented as executable code for a call site environ-
ment and is executed there, possibly after it is marshalled and trans-
ferred to another machine.

3.2 flat coeffect systems 43

a.) Set-based type system for cross-compilation, inspired by Links [26]

(sub)
Γ @ r ′ ` e : τ
Γ @ r ` e : τ (r ′ ⊇ r)

(app)
Γ @ r ` e1 : τ1

t−→ τ2 Γ @ s ` e2 : τ1
Γ @ r∩ s∩ t ` e1 e2 : τ2

(abs)
Γ , x : τ1 @ r∪ s ` e : τ2
Γ @ r ` λx.e : τ1

s−→ τ2

b.) Version-based type system, inspired by Android API level [31]

(sub)
Γ @ r ′ ` e : τ
Γ @ r ` e : τ (r ′ 6 r)

(app)
Γ @ r ` e1 : τ1

t−→ τ2 Γ @ s ` e2 : τ1
Γ @max{r, s, t} ` e1 e2 : τ2

(abs)
Γ , x : τ1 @ r ` e : τ2
Γ @ r ` λx.e : τ1

r−→ τ2

Figure 12: Two variants of coeffect typing rules for cross-compilation

• The function body is compiled for the declaration site environment;
the value that is returned is a remote reference to the code and func-
tion calls are performed as remote invocations.

This example ignores important considerations – for example, it is likely
desirable to make this difference explicit (e. g. using explicit wrapping of
unevaluated expressions) and the implementation also needs to be clarified.
For a system that does this, see e. g. ML5 [68]). The key point of our brief
example is that the algebraic structure of coeffect annotations may be more
complex and use, for example, ∩ for application and ∪ for abstraction.

The second system, shown in Figure 12 (b) is inspired by the API level
requirements in Android. Coeffect annotations are simply numbers repre-
senting the level (r, s, t ∈ N). Levels are ordered increasingly, so we can
always require higher level (sub). The requirement on function application
(app) is the highest level of the levels required by the sub-expressions and
the function. The system uses yet another variant of lambda abstraction
(abs). The requirements of the body are duplicated and placed on both the
declaration site and the call site.

The ML5 language [68] mentioned above served as an inspiration for our
example. It tracks execution environments using modalities of modal S4 to
represent the environment – this approach is similar to coeffects, both from
the practical perspective, but also through deeper theoretical links. However,
it is based on the meta-language style of embedding modalities rather than
on the language-semantics style (see Section 2.3.1). We return to this topic in
Section 8.2.

3.2.3 Liveness analysis

Our next example shows the idea of coeffects from a different perspective.
Rather than keeping additional information independent of the variable con-
text, we track properties about how variables are used. Nevertheless, we still

44 context-aware systems

look at the left-hand side of ` and the structure of the typing rules and the
semantics will be very similar.

Live variable analysis (LVA) [6] is a standard technique in compiler theory.
It detects whether a free variable of an expression may be used by a program
during its evaluation (it is live) or whether it is definitely not needed (it is
dead). As an optimization, compiler can remove bindings to dead variables
as they are never accessed. Wadler [121] describes the property of a variable
that is dead as the absence of a variable.

flat liveness analysis . In this section, we discuss a restricted form of
liveness analysis. We do not track liveness of individual variables, but of the
entire variable context. This is not practically useful, but it provides an inter-
esting insight into how flat coeffects work. A per-variable liveness analysis
can be captured using structural coeffects and is discussed in Section 3.3.1.
Consider the following two examples:

let constant42 = λx→ 42

let constant = λvalue→ λx→ value

The body of the first function is just a constant 42 and so the context of the
body is marked as dead. The parameter (call site) of the function is not used
and can also be marked as dead. Similarly, no variables from the declaration
site are used and so they are also marked as dead.

In contrast, the body of the second function accesses a variable value and
so the body of the function is marked as live. In the flat system, we do not
track which variable was used and so we have to mark both the call site and
the declaration site as live (this will be refined in a structural version).

forward vs . backward & may vs . must. Static analyses can be clas-
sified as either forward or backward (depending on how they propagate in-
formation) and as either must or may (depending on what properties they
guarantee). Liveness is a backward analysis – the requirements are propa-
gated from variable uses to their declarations. The distinction between must
and may is apparent when we look at an example with conditionals:

let defaultArg = λcond→ λinput→
if cond then 42 else input

Liveness analysis is a may analysis meaning that it marks variable as live
when it may be used and as dead if it is definitely not used. This means that
the variable input is live in the example above. A must analysis would mark
the variable only if it was used in both of the branches (this is sometimes
called neededness or very busy variable/expression).

The distinction between may and must analyses demonstrates the impor-
tance of interaction between contextual properties and certain language con-
structs such as conditionals.

type system . A type system that captures whole-context liveness anno-
tates the context with value of a two-point lattice L = {L,D} where LvD
(Figure 14 (a)). The annotation L marks the context as live and D stands for
a dead context.

The typing rules for tracking whole-context liveness are shown in Fig-
ure 13. The language now includes numerical constants n. Accessing a con-
stant (num) annotates the context as dead using D. This contrasts with vari-
able access (var), which marks the context as live using L. A dead context

3.2 flat coeffect systems 45

(var)
x : τ ∈ Γ
Γ @ L ` x : τ

(num)
Γ @D ` n : num

(sub)
Γ @ r ′ ` e : τ
Γ @ r ` e : τ (r ′v r)

(app)
Γ @ r ` e1 : τ1

t−→ τ2 Γ @ s ` e2 : τ1
Γ @ rt (su t) ` e1 e2 : τ2

(let)
Γ @ r ` e1 : τ1 Γ , x : τ1 @ s ` e2 : τ2

Γ @ s ` let x = e1 in e2 : τ2

(abs)
Γ , x : τ1 @ r ` e : τ2
Γ @ r ` λx.e : τ1

r−→ τ2

Figure 13: Coeffect rules for tracking whole-context liveness

(definitely not needed) can be treated as live context using the (sub) rule.
This captures the may nature of the analysis.

The (app) rule is best understood by discussing its semantics. The seman-
tics uses sequential composition to compose the semantics of e2 with the func-
tion obtained as the result of e1. However, we need more than just sequential
composition. The same input context is passed to the expression e1 (in order
to get the function value) and to a function obtained by sequential compo-
sition (first evaluate the argument e2 and pass the result to the function
value). This is captured by pointwise composition.

Consider first sequential composition of (semantic) functions f,g annotated
with r, s. The composed function g ◦ f is annotated with rts as shown in
Figure 14 (b). The argument of the function g ◦ f is live only when the argu-
ments of both f and g are live (1). When the argument of f is dead, but g
requires τ2 (2), we can evaluate f without any input and obtain τ2, which
is then passed to g. When g does not require its argument (3, 4), we can just
evaluate g, without evaluating f. Here, the semantics implements the dead
code elimination optimization.

Secondly, a pointwise composition passes the same argument to f and h.
The parameter is live if either the parameter of f or h is live. The point-
wise composition is written as 〈f,h〉 and it combines annotations using u as
shown in Figure 14 (c). Here, the argument is not needed only when both
f and h do not need it (1). In all other cases, the parameter is needed and
is then used either once (2, 3) or twice (4). The rule for function application
(app) combines the two operations. The context Γ is live if it is needed by e1
(which always needs to be evaluated) or when it is needed by the function
value and by e2.

The (abs) rule duplicates the annotation of the body, similarly to the cross-
compilation example in Figure 12. When the body accesses any variables, it
requires both the argument and the variables from declaration site. When
it does not use any variables, it marks both as dead. Finally, the (let) rule
annotates the composed expression with the liveness of the expression e2 –
if the context of e2 is live, then it also requires variables from Γ ; if it is dead,
then it does not require Γ or x. The (let) rule is again just a syntactic sugar
for (λx.e2) e1. This follows from the simple observation that r t (s u r) = r.

46 context-aware systems

a.) The operations of a two-point lattice L = {L,D} where Dv L are:

Lt L = L

Dt L = D

LtD = D

DtD = D

Lu L = L

Du L = L

LuD = L

DuD = D

b.) Sequential composition composes annotations using t:

f : τ1
r−→ τ2 g : τ2

s−→ τ3 g ◦ f : τ1
rts−−→ τ3

f : τ1
L−→ τ2 g : τ2

L−→ τ3 g ◦ f : τ1
L−→ τ3 (1)

f : τ1
D−→ τ2 g : τ2

L−→ τ3 g ◦ f : τ1
D−→ τ3 (2)

f : τ1
L−→ τ2 g : τ2

D−→ τ3 g ◦ f : τ1
D−→ τ3 (3)

f : τ1
D−→ τ2 g : τ2

D−→ τ3 g ◦ f : τ1
D−→ τ3 (4)

c.) Pointwise composition composes annotations using u:

f : τ1
r−→ τ2 h : τ1

s−→ τ3 〈f,h〉 : τ1
rus−−→ τ2 × τ3

f : τ1
D−→ τ2 h : τ1

D−→ τ3 〈f,h〉 : τ1
D−→ τ2 × τ3 (1)

f : τ1
D−→ τ2 h : τ1

L−→ τ3 〈f,h〉 : τ1
L−→ τ2 × τ3 (2)

f : τ1
L−→ τ2 h : τ1

D−→ τ3 〈f,h〉 : τ1
L−→ τ2 × τ3 (3)

f : τ1
L−→ τ2 h : τ1

L−→ τ3 〈f,h〉 : τ1
L−→ τ2 × τ3 (4)

Figure 14: Liveness annotations with sequential and pointwise composition

examples . Before looking at the semantics, we consider a number of
simple examples to demonstrate the key aspects of the system. Full typing
derivations are shown in Appendix A.2:

(λx.42) y (1)

twoTimes 42 (2)

(λx.x) 42 (3)

In the first case (1), the context is dead. The function’s parameter is dead and
so the overall context is dead, even though the argument uses a variable y –
the semantics evaluates the function without passing it an actual argument.
In the second case (2), the function is a variable that needs to be obtained
and so the context is live. In the last case (3), the function accesses a variable
and so its declaration site is marked as requiring the context (abs). This
is where structural coeffect analysis would be more precise – the system
shown here cannot capture the fact that x is a bound variable.

semantics . As showed in the examples, the type system for the liveness
coeffect calculus marks the context of an expression (λx.42) y as dead. This
means that the semantics of the above expression must not evaluate the
argument y. In other words, the type system is only sound if the semantics
includes dead code elimination.

To capture dead code elimination in the semantics, we add a special empty
value and pass it as an argument to a function whose argument is not
needed, so (λx.42) will be called with an empty value as argument (because
it does not need its argument).

We can represent such empty values using the option type (known as
Maybe in Haskell). We use the notation τ+ 1 to denote option types. Given
a context with variables xi of type τi, the semantics is a function taking

3.2 flat coeffect systems 47

(τ1 × . . .× τn) + 1. When the context is live, it will be called with the left
value (product of variable assignments); when the context is dead, it will be
called with the right value (containing no information).

However, ordinary option type is not sufficient. We need to capture the
fact that the representation depends on the annotation – in other words,
the type is indexed by the coeffect annotation. The indexing is discussed in
details in Section 5.2.4. For now, it suffices to define the semantics using two
separate rules:

Jx1 :τ1, . . . , xn :τn @ L ` e : τK : (τ1 × . . .× τn) → τ

Jx1 :τ1, . . . , xn :τn @D ` e : τK : 1 → τ

The semantics of functions is defined similarly. When the argument of a
function is live, the function takes the input value; when the argument is
dead, the semantic function takes a unit as its argument:

Jτ1
L−→ τ2K = τ1 → τ2

Jτ1
D−→ τ2K = 1→ τ2

Unlike with implicit parameters, the coeffect system for liveness tracking
cannot be modelled using monads. Any monadic semantics would express
functions as τ1 → Mτ2. Unless laziness is already built-in, there is no way
to call such function without first obtaining a value τ1. The above semantics
makes this possible by taking a unit 1 when the argument is not live.

In Figure 15, we define the semantics directly. We write () for the only
value of type 1. This appears, for example, in (const) which takes () as the
input and returns a constant using a global dictionary δ. In (var), the context
is live and so the semantics performs a projection. Subcoeffecting is captured
by two rules. A dead context can be treated as live using (abs-1); in other
cases, the annotation is not changed (abs-2).

Lambda abstraction can be annotated in just two ways. When the body
requires context (abs-1), the value of a bound variable y is added to the
context Γ before passing it to the body. When the body does not require
context (abs-2), it is called with () as the input.

For application, there are 8 possible combinations of annotations. The
semantics of some of them is the same, so we only need to show 3 cases.
The rules should be read as ML-style pattern matching, where the last rule
handles all cases not covered by the first two. In (app-1), we handle the
case when the function f2 does not require its argument – x is not used
and instead, the function is called with () as the argument. The case (app-
2) covers the case when the expression e1 does not require a context, but
e1 does. Finally, in (app-3), the same input (which may be either tuple of
variables or unit) is propagated uniformly to both e1 and e2.

summary. Unlike with implicit parameters, lambda abstraction for live-
ness analysis has the principal types property. It simply duplicates the con-
text demands. However, this still matches the property of coeffects that im-
purities cannot be delayed or thunked and attached just to the function
arrow – we place requirements on both call site and declaration site.

The semantics of liveness reveals three interesting properties. Firstly, the
coeffect calculus for liveness cannot be modelled as a monadic computation
of the form τ1 → Mτ2. Secondly, the system would not work without the
coeffect annotations. The shape of the semantic function depends on the
annotation (the input is either 1 or τ) and is indexed by the annotation.

48 context-aware systems

JΓ @ L ` xi : τiK = λ(x1, . . . , xn).xi
(var)

JΓ @D ` n : numK = λ().n
(num)

JΓ @D ` e : τK = f

JΓ @ L ` e : τK = λx.f ()
(sub-1)

JΓ @ r ` e : τK = f

JΓ @ r ` e : τK = λx.f x
(sub-2)

JΓ ,y : τ1 @ L ` e : τ2K = f

JΓ @ L ` λy.e : τ1
L−→ τ2K =

λ(x1, . . . , xn).λy.
f (x1, . . . , xn,y)

(abs-1)

JΓ ,y : τ1 @D ` e : τ2K = f

JΓ @D ` λy.e : τ1
D−→ τ2K = λ().λ().f ()

(abs-2)

JΓ @ r ` e1 : τ1
D−→ τ2K = f

JΓ @ r ` e2 : τ1K = _

JΓ @ r ` e1 e2 : τ2K = λx.(f x) ()

(app-1)

JΓ @ L ` e1 : τ1
L−→ τ2K = f1

JΓ @D ` e2 : τ1K = f2

JΓ @ L ` e1 e2 : τ2K = λx.(f1 x) (f2 ())

(app-2)

JΓ @ r ` e1 : τ1
t−→ τ2K = f1

JΓ @ s ` e2 : τ1K = f2

JΓ @ r t (su t) ` e1 e2 : τ2K = λx.(f1 x) (f2 x)

(app-3)

Figure 15: Semantics that implements dead code elimination for λ-calculus

Finally, we discussed how the semantics of application arises from sequen-
tial and pointwise composition. This is an important aspect of coeffect sys-
tems – categorical semantics typically builds on sequential composition, but
to model full λ calculus it needs more. For coeffects, we need pointwise com-
position where the same context is shared by multiple sub-expressions.

3.2.4 Dataflow languages

We used implicit parameters as our first example, because they show the
simplest form of coeffects. Liveness requires a richer coeffect annotation
structure, but the flat version is not practical. In this section, we look at a
system with a structure similar to liveness that is not a toy example.

Section 1.1.4 briefly demonstrated that we can treat array access as an
operation that accesses a context. In case of arrays, the context is the neigh-
bourhood of a current location in the array specified by a cursor. In this
section, we make the example more concrete, using a simpler and better
studied programming model, dataflow languages.

3.2 flat coeffect systems 49

Lucid [120] is a declarative dataflow language designed by Wadge and
Ashcroft. In Lucid, variables represent streams and programs are written as
transformations over streams. A function application square(x) represents a
stream of squares calculated from the stream of values x.

The dataflow approach has been successfully used in domains such as
development of real-time embedded application where many synchronous
languages [9] build on the dataflow paradigm. The following example is
inspired by the Lustre [42] language and implements a program to count
the number of edges on a Boolean stream:

let edge = false fby (input && not (prev input))

let edgeCount =

0 fby (if edge then 1+ (prev edgeCount)

else prev edgeCount)

The construct prev x returns a stream consisting of previous values of the
stream x. The second value of prev x is first value of x (and the first value
is undefined). The construct y fby x returns a stream whose first element is
the first element of y and the remaining elements are values of x. Note that
in Lucid, the constants such as false and 0 are constant streams.

Formally, the constructs are defined as follows (writing xn for n-th ele-
ment of a stream x):

(prev x)n =

{
nil if n = 0

xn−1 if n > 0
(y fby x)n =

{
y0 if n = 0

xn if n > 0

When reading dataflow programs, we do not need to think about variables
in terms of streams – we can see them as simple values. Most of the opera-
tions perform calculation just on the current value of the stream. However,
the operation fby and prev are different. They require additional context
which provides past values of variables (for prev) and information about
the current location in the stream (for fby).

The semantics of Lucid-like languages can be captured using a number
of mathematical structures. Wadge [119] originally defined a monadic se-
mantics, while Uustalu and Vene later used comonads [113]. In Chapter 4,
we extend the latter approach. The present chapter presents a sketch of a
concrete dataflow semantics defined directly on streams.

In the introductory example with array access patterns, we used coeffects
to track the range of values accessed. In this section, we look at a simpler ex-
ample – we only consider the prev operation and track the maximal number
of past values needed. This is an important information for efficient imple-
mentation of dataflow languages. When we can guarantee that at most x
past values are accessed, the values can be stored in a pre-allocated buffer
rather than using e. g. on-demand computed lazy streams.

type system . We can use a coeffect type system to track the maximal
number of accessed past values. Here, the context is annotated with a single
integer. The current value is always present, so 0 means that no past values
are needed, but the current value is still available. The typing rules of the
system are shown in Figure 16.

Variable access (var) annotates the context with 0; subcoeffecting (sub) al-
lows us to require more values than is actually needed. Primitive context-
requirements are introduced in (prev), which increments the number of past
values by one. Thus, for example, prev (prev x) requires 2 past values.

50 context-aware systems

(var)
x : τ ∈ Γ
Γ @ 0 ` x : τ

(prev)
Γ @n ` e : τ

Γ @n+ 1 ` prev e : τ

(sub)
Γ @n ′ ` e : τ
Γ @n ` e : τ (n ′ 6 n)

(app)
Γ @m ` e1 : τ1

p−→ τ2 Γ @n ` e2 : τ1
Γ @ max(m,n+ p) ` e1 e2 : τ2

(let)
Γ @m ` e1 : τ1 Γ , x : τ1 @n ` e2 : τ2
Γ @n+m ` let x = e1 in e2 : τ2

(abs)
Γ , x : τ1 @n ` e : τ2
Γ @n ` λx.e : τ1

n−→ τ2

Figure 16: Coeffect rules for tracking context-usage in dataflow language

The (app) rule follows the same intuition as for liveness. It combines se-
quential and pointwise composition of semantic functions. In case of dataflow,
the operations combine annotations using + and max operations:

f : τ1
m−→ τ2 g : τ2

n−→ τ3 g ◦ f : τ1
m+n−−−−→ τ3

f : τ1
m−→ τ2 h : τ1

n−→ τ3 〈f,h〉 : τ1
max(m,s)−−−−−−→ (τ2 × τ3)

Sequential composition adds the annotations. The function f needs m past
values to produce a single τ2 value. To produce two τ2 values, we thus need
m + 1 past values of τ1; to produce three τ2 values, we need m + 2 past
values of τ1, and so on. To produce n past values that are required as the
input of g, we needm+n past values of type τ1. The pointwise composition
is simpler. It uses the same stream to evaluate functions requiring m and n
past values, and so it needs maximum of the two at most.

In summary, function application (app) requires maximum of the values
needed to evaluate e1 and the number of values needed to evaluate the
argument e2, sequentially composed with the function.

In function abstraction (abs), the requirements of the body are duplicated
on the declaration site and the call site as in liveness analysis. If the body
requires n past values, it may access n values of any variables – including
those available in Γ , as well as the parameter x. Finally, the (let) rule simply
adds the two requirements. This corresponds to the sequential composition
operation, but it is also a rule that we obtain by treating let-binding as a
syntactic sugar for (λx.e2) e1.

algebra of annotations . The coeffect annotations used in the live-
ness example in Section 3.2.3 form a two-point lattice. The annotations for
dataflow do not form a lattice (as the absorption laws do not hold for ad-
dition and maximum), but the structure resembles that of semiring. As dis-
cussed later in Section 4.2.1, the coeffect annotations for many of our exam-
ples form a semiring, but this is not the case in general.

The coeffect annotations for dataflow forms a tropical semiring with + as
the multiplication, max as the addition, −∞ as the zero element and 0 as
unit. In this section, we do not use the −∞ element, but this can be used to
annotate unused variables as discussed in Section 4.2.4.

3.2 flat coeffect systems 51

example . As with the liveness example, the application rule might re-
quire more explanation. The following example is somewhat arbitrary, but
it demonstrates the rule well. We assume that counter is a stream of positive
integers (starting from zero) and tick flips between 0 and 1. The full typing
derivation is shown in Appendix A.3:

(if (prev tick) = 0

then (λx→ prev x)

else (λx→ x)) (prev counter)

The left-hand side of the application returns a function depending on the
previous value of tick. The resulting stream of functions flips between a func-
tion returning a current value and a function returning the previous value.
If the current tick is 0, and the function is applied to a stream 〈. . . , 4, 3, 2, 1〉
(where 1 is the current value), it yields the stream 〈. . . , 4, 4, 2, 2〉.

To obtain the function, we need one past value from the context (for
prev tick). The returned function needs either none or one past value (thus a
subtyping rule is required to type it as requiring one past value). So, the an-
notations for (app) are m = 1,p = 1. The function is called with prev counter

as an argument, meaning that the result is either the first or second past
element. Given counter= 〈. . . , 5, 4, 3, 2, 1〉, the argument is 〈. . . , 5, 4, 3, 2〉 and
so the overall result is a stream 〈. . . , 5, 5, 3, 3〉. From the argument, we get
the requirement n = 1.

Using the (app) rule, we get that the overall number of past elements
needed is max(1, 1+ 1) = 2. This should match the intuition about the code
– when the first function is applied to the argument, the computation will
first access prev tick (using one past value) and then prev (prev counter))

(using two past values).

semantics . The language discussed in this section is a causal dataflow
language. This means that a computation can access past values of the
stream but not future values. In the semantics, we again need richer struc-
ture over the input.

Uustalu and Vene [114] model causal dataflow computations using a non-
empty list NeList τ = τ× (NeList τ+ 1) over the input. A function τ1 → τ2
is thus modelled as NeList τ1 → τ2. This model is difficult to implement
efficiently, as it creates unbounded lists of past elements.

The coeffect system tracks maximal number of past values and so we can
define the semantics using a list of fixed length. As with liveness, this is
a data structure indexed by the coeffect annotation. We write τn for a list
containing n elements, which can be also viewed as an n-element product
τ× . . .× τ.

As with the previous examples, our semantics interprets a judgement us-
ing a (semantic) function; functions in the language are modelled as func-
tions taking a list of inputs:

Jx1 :τ1, . . . , xn :τn @n ` e : τK : (τ1 × . . .× τn)n+1 → τ

Jτ1
n−→ τ2K : τn+11 → τ2

Note that the semantics requires one more value than is the number of past
values. This is because the first value is the current value and has to be
always available, even when the annotation is zero as in (var).

The rules defining the semantics are shown in Figure 17. The semantics of
the context is a list of products. To make the rules easier to follow, we write
〈v1, . . . , vn〉 for an n-element list containing products. Products that model

52 context-aware systems

JΓ @ 0 ` xi : τiK = λ〈(x1, . . . , xn)〉.xi
(var)

JΓ @n ` e : τK = f

JΓ @n+ 1 ` prev e : τK
=

λ〈v0, . . . , vn+1〉.
f 〈v1, . . . , vn+1〉

(prev)

JΓ @n ′ ` e : τK = f

JΓ @n ` e : τK
=

λ〈v0, . . . , vn〉.
f 〈v0, . . . , vn ′〉

(sub)

JΓ ,y : τ1 @n ` e : τ2K = f

JΓ @n ` λy.e : τ1
n−→ τ2K =

λ〈v0, . . . vn〉.λ〈y0, . . . ,yn〉.
f 〈(v0,y0), . . . , (vn,yn)〉

(abs)

JΓ @ r ` e1 : τ1
t−→ τ2K = f1

JΓ @ s ` e2 : τ1K = f2

Γ @ max(m,n+ p)

` e1 e2 : τ2 =

λ〈v0, . . . , vmax(m,n+p)〉.
(f1 〈v0, . . . , vm〉)
〈 f2 〈v0, . . . , vn〉, . . . ,
f2 〈vp, . . . , vn+p〉 〉

(app)

Figure 17: Semantics showing how past values are accessed in a dataflow language

the entire context such as v1 are written in bold. When we access individual
variables, we write v = (x1, . . . , xm) where xi denote individual variables of
the context.

In (var), the context is a singleton-list containing a product of variables,
from which we project the right one. In (prev) and (sub), we drop some of
the elements from the history (from the front and end, respectively) and
then evaluate the original expression.

Lambda abstractions (abs) receives two lists of the same size – one con-
taining values of the variables (list of products) from the declaration site
〈v0, . . . , vn〉 and one containing the argument (list of values) provided by
the call site 〈y0, . . . ,yn〉. The semantics applies the well-known zip opera-
tion on the lists and passes the result to the body.

Finally, application (app) uses the input context in two ways, which gives
rise to the two requirements combined using max. First, it evaluates the ex-
pression e1 which is called with the past m values. The resulting function g
is then sequentially composed with the semantics of e2. To call the function,
we need to evaluate e2 repeatedly – namely, p+ 1 times, which results in
the overall requirement for n+ p past values.

summary. Type systems have been used in the context of dataflow lan-
guages to check initialization properties [25] and resource-aware systems
are capable of tracking how required values are accessed in dataflow pro-
gramming [61]. This section formulates the problem in terms of coeffects.

The most interesting point about the dataflow system is that it is remark-
ably similar to our earlier liveness example. In the type system, abstraction
(abs) duplicates the context requirements and application (abs) arises from
sequential and pointwise composition. We capture this striking similarity in
Chapter 4. Before doing that, we look at one more example and then explore
the structural class of systems.

3.2 flat coeffect systems 53

3.2.5 Permissions and safe locking

In the implicit parameters and dataflow examples, the context provides ad-
ditional resources or values that may be accessed at runtime. However, coef-
fects can also track permissions or capabilities to perform some operation. We
can invert the intuition behind liveness and use it as a trivial example. When
the context is live, it contains a permission to access variables. In this section,
we briefly consider a system for safe locking of Flanagan and Abadi [2] as
one, more advanced example. The calculus of capabilities of Cray et al. [28]
is discussed later in Section 3.4.

safe locking . The system for safe locking prevents race conditions (by
only allowing access to mutable state under a lock) and avoids deadlocks
(by imposing strict partial order on locks). The following program uses a
mutable state under a lock:

newlock l : ρ in

let state = refρ 10 in

sync l (!state)

The declaration newlock creates a lock l protecting memory region ρ. We
can than allocate mutable variables in that memory region (second line).
An access to one or more mutable variables is only allowed in scope that is
protected by a lock. This is done using the sync keyword, which locks a lock
and evaluates an expression in a context that contains permission to access
memory region of the lock (ρ in the above example).

The type system for safe locking associates a list of acquired locks with the
context. Interestingly, the original presentation of the system by Flanagan
and Abadi [2] uses a coeffect-style judgements of a form Γ ;p ` e : τ where
p is a list of accessible regions (protected by an acquired lock). Using our
notation, the rule for sync looks as follows:

(sync)
Γ @p ` e1 : m Γ @p∪ {m} ` e2 : τ

Γ @p ` sync e1 e2 : τ

The rule requires that e1 yields a value of a singleton type m. The type is
added as an indicator of the locked region to the context p ∪ {m} which is
then used to evaluate the expression e2.

summary. Despite attaching annotations to the variable context, the sys-
tem for safe locking uses effect-style lambda abstraction. Lambda abstrac-
tion associates all requirements with the call site – a lambda function cre-
ated under a lock cannot access protected memory available at the time of
creation. It will be executed later and can only access the memory available
then. This suggests that safe locking is better seen as an effect system.

Another interesting aspect is the extension to avoid deadlocks. In that case,
the type system needs to reject programs that acquire locks in an invalid
order. One way to model this is to replace p ∪ {m} with a partial operation
p] {m} which is only defined when the lock m can be added to the set
p. Supporting partial operations on coeffect annotations is an interesting
future extension for coeffect systems.

54 context-aware systems

3.3 structural coeffect systems

In structural coeffect systems, the additional information is associated with
individual variables. This is very often information about how the variables
are used, or, in which contexts they are used. In Chapter 1, we introduced
the idea using an example that tracks array access patterns. Each variable
is annotated with a range specifying which elements of the corresponding
array may be accessed.

In this section, we look at three examples in detail – we revisit liveness
and show a practically useful structural version of the system; we consider
an example inspired by linear logic; finally, we revisit dataflow to get a more
precise analysis. Although quite different, the common pattern among these
three examples is somewhat easier to see, because they all track information
about variable usage. We finish the section with a brief outline of several
other applications.

3.3.1 Liveness analysis revisited

The flat system for liveness analysis presented in Section 3.2.3 is interesting
from a theoretical perspective, but it is not practically useful. Here, we revisit
the problem and define a structural system that tracks liveness of individual
variables.

structural liveness . Recall two examples discussed earlier where
the flat liveness analysis marked the whole context as (syntactically) live,
despite the fact part of it was (semantically) dead:

let constant = λy→ λx→ y

let answer = (λx→ x) 42

In the first case, the variable x is dead, but was marked as live. In the second
example, the declaration site of the answer value is dead, but was marked
as live. This is because in both of the expressions, some variable is accessed.
However, the (abs) rule of flat liveness has no way of determining which
variables are used by the body – and, in particular, whether the accessed
variable is the bound variable or some of the free variables.

As discussed earlier, we can resolve this by attaching a vector of liveness
annotations to a vector of variables. In the first example, the available vari-
ables are y and x, so the variable context Γ is a vector 〈y : τ, x : τ〉. Only the
variable y is used and so the annotated context is: y : τ, x : τ @ 〈L,D〉. When
writing the contexts, we omit angle brackets around variables, but it should
still be viewed as a vector. There are two important points:

• The fact that variables are now a vector means that we cannot freely re-
order them. This guarantees that x :τ,y :τ @ 〈L,D〉 can not be confused
with y :τ, x :τ @ 〈L,D〉. We need to define the type system in a way that
is similar to substructural systems (discussed in Section 2.4) and add
explicit rules for manipulating the context.

• We choose to attach a vector of annotations to a vector of variables,
rather than attaching individual annotations to individual variables.
This lets us unify and combine flat and structural systems as discussed
in Section 8.1, but the alternative is briefly explored in Section 8.2.

3.3 structural coeffect systems 55

a.) Ordinary, syntax-driven rules along with subcoeffecting

(var)
x :τ @ 〈L〉 ` x : τ

(const)
c : τ ∈ ∆

() @ 〈〉 ` c : τ

(abs)
Γ , x :τ1 @ r×〈s〉 ` e : τ2
Γ @ r ` λx.e : τ1

s−→ τ2

(app)
Γ1 @ r ` e1 : τ1

t−→ τ2 Γ2 @ s ` e2 : τ1
Γ1, Γ2 @ r×(t t s) ` e1 e2 : τ2

(let)
Γ1, x :τ1 @ r× 〈t〉 ` e1 : τ2 Γ2 @ s ` e2 : τ1

Γ1, Γ2 @ r× (t t s) ` let x = e2 in e1 : τ2

(sub)
Γ @ r ` e : τ
Γ @ r’ ` e : τ r v r’

b.) Structural rules for context manipulation

(weak)
Γ @ r ` e : σ

Γ , x :τ @ r×〈D〉 ` e : σ

(exch)
Γ1, x :τ ′,y :τ, Γ2 @ r×〈s, t〉×q ` e : σ
Γ1,y :τ, x :τ ′, Γ2 @ r×〈t, s〉×q ` e : σ

len(Γ1) = len(r)
len(Γ2) = len(s)

(contr)
Γ1,y :τ, z :τ, Γ2 @ r×〈s, t〉×q ` e : σ

Γ1, x :τ, Γ2 @ r×〈sut〉×q ` e[z← x][y← x] : σ
len(Γ1) = len(r)
len(Γ2) = len(s)

Figure 18: Structural coeffect liveness analysis

type system . The structural system for liveness uses the same two-point
lattice of annotations L = {L,D} that was used by the flat system. We also
use the t,u and v operators that are defined in Figure 14.

The rules of the system are split into two groups. Figure 18 (a) shows
the standard syntax-driven rules plus subcoeffecting. In (var), the context
contains just the single accessed variable, which is annotated as live. Unused
variables can be introduced using weakening. A constant (const) is accessed
in an empty context, which also carries no annotations. The subcoeffecting
rule (sub) uses a pointwise extension of the v relation over two vectors as
defined in Section 3.1.3.

In the (abs) rule, the variable context of the body Γ , x :τ1 is annotated with
a vector r×〈s〉, where the vector r corresponds to Γ and the singleton annota-
tion s corresponds to the variable x. Thus, the function is annotated with s.
Note that the free-variable context is annotated with vectors, but functions
take only a single input and so are annotated with primitive annotations.

The (app) rule is similar to function applications in flat systems, but there
is an important difference. In structural systems, the two sub-expressions
have separate variable contexts Γ1 and Γ2. Therefore, the composed expres-
sion just concatenates the variables and their corresponding annotations.
(We can still use the same variable in both sub-expressions thanks to the
structural contraction rule.)

56 context-aware systems

The context Γ1 is used to evaluate e1 and is thus annotated with r. The
annotation for Γ2 is more interesting. It is a result of sequential composition
of two semantic functions – the first one takes the (multi-variable) context
Γ2 and evaluates e2; the second takes the result of type τ1 and passes it to
the function τ1

t−→ τ2. The composition is defined as follows:

g : τ1 × . . .× τn
s−→ σ f : σ

t−→ τ f ◦ g : τ1 × . . .× τn
tt s−−−→ τ

This definition is only for illustration and is revised in Chapter 6. The func-
tion g takes a product of multiple variables (and is annotated with a vector).
The function f takes just a single value and is annotated with the scalar. As
in the flat system, sequential composition is modelled using t, but here we
use a scalar-vector extension of the operation. Finally, the (let) rule follows
similar reasoning (and also corresponds to the typing of (λx.e2) e1).

structural typing rules . The structural typing rules are shown in
Figure 18 (b). They mirror the rules known from substructural type systems
(Section 2.4). Weakening (weak) extends the context with a single unused
variable x and adds the D annotation to the vector of coeffects.

The variable is always added to the end as in the (abs) rule. However, the
exchange rule (exch) lets us arbitrarily reorder variables. It flips the variables
x and x ′ and their corresponding coeffect annotations in the vector. This is
done by requiring that the lengths of the remaining, unchanged, parts of the
vectors match.

Finally, contraction (contr) makes it possible to use a single variable multi-
ple times. Given a judgement that contains variables y and z, we can derive
a judgement for an expression where both z and y are replaced by a single
variable x. Their annotations s, t are combined into s u t, which means that
x is live if either z or y were live in the original expression.

example . To demonstrate how the system works, we consider the expres-
sion (λx.v) y. This is similar to an example where flat liveness mistakenly
marks the entire context as live. Despite the fact that the variable y is ac-
cessed (syntactically), it is not live – because the function that takes it as an
argument always returns v.

The typing derivation for the body uses (var) and (abs). However, we also
need (weak) to add the unused variable x to the context:

(weak)
v :τ @ 〈L〉 ` v : τ

(var)

v :τ, x :τ @ 〈L,D〉 ` v : τ

v :τ @ 〈L〉 ` (λx.v) : τ D−→ τ
(abs)

The interesting part is the use of the (app) rule in the next step. Although
the variable y is live in the expression y, it is marked as dead in the overall
expression, because the function is annotated with D:

(app)
v :τ @ 〈L〉 ` (λx.v) : τ D−→ τ y :τ @ 〈L〉 ` y : τ

(var)

v :τ,y :τ @ 〈L〉×(Dt 〈L〉) ` (λx.v) y : τ

v :τ,y :τ @ 〈L,D〉 ` (λx.v) y : τ

The application is written in two steps – the first one directly applies the
(app) rule and the second one simplifies the coeffect annotation. The key
part is the use of the scalar-vector operator D t 〈L〉. Using the definition of
the scalar-vector extension, this equals 〈D t L〉 which is 〈D〉.

3.3 structural coeffect systems 57

semantics . When defining the semantics of flat liveness calculus, we
used an indexed form of the option type 1+ τ (which is 1 for dead contexts
and τ for live contexts). In the semantics of expressions, the type constructor
was applied to the entire context, i. e. 1+ (τ1 × . . .× τn). In the structural
version, the semantics applies the option type constructor to individual el-
ements of the free-variable context pair: (1+ τ1)× . . .× (1+ τn). For each
variable, the type is indexed by the corresponding annotation:

Jx1 :τ1, . . . , xn :τn @ 〈r1, . . . , rn〉 ` e : τK : (τ ′1 × . . .× τ
′
n)→ τ

where τ ′i =

τi (ri = L)

1 (ri = D)

Note that the product of the free variables is not a tuple of our language,
but a special construction used only in the semantics. This follows from the
asymmetry of λ-calculus, as discussed in Section 3.1.3. Functions take just a
single input and so they are interpreted in the same way as in flat calculus:

Jτ1
L−→ τ2K = τ1 → τ2 Jτ1

D−→ τ2K = 1→ τ2

The rules that define the semantics are shown in Figure 19. To make the
definition simpler, we treat the product τ ′1× . . .×τ

′
n as a flat list. Variables of

product type are written in bold-face as v and individual values are written
in normal face as x. An expression (v, x) should not be seen as a nested
product, but simply as a product containing all variables from the product v
together with one additional variable x at the end. We shall be more precise
in Chapter 6.

In (var), the context contains just a single variable and so we do not even
need to apply projection; (const) receives no variables and uses global con-
stant lookup function δ. In (abs), we obtain two parts of the context and
combine them into (v, x). This works the same way regardless of whether
the variables are live or dead. For simplicity, we omit subcoeffecting, which
just turns some of the available values vi to unit values ().

As dictated by the semantics, the application again needs to “implement”
dead code elimination (otherwise the type system would be unsound). When
the input parameter of the function f1 is live (app-1), we first evaluate e2 and
then pass the result to f1. When the parameter is dead (app-2), we do not
need to evaluate e2 and so all values in v2 can be dead, i. e. ().

In the structural rules, (weak) receives context containing a dead variable
as the last one. It drops the () value and evaluates the expression in a context
v. Exchange (exch) simply swaps two variables. In contraction, we duplicate
the value (no matter whether it is dead or live) and we use an auxiliary
definition x|r to replace a live value with () when only one of the contracted
variables is live.

summary. The structural liveness calculus is a typical example of a sys-
tem that tracks per-variable annotations. In a number of ways, the system is
simpler than the flat coeffect calculi. In lambda abstraction, we simply an-
notate a function with the annotation of a matching variable (this rule is the
same for all upcoming systems). In application, the pointwise composition
is no longer needed, because the sub-expressions use separate contexts. On
the other hand, we had to add weakening, contraction and exchange rules
to let us manipulate contexts.

58 context-aware systems

a.) Semantics of ordinary expressions

Jx :τ @ 〈L〉 ` x : τK = λ(x).x
(var)

J() @ 〈〉 ` n : numK = λ().n
(num)

JΓ ,y :τ1 @ r×〈s〉 ` e : τ2K = f

JΓ @ r ` λy.e : τ1
s−→ τ2K = λv.λy.f (v,y)

(abs)

JΓ1 @ r ` e1 : τ1
L−→ τ2K = f1

JΓ2 @ s ` e2 : τ1K = f2

JΓ1, Γ2 @ r×(Lt s) ` e1 e2 : τ2K = λ(v1, v2).(f1 v1) (f2 v2)

(app-1)

JΓ1 @ r ` e1 : τ1
D−→ τ2K = f1

JΓ2 @ s ` e2 : τ1K = _

JΓ1, Γ2 @ r×(Dt s) ` e1 e2 : τ2K = λ(v1, v2).(f1 v1) ()

(app-2)

b.) Semantics of structural context manipulation
Using the auxiliary definition x|L = x and x|D = ():

JΓ @ r ` e : σK = f

JΓ , x :τ @ r×〈D〉 ` e : σK = λ(v, ()).f v
(weak)

JΓ1, x :τ1,y :τ2, Γ2
@ r++〈s, t〉++q ` e : τK

=
f

JΓ1,y :τ2, x :τ1, Γ2
@ r++〈t, s〉++q ` e : τK

=
λ(v1,y, x, v2).
f (v1, x,y, v2)

(exch)

JΓ1,y :τ1, z :τ1, Γ2
@ r++〈s, t〉++q ` e : τK

=
f

JΓ1, x :τ1, Γ2 @ r++〈s⊕ t〉++q
` e[z,y← x] : τK

=
λ(v1, x, v2).
f (v1, x|s, x|t, v2)

(contr)

Figure 19: Semantics of structural liveness

The semantics of weakening demonstrates an important point about coef-
fects that may be quite confusing. When we read the typing rule from top to
bottom, weakening adds a variable to the context. When we read the seman-
tic rule, weakening drops a variable value from the context! This duality is
caused by the fact that coeffects talk about context – they describe how to
build the context required by the sub-expressions and so the semantics im-
plements transformation from the context in the (typing) conclusion to the
(typing) assumption. The two ways of understanding coeffects are discussed
further in Section 4.2.3.

The structural systems discussed in the upcoming sections are remarkably
similar to the one shown here. We discuss two more examples to explore the
design space, but omit details shared with the system in this section.

3.3 structural coeffect systems 59

a.) Ordinary, syntax-driven rules along with subcoeffecting

(var)
x :τ @ 〈1〉 ` x : τ

(abs)
Γ , x :τ1 @ r×〈s〉 ` e : τ2
Γ @ r ` λx.e : τ1

s−→ τ2

(app)
Γ1 @ r ` e1 : τ1

t−→ τ2 Γ2 @ s ` e2 : τ1
Γ1, Γ2 @ r×(t ∗ s) ` e1 e2 : τ2

(let)
Γ1, x :τ1 @ r++〈t〉 ` e1 : τ2 Γ2 @ s ` e2 : τ1

Γ1, Γ2 @ r++(t ∗ s) ` let x = e2 in e1 : τ2

(sub)
Γ @ r ` e : τ
Γ @ r’ ` e : τ r 6 r’

b.) Structural rules for context manipulation

(weak)
Γ @ r ` e : σ

Γ , x :τ @ r×〈0〉 ` e : σ

(exch)
Γ1, x :τ ′,y :τ, Γ2 @ r×〈s, t〉×q ` e : σ
Γ1,y :τ, x :τ ′, Γ2 @ r×〈t, s〉×q ` e : σ

len(Γ1) = len(r)
len(Γ2) = len(s)

(contr)
Γ1,y :τ, z :τ, Γ2 @ r×〈s, t〉×q ` e : σ

Γ1, x :τ, Γ2 @ r×〈s+ t〉×q ` e[z← x][y← x] : σ
len(Γ1) = len(r)
len(Γ2) = len(s)

Figure 20: Structural coeffect bounded reuse analysis

3.3.2 Bounded variable use

Liveness analysis checks whether a variable is used or unused. With struc-
tural coeffects, we can go further and track how many times is the variable
accessed. This has been captured in bounded linear logic by Girard et al. [40]
who use it to restrict well-typed programs to polynomial-time algorithms.
We first introduce the system in our, coeffect, style and then relate it with
the original formulation.

bounded variable use . The system discussed in this section tracks
the number of times a variable is accessed in the call-by-name evaluation.
Although we look at an example that tracks variable usage, the same sys-
tem could be used to track access to resources that are always passed as a
reference (and behave effectively as call-by-name) and so the system is rele-
vant for call-by-value languages too. To demonstrate the idea, consider the
following term:

(λv.x+ v+ v) (x+ y)

When evaluated, the body of the function directly accesses x once and then
twice indirectly, via the function argument. Similarly, y is accessed twice
indirectly. Thus, the overall expression uses x three times and y twice.

As discussed in Chapter 6, the system preserves type and coeffect an-
notations under β-reduction. Reducing the expression in this case gives
x+ (x+ y) + (x+ y). This has the same bounds as the original expression –
x is used three times and y twice.

60 context-aware systems

type system . The type system in Figure 20 annotates contexts with vec-
tors of integers. The rules have the same structure as those of the system
for liveness analysis and the annotations form a semiring with integer mul-
tiplication (∗) for sequential composition and addition (+) for point-wise
composition.

Variable access (var) annotates a variable with 1, meaning that it has been
used once. An unused variable (weak) is annotated with 0. Multiple occur-
rences of the same variable are introduced by contraction (contr), which adds
the numbers of the two contracted variables.

As previously, application (app) and let binding (let) combine two separate
contexts. The second part applies a function that uses its parameter t-times
to an argument that uses variables in Γ2 at most s-times (here, s is a vector of
integers with an annotations for each variable in Γ2). The sequential compo-
sition (modelling call-by-name) multiplies the uses, meaning that the total
number of uses is (t ∗ s) (where ∗ is a point-wise multiplication of a vector
by a scalar). This models the fact that for each use of the function parameter,
we replicate the variable uses in e2.

Finally, the subcoeffecting rule (sub) safely overapproximates the number
of accesses using the pointwise 6 relation. We can view any variable as
being used a greater number of times than it actually is.

example . To type check the expression (λv.x+ v+ v) (x+ y) discussed
earlier, we need to use abstraction, application, but also the contraction rule.
Assuming the type judgement for the body, abstractions yields:

(abs)
x :Z, v : Z @ 〈1, 2〉 ` x+ v+ v : Z

x :Z @ 〈1〉 ` (λv.x+ v+ v) : Z
2−→ Z

To type-check the application, the contexts of e1 and e2 need to contain
disjoint variables. For this reason, we α-rename x to x ′ in the argument
(x+ y) and later join x and x ′ using the contraction rule. Assuming (x ′ + y)
is checked in a context that marks x ′ and y as used once, the application
rule yields a judgement that is simplified as follows:

x :Z, x ′ :Z,y :Z @ 〈1〉×(2 ∗ 〈1, 1〉) ` (λv.x+ v+ v) (x ′ + y) : Z

(contr)
x :Z, x ′ :Z,y :Z @ 〈1, 2, 2〉 ` (λv.x+ v+ v) (x ′ + y) : Z

x :Z,y :Z @ 〈3, 2〉 ` (λv.x+ v+ v) (x+ y) : Z

The first step performs scalar multiplication, producing the vector 〈1, 2, 2〉.
In the second step, we use contraction to join variables x and x ′ from the
function and argument terms respectively.

semantics . In the previous examples, we defined the semantics – some-
what informally – using a simple λ-calculus language to encode the model.
More formally, this could be a Cartesian-closed category. In that model, we
can reuse variables arbitrarily and so it is not a good fit for modelling
bounded reuse. Girard et al. [40] model their bounded linear logic in an
(ordinary) linear logic where variables can be used at most once.

Following the same approach, we could model a variable τ, annotated
with r as a product containing r copies of τ, that is τr:

Jx1 :τ1, . . . , xn :τn @ 〈r1, . . . , rn〉 ` e : τK : (τr11 × . . .× τ
rn
n)→ τ

where τrii = τi × . . .× τi︸ ︷︷ ︸
ri−times

3.3 structural coeffect systems 61

The functions are interpreted similarly. A function τ1
t−→ τ2 is modelled as

a function taking t-element product of τ1 values: τt1 → τ2.
The rules that define the semantics of bounded calculus are easy to adapt

from the semantic rules of liveness in Figure 19. The ones that differ are
those that use sequential composition (application and let binding) and the
contraction rule, which represents pointwise composition.

In the following, we use vector names vi for contexts containing multi-
ple variables i. e. have a type τr11 × . . .× τ

rm
m . Each vector contains multiple

copies of each variable, to model the fact that variables are used in an affine
way (at most once). We do not explicitly write the sizes of these vectors
(number of variables in a context; number of instances of a variable) as
these are clear from the coeffect annotations. We assume that Γ2 contains n
variables and that s = 〈s1, . . . , sn〉. First, consider the (contr) rule:

JΓ1,y :τ1, z :τ1, Γ2
@ r++〈s, t〉++q ` e : τK

=
f

JΓ1, x :τ1, Γ2 @ r++〈s+ t〉++q
` e[z,y← x] : τK

=
λ(v1, (x1, . . . , xs+t), v2).
f (v1, (x1, . . . , xs), (xs+1, . . . , xs+t), v2)

The semantic function is called with s+ t copies of a value for the x variable.
The values are split between s and t separate copies of variables y and
z, respectively. The (app) rule is similar in that it needs to split the input
variable context. However, it needs to split values of multiple variables:

JΓ1 @ r ` e1 : τ1
t−→ τ2K = f1

JΓ2 @ s ` e2 : τ1K = f2

JΓ1, Γ2 @ r×(t ∗ s)
` e1 e2 : τ2K

=

λ(v1, ((x1,1, . . . , x1,t∗s1), . . . , (xn,1, . . . , xn,t∗sn)).
(f1 v1)
(f2 ((x1,1, . . . , x1,s1), . . . ,

(xn,1, . . . , x1,sn)), . . . ,
f2 ((x1,(t−1)∗s1+1, . . . , x1,t∗s1), . . . ,

(xn,(t−1)∗sn+1, . . . , x1,t∗sn)))

In xi,j, the index i stands for an index of the variable while j is an index of
one of multiple copies of the value. In the semantic function, the second part
of the context consists of n variables where the multiplicity of each value is
specified by the annotation si multiplied by t. The rule needs to evaluate the
argument e2 t-times and each call requires si copies of the ith variable. To
do this, we create contexts y1 to yt, each containing si copies of the variable
(and so we require si ∗ t copies of each variable). Note that the contexts are
created such that each value is used exactly once.

It is worth noting that the (var) rule requires exactly one copy of a variable
and so the system tracks precisely the number of uses. However, the (sub)
rule lets us ignore additional copies of a value. Thus, permitting (sub) rule
is only possible if the underlying model is affine rather than linear.

bounded linear logic . The system presented in this section is based
on the idea of bounded linear logic (BLL) [40], but it is adapted to follow the
structure of other coeffect systems discussed in this chapter. This elucidates
the connection between BLL and coeffects.

The big difference, using the terminology from Section 2.3.3, is that our
system is written in language semantics style, while BLL is written in meta-
language style. We briefly consider the original BLL formulation.

62 context-aware systems

The terms and types of our system are the terms and types of an ordi-
nary λ-calculus, with the only difference that functions carry coeffect anno-
tations. In BLL, the language of types is extended with a type constructor
!kA (where A is a proposition, corresponding to a type τ in our system).
The type denotes a value A that can be used at most k times.

As a result, BLL does not need to attach additional annotations to the
variable context as a whole. The requirements are attached to individual
variables and so our context τ1, ..., τn @ 〈k1, ...,kn〉 corresponds to a BLL as-
sumption !k1A1, ..., !knAn. Using the formulation of bounded logic (and
omitting the terms), the weakening and contraction rules are written as fol-
lows:

(weak) Γ ` B
Γ , !0A ` B

(contr)
Γ , !nA, !mA ` B
Γ , !n+mA ` B

The system captures the same idea as the structural coeffect system pre-
sented above. Variable access in bounded linear logic is simply an operation
that produces a value !nA and so the system further introduces dereliction
rule which lets us treat !1A as a value A. We further explore difference be-
tween language semantics and meta-language in Section 8.2.

summary. Comparing the structural coeffect calculus for tracking live-
ness and for bounded variable reuse reveals which parts of the systems
differ and which parts are shared. In particular, both systems use the same
vector operations (++, 〈–〉) and also share the lambda abstraction rule (abs).
They differ in the primitive values used to annotate used and unused vari-
ables (L, D and 1, 0, respectively) and in the operators used for sequential
composition and contraction (t, u and ∗, +, respectively). The algebraic
structure capturing these operators is developed in Chapter 6.

The brief overview of bounded linear logic shows an alternative approach
to tracking properties related to individual variables – we could attach an-
notations to the variables themselves rather than attaching a vector of anno-
tations to the entire context. One benefit of our approach is that it lets us
unify flat and structural systems (Section 8.1).

3.3.3 Dataflow languages revisited

When discussing dataflow languages in an earlier section, we said that the
context provides past values of variables. In Section 3.2.4, we tracked this as
a flat property, which gives us a system that keeps an upper bound on past
values for all variables. However, dataflow can also be adapted to a struc-
tural system which keeps the number of required past values individually
for each variable. Consider the following example:

let o�setAdd = left+ prev right

The value o�setAdd adds values of left with previous values of right. To
evaluate a current value of the stream, we need the current value of left and
one past value of right. A flat system is not able to capture this level of detail
and simply requires 1 past values of both streams in the variable context.

Turning a flat dataflow system to a structural dataflow system is a change
similar to the one between flat and structural liveness. In case of liveness
analysis, we included the flat system only as an illustration (it is not practi-
cally useful). For dataflow, the flat system is less precise, but still practically
useful (simplicity may outweigh precision).

3.3 structural coeffect systems 63

(var)
x :τ @ 〈0〉 ` x : τ

(prev)
Γ @ r ` e : τ

Γ @ 1+ r ` prev e : τ

(app)
Γ1 @ r ` e1 : τ1

t−→ τ2 Γ2 @ s ` e2 : τ1
Γ1, Γ2 @ r×(t+ s) ` e1 e2 : τ2

(weak)
Γ @ r ` e : σ

Γ , x :τ @ r×〈0〉 ` e : σ

(contr)
Γ1,y :τ, z :τ, Γ2 @ r×〈s, t〉×q ` e : σ

Γ1, x :τ, Γ2 @ r×〈max(s, t)〉×q ` e[z← x][y← x] : σ

Figure 21: Structural coeffect bounded reuse analysis

type system . The type system in Figure 21 annotates the variable con-
text with a vector of integers. This is similar to the bounded reuse system,
but the integers mean a different thing. Consequently, they are also calcu-
lated differently. We omit rules that are the same for all structural coeffect
systems (exchange, lambda abstraction).

In dataflow, we annotate both used variables (var) and unused variables
(weak) with 0, meaning that no past values are required. This is the same
as in flat dataflow, but different from bounded reuse and liveness (where
unused variables have a different coeffect). Primitive requirements are intro-
duced by the (prev) rule, which increments the annotations of all variables.

In flat dataflow, we identified sequential composition and pointwise com-
position as two primitive operations that were used in the (flat) application.
In the structural system, these are used in (app) and (contr). Thus applica-
tion combines coeffect annotations using + and contraction using max. This
contrasts with bounded reuse, which uses ∗ and +, respectively.

example . As an example, consider a function λx.prev (y + x) applied
to an argument prev (prev y). The body of the function accesses the past
value of two variables, one free and one bound. The (abs) rule splits the
annotations between the declaration site and call site of the function:

(abs)
y :Z, x :Z @ 〈1, 1〉 ` prev (y+ x) : Z

y :Z @ 〈1〉 ` λx.prev (y+ x) : Z
1−→ Z

The expression always requires the previous value of y and adds it to a
previous value of the parameter x. Evaluating the value of the argument
prev (prev y) requires two past values of y and so the overall requirement
for the (free) variable y is 3 past values. In order to use the contraction rule,
we rename y to y ′ in the argument:

y :Z @ 〈1〉 ` λx. (. . .) : Z
1−→ Z x :Z @ 〈2〉 ` (prev (prev y ′) : Z

y :Z,y ′ :Z @ 〈1, 3〉 ` (λx.prev (y+ x)) (prev (prev y ′)) : Z

y :Z @ 〈3〉 ` (λx.prev (y+ x)) (prev (prev y)) : Z

The derivation uses (app) to get requirements 〈1, 3〉 and then (contr) to take
the maximum, showing three past values are sufficient.

Note that we get the same requirements when we perform β reduction
of the expression. Substituting the argument for x yields the expression

64 context-aware systems

prev (y+ (prev (prev y))). Semantically, this performs stream lookups y[1]
and y[3] where the indices are the number of enclosing prev constructs.

semantics . To define the semantics of our structural dataflow language,
we can use the same approach as when adapting flat liveness to structural
liveness. Rather than wrapping the whole context in a type constructor (list
or option), we now wrap the individual components of the product repre-
senting the variables in the context.

The result is similar to the structure used for bounded reuse. The only
difference is that, given a variable annotated with r, we need 1+ r values.
That is, we need the current value, followed by r past values:

Jx1 :τ1, . . . , xn :τn @ 〈r1, . . . , rn〉 ` e : τK : (τ
(r1+1)
1 × . . .× τ(rn+1)n)→ τ

Jτ1
s−→ τ2K = τ

(s+1)
1 → τ2

Despite the similarity with the semantics for bounded reuse, the values here
represent different things. Rather than providing multiple copies of a value
(out of which each can be used just once), the pair provides past values (that
can be reused and freely accessed). To illustrate the behaviour consider first
the semantics of the prev expression:

JΓ @ 〈s1, . . . , sn〉 ` e : τK = f

JΓ @ 〈(s1+1), . . . , (sn+1)〉
` prev e : τK

=
λ((x1,0, . . . , x1,s1+1), . . . , (xn,0, . . . , xn,sn+1)).
f ((x1,0, . . . , x1,s1), . . . , (xn,0, . . . , xn,sn))

Here, the semantic function is called with an argument that stores values of
n variables, such that a variable xi has values ranging from xi,0 to xi,si+1.
Thus, there is one current value, followed by si + 1 past values. The expres-
sion e nested under prev requires only si past values and so the semantics
drops the last value. The following shows the semantics of contraction:

JΓ1,y :τ1, z :τ1, Γ2
@ r++〈s, t〉++q ` e : τK

=
f

JΓ1, x :τ1, Γ2 @ r++〈max(s, t)〉++q
` e[z,y← x] : τK

=
λ(v1, (x0, x1, . . . , xmax(s,t)), v2).
f ((v1, (x0, . . . , xs), (x0, . . . , xt), v2))

The semantic function receives max(s, t) values of a specific variable x. It
needs to produce values for two separate variables, y and z that require s
and t past values. Both of these numbers are certainly smaller than (or equal
to) the number of values available. Thus we simply take the first values.
Unlike in the contraction for BLL, the values are duplicated and the same
values are used for both variables.

summary. Two of the structural examples shown so far (liveness and
dataflow) extend an earlier flat version of a similar system. We discuss this
relation in general later. However, a flat system can generally be turned into
a structural one – although this only gives a useful system when the flat
version captures statically scoped properties, i. e. related to variables.

The dataflow example demonstrates that the a flat system can also be
turned into structural system. In general, this only works for systems where
lambda abstraction duplicates context requirements (as in Figure 13).

3.3 structural coeffect systems 65

3.3.4 Security, tainting and provenance

Tainting is a mechanism where variables coming from potentially untrusted
sources are marked (tainted) and the use of such variables is disallowed in
contexts where untrusted input can cause security issues or other problems.
Tainting can be done dynamically using a runtime mark (e. g. in the Perl
language) or using a static type system. Tainting can be viewed as a special
case of provenance tracking, known from database systems [21], where values
are annotated with more detailed information about their source.

Type systems based on tainting have been use to prevent cross-site script-
ing attacks [116] and SQL injection attacks [44, 43]. In the latter case, we
want to check that SQL commands cannot be directly constructed from
unchecked inputs provided by the user. Consider the type checking of the
following expression in a context containing variables id and msg:

let name = query("SELECT Name WHERE Id = %1", id)
msg + name

In this example, id must not come directly from a user input, because query

requires an untainted string. Otherwise, the attacker could specify values
such as "1; DROP TABLE Users". The variable msg may or may not be tainted,
because it is not used in protected context (i.e. to construct an SQL query).

In runtime checking, all (string) values need to be wrapped in an object
with a Boolean flag (for tainting) or more complex data (for provenance). In
static checking, the information needs to be associated with the variables in
the variable context.

core dependency calculus . Taint checking is a special case of check-
ing of the non-interference property in secure information flow. There, the aim
is to guarantee that sensitive information (such as a credit card number)
cannot be leaked to contexts with low secrecy (e. g. sent via an unsecured
network channel). Volpano et al. [117] provide the first (provably) sound
type system that guarantees non-inference and Sabelfeld et al. [94] survey
more recent work. Information flow checking has been also integrated (as
a single-purpose extension) in the FlowCaml [100] language. Finally, Russo
et al. and Swamy et al. [93, 101] show that such properties can be checked
using a monadic library.

Systems for secure information flow typically define a lattice of security
classes (S,6) where S is a partially ordered finite set of classes. For example
a set {L,H} represents low and high secrecy, respectively with L 6 H meaning
that low security values can be treated as high security (but not the other
way round).

implicit flows . An important aspect of secure information flow is
called implicit flows. Consider the following example which returns either
y or zero, depending on the value of x:

let z = if x > 0 then y else 0

If the value of y is high-secure, then z becomes high-secure after the assign-
ment (this is an explicit flow). However, if x is high-secure, then the value of
z becomes high-secure, regardless of the security level of y, because the fact
whether an assignment is performed or not performed leaks information in
its own (this is an implicit flow).

66 context-aware systems

Although we do not describe a coeffect calculus for information flow
checking, it is worth noting that Abadi et al. [1] realized that there is a
number of analyses similar to secure information flow and unified them us-
ing a single model called Dependency Core Calculus (DCC). This would be
a useful basis for coeffect-based information flow checking.

The DCC captures other cases where some information about expression
relies on properties of variables in the context where it executes. This in-
cludes, for example, binding time analysis [109], which detects which parts
of programs can be partially evaluated (do not depend on user input) and
program slicing [110] that identifies parts of programs that contribute to the
output of an expression.

coeffect systems . The work outlined in this section is another area
where coeffect systems could be applied. We do not develop coeffect systems
for taint tracking, security and provenance in detail, but briefly mention
some examples in the upcoming chapters.

The systems work in the same way as the examples discussed already. For
example, consider the tainting example with the query function calling an
SQL database. To capture such tainting, we annotate variables with T for
tainted and with U for untainted. Accessing a variable marks it as untainted,
but using an expression that depends on some variable in certain dangerous
contexts – such as in arguments of query – does introduce a taint on all the
variables contributing to the expression. This is captured using the standard
application rule (app):

(app)
Γ @ r ` query : string T−→ Table id : string @ 〈U〉 ` id : string

Γ , id : string @ r×〈T〉 ` query("...", id) : Table

The derivation assumes that query is a standard function that requires the
parameters to be tainted (it does not have to be a built-in language construct).
The argument is a variable and so it is not tainted in the assumptions.

In the conclusion, we need to derive an annotation for the variable id. To
do this, we combine T (from the function) and U (from the argument). In
case of tainting, the variable is tainted whenever it is already tainted or the
function marks it as tainted. For different kinds of annotations, the composi-
tion would work differently – for example, for provenance, we could union
the set of possible data sources, or even combine probability distributions mod-
elling the influence of different sources on the value. However, expanding
such ideas is beyond the scope of this thesis.

3.4 beyond passive contexts

In both flat and structural systems discussed so far, the context provides
additional data (resources, implicit parameters, historical values) or meta-
data (security, provenance). However, within the language, it is impossible
to write a function that modifies the context. We use the term passive context
for such applications.

A number of systems capture contextual properties, but make it possible
to change the context – not just by evaluating certain code block in a locally
modified context (e. g. by wrapping it in prev in dataflow), but also by call-
ing a function that acquires new capabilities and returns those to the caller.
Such actions appear to be closer to effects than to coeffects. While this the-
sis focuses on systems with passive contexts, we briefly consider the most
important examples of the active variant.

3.4 beyond passive contexts 67

calculus of capabilities . Crary et al. [28] introduced the Calculus of
Capabilities to provide a sound system with region-based memory manage-
ment for low-level code that can be easily compiled to assembly language.
They build on the work of Tofte and Talpin [111] who developed an effect
system (as discussed in Section 2.3.2) that uses lexically scoped memory re-
gions to provide an efficient and controlled memory management.

In the work of Tofte and Talpin, the context is passive. They extend a
simple functional language with the letrgn construct that defines a new
memory region, evaluates an expression (possibly) using memory in that
region and then deallocates the memory of the region:

let calculate = λinput→
letrgn ρ in

let x = refρ input in

x := !x+ 1; !x

The memory region ρ is a part of the context, but only in the scope of the
body of letrgn. It is only available to the last two lines which allocate a
memory cell in the region, increment a value in the region and then read it.
The region is de-allocated when the execution leaves its lexical scope – there
is no way to allocate a region inside a function and pass it back to the caller.

The calculus of capabilities differs in two ways. First, it allows explicit
allocation and deallocation of memory regions (and so region lifetimes do
not necessarily follow strict LIFO ordering). Second, it uses continuation-
passing style. We ignore the latter aspect. The following example is almost
identical to the previous one:

let calculate = λinput→
letrgn ρ in

let x = refρ input in

x := !x+ 1; x

The difference is that the example does not return the value of a reference us-
ing !x, but returns the reference x itself. The reference is allocated in a newly
created region ρ. Together with the value, the function returns a capability to
access the region ρ.

This is where systems with active context differ from systems with passive
context. To type check such programs, we not only need to know what
context is required to call calculate (i. e. context on the left-hand side of `).
We also need to know what effects an expression has on the context when it
evaluates and the current context needs to be updated after a function call.
This is an effectful property that would appear on the right-hand side of `.

active contexts . In a systems with passive contexts, we only need an
annotation that specifies the required context. In semantics, this is reflected
by having some structure (data type) C over the input of the function. With-
out giving any details, the semantics generally has the following structure
(with a comonad to model coeffects on the left):

Jτ1
r−→ τ2K = Crτ1 → τ2

Systems with active contexts require two annotations – one specifies the
context required before the call and one specifies how the context changes
after the call (this could be a new context or an update to the original context).
Thus the structure of the semantics would look as follows (with a comonad
to model coeffects on the left and a monad to model effects on the right):

68 context-aware systems

Jτ1
r,s−−→ τ2K = Crτ1 →Msτ2

In case of Calculus of Capabilities, both of the structures could be the same
and they could carry a set of available memory regions. In this thesis, we
focus only on passive contexts. However, capturing active contexts is an
interesting future work.

software updating . Another example of a system that uses contex-
tual information actively is dynamic software updating (DSU) [35, 47]. DSU
systems have the ability to update programs at runtime without stopping
them. For example, Proteus developed by Stoyle et al. [?] investigates what
language support is needed to enable safe dynamic software updating in
C-like languages. The work is based on capabilities and follows a structure
similar to the Calculus of Capabilities [28].

The system distinguishes between concrete uses and abstract uses of a
value. When a value is used concretely, the program examines its representa-
tion (and so it is not safe to change the representation during an update). An
abstract use of a value does not examine the representation and so updating
the value does not break the program.

The Proteus system uses capabilities to restrict what types may be used
concretely after any point in the program. All other types, not listed in
the capability, can be dynamically updated as this will not change concrete
representation of types accessed later in the evaluation.

Similarly to Capability Calculus, capabilities in DSU can be changed by a
function call. For example, calling a function that may update certain types
makes it impossible to use those types concretely following the function call.
This means that DSU uses the context actively and not just passively.

3.5 summary

This chapter served two purposes. The first aim was to present existing
work on programming languages and systems that include some notion of
context. Because there was no well-known abstraction capturing contextual
properties, the languages use a wide range of formalisms – including prin-
cipled approaches based on comonads and modal S4, ad-hoc type system
extensions and static analyses as well as approaches based on monads. We
looked at a number of applications including Haskell’s implicit parameters
and type classes, dataflow languages such as Lucid, liveness analysis and
also a number of security properties.

The second aim of this chapter was to re-formulate the existing work in
a more uniform style and thus reveal that all context-dependent languages
share a common structure. In the upcoming three chapters, we identify the
common structure more precisely and develop three calculi to capture it. We
will then be able to re-create many of the examples discussed in this chapter
just by instantiating our unified calculi.

This chapter was divided into two sections. First, we looked at flat systems,
which track whole-context properties. Next, we looked at structural systems,
which track per-variable properties. Both are useful and important – for
example, implicit parameters can only be expressed as a flat system, but
liveness analysis is only useful as structural. For this reason, we explore both
of these variants in this thesis (Chapter 4 and Chapter 6). We can, however,
unify the two variants into a single system discussed in Section 8.1.

Part II

C O E F F E C T C A L C U L I

In this part, we capture the similarities between the concrete
context-aware languages presented in the previous chapter. We
also develop the key novel technical contributions of the thesis.
We define a flat coeffect type system (Chapter 4) that is parameter-
ized by a coeffect algebra and a mechanism for choosing unique
typing derivation. We instantiate a coeffect type system with a
concrete coeffect algebra and procedure for choosing unique typ-
ing derivation for three languages to capture dataflow, implicit
parameters and liveness.

The type system is complemented with a translational semantics
for coeffect-based context-aware programming languages (Chap-
ter 5). The semantics is inspired by a categorical model based
on indexed comonads and it translates a source context-aware pro-
gram into a target program in a simple functional language with
comonadically-inspired primitives. We give a concrete definition
of the primitives for dataflow, implicit parameters and liveness
and present a syntactic safety proof for these three languages.

The following page provides a detailed overview of the content
of Chapters 4 and Chapters 5, highlighting the split between gen-
eral definitions and properties (about the coeffect calculus) and
concrete definitions and properties (about concrete context-awre
language). Chapter 6 mirrors the same development for struc-
tural coeffect systems.

71

chapter 4

Coeffect calculus Language-specific

Syntax
Coeffect λ-calculus
(Section 4.2)

Extensions such as
?param and prev

(Section 4.2.4)

Type system
Abstract coeffect
algebra (Section 4.2.1)

Concrete instances
of the coeffect algebra
(Section 4.2.4)

Coeffect type system
parameterized by
the coeffect algebra
(Section 4.2.2)

Typing for language-
specific extensions
(Section 4.2.4)

Procedure for determining
a unique typing derivation
(Section 4.3)

Properties

Syntactic properties
of coeffect λ-calculus
(Section 4.4)

Uniqueness of the above
(Section 4.3)

chapter 5

Coeffect calculus Language-specific

Categorical
Indexed comonads
(Section 5.2.4)

Examples including indexed
product, list and maybe
comonads (Section 5.2.5)

Categorical semantics
of coeffect λ-calculus
(Section 5.2.6)

Translational
Functional target
language (Section 5.3.1)

Translation from coeffect
λ-calculus to target
language (Section 5.3.3)

Translation for language-
specific extensions (prev, ?p)
(Sections 5.4.1 and 5.4.2)

Operational

Abstract comonadically-
inspired primitives
(Section 5.3.3)

Concrete reduction rules for
comonadically-inspired primitives
(Sections 5.4.1 and 5.4.2)

Reduction rules for language-
specific extensions (prev, ?p)
(Sections 5.4.1 and 5.4.2)

Sketch of generalized
syntactic soundness
(Section 5.5)

Syntactic soundness
(Sections 5.4.1 and 5.4.2)

4T Y P E S F O R F L AT C O E F F E C T C A L C U L U S

In the previous chapter, we outlined a number of systems that capture how
computations access the environment in which they are executed. We iden-
tified two kinds of systems – flat systems capturing whole-context properties
and structural systems capturing per-variable properties. As we show in Sec-
tion 8.1, the systems can be further unified using a single abstraction, but
such abstraction is less powerful – i. e. its generality hides useful properties
that we can see when we consider the systems separately. For this reason,
we discuss flat coeffects (Chapter 4 and Chapter 5) and structural coeffects
(Chapter 6) separately.

In this chapter, we develop a flat coeffect calculus that provides a type
system for tracking per-context properties of context-aware programming
languages. The coeffect calculus captures the shared properties of such lan-
guages. It is parameterized by a flat coeffect algebra and can be instantiated
to track implicit parameters, liveness and number of required past values in
dataflow languages. To capture contextual properties in full generality, the
flat coeffect calculus permits multiple valid typing derivations for a given
term. To resolve the ambiguity arising from such generality, each concrete
context-aware language is also equipped with an algorithm for choosing
a unique typing derivation. This allows us to explore the language design
landscape, while still following the usual scoping rules for languages with
established approaches (e.g. implicit parameters in GHC).

In the next chapter, we give operational meaning for concrete coeffect
languages based on the flat coeffect calculus and we discuss their safety.

chapter structure and contributions

• We present a flat coeffect calculus as a type system that is parameterized
by a flat coeffect algebra (Section 4.2). We show that the system can be
instantiated to obtain three of the systems discussed in Section 3.2,
namely implicit parameters, liveness and dataflow.

• The coeffect calculus permits multiple typing derivations due to the
ambiguity inherent in contextual lambda abstraction. Each concrete
context-aware language based on the coeffect calculus must specify
how such ambiguities are to be resolved. We give the procedures
for choosing unique typing derivations for our three examples (Sec-
tion 4.3).

• We discuss equational properties of the calculus, covering type-preser-
vation for call-by-name and call-by-value reduction (Section 4.4). We
also extend the calculus with subtyping and pairs (Section 4.5).

4.1 introduction

In the previous chapter, we looked at three examples of systems that track
whole-context properties. The type systems for whole-context liveness (Sec-
tion 3.2.3) and whole-context dataflow (Section 3.2.4) have a similar struc-
ture in two ways. First, lambda abstraction duplicates their context demands.
Given a body with context demands r, the declaration site context as well

73

74 types for flat coeffect calculus

as the function arrow are annotated with r. Second, the context demands in
the type systems are combined using two different operators (representing
sequential and pointwise operations).

The system for tracking implicit parameters (Section 3.2.1) differs. In lambda
abstraction, it partitions the context demands between the declaration site
and the call site. Furthermore, the operator that combines context demands
is ∪ for both sequential and pointwise composition.

Despite the differences, the systems fit the same framework. This becomes
apparent when we consider the categorical structure (Chapter 5). Rather
than starting from the categorical semantics, we first explain how the sys-
tems can be unified syntactically (Section 4.1.1) and then provide the seman-
tics as an additional justification.

The development in this chapter can be seen as a counterpart to the well-
known development of effect systems [38]. Chapter 5 then links coeffects with
comonads in the same way in which effect systems have been linked with
monads [67]. The syntax and type system of the flat coeffect calculus follows
a similar style to that of effect systems [62, 106], but differs in the structure
of lambda abstraction as discussed briefly here and in Section 3.1.1 (the
relationship with monads is further discussed in Section 5.6).

4.1.1 A unified treatment of lambda abstraction

Recall the lambda abstraction rules for the implicit parameters coeffect sys-
tem (annotating contexts with sets of required parameters) and the dataflow
system (annotating contexts with the number of past required values):

(param)
Γ , x :τ1 @ r∪ s ` e : τ2
Γ @ r ` λx.e : τ1

s−→ τ2
(df1)

Γ , x :τ1 @n ` e : τ2
Γ @n ` λx.e : τ1

n−→ τ2

In order to capture both systems using a single calculus, we need a way
of rewriting the (df1) rule such that the annotation in the assumption is in
the form n ◦m for some operation ◦. For the dataflow system, this can be
achieved by using the min function:

(df2)
Γ , x :τ1 @ min(n,m) ` e : τ2
Γ @n ` λx.e : τ1

m−→ τ2

The rule (df1) is admissible in a system that includes the (df2) rule. That is, a
typing derivation using (df1) is also valid when using (df2). Furthermore, if
we include sub-typing rule (on annotations of functions) and subcoeffecting
rule (on annotations of contexts), then the reverse is also true – because
min(n,m) 6 m and min(n,m) 6 n. In other words (df2) permits an implicit
subcoeffecting (and sub-typing) that is not possible when using the (df1)
rule, but it has a structure that can be unified with (param).

4.2 flat coeffect calculus

This section describes the flat coeffect calculus. A small programming lan-
guage based on the λ-calculus with a type system that statically tracks con-
text demands. The calculus can capture different notions of context. The
structure of context demands is provided by a flat coeffect algebra (defined
in the next section) which is an abstract algebraic structure that can be in-
stantiated to model concrete context demands (sets of implicit parameters,
number of past values as integers or other information). Annotations that
specify context demands are written as r, s, t.

4.2 flat coeffect calculus 75

We enrich types and typing judgements with coeffect annotations r, s, t;
typing judgements are written as Γ @ r ` e : τ. The expressions of the calculus
are those of the λ-calculus with let binding. We also include a type num as
an example of a concrete base type with numerical constants written as n:

e ::= x | n | λx : τ.e | e1 e2 | let x = e1 in e2

τ ::= num | τ1
r−→ τ2

Note that the lambda abstraction in the syntax is written in the Church style
and requires a type annotation. This will be used in Section 4.3 where we
discuss how to find a unique typing derivation for context-aware computa-
tions. Using Church style lambda abstraction, we can directly focus on the
more interesting problem of finding unique coeffect annotations rather than
solving the problem of type reconstruction.

We discuss subtyping and pairs in Section 4.5. The type τ1
r−→ τ2 repre-

sents a function from τ1 to τ2 that requires additional context r. It can be
viewed as a pure function that takes τ1 with or wrapped in a context r.

In the categorically-inspired translation in the next chapter, the function
τ1

r−→ τ2 is translated into a function Crτ1 → τ2. However, the type construc-
tor Cr does not itself exist as a syntactic value in the coeffect calculus. This
is because we use comonads to define the semantics rather than embedding
them into the language as in the meta-language approaches (the distinction
has been discussed in Section 2.3.1). The annotations r are formed by an
algebraic structure discussed next.

4.2.1 Flat coeffect algebra

To make the flat coeffect system general enough, the algebra consists of three
operations. Two of them, ~ and ⊕, represent sequential and pointwise compo-
sition, which are mainly used in function application. The third operator, ∧
is used in lambda abstraction and represents splitting of context demands.

In addition to the three operations, the algebra also requires two special
values used to annotate variable access and constant access and a relation
that defines the ordering.

Definition 3. A flat coeffect algebra (C,~,⊕,∧, use, ign,6) is a set C together
with elements use, ign ∈ C, binary relation 6 and binary operations ~,⊕,∧ such
that (C,~, use) is a monoid, (C,⊕, ign) is an idempotent monoid, (C,∧) is a band
(idempotent semigroup) and (C,6) is a pre-order. That is, for all r, s, t ∈ C:

r ~ (s ~ t) = (r ~ s) ~ t use ~ r = r = r ~ use

r ⊕ (s ⊕ t) = (r ⊕ s) ⊕ t r ⊕ r = r ign ⊕ r = r = r ⊕ ign

r ∧ (s ∧ t) = (r ∧ s) ∧ t r ∧ r = r

if r 6 s and s 6 t then r 6 t t 6 t

In addition, the following distributivity axioms hold:

(r⊕ s) ~ t = (r~ t) ⊕ (s~ t)

t ~ (r⊕ s) = (t~ r) ⊕ (t~ s)

In two of the three systems, some of the operators of the flat coeffect algebra
coincide, but in the dataflow system all three are distinct. Similarly, the
two special elements coincide in some, but not all systems. The required
axioms are motivated by the aim to capture common properties of the three
examples, without unnecessarily restricting the system:

76 types for flat coeffect calculus

• The monoid (C,~, use) represents sequential composition of (semantic)
functions. The monoid axioms are required in order to form a category
structure in the semantics (Section 5.2).

• The idempotent monoid (C,⊕, ign) represents pointwise composition,
i. e. the case when the same context is passed to multiple (indepen-
dent) computations. The monoid axioms guarantee that usual syntac-
tic transformations on tuples and the unit value (Section 4.5) preserve
the coeffect. Idempotence holds for all our examples and allows us to
unify the flat and structural systems in Section 8.1.

• For the ∧ operation, we require associativity and idempotence. The
idempotence demand makes it possible to duplicate the given coef-
fects and place the same demand on both call site and declaration
site. Using the example from Section 4.1.1, this guarantees that the
rule (df1) is not a special case, but can always be derived from (df2).
In some cases, the operator forms a monoid with the unit being the
greatest element of the set C.

It is worth noting that, in some of the systems, the operators ⊕ and ∧ are the
least upper bound and the greatest lower bounds of a lattice. For example,
in dataflow computations, they are max and min respectively. However, this
duality does not hold for implicit parameters.

semiring . The ~ and ⊕ operations of the flat coeffect algebra together
with the use and ign values resemble semiring. As required by semiring laws,
both of the operations are associative; use and ign are the units of ~ and ⊕,
respectively, and the distributivity laws also hold. The two additional laws
of semiring that are not required by a flat coeffect algebra are symmetry of
~ and annihilation:

ign~ r = ign = r~ ign r⊕ s = s⊕ r

The symmetry of ⊕ holds for all our examples, but we do not include it
so that we do not unnecessarily restrict the system. The annihilation holds
for some of the examples (liveness and optimized dataflow in Section 4.2.4),
but not for all of them. In particular, it does not hold for implicit parameters
∅∪ r 6= ∅ and so requiring it would lead to a more restrictive structure than
is desirable.

ordering . The flat coeffect algebra includes a pre-order relation 6. This
will be used to introduce subcoeffecting and subtyping in Section 4.5.1, but
we make it a part of the flat coeffect algebra, as it will be useful for character-
ization of different kinds of coeffect calculi. When the idempotent monoid
(C,⊕, ign) is also commutative (i. e. forms a semi-lattice), the 6 relation can
be defined as the ordering of the semi-lattice:

r 6 s ⇐⇒ r ⊕ s = s

This definition is consistent with all three examples that motivate flat coef-
fect calculus, but it cannot be used with the structural coeffects (Chapter 6),
where it fails for the bounded reuse calculus. For this reason, we choose not
to use it for flat coeffect calculus either.

Furthermore, the use coeffect is often the top or the bottom element of the
semi-lattice. As discussed in Section 4.4, when this is the case, we are able
to prove certain syntactic properties of the calculus.

4.2 flat coeffect calculus 77

(var)
Γ @ use ` x : τ (x : τ ∈ Γ)

(const)
Γ @ ign ` n : num

(app)
Γ @ r ` e1 : τ1

t−→ τ2 Γ @ s ` e2 : τ1
Γ @ r ⊕ (s~ t) ` e1 e2 : τ2

(abs)
Γ , x :τ1 @ r ∧ s ` e : τ2
Γ @ r ` λx :τ1.e : τ1

s−→ τ2

(let)
Γ @ r ` e1 : τ1 Γ , x :τ1 @ s ` e2 : τ2
Γ @ s ⊕ (s~ r) ` let x = e1 in e2 : τ2

(sub)
Γ @ r ′ ` e : τ
Γ @ r ` e : τ (r ′6r)

Figure 22: Type system for the flat coeffect calculus

4.2.2 Type system

The type system for flat coeffect calculus is shown in Figure 22. Variables
(var) and constants (const) are annotated with special values provided by the
coeffect algebra.

The (abs) rule is defined as discussed in Section 4.1.1. The body is anno-
tated with context demands r∧ s, which are then split between the context-
demands on the declaration site r and context-demands on the call site s.

In function application (app), context demands of both expressions and
the function are combined. As discussed in Chapter 3, sequential compo-
sition is used to combine the context-demands of the argument s with the
context-demands of the function t. The result s~ t is then composed us-
ing pointwise composition with the context demands of the expression that
represents the function r, giving the coeffect r⊕ (s~t).

The type system also includes a rule for let-binding. The rule is not equiv-
alent to the derived rule for (λx.e2) e1, but it corresponds to one possible
typing derivation. As we show in 4.5.2, the typing used in (let) is more pre-
cise than the general rule that can be derived from (λx.e2) e1.

To guide understanding of the system, we also show a non-syntax-directed
(sub) rule for subcoeffecting. The rule states that an expression with context
demands r ′ can be treated as an expression with greater context demands
r. We return to subcoeffecting, subtyping and additional constructs such as
pairs in Section 4.5. When discussing the procedure for choosing unique
typing in Section 4.3, we consider only the syntax-directed part of the sys-
tem.

4.2.3 Understanding flat coeffects

Before proceeding, let us clarify how the typing judgements should be un-
derstood. The coeffect calculus can be understood in two ways discussed in
this and the next chapter. As a type system (Chapter 4), it provides analysis
of context dependence. As a semantics (Chapter 5), it specifies how context
is propagated. These two readings provide different ways of interpreting
the judgement Γ @ r ` e : τ and the typing rules used to define it.

78 types for flat coeffect calculus

• Analysis of context dependence. Syntactically, coeffect annotations
r model context demands. This means we can over-approximate them
and require more in the type system than is needed at runtime.

Syntactically, the typing rules are best read top-down (from assump-
tions to the consequent). In function application, the context demands
of multiple assumptions (arising from two sub-expressions) are merged;
in lambda abstraction, the demands of a single expression (the body)
are split between the declaration site and the call site.

• Semantics of context passing. Semantically, coeffect annotations r
model contextual capabilities. This means that we can throw away capa-
bilities, if a sub-expression requires fewer than we currently have.

Semantically, the typing rules should be read bottom-up (from the
consequent to assumptions). In application, the capabilities provided
to the term e1 e2 are split between the two sub-expressions; in abstrac-
tion, the capabilities provided by the call site and declaration site are
merged and passed to the body.

For example, using the syntactic reading, the operators ∧ and ⊕ represent
merging and splitting of context demands – in the (abs) rule, ∧ appears in
the assumption and the combined context demands of the body are split
between two positions in the conclusions; in the (app) rule, ⊕ appears in the
conclusion and merges two context demands from the assumptions.

The reason for this asymmetry follows from the fact that the context ap-
pears in a negative position in the semantic model (Section 5.2). It means that
we need to be careful about using the words split and merge, because they
can be read as meaning exactly the opposite things. To disambiguate, we al-
ways use the term context demands when using the syntactic view, especially
in the rest of Chapter 4, and context capabilities or just available context when
using the semantic view, especially in Chapter 5.

4.2.4 Examples of flat coeffects

The flat coeffect calculus generalizes the three flat systems discussed in Sec-
tion 3.2 of the previous chapter. We can instantiate it to a specific use just by
providing a flat coeffect algebra.

Example 1 (Implicit parameters). Assuming Id is a set of implicit parameter
names written ?p, the flat coeffect algebra is formed by (P(Id),∪,∪,∪, ∅, ∅,⊆).

For simplicity, assume that all parameters have the same type num and so
the annotations only track sets of names. The definition uses a set union
for all three operations. Both variables and constants are annotated with
∅ and the ordering is defined by ⊆. The definition satisfies the flat coeffect
algebra axioms because (S,∪, ∅) is an idempotent, commutative monoid. The
language has additional syntax for defining an implicit parameter and for
accessing it, together with associated typing rules:

e ::= . . . | ?p | let ?p = e1 in e2

(param)
Γ @ {?p} ` ?p : num

(letpar)
Γ @ r ` e1 : τ1 Γ @ s ` e2 : τ2

Γ @ r ∪ (s \ {?p)} ` let ?p = e1 in e2 : τ2

4.2 flat coeffect calculus 79

The (param) rule specifies that the accessed parameter ?p needs to be in the
set of required parameters r. As discussed earlier, we use the same type
num for all parameters, but it is also possible to define a coeffect calculus
that uses mappings from names to types.

The (letpar) rule is the same as the one discussed in Section 3.2.1. As both
of the rules are specific to implicit parameters, we write the operations on
coeffects directly using set operations – coeffect-specific operations such as
set subtraction are not a part of the unified coeffect algebra.

Example 2 (Liveness). Let L = {L,D} be a two-point lattice such that D v L

with join t and meet u. The flat coeffect algebra for liveness is then formed by
(L,u,t,u, L,D,v).

The liveness example is interesting because it does not require any addi-
tional syntactic extensions to the language. It annotates constants and vari-
ables with D and L, respectively and it captures how those annotation prop-
agate through the remaining language constructs.

As in Section 3.2.3, sequential composition ~ is modelled by the meet
operation u and pointwise composition ⊕ is modelled by join t. The two-
point lattice induces a commutative, idempotent monoid. Distributivity (rt
s) u t = (r u t) t (s u t) does not hold for every lattice, but it trivially holds
for the two-point lattice used here.

The definition uses join t for the ∧ operator that is used by lambda ab-
straction. This means that, when the body is live L, both declaration site and
call site are marked as live L. When the body is dead D, the declaration site
and call site can be marked as dead D, or as live L. The latter is less precise,
but it is a valid derivation that could also be obtained via sub-typing.

Example 3 (Dataflow). In dataflow, context is annotated with natural numbers
and the flat coeffect algebra is formed by (N,+, max, min, 0, 0,6).

As discussed earlier, sequential composition ~ is represented by + and
pointwise composition ⊕ uses max. For dataflow, we need a third separate
operator for lambda abstraction. Annotating the body with min(r, s) ensures
that both call site and declaration site annotations are equal or greater than
the annotation of the body.

As required by the axioms, (N,+, 0) and (N, max, 0) form monoids and
(N, min) forms a band. Note that dataflow is our first example where ~
is not idempotent. The distributivity axioms require addition to distribute
over maximum, which is easy to see.

A simple dataflow language includes an additional construct prev for
accessing the previous value in a stream with an additional typing rule that
looks as follows:

e ::= . . . | next e

(prev)
Γ @n ` e : τ

Γ @n+ 1 ` prev e : τ
As a further example that was not covered earlier, it is also possible to com-
bine liveness analysis and dataflow. In the above dataflow calculus, 0 de-
notes that we require the current value of some variable, but no previous
values. However, for constants, we do not even need the current value.

Example 4 (Optimized dataflow). In optimized dataflow, context is annotated
with natural numbers extended with the −∞ element. The flat coeffect algebra is
(N ∪ {−∞},+, max, min, 0,⊥,6) where m + n is −∞ whenever m = −∞ or
n = −∞ and min, max treat −∞ as the least element.

80 types for flat coeffect calculus

Note that (N∪ {−∞},+, 0) is a monoid for the extended definition of +; for
the bottom element 0 + ⊥ = ⊥ and for natural numbers 0 + n = n. The
structure (N, max,⊥) is also a monoid, because ⊥ is the least element and
so max(n,⊥) = n. Finally, (N, min) is a band and the distributivity axioms
also hold for N∪ {−∞}.

4.3 choosing a unique typing

As discussed in Chapter 3, the lambda abstraction rule for coeffect systems
differs from the rule for effect systems in that it does not delay all context
demands. In case of implicit parameters (Section 3.2.1), the demands can be
satisfied either by the call site or by the declaration site. In case of dataflow
and liveness, the rule discussed in Section 4.2 reintroduces similar ambigu-
ity because it allows multiple valid typing derivations.

Furthermore, the semantics of context-aware languages in Chapter 3 and
also in Chapter 5 is defined over typing derivations and so the meaning of
a program depends on the typing derivation chosen. In this section, we
specify how to choose the desired unique typing derivation in each of the
coeffect systems we consider.

The most interesting case is that of implicit parameters. Consider the fol-
lowing program written using the extended coeffect calculus:

let ?x = 1

let f = λy. ?x in
let ?x = 2 in f 0

There are two possible typings allowed by the typing rules discussed in
Section 4.2.2 that lead to two possible meanings of the program – evaluating
to 1 and 2, respectively:

• f : num
∅−→ num – in this case, the value of ?x is captured from the

declaration site and the program produces 1.

• f : num {?x}−−→ num – in this case, the parameter ?x is required from the
call site and the program produces 2.

The coeffect calculus intentionally allows both options, acknowledging the
fact that the choice needs to be made for each individual concrete context-
aware programming language. In the above case, one typing derivation rep-
resents dynamic binding and the other static binding, but more subtleties
arise when the nested expression uses multiple implicit parameters.

In this section, we discuss the specific choices of typing derivation for
implicit parameters, dataflow and liveness. We use the fact that the coeffect
calculus uses Church style syntax for lambda abstraction giving a type anno-
tation for the bound variable. This does not affect the handling of coeffects
(those are not defined by the type annotation), but it lets us prove unique-
ness of typing; a theorem showing that we define a unique way of assigning
coeffects to otherwise well-typed programs.

4.3.1 Implicit parameters

For implicit parameters we choose to follow the behaviour implemented
by GHC [59] where function abstraction captures all parameters that are
statically available at the declaration site and places all other demands on
the call site. For the example above, this means that the body of f captures

4.3 choosing a unique typing 81

(var)
x : τ ∈ Γ

Γ ;∆ @ use ` x : τ

(const)
Γ ;∆ @ ign ` n : num

(app)
Γ ;∆ @ r ` e1 : τ1

t−→ τ2 Γ ;∆ @ s ` e2 : τ1
Γ ;∆ @ r ⊕ (s~ t) ` e1 e2 : τ2

(let)
Γ ;∆ @ r ` e1 : τ1 Γ , x :τ1;∆ @ s ` e2 : τ2
Γ ;∆ @ s ⊕ (s~ r) ` let x = e1 in e2 : τ2

(param)
Γ ;∆ @ {?p} ` ?p : num

(abs)
Γ , x :τ1;∆ @ r ` e : τ2

Γ ;∆ @∆ ` λx :τ1.e : τ1
r\∆−−−→ τ2

(letpar)
Γ ;∆ @ r ` e1 : num Γ ;∆∪ {?p} @ s ` e2 : τ

Γ ;∆ @ r ∪ (s \ {?p)} ` let ?p = e1 in e2 : τ

Figure 23: Choosing unique typing for implicit parameters

the value of ?p available from the declaration site and f will be typed as a
function requiring no parameters (coeffect ∅). The program thus evaluates
to a numerical value 1.

To express this behaviour formally, we extend the coeffect type system to
additionally track implicit parameters that are currently in static scope. The
typing judgement becomes:

Γ ;∆ @ r ` e : τ

Here, ∆ is a set of implicit parameters that are in scope at the declaration site.
The modified typing rules are shown in Figure 23. The rules (var), (const),
(app) and (let) are modified to use the new typing judgement, but they sim-
ply propagate the information tracked by ∆ to all assumptions. The (param)
rule also remains unchanged – the implicit parameter access is still tracked
by the coeffect r meaning that we still allow a form of dynamic binding (the
parameter does not have to be in static scope).

The most interesting rule is (abs). The body of a function requires im-
plicit parameters tracked by r and the parameters currently in (static) scope
are ∆. The coeffect on the declaration site becomes ∆ (capture all available
parameters) and the latent coeffect attached to the function becomes r \∆
(require any remaining parameters from the call site). Finally, in the (letpar)
rule, we add the newly bound implicit parameter ?p to the static scope in
the sub-expression e2.

properties . If a program written in a coeffect language with implicit
parameters is well-typed in the type system presented in Figure 23 then
this identifies the unique preferred derivation for the program. We use this
unique typing derivation to give the semantics of a coeffect language with
implicit parameters in Chapter 5 and we also implement this algorithm as
discussed in Chapter 7.

The type system is more restrictive than the fully general one and it rejects
certain programs that could be typed using the more general system. This

82 types for flat coeffect calculus

is expected – we are restricting the fully general coeffect calculus to match
the typing and semantics of implicit parameters as known from Haskell.

In order to prove the uniqueness of typing theorem (Theorem 2), we fol-
low the standard approach [89] and first give the inversion lemma (Lemma 1).

Lemma 1 (Inversion lemma for implicit parameters). For the type system de-
fined in Figure 23:

1. If Γ ;∆ @ c ` x : τ then x : τ ∈ Γ and c = ∅.

2. If Γ ;∆ @ c ` n : τ then τ = num and c = ∅.

3. If Γ ;∆ @ c ` e1 e2 : τ2 then there is some τ1, r, s and t such that
Γ ;∆ @ r ` e1 : τ1

t−→ τ2 and Γ ;∆ @ s ` e2 : τ1 and also c = r∪ s∪ t.

4. If Γ ;∆ @ c ` let x = e1 in e2 : τ2 then there is some τ1, s and r such that
Γ ;∆ @ r ` e1 : τ1 and Γ , x :τ1;∆ @ s ` e2 : τ2 and also c = s∪ r.

5. If Γ ;∆ @ c ` ?p : num then ?p ∈ c and c = {?p}.

6. If Γ ;∆ @ c ` λx :τ1.e : τ then there is some τ2 such that τ = τ1
s−→ τ2

Γ , x :τ1;∆ @ r ` e : τ2 and c = ∆ and also s = r \∆.

7. If Γ ;∆ @ c ` let ?p = e1 in e2 : τ then there is some r, s such that
Γ ;∆ @ r ` e1 : num and Γ ;∆∪ {?p} @ s ` e2 : τ and also c = r ∪ (s \ {?p)}.

Proof. Follows from the individual rules given in Figure 23.

Theorem 2 (Uniqueness of coeffect typing for implicit parameters). In the
type system for implicit parameters defined in Figure 23, when Γ ;∆ @ r ` e : τ and
Γ ;∆ @ r ′ ` e : τ ′ then τ = τ ′ and r = r ′.

Proof. Suppose that (A) Γ ;∆ @ c ` e : τ and (B) Γ ;∆ @ c ′ ` e : τ ′. We show by
induction over the typing derivation of Γ ;∆ @ c ` e : τ that τ = τ ′ and c = c ′.

Case (abs): e = λx : τ1.e1 and c = ∆. τ = τ1
r\∆−−−→ τ2 for some r, τ2 and

also Γ , x : τ1;∆ @ r ` e : τ2. By case (6) of Lemma 1, the final rule of
the derivation (B) must have also been (abs) and this derivation has a
sub-derivation with a conclusion Γ , x :τ1;∆ @ r ` e : τ ′2. By the induction
hypothesis τ2 = τ ′2 and c = c ′ and therefore τ = τ ′.

Case (param): e = ?p, from Lemma 1, τ = τ ′ = int and c = c ′ = {?p}.

Cases (var), (const) are direct consequence of Lemma 1.

Cases (app), (let) and (letpar) similarly to (abs).

Finally, we note that unique typing derivations obtained using the type sys-
tem given in Figure 23 are valid typing derivations under the original flat
coeffect type system in Figure 22.

Theorem 3 (Admisibility of unique typing for implicit parameters). If Γ ;∆ @ r `
e : τ (using the rules in Figure 23) then also Γ @ r ` e : τ (using the rules in Fig-
ure 22 and Example 1).

Proof. Each typing rule in the unique type derivation is a special case of the
corresponding typing rule in the flat coeffect calculus (ignoring the addi-
tional context ∆); the splitting of coeffects in (abs) in Figure 23 is a special
case of splitting two sets using ∪.

4.3 choosing a unique typing 83

4.3.2 Dataflow and liveness

Resolving the ambiguity for liveness and dataflow computations is easier
than for implicit parameters. It suffices to use a lambda abstraction rule that
duplicates the coeffects of the body:

(idabs)
Γ , x :τ1 @ r ` e : τ2
Γ @ r ` λx.e : τ1

r−→ τ2

This is the rule that we originally used for liveness and dataflow computa-
tions in Chapter 3. This rule cannot be used with implicit parameters and so
the additional flexibility provided by the ∧ operator is needed in the general
flat coeffect calculus.

For liveness and dataflow, the (idabs) rule provides the most precise coef-
fect. Assume we have a lambda abstraction with a body that has coeffects r.
The ordinary (abs) rule requires us to find s, t such that r = s∧ t.

– For dataflow, this is r = min(s, t). The smallest s, t such that the equal-
ity holds are s = t = r.

– For liveness, this is r = st t. When r = L, the only solution is s = t = L;
when r = D, the most precise solution is s = t = D because D v L.

The notion of “more precise” solution can be defined in terms of subcoef-
fecting and subtyping. We return to this topic in Section 4.5.3 and we also
precisely characterise for which coeffect system is the (idabs) rule preferable
over the (abs) rule.

properties . If a program written in a coeffect language for liveness or
dataflow is well-typed according to the type system presented in Figure 22

with the (abs) rule replaced by (idabs), then the type system gives a unique
derivation. As for implicit parameters, this defines the semantics of coeffect
program (Chapter 5) and it is used in the implementation (Chapter 7).

We note that the unique typing derivation is admissible in the original
coeffect type system. For dataflow and liveness, this follows directly from
the fact that (idabs) is a special case of the (abs) rule and so we do not state
this explicitly as in Theorem 3 for implicit parameters.

In order to prove the uniqueness of typing theorem (Theorem 5), we first
need the inversion lemma (Lemma 4).

Lemma 4 (Inversion lemma for liveness and dataflow). For the type system
defined in Figure 22 with the (abs) rule replaced by (idabs):

1. If Γ @ c ` x : τ then x : τ ∈ Γ and c = use.

2. If Γ @ c ` n : τ then τ = num and c = ign.

3. If Γ @ c ` e1 e2 : τ2 then there is some τ1, r, s and t such that
Γ @ r ` e1 : τ1

t−→ τ2 and Γ @ s ` e2 : τ1 and also c = r ⊕ (s~ t).

4. If Γ @ c ` let x = e1 in e2 : τ2 then there is some τ1, s and r such that
Γ @ r ` e1 : τ1 and Γ , x :τ1 @ s ` e2 : τ2 and also c = s ⊕ (s~ r).

5. If Γ @ c ` λx :τ1.e : τ then there is some τ2 such that τ = τ1
c−→ τ2 and

Γ , x :τ1 @ c ` e : τ2.

Proof. Follows from the individual rules given in Figure 23.

84 types for flat coeffect calculus

Theorem 5 (Uniqueness of coeffect typing for liveness and dataflow). In
the type system for liveness and dataflow defined in Figure 22 with the (abs) rule
replaced by (idabs), when Γ @ r ` e : τ and Γ @ r ′ ` e : τ ′ then τ = τ ′ and r = r ′.

Proof. Suppose that (A) Γ @ c ` e : τ and (B) Γ @ c ′ ` e : τ ′. We show by
induction over the typing derivation of Γ @ c ` e : τ that τ = τ ′ and c = c ′.

Case (abs): e = λx :τ1.e1. Then τ = τ1
c−→ τ2 for some τ2 and Γ , x :τ1 @ c ` e :

τ2. By case (5) of Lemma 4, the final rule of the derivation (B) must have
also been (abs) and this derivation has a sub-derivation with a conclusion
Γ , x :τ1 @ c ′ ` e : τ ′2. By the induction hypothesis τ2 = τ ′2 and c = c ′ and
therefore also τ = τ ′.

Cases (var), (const) are direct consequence of Lemma 4.

Cases (app) and (let) similarly to (abs).

4.4 syntactic equational theory

Each of the concrete coeffect calculi discussed in this chapter has a different
notion of context, much like various effectful languages have different no-
tions of effects (such as exceptions or mutable state). However, in all of the
calculi, the context has a number of common properties that are captured
by the flat coeffect algebra. This means that there are equational properties
that hold for all of the coeffect systems. Further properties hold for systems
where the context satisfies additional properties.

In this section, we look at such shared syntactic properties. This accom-
panies the previous section, which provided a semantic justification for the
axioms of coeffect algebra with a syntactic justification. Operationally, this
section can also be viewed as providing a pathway to an operational seman-
tics for two of our systems (implicit parameters and liveness), which can be
based on syntactic substitution. As we discuss later, the notion of context
for dataflow is more complex.

4.4.1 Syntactic properties

Before discussing the syntactic properties of the general coeffect calculus
formally, it should be clarified what is meant by providing a “pathway to
operational semantics” in this section. We do that by contrasting syntactic
properties of coeffect systems with more familiar effect systems. Writing
e1[x ← e2] for a standard capture-avoiding syntactic substitution, the fol-
lowing equations define three syntactic reductions on the terms:

(λx.e1) e2 −→cbn e1[x← e2] (call-by-name)

(λx.e1) v −→cbv e1[x← v] (call-by-value)

e −→η λx.e x (η-expansion)

The rules capture syntactic reductions that can be performed in a general
calculus, without any knowledge of the specific notion of context. If the re-
ductions preserve the type of the expression (type preservation), then an
operational semantics can be defined as a repeated application of the rules,
together with additional domain-specific rules for each context-aware lan-
guage, until a specified normal form (i. e. a value) is reached.

In the rest of the section, we briefly outline the interpretation of the three
rules and then we focus on call-by-value (Section 4.4.2) and call-by-name
(Section 4.4.3) in more detail.

4.4 syntactic equational theory 85

The focus of this chapter is on the general coeffect system and so we
do not discuss the domain-specific reduction rules for individual context-
aware language. Some work on both operational and denotational seman-
tics of general coeffect systems has been done by Brunel et al. [18] and
Breuvart and Pagani [16]. We give formal semantics of implicit parameters
and dataflow in Chapter 5 by translation to a simple functional program-
ming language instead.)

call-by-name . In call-by-name, the argument is syntactically substituted
for all occurrences of a variable. It can be used as the basis for operational
semantics of purely functional languages. However, using the rule in effect-
ful languages breaks the type preservation property. For example, consider
a language with effect system where functions are annotated with sets of
effects such as {write}. A function λx.y is effect-free:

y :τ1 ` λx.y : τ1
∅−→ τ2 & ∅

Substituting an expression e with effects {write} for y changes the type of the
function by adding latent effects (without changing the immediate effects):

` λx.e : τ1
{write}−−−−→ τ2 & ∅

Similarly to effect systems, substituting a context-dependent computation e
for a variable y can add latent coeffects to the function type. However, this is
not the case for all flat coeffect calculi. For example, call-by-name reduction
preserves types and coeffects for the implicit parameters system. This means
that certain coeffect systems support call-by-name evaluation strategy and
could be embedded in a purely functional language (such as Haskell).

call-by-value . The call-by-value evaluation strategy is often used by
effectful languages. Here, an argument is first reduced to a value before
performing the substitution. In effectful languages, the notion of value is
defined syntactically. For example, in the Effect language [124], values are
identifiers x or functions (λx.e).

The notion of value in coeffect systems differs from the usual syntactic
understanding. A function (λx.e) does not defer all context demands of the
body e and may have immediate context demands. Thus we say that e is
a value if it is a value in the usual sense and has no immediate context
demands. We define this formally in Section 4.4.2.

The call-by-value evaluation strategy preserves typing for a wide range of
flat coeffect calculi, including all our three examples. However, it is rather
weak – in order to use it, the domain-specific semantics needs to provide
a way for reducing a context-dependent term Γ @ r ` e : τ to a value, i. e. a
term Γ @ use ` e ′ : τ with no context demands.

4.4.2 Call-by-value evaluation

As discussed in the previous section, call-by-value reduction can be used
for most flat coeffect calculi, but it provides a very weak general model.
The hard work of reducing a context-dependent term to a value has to be
provided for each system. Syntactic values are defined in the usual way:

v ∈ SynVal v ::= x | c | (λx.e)

n ∈ NonVal n ::= e1 e2 | let x = e1 in e2

e ∈ Expr e ::= v | n

86 types for flat coeffect calculus

The syntactic form SynVal captures syntactic values, but a context-dependency-
free value in coeffect calculus cannot be defined purely syntactically, because
a function (λx.e) may still have context demands – for example a function
(λx.prev x) has an immediate context demand 1 (requiring 1 past value of
all variables in the context).

Definition 4. An expression e is a value, written as val(e) if it is a syntactic
value, i. e. e ∈ SynVal and it has no context-dependencies, i. e. Γ @ use ` e : τ.

Call-by-value substitution substitutes a value, with context demands use, for
a variable, whose access is also annotated with use. Thus, it does not affect
the type and context demands of the term:

Lemma 6 (Call-by-value substitution). In a flat coeffect calculus with a coeffect
algebra (C,~,⊕,∧, use, ign,6), given a value Γ @ use ` v : σ and an expression
Γ , x : σ @ r ` e : τ, then substituting v for x does not change the type and context
demands, that is Γ @ r ` e[x← v] : τ.

Proof. By induction over the type derivation, using the fact that x and v are
annotated with use and that variables are never removed from the set Γ in
the flat coeffect calculus.

The substitution lemma 6 holds for all flat coeffect systems. However, prov-
ing that call-by-value reduction preserves typing requires an additional con-
straint on the flat coeffect algebra, which relates the ∧ and ⊕ operations.
This is captured by the approximation property:

r∧ t 6 r⊕ t (approximation)

Intuitively, this specifies that the ∧ operation (splitting of context demands)
under-approximates the actual context capabilities while the ⊕ operation
(combining of context demands) over-approximates the actual context de-
mands.

The property holds for the three systems we consider – for implicit pa-
rameters, this is an equality; for liveness and dataflow (which both use a
lattice), the greatest lower bound is smaller than the least upper bound.

Assuming −→cbv is call-by-value reduction that reduces the term (λx.e) v
to a term e[x← v], the type preservation theorem is stated as follows:

Theorem 7 (Type preservation for call-by-value). In a flat coeffect system sat-
isfying the approximation property, that is r∧ t 6 r⊕ t, if Γ @ r ` e : τ and
e −→cbv e

′ then Γ @ r ` e ′ : τ.

Proof. Consider the typing derivation for the term (λx.e) v before reduction:

Γ , x :τ1 @ r ∧ t ` e : τ2
Γ @ r ` λx.e : τ1

t−→ τ2 Γ @ use ` v : τ1
Γ @ r ⊕ (use~ t) ` (λx.e) v : τ2

Γ @ r ⊕ t ` (λx.e) v : τ2
The final step simplifies the coeffect annotation using the fact that use is a
unit of ~. From Lemma 6, e[x ← v] has the same coeffect annotation as e.
As r∧ t 6 r⊕ t, we can apply subcoeffecting:

(sub)
Γ @ r ∧ t ` e[x← v] : τ2

Γ @ r ⊕ t ` e[x← v] : τ2

Comparing the final conclusions of the above two typing derivations shows
that the reduction preserves type and coeffect annotation.

4.4 syntactic equational theory 87

4.4.3 Call-by-name evaluation

When reducing the expression (λx.e1) e2 using the call-by-name strategy,
the sub-expression e2 is substituted for all occurrences of the variable v in
an expression e1. As discussed in Section 4.4.1, the call-by-name strategy
does not in general preserve the type of a term in coeffect calculi, but it does
preserve the typing in two interesting cases.

Typing is preserved for different reasons in two of our systems, so we
briefly review the concrete examples. Then, we prove the substitution lemma
for two special cases of flat coeffects (Lemma 8 and Lemma 9) and finally, we
state the conditions under which typing preservation holds for flat coeffect
calculi (Theorem 10).

dataflow. Reducing an expression (λx.e1) e2 to e1[x← e2] does not al-
ways preserve the type of the expression in dataflow languages. This case is
similar to the example shown earlier with effectful computations. As a min-
imal example, consider the substitution of a context-dependent expression
prev z for a variable y in a function λx.y:

y :τ1, z :τ1 @ 0 ` λx.y : τ1
0−→ τ2 (before)

z :τ1 @ 1 ` λx.prev z : τ1
1−→ τ2 (after)

After the substitution, the coeffect of the body is 1. The rule for lambda
abstraction requires that 1 = min(r, s) and so the least solution is to set
both r, s to 1. The substitution this affects the coeffects attached both to the
function type and the overall context.

Semantically, the coeffect over-approximates the actual demands – at run-
time, the code does not actually access a previous value of the argument
x. This fact cannot be captured by a flat coeffect type system, but it can be
captured using the structural system discussed in Chapter 6.

implicit parameters . In dataflow, substituting prev x for a variable
y in an expression λz.y changes the context demands attached to the type
of the function. This is the case not just for the preferred unique typing
derivation, but for all possible typings that can be obtained using the (abs)
rule. However, this is not the case for all systems. Consider a substitution
λx.y[y← ?p] that substitutes an implicit parameter access ?p for a free vari-
able y under a lambda:

y :τ1 @ ∅ ` λx.y : τ1
∅−→ τ2 (before)

∅ @ {?p} ` λx.?p : τ1
∅−→ τ2 (after)

The (after) judgement shows one possible typing of the body – one that does
not change the coeffects of the function type and attaches all additional coef-
fects (implicit parameters) to the context. In case of implicit parameters (and,
more generally, systems with set-like annotations) this is always possible.

liveness . In liveness, the type preservation also holds, but for a different
reason. Consider a substitution λx.y[y ← e] that substitutes an arbitrary
expression e of type τ1 with coeffects r for a variable y:

y :τ1 @ L ` λx.y : τ1
L−→ τ2 (before)

∅ @ L ` λx.e : τ1
L−→ τ2 (after)

In the original expression, both the overall context and the function type are
annotated with L, because the body contains a variable access. An expres-

88 types for flat coeffect calculus

sion e can always be treated as being annotated with L (because L is the top
element of the lattice) and so we can also treat e as being annotated with
coeffects L. As a result, substitution does not change the coeffect.

a grand cbn reduction theorem . The above examples (implicit pa-
rameters and liveness) demonstrate two particular kinds of coeffect algebra
for which call-by-name reduction preserves typing. Proving the type preser-
vation separately provides more insight into how the systems work. We
consider the two cases separately, but find a more general formulation for
both of them.

Definition 5. We call a flat coeffect algebra top-pointed if use is the greatest (top)
coeffect scalar (∀r ∈ C . r6 use) and bottom-pointed if it is the smallest (bottom)
element (∀r ∈ C . r> use).

Liveness is an example of top-pointed coeffects as variables are annotated
with L and D 6 L, while implicit parameters and dataflow are examples
of bottom-pointed coeffects. For top-pointed flat coeffects, the substitution
lemma holds without additional demands:

Lemma 8 (Top-pointed substitution). In a top-pointed flat coeffect calculus with
an algebra (C,~,⊕,∧, use, ign,6), when we substitute an expression es with arbi-
trary coeffects s for a variable x in er, the resulting expression is still typeable in a
context with the original coeffect of er:

Γ @ s ` es : τs ∧ Γ1, x : τs, Γ2 @ r ` er : τr
⇒ Γ1, Γ , Γ2 @ r ` er[x← es] : τr

Proof. Using subcoeffecting (s6 use) and a variation of Lemma 6.

As variables are annotated with the top element use, we can substitute the
term es for any variable and use subcoeffecting to get the original typing
(because s6 use).

In a bottom pointed coeffect system, substituting e for x increases the
context demands. However, if the system satisfies the strong condition that
∧ = ~ = ⊕ then the context demands arising from the substitution can
be associated with the context Γ , leaving the context demands of a function
value unchanged. As a result, substitution does not break soundness as in ef-
fect systems. The requirement ∧ = ~ = ⊕ holds for our implicit parameters
example (all three operators are a set union) and for other coeffect systems
that track sets of context demands discussed in Section 3.2.2. It allows the
following substitution lemma:

Lemma 9 (Bottom-pointed substitution). In a bottom-pointed flat coeffect calcu-
lus with an algebra (C,~,⊕,∧, use, ign,6) where ∧ = ~ = ⊕ is an idempotent
and commutative operation and r6 r ′ ⇒ ∀s.r~ s 6 r ′~ s then:

Γ @ s ` es : τs ∧ Γ1, x : τs, Γ2 @ r ` er : τr
⇒ Γ1, Γ , Γ2 @ r~ s ` er[x← es] : τr

Proof. By induction over `, using the idempotent, commutative monoid
structure to keep s with the free-variable context. See Appendix B.1.

The flat system discussed here is flexible enough to let us always re-associate
new context demands (arising from the substitution) with the free-variable
context. In contrast, the structural system discussed in Chapter 6 is precise

4.4 syntactic equational theory 89

enough to keep the coeffects associated with individual variables, thus pre-
serving typing in a complementary way.

The two substitution lemmas discussed above show that the call-by-name
evaluation strategy can be used for certain coeffect calculi, including live-
ness and implicit parameters. Assuming −→cbn is the standard call-by-name
reduction, the following theorem holds:

Theorem 10 (Type preservation for call-by-name). In a coeffect system that
satisfies the conditions for Lemma 8 or Lemma 9, if Γ @ r ` e : τ and e →cbn e

′

then it is also the case that Γ @ r ` e ′ : τ.

Proof. For top-pointed coeffect algebra (using Lemma 8), the proof is similar
to that of Theorem 7, using the facts that s6 use and r∧ t = r⊕ t. For
bottom-pointed coeffect algebra, consider the typing derivation for the term
(λx.er) es before reduction:

Γ , x : τs @ r ` er : τr
Γ @ r ` λx.er : τs

r−→ τr Γ @ s ` es : τs
Γ @ r ⊕ (s~ r) ` (λx.er) es : τr

The derivation uses the idempotence of ∧ in the first step, followed by the
(app) rule. The type of the term after substitution, using Lemma 9 is:

Γ , x : τs @ r ` er : τr Γ @ s ` es : τs
Γ , x : τr @ r ~ s ` er[x← es] : τs

From the assumptions of Lemma 9, we know that ~ = ⊕ and the operation
is idempotent, so trivially: r ~ s = r ⊕ (s~ r)

expansion theorem . The η-expansion (local completeness) is similar
to β-reduction (local soundness) in that it holds for some flat coeffect sys-
tems, but not for all. Out of the examples we discuss, it holds for implicit
parameters, but does not hold for liveness and dataflow.

Recall that η-expansion turns e into λx.e x. In the case of liveness, the ex-
pression e may require no variables (both immediate and latent coeffects are
marked as D). However, the resulting expression λx.e x accesses a variable,
marking the context and function argument as live. In case of dataflow, the
immediate coeffects are made larger by the lambda abstraction – the context
demands of the function value are imposed on the declaration site of the
new lambda abstraction. We remedy this limitation in the next chapter.

However, η-expansion preserves the type for implicit parameters and,
more generally, for any flat coeffect algebra where ⊕ = ∧. Assuming →η
performs an expansion that turns a function-typed term e to a syntactic
function λx.e x, the following theorem holds:

Theorem 11 (Type preservation of η-expansion). In a bottom-pointed flat coef-
fect calculus with an algebra (C,~,⊕,∧, use, ign,6) where ∧ = ⊕, if Γ @ r ` e :

τ1
s−→ τ2 and e→η e ′ then Γ @ r ` e ′ : τ1

s−→ τ2.

Proof. The following derivation shows that λx.f x has the same type as f:

Γ @ r ` f : τ1
s−→ τ2 x :τ1 @ use ` x :τ1

Γ , x :τ1 @ r ⊕ (use~ s) ` f x : τ2
Γ , x :τ1 @ r ⊕ s ` f x : τ2
Γ , x :τ1 @ r ∧ s ` f x : τ2
Γ @ r ` λx.f x : τ1

s−→ τ2

The derivation starts with the expression e and derives the type for λx.e x.
The application yields context demands r⊕ s. In order to recover the original

90 types for flat coeffect calculus

(sub-trans)
τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

(sub-fun)
τ ′1 <: τ1 τ2 <: τ

′
2 r ′>r

τ1
r−→ τ2 <: τ

′
1
r ′−→ τ ′2

(sub-refl)
τ <: τ

Figure 24: Subtyping rules for flat coeffect calculus

typing, this must be equal to r∧ s. The derivation shows just one possible
typing – the expression λx.e x has other types – but this suffices.

In summary, flat coeffect calculi do not in general permit call-by-name eval-
uation, but there are several cases where call-by-name evaluation can be
used. These include liveness and implicit parameters. Moreover, for implicit
parameters the η-expansion holds as well, giving us both local soundness
and local completeness as coined by Pfenning and Davies [88].

4.5 syntactic properties and extensions

The flat coeffect algebra introduced in Section 4.2 requires a number of ax-
ioms. The axioms are required for three reasons – to be able to define the
categorical structure in Section 5.2, to prove equational properties in Sec-
tion 4.4 and finally, to guarantee intuitive syntactic properties for constructs
such as λ-abstraction and pairs in context-aware calculi.

In this section, we turn to the last point. We consider subcoeffecting and
subtyping (Section 4.5.1), discuss what syntactic equivalences are permitted
by the properties of ∧ (Section 4.5.3) and we extend the calculus with pairs
and units and discuss their syntactic properties (Section 4.5.4).

4.5.1 Subcoeffecting and subtyping

The flat coeffect algebra includes the 6 relation which captures the ordering of
coeffects and can be used to define subcoeffecting. Syntactically, an expres-
sion with context demands r ′ can be treated as an expression with a greater
context. This is captured by the (sub) rule shown in Figure 22 (recall that for
implicit parameters 6 = ⊆):

(sub)
Γ @ r ′ ` e : τ
Γ @ r ` e : τ (r ′6r)

Semantically, when read from the consequent to the assumption, this means
that we can drop some of the provided context. For example, if an expres-
sion requires implicit parameters {?p} it can be treated as requiring {?p, ?q}.
The semantic function will then be provided with a dictionary containing
both assignments and it can ignore (or even actively drop) the value for the
unused parameter ?q.

Subcoeffecting only affects the immediate coeffects attached to the free-
variable context. In Figure 24, we add sub-typing on function types, making
it possible to treat a function with smaller context demands as a function
with greater context demands:

(sub-typ)
Γ @ r ` e : τ τ <: τ ′

Γ @ r ` e : τ ′

4.5 syntactic properties and extensions 91

Derived Definition Simplified

Implicit parameters s1 ∪ (s2 ∪ r) s∪ (s∪ r) s∪ r
Liveness s1 u (s2 t r) su (st r) s

Dataflow max(s1, s2 + r) max(s, s+ r) s+ r

Figure 25: Simplified coeffect annotation for let binding in three flat calculi in-
stances

The definition uses the standard reflexive and transitive <: operator. As
the (sub-fun) shows, the function type is contra-variant in the input and
co-variant in the output. The (sub-typ) rule allows using sub-typing on ex-
pressions in the coeffect calculus.

4.5.2 Typing of let binding

Recall the (let) rule in Figure 22. It annotates the expression let x = e1 in e2
with context demands s ⊕ (s~ r). This rule can be derived from the typ-
ing derivation for an expression (λx.e2) e1 as a special case. We use the
idempotence of ∧ as follows:

(app)
Γ @ r ` e1 : τ1

Γ , x :τ1 @ s ` e2 : τ2

Γ @ s ` λx.e2 : τ1
s−→ τ2

(abs)

Γ @ s ⊕ (s~ r) ` (λx.e2) e1 : τ2

This is one possible derivation, but other derivations may be valid for con-
crete coeffect systems. The design decision of using this particular deriva-
tion for the typing of let is motivated by the fact that the typing obtained
using the special rule is more precise for all the examples considered in
this chapter. To see this, assume an arbitrary splitting s = s1∧ s2. Figure 25

shows the coeffect annotation derived from (λx.e2) e1, the coeffect annota-
tion obtained by the (let) rule and the simplified coeffect annotation using
the particular flat coeffect algebras.

It is perhaps somewhat unexpected that the annotation can be simplified
in different ways for different examples. However, for all our systems, the
simplified annotation (right column in Table 25) is more precise than the
original (left column). Recall that s = s1∧ s2. The following holds:

s1 ∪ (s2 ∪ r) ⊇ (s1 ∪ s2)∪ r (implicit parameters)

s1 u (s2 t r) w (s1 u s2) (liveness)

max(s1, s2 + r) > min(s1, s2) + r (dataflow)

In other words, the inequality states that using idempotence, we get a more
precise typing. Using the > operator of flat coeffect algebra, this property
can be expressed in general as:

s1 ⊕ (s2~ r) > (s1∧ s2) ⊕ ((s1∧ s2)~ r)

This property does not follow from the axioms of the flat coeffect algebra.
To make the flat coeffect system as general as possible, we do not in general
require it as an additional axiom, although the above examples provide a
reasonable basis for using the specialized (let) rule in the flat coeffect system.

92 types for flat coeffect calculus

4.5.3 Properties of lambda abstraction

In Section 4.1.1, we discussed how to reconcile two typings for lambda ab-
straction – for implicit parameters, the lambda function needs to split con-
text demands using r ∪ s, but for dataflow and liveness it suffices to dupli-
cate the demand r of the body. We consider coeffect calculi for which the
simpler duplication of coeffects is sufficient.

simplified abstraction. Recall that (C,∧) is a band, that is, ∧ is
idempotent and associative. The idempotence means that the context de-
mands of the body can be required from both the declaration site and the
call site. In Section 4.3.2, we introduced the (idabs) rule (repeated below for
reference), which uses the idempotence and duplicates coeffect annotations:

(idabs)
Γ , x :τ1 @ r ` e : τ2
Γ @ r ` λx.e : τ1

r−→ τ2
(abs)

Γ , x :τ1 @ r∧ r ` e : τ2
Γ @ r ` λx.e : τ1

r−→ τ2

To derive (idabs), we use idempotence on the body annotation r = r ∧ r

and then use the standard (abs) rule. So, (idabs) follows from (abs), but the
other direction is not necessarily the case. The following condition identifies
coeffect calculi where (abs) can be derived from (idabs).

Definition 6. A flat coeffect algebra (C,~,⊕,∧, use, ign,6) is strictly oriented
if for all s, r ∈ C it is the case that r∧ s 6 r.

Remark 12. For a flat coeffect calculus with a strictly oriented algebra, equipped
with subcoeffecting and subtyping, the standard (abs) rule can be derived from the
(idabs) rule.

Proof. The following derives the conclusion of (abs) using (idabs), subcoef-
fecting, sub-typing and the fact that the algebra is strictly oriented:

(typ)

(sub)

(idabs)
Γ , x :τ1 @ r∧ s ` e : τ2

Γ @ r∧ s ` λx.e : τ1
r∧s−−−→ τ2

Γ @ r ` λx.e : τ1
r∧s−−−→ τ2

(r 6 r∧s)

Γ @ r ` λx.e : τ1
s−→ τ2

(r 6 r∧s)

The practical consequence of Remark 12 is that, for strictly oriented coeffect
calculi (such as our liveness and dataflow computations), the (idabs) rule not
only determines a unique typing derivation (as discussed in Section 4.3.2),
but it gives (together with subtyping and subcoeffecting) an equivalent type
system.

symmetry. The ∧ operation is idempotent and associative. In all of the
three examples considered in this chapter, the operation is also symmetric.
To make our definitions more general, we do not require this to be the case
for all flat coeffect systems. However, systems with symmetric ∧ have the
following property.

Remark 13. For a flat coeffect calculus such that r∧ s = s∧ r, assuming that
r ′, s ′, t ′ is a permutation of r, s, t:

Γ , x :τ1,y : τ2 @ r∧ s∧ t ` e : τ3

Γ @ r ′ ` λx.λy.e : τ1
s ′−→ (τ2

t ′−→ τ3)

4.5 syntactic properties and extensions 93

(pair)
Γ @ r ` e1 : τ1 Γ @ s ` e2 : τ2
r⊕ s @ Γ ` (e1, e2) : τ1 × τ2

(proj)
Γ @ r ` e : τ1 × τ2
Γ @ r ` πi e : τi

(unit)
Γ @ ign ` () : unit

Figure 26: Typing rules for pairs and units

Intuitively, this means that the context demands of a function with multiple
arguments can be split arbitrarily between the declaration site and (multiple)
call sites.

4.5.4 Language with pairs and unit

To focus on the key aspects of flat coeffect systems, the calculus introduced
in Section 4.2 consists only of variables, abstraction, application and let bind-
ing. Here, we extend it with pairs and the unit value to sketch how it can
be turned into a more complete programming language and to further mo-
tivate the axioms for ⊕. The syntax of the language is extended as follows:

e ::= . . . | () | e1, e2
τ ::= . . . | unit | τ× τ

The typing rules for pairs and the unit value are shown in Figure 26. The
unit value (unit) is annotated with the ign coeffect (the same as other con-
stants). Pairs, created using the (e1, e2) expression, are annotated with a
coeffect that combines the coeffects of the two sub-expressions using the
pointwise operator ⊕. The operator models the case when the (same) avail-
able context is split and passed to two independent sub-expressions. Finally,
the (proj) rule is uninteresting, because πi can be viewed as a unary function.

properties . Pairs and the unit value in a lambda calculus typically form
a monoid up to isomorphism. Assuming ' is an isomorphism that per-
forms appropriate transformation on values, without affecting other proper-
ties (here, coeffects) of the expressions, the monoid axioms then correspond
to the requirement that (e1, (e2, e3)) ' ((e1, e2), e3) (associativity) and the
demand that ((), e) ' e ' (e, ()) (unit).

Thanks to the properties of ⊕, the flat coeffect calculus obeys the monoid
axioms for pairs. In the following, we assume that assoc is a pure function
transforming a pair (x1, (x2, x3)) to a pair ((x1, x2), x3). We write e ≡ e ′

when for all Γ , τ and r, it is the case that Γ @ r ` e : τ if and only if Γ @ r ` e ′ : τ.

Remark 14. For a flat coeffect calculus with pairs and units, the following holds:

assoc (e1, (e2, e3)) ≡ ((e1, e2), e3) (associativity)

π1 (e, ()) ≡ e (right unit)

π2 ((), e) ≡ e (left unit)

Proof. Follows from the fact that (C,⊕, ign) is a monoid and assoc, π1 and
π2 are pure functions (treated as constants in the language).

The Remark 14 motivates the demand of the monoid structure (C,⊕, ign) of
the flat coeffect algebra. We require only unit and associativity axioms. In

94 types for flat coeffect calculus

our three examples, the ⊕ operator is also symmetric, which additionally
guarantees that (e1, e2) ' (e2, e1), which is a property that is expected to
hold for λ-calculus.

4.6 summary

This chapter presented the flat coeffect calculus – a unified system for tracking
whole-context properties of computations, that is properties related to the
execution environment or the entire context in which programs are executed.
This is the first of the two coeffect calculi developed in this thesis.

The flat coeffect calculus is parameterized by a flat coeffect algebra that
captures the structure of the information tracked by the type system. We
instantiated the system to capture three specific systems, namely liveness,
dataflow and implicit parameters. However, the system is more general and
can capture various other applications outlined in Section 3.2.

An inherent property of flat coeffect systems is the ambiguity of the typ-
ing for lambda abstraction. The body of a function requires certain context,
but the context can be often provided by either the declaration site or the call
site. Resolving this ambiguity has to be done differently for each concrete
coeffect system, depending on its specific notion of context. We discussed
this for implicit parameters, dataflow and liveness in Section 4.3 and noted
that the result for dataflow and liveness generalizes for any coeffect calculus
with strictly oriented coeffect algebra (Remark 12).

Finally, we introduced the equational theory for flat coeffect calculus. Al-
though each concrete instance of flat coeffect calculus models a different
notion of context, there are syntactic properties that hold for all flat coef-
fect systems satisfying certain additional conditions. In particular, two type
preservation theorems prove that the operational semantics for two classes
of flat coeffect calculi (including liveness and implicit parameters) can be
based on standard call-by-name reduction.

In the next section, we move from abstract treatment of the flat coeffect
calculus to a more concrete discussion. We explain its category-theoretical
motivation, we use it to define translational semantics (akin to Haskell’s
“do” notation) and we prove a soundness result that well-typed programs
in flat coeffect calculi for implicit parameters and dataflow do not get stuck
in the translated version.

5S E M A N T I C S O F F L AT C O E F F E C T C A L C U L U S

The flat coeffect calculus introduced in the previous chapter uniformly cap-
tures a number of context-aware systems outlined in Chapter 3. The coeffect
calculus can be seen as a language framework that simplifies the construction
of concrete domain-specific coeffect languages. In the previous chapter, we
discussed how it provides a type system that tracks the required context.
In this chapter, we show that the language framework also provides a way
for defining the semantics of concrete domain-specific coeffect languages,
guides their implementation and simplifies safety proofs.

This is done using a comonadically-inspired translation. We translate a pro-
gram written using the coeffect calculus into a simple functional language
with additional coeffect-specific comonadically-inspired primitives that im-
plement the concrete notion of context-awareness.

We use comonads in a syntactic way, following the example of Wadler
and Thiemann [124] and Haskell’s use of monads. The translation is the
same for all coeffect languages, but the safety depends on the concrete
coeffect-specific comonadically-inspired primitives. We prove the soundness
of two concrete coeffect calculi (dataflow and implicit parameters). We note
that the proof crucially relies on a relationship between coeffect annotations
(provided by the type system) and the comonadically-inspired primitives
(defining the semantics), which makes it easy to extend it to other concrete
context-aware languages.

chapter structure and contributions

• We introduce indexed comonads, a generalization of comonads, a category-
theoretical dual of monads (Section 5.2) and we discuss how they pro-
vide semantics for coeffect calculus. This provides an insight into how
(and why) the coeffect calculus works and shows an intriguing link
with effects and monads.

• We use indexed comonads to guide our translational semantics of co-
effect calculus (Section 5.3). We define a simple sound functional pro-
gramming language (with type system and operational semantics). We
extend it with uninterpreted comonadically-inspired primitives and
define a translation that turns well-typed context-aware coeffect pro-
grams into programs of our functional language.

• For two sample coeffect calculi discussed earlier (dataflow and implicit
parameters), we give reduction rules for the comonadically-inspired
primitives and we extend the progress and preservation proofs, show-
ing that well-typed programs produced by translation from two coef-
fect languages do not “get stuck” (Section 5.4).

• We note that the proof for concrete coeffect language (dataflow and
implicit parameters) can be generalized – rather than reconsidering
progress and preservation of the whole target language, we rely just
on the correctness of the coeffect-specific comonadically-inspired prim-
itives and abstraction mechanism provided by languages such as ML
and Haskell (Section 5.6).

95

96 semantics of flat coeffect calculus

5.1 introduction and safety

This chapter links together a number of different technical developments
presented in this thesis. We take the flat coeffect calculus introduced in
Chapter 4, define its abstract comonadic semantics and use it to define a transla-
tion that gives a concrete operational semantics to a number of concrete context-
aware languages. The type system is used to guarantee that the resulting
programs are correct. Finally, the development in this chapter is closely mir-
rored by the implementation presented in Chapter 7, which implements the
translation together with an interpreter for the target language.

In Chapter 1, we claim that coeffects make writing context-aware pro-
grams less error-prone. In this chapter, we substantiate this claim by show-
ing that programs written in the coeffect calculus and evaluated using the
translation provided here do not “get stuck”.

To provide an intuition, consider two context-aware programs. The first
calls a function that adds two implicit parameters in a context where one
of them is defined. The second calculates the difference between the current
and the previous value in a dataflow computation. For comparison, we show
the code written in a coeffect dataflow language (on the left) and using
standard ML-like libraries (on the right):

let add = fun x→
?one+ ?two in

let ?one = 10 in

add 0

let add = fun x params→
lookup "one" params +

lookup "two" params in

add 0 (cons "one" 10 params)

let di� = fun x→
x− prev x

let di� = fun x→
List.head x− List.head (List.tail x)

The add function (on the left) has a type int
{?one,?two}−−−−−−−→ int. We call it in a

context containing ?one and so the coeffect of the program is {?two}. The
safety property for implicit parameters (Theorem 34) guarantees that, when
executed in a context that provides a value for the implicit parameter ?one,
the program reduces to a value of the correct type (or never terminates).

If we wrote the code without coeffects (on the right), we could use a
dynamic map to pass around a dictionary of parameters (the lookup function
obtains a value and add adds a new assignment to the map). In that case,
the type of add is just int → int and so there is no static account of which
implicit parameters it will need.

Similarly, the di� function can be implemented in terms of lists (on the
right) as a function of type num list→ num. The function fails for input lists
containing only zero or one elements and this is not reflected in the type
and is not enforced by the type checker.

Using coeffects (on the left), the function has a type num
1−→ num meaning

that it requires one past value (in addition to the current value). The safety
property for dataflow (Theorem 28) shows that, when called with a context
that contains the required number of past values as captured by the coeffect
type system, the function does not get stuck.

In summary, a coeffect type system captures certain runtime demands of
context-aware programs and (as we show in this chapter), eliminates com-
mon errors related to working with context.

5.2 categorical motivation 97

5.2 categorical motivation

The type system of the flat coeffect calculus arises syntactically, as a gener-
alization of the examples discussed in Chapter 3, but we can also obtain it
by looking at the categorical semantics of context-dependent computations.
This is a direction that we explore in this section. Although the development
presented here is interesting in its own, our main focus is using categorical
semantics to motivate and explain the translation discussed in Section 5.3.

5.2.1 Comonads are to coeffects what monads are to effects

The development in this chapter closely follows the example of effectful
computations. Effect systems provide a type system for tracking effects
and monadic translation can be used as a basis for implementing effectful
domain-specific languages (e.g. through the “do” notation in Haskell).

The correspondence between effect systems and monads has been pointed
out by Wadler and Thiemann [124] and further explored by Atkey [7] and
Vazou and Leijen [72]. This line of work relates effectful functions τ1

σ−→ τ2
to monadic computations τ1 → Mστ2. In this chapter, we show a simi-
lar correspondence between coeffect systems and comonads. However, due to
the asymmetry of λ-calculus, defining the semantics in terms of comonadic
computations is not a simple mechanical dualisation of the work on effect
systems and monads.

Our approach is inspired by the work of Uustalu and Vene [114] who
present the semantics of contextual computations (mainly for dataflow) in
terms of comonadic functions Cτ1 → τ2. We introduce indexed comonads
that annotate the structure with information about the required context,
i. e. Crτ1 → τ2. This is similar to the recent development on monads and
effects by Katsumata [51] who parameterizes monads in a similar way to
our indexed comonads.

5.2.2 Categorical semantics

As discussed in Section 2.3, a categorical semantics interprets terms as mor-
phisms in some category. For typed calculi, the semantics defined by J−K
usually interprets a term with a typing derivation leading to a judgement
x1 :τ1 . . . xn :τn ` e : τ as a morphism Jτ1 × . . .× τnK→ JτK.

For a well-defined semantics, we need to ensure that a well-typed term is
assigned exactly one meaning. This can be achieved in a number of ways.
First, we can prove the coherence [37] and show the morphhisms assigned to
multiple typing derivations are equivalent. Second, the typing judgement
can have a unique typing derivation. We follow the latter approach, using
the unique typing derivation specified in Section 4.3.

As a best known example, Moggi [67] showed that the semantics of vari-
ous effectful computations can be captured uniformly using (strong) monads.
In that approach, computations are interpreted as τ1 × . . .× τn → Mτ, for
some monad M. For example, Mα = α ∪ {⊥} models failures (the Maybe
monad), Mα = P(α) models non-determinism (set monad) and side-effects
can be modelled usingMα = S→ (α×S) (state monad). Here, the structure
of a strong monad provides necessary “plumbing” for composing monadic
computations – sequential composition and strength for lifting free variables
into the body of a computation under a lambda abstraction.

98 semantics of flat coeffect calculus

Following a similar approach to Moggi, Uustalu and Vene [114] showed
that (monoidal) comonads uniformly capture the semantics of various kinds
of context-dependent computations [114]. For example, dataflow computa-
tions over non-empty lists are modelled using the non-empty list comonad
NEListα = α+ (α×NEListα).

The monadic and comonadic model outlined above represents at most
a binary analysis of effects or context-dependence. A function τ1 → τ2
performs no effects (requires no context) whereas τ1 →Mτ2 performs some
effects and Cτ1 → τ2 requires some context1.

In the next section, we introduce indexed comonads, which provide a more
precise analysis and let us model computations with context demands r as
functions Crτ1 → τ2 using an indexed comonad Cr.

5.2.3 Introducing comonads

In category theory, comonad is a dual of monad. As already outlined in Chap-
ter 2, we obtain a definition of a comonad by taking a definition of a monad
and “reversing the arrows”. More formally, one of the equivalent definitions
of comonad looks as follows (repeated from Section 2.3):

Definition 7. A comonad over a category C is a triple (C, counit, cobind) where:

• C is a functor (mapping types to types) C : C→ C

• counit is a mapping Cα→ α

• cobind is a mapping (Cα→ β)→ (Cα→ Cβ)

such that, for all f : Cα→ β and g : Cβ→ γ:

cobind counit = id (left identity)

counit ◦ cobind f = f (right identity)

cobind (g ◦ cobind f) = (cobind g) ◦ (cobind f) (associativity)

From the functional programming perspective, we can see C as a parametric
data type such as NEList. The counit operations extracts a value α from
a value Cα that carries additional context. The cobind operation turns a
context-dependent function Cα→ β into a function that takes a value with
context, applies the context-dependent function to value(s) in the context
and then propagates the context.

As mentioned earlier, Uustalu and Vene [114] use comonads to model
dataflow computations. They describe infinite (coinductive) streams and
non-empty lists as example comonads.

Example 5 (Non-empty list). Non-empty lists are recursive data types NEListα =

α+ (α× NEListα). We write inl and inr for constructors of the left and right
cases, respectively. The type NEList forms a comonad together with the following
counit and cobind mappings:

1 This is an over-simplification as we can use e. g. stacks of monad transformers and model
functions with two different effects using τ1 →M1(M2 τ2). However, monad transformers
require the user to define complex systems of lifting to be composable. Consequently, they are
usually used for capturing different classes of effects (exceptions, non-determinism, state), but
not for capturing individual effects (e. g. a set of memory regions that may be accessed by a
stateful computation).

5.2 categorical motivation 99

counit l = h when l = inl h

counit l = h when l = inr (h, t)

cobind f l = inl (f l) when l = inl h

cobind f l = inr (f l, cobind f t) when l = inr (h, t)

The counit operation returns the head of the non-empty list. Note that it
is crucial that the list is non-empty, because we always need to be able to
obtain a value. The cobind operation defined here returns a list of the same
length as the original where, for each element, the function f is applied on a
suffix list starting from the element. Using a simplified notation for list, the
result of applying cobind to a function that sums elements of a list gives the
following behaviour:

cobind sum (7, 6, 5, 4, 3, 2, 1, 0) = (28, 21, 15, 10, 6, 3, 1, 0)

The fact that the function f is applied to a suffix is important in order to
satisfy the left identity law, which requires that cobind counit l = l.

It is also interesting to examine some data types that do not form a
comonad. As already mentioned, list List α = 1 + (α × List α) is not a
comonad, because the counit operation is not defined for the value inl ().
The Maybe data type defined as 1+α is not a comonad for the same reason.
However, if we consider flat coeffect calculus for liveness, it appears natural
to model computations as functions Maybe τ1 → τ2. To use such a model,
we need to generalize comonads to indexed comonads.

5.2.4 Generalising to indexed comonads

The flat coeffect algebra includes a monoid (C,~, use), which defines the
behaviour of sequential composition, where the element use represents a
variable access. An indexed comonad is formed by a data type (object map-
ping) Crα where the r (also called annotation) is a member of the set C and
determines what context is required.

Definition 8. Given a monoid (C,~, use) with binary operator ~ and unit use, an
indexed comonad over a category C is a triple (Cr, counituse, cobindr,s) where:

• Cr for all r ∈ C is a family of object mappings

• counituse is a mapping Cuseα→ α

• cobindr,s is a mapping (Crα→ β)→ (Cr~sα→ Csβ)

such that, for all f : Crα→ β and g : Csβ→ γ:

cobinduse,s counituse = id (left identity)

counituse ◦ cobindr,use f = f (right identity)

cobindr~s,t (g ◦ cobindr,s f) = (cobinds,t g) ◦ (cobindr,s~t f) (associativity)

Rather than defining a single mapping C, we are now defining a family
of mappings Cr indexed by elements of the monoid structure C. Similarly,
the cobindr,s operation is now formed by a family of mappings for differ-
ent pairs of indices r, s. To be fully precise, cobind is a family of natural
transformations and we should include objects α,β (modeling types) as in-
dices, writing cobindα,β

r,s . For the purpose of this thesis, it is sufficient to omit
the superscripts and treat cobind just as a family of mappings (rather than
natural transformations). When this does not introduce ambiguity, we also
occasionally omit the subscripts.

100 semantics of flat coeffect calculus

The counit operation is not defined for all r ∈ C, but only for the unit use.
Nevertheless we continue to write counituse, but this is merely for symme-
try and as a useful reminder to the reader. Crucially, this means that the
operation is defined only for special contexts.

If we look at the indices in the comonad axioms, we can see that the left
and right identity require use to be the unit of ~. Similarly, the associativity
law implies the associativity of the ~ operator.

composition. The co-Kleisli category that models sequential composi-
tion is formed by the unit arrow (provided by counit) together with the (asso-
ciative) composition operation that composes computations with contextual
demands as follows:

– ◦̂ – : (Crτ1 → τ2)→ (Csτ2 → τ3)→ (Cr~sτ1 → τ3)

g ◦̂ f = g ◦ (cobindr,sf)

The composition ◦̂ best expresses the intention of indexed comonads. Given
two functions with contextual demands r and s, their composition is a func-
tion that requires r~ s. The contextual demands propagate backwards and
are attached to the input of the composed function.

examples . Any comonad can be turned into an indexed comonad using
a trivial monoid. However, indexed comonads are more general and can be
used with other data types, including indexed Maybe.

Example 6 (Comonads). Any comonad C is an indexed comonad with an index
provided by a trivial monoid ({1}, ∗, 1) where 1 ∗ 1 = 1. The mapping C1 is the
mapping C of the underlying comonad. The operations counit1 and cobind1,1 are
defined by the operations counit and cobind of the comonad.

Example 7 (Indexed Maybe). The indexed Maybe comonad is defined over a
monoid ({L,D},t, L) where t is defined as earlier, i. e. L = r t s ⇐⇒ r = s = L.
Assuming 1 is the unit type inhabited by (), the mappings are defined as follows:

CLα = α

CDα = 1

counitL : CLα→ α

counitL v = v

cobindr,s : (Crα→ β)→ (Crtsα→ Csβ)

cobindL,L f x = f x

cobindL,D f () = ()

cobindD,L f () = f ()

cobindD,D f () = ()

The indexed Maybe comonad models the semantics of the liveness coeffect sys-
tem discussed in Section 3.2.3, where CLα = α models a live context and
CDα = 1 models a dead context which does not contain a value. The counit

operation extracts a value from a live context. As in the direct model dis-
cussed in Chapter B, the cobind operation can be seen as an implementation
of dead code elimination. The definition only evaluates f when the result is
marked as live and is thus required, and it only accesses x if the function f
requires its input.

The indexed family Cr in the above example is analogous to the Maybe (or
option) data type Maybeα = 1+α. As mentioned earlier, this type does not
permit (non-indexed) comonad structure, because counit () is not defined.
This is not a problem with indexed comonads, because live contexts are
distinguished by the (type-level) coeffect annotation and counit only needs
to be defined on live contexts.

5.2 categorical motivation 101

Example 8 (Indexed product). The semantics of implicit parameters is modelled
by an indexed product comonad. We use a monoid (P(Id),∪, ∅) where Id is the set
of (implicit parameter) names. We assume that all implicit parameters have the type
num. The data type Crα = α× (r → num) represents a value α together with a
function that associates a parameter value num with every implicit parameter name
in r ⊆ Id. The cobind and counit operations are defined as:

counit∅ : C
∅α→ α

counit∅ (a,g) = a
cobindr,s : (Crα→ β)→ (Cr∪sα→ Csβ)

cobindr,s f (a,g) = (f(a,g|r),g|s)

In the definition, we use the notation (a,g) for a pair containing a value
of type α together with g, which is a function of type r → num. The counit

operation takes a value and a function (with empty set as a domain), ignores
the function and extracts the value. The cobind operation uses the restriction
operation g|r to restrict the domain of g to implicit parameters r and s in
order to get implicit parameters required by the argument of f and by the
resulting computation, respectively (i. e. semantically, it splits the available
context capabilities). The function g passed to cobind is defined on r∪ s and
so the restriction is valid in both cases.

The structure of indexed comonads is sufficient to model sequential compo-
sition of computations that use a single variable (as discussed in Section 2.3).
To model full λ-calculus with lambda abstraction and multiple-variable con-
texts, we need additional operations introduced in the next section.

5.2.5 Flat indexed comonads

Because of the asymmetry of λ-calculus (discussed in Section 3.1), the dual-
ity between monads and comonads does not lead us towards the additional
structure required to model full λ-calculus. In comonadic computations, ad-
ditional information is attached to the context. In application and lambda
abstraction, the context is propagated differently than in effectful computa-
tions.

To model the effectful λ-calculus, Moggi [67] requires a strong monad
which has an additional operation strength : α ×Mβ → M(α × β). This
allows lifting of free variables into an effectful computation. In Haskell,
strength can be expressed in the host language and so is implicit.

To model λ-calculus with contextual properties, Uustalu and Vene [114]
require a lax semi-monoidal comonad. This structure requires an additional
monoidal operation:

m : Cα×Cβ→ C(α×β)

The m operation is needed in the semantics of lambda abstraction. Semanti-
cally, it represents merging of contextual capabilities attached to the variable
contexts of the declaration site (containing free variables) and the call site
(containing bound variable). For example, for implicit parameters, this com-
bines the additional parameters defined in the two contexts.

The semantics of flat coeffect calculus requires not only operations for
merging, but also for splitting of contexts.

Definition 9. Given a flat coeffect algebra (C,~,⊕,∧, use, ign,6), a flat indexed
comonad is an indexed comonad over the monoid (C,~, use) equipped with families
of operations merger,s, splitr,s where:

• merger,s is a family of mappings Crα×Csβ→ Cr∧s(α×β)
• splitr,s is a family of mappings Cr⊕s(α×β)→ Crα×Csβ

102 semantics of flat coeffect calculus

The merger,s operation is the most interesting one. Given two comonadic
values with additional contexts specified by r and s, it combines them into a
single value with additional context r∧ s. The ∧ operation often represents
greatest lower bound. We look at examples of this operation in the next section.

The splitr,s operation splits a single comonadic value (containing a tuple)
into two separate values. Note that this does not simply duplicate the value,
because the additional context is also split. To obtain coeffects r and s, the
input needs to provide at least r and s, so the tags are combined using the
⊕, which is often the least upper-bound2.

semantics of subcoeffecting . Although we do not include subco-
effecting in the core flat coeffect calculus, it is an interesting extension to
consider. Semantically, subcoeffecting drops some of the available contex-
tual capabilities (drops some of the implicit parameters or some of the past
values). This can be modelled by adding a (family of) lifting operation(s):

• liftr ′,r is a family of mappings Cr
′
α→ Crα for all r ′, r such that r6 r ′

The axioms of flat coeffect algebra do not, in general, require that r 6 r⊕ s
and s 6 r⊕ s, but the property holds for the three sample coeffect systems
we consider. For systems with the above property, the split operation can be
expressed in terms of lifting (subcoeffecting) as follows:

mapr f = cobindr,r (f ◦ counituse)
splitr,s c = (mapr fst (liftr⊕s,r c), maps snd (liftr⊕s,s c))

The mapr operation is the mapping on arrows that corresponds to the object
mapping Cr. The definition is dual to the standard definition of map for
monads in terms of bind and unit. The functions fst and snd are first and
second projections from a two-element pair. To define the splitr,s operation,
we use the argument c twice, use lifting to throw away additional parts of
the context and then transform the values in the context.

This alternative definition is valid for our examples, but we do not use it
for three reasons. First, it requires making subcoeffecting a part of the core
definition. Second, this would be the only place where our semantics uses a
variable twice (in this case c). Note therefore that our use of an explicit split
means that the structure required by our semantics does not need to provide
variable duplication and our model could be embedded in linear or affine
category. Finally, explicit split is similar to the definition that is needed for
structural coeffects in Chapter 6 and it makes the connection between the
two easier to see.

examples . All the examples of indexed comonads discussed in Section 5.2.4
can be extended into flat indexed comonads. Note however that this cannot be
done mechanically, because each example requires us to define additional
operations, specific for the example.

Example 9 (Monoidal comonads). Just as indexed comonads generalize comonads,
the additional structure of flat indexed comonads generalizes the symmetric semi-
monoidal comonads of Uustalu and Vene [114]. The flat coeffect algebra is defined as
({1}, ∗, ∗, ∗, 1, 1,=) where 1 ∗ 1 = 1 and 1 = 1. The additional operation merge1,1
is provided by the monoidal operation called m by Uustalu and Vene. The split1,1
operation is defined by duplication.

2 The ∧ and ⊕ operations are the greatest and least upper bounds in the liveness and dataflow
examples, but not for implicit parameters. However, they remain useful as an informal analogy.

5.2 categorical motivation 103

Example 10 (Indexed Maybe comonad). The flat coeffect algebra for liveness
defines ⊕ and ∧, respectively as t and u and specifies that D v L. Recall also that
the object mapping is defined as CLα = α and CDα = 1. The additional operations
of a flat indexed comonad are defined as follows:

mergeL,L (a,b) = (a,b)

mergeL,D (a, ()) = ()

mergeD,L ((),b) = ()

mergeD,D ((), ()) = ()

splitL,L (a,b) = (a,b)

splitL,D (a,b) = (a, ())

splitD,L (a,b) = ((),b)

splitD,D () = ((), ()))

Without the indexing, the merge operations implements zip on Maybe values,
returning a value only when both values are present. The behaviour of the
split operation is partly determined by the indices. When the input is dead,
both values have to be dead (this is also the only solution of D = ru s), but
when the input is live, the operation can perform implicit subcoeffecting and
drop one of the values.

Example 11 (Indexed product). For implicit parameters, both ∧ and ⊕ are the
∪ operation and the relation 6 is formed by the subset relation ⊆. Recall that the
comonadic data type Crα is α × (r → num) where num is the type of implicit
parameter values. The additional operations are defined as:

splitr,s ((a,b),g) = ((a,g|r), (b,g|s))

merger,s ((a, f), (b,g)) = ((a,b), f] g)
where f] g =

f| dom(f)\dom(g) ∪ g

The split operation splits the tuple and restricts the function (representing
available implicit parameters) to the required subsets. The merge operation
is more interesting. It uses the] operation that we defined when introduc-
ing implicit parameters in Section 3.2.1. It merges the values, preferring the
definitions from the right-hand side (call site) over left-hand side (declara-
tion site). Thus the operation is not symmetric.

Example 12 (Indexed list). Our last example provides the semantics of dataflow
computations. The flat coeffect algebra is formed by (N,+, max, min, 0, 0,6). In a
non-indexed version, the semantics is provided by a non-empty list. In the indexed
semantics, the index represents the number of available past values. The data type
is then a pair of the current value, followed by n past values. The mappings that
form the flat indexed comonad are defined as follows:

counit0〈a0〉 = a0

cobindm,n f〈a0, . . . am+n〉 =
〈f〈a0, . . . ,am〉, . . . , f〈an, . . . ,am+n〉〉

mergem,n(〈a0, . . . ,am〉, 〈b0, . . . ,bn〉) =
〈(a0,b0), . . . , (amin(m,n),bmin(m,n))〉

splitm,n〈(a0,b0), . . . , (amax(m,n),bmax(m,n))〉 =
(〈a0, . . . ,am〉, 〈b0, . . . ,bn〉)

Cnα = α× . . .×α︸ ︷︷ ︸
(n+1)−times

The reader is invited to check that the number of required past elements
in each of the mappings matches the number specified by the indices. The
index specifies the number of past elements and so the list always contains
at least one value. Thus counit returns the element of a singleton list.

The cobindm,n operation requires m + n elements in order to generate
n past results of f, which itself requires m past values. When combining
two lists, mergem,n behaves as zip and produces a list as long as the shorter
argument. When splitting a list, splitm,n needs the maximum of the lengths.

104 semantics of flat coeffect calculus

The semantics is defined over a typing derivation:

JΓ @ use ` xi : τiK = πi ◦ counituse
(var)

JΓ @ ign ` n : numK = const n
(num)

JΓ , x : τ1 @ r ∧ s ` e : τ2K = f

JΓ @ r ` λx.e : τ1
s−→ τ2K = f ◦ curry merger,s

(abs)

JΓ @ r ` e1 : τ1
t−→ τ2K = f

JΓ @ s ` e2 : τ1K = g

JΓ @ r ⊕ (s~ t) ` e1 e2 : τ2K = app ◦ f×(cobinds,t g) ◦ splitr,s~ t
◦ mapr ⊕ (s~ t) dup

(app)

Assuming the following auxiliary operations:

mapr f = cobinduse,r (f ◦ counituse)
const v = λx.v

curry f x y = λf.λx.λy.f (x,y)
dup x = (x, x)
f× g = λ(x,y).(f x,g y)

app (f, x) = f x

Figure 27: Categorical semantics of the flat coeffect calculus

5.2.6 Semantics of flat calculus

In Section 3.2, we defined the semantics of concrete (flat) context-dependent
computations including implicit parameters, liveness and dataflow. Using
the flat indexed comonad structure, we can now define a single uniform se-
mantics that is capable of capturing all our examples, as well as various
other computations.

As discussed in Section 4.3, different typing derivations of coeffect pro-
grams may have different meaning (e. g. when working with implicit pa-
rameters) and so the semantics is defined over a typing derivation rather than
over a term. To assign a semantics to a term, we need to choose a particular
typing derivation. The algorithm for choosing a unique typing derivation
for our three systems has been defined in Section 4.3.

contexts and types . The modelling of contexts and functions gener-
alizes the concrete examples discussed in Chapter 3. We use the family of
mappings Cr as an (indexed) data type that wraps the product of free vari-
ables of the context and the arguments of functions:

Jx1 :τ1, . . . , xn :τn @ r ` e : τK : Cr(τ1 × . . .× τn)→ τ

Jτ1
r−→ τ2K = Crτ1 → τ2

expressions . The definition of the semantics is shown in Figure 27. For
consistency with earlier work [114, 76], the definitions use a point-free cate-
gorical notation. The semantics uses a number of auxiliary definitions that
can be expressed in a Cartesian-closed category such as currying curry, value
duplication dup, function pairing (given f : A → B and g : C → D then

5.2 categorical motivation 105

f× g : A×C → B×D) and application app. We will embed the definitions
in a simple programming language later (Section 5.3).

The semantics of variable access and abstraction are the same as in the
semantics of Uustalu and Vene [114], modulo the indexing. The semantics
of variable access (var) uses counituse to extract a product of free variables,
followed by projection πi to obtain the variable value. Abstraction (abs) is
interpreted as a curried function that takes the declaration site context and a
function argument, merges them using merger,s and passes the result to the
semantics of the body f. Assuming the context Γ contains variables of types
σ1, . . . ,σn, this gives us a value Cr∧s((σ1 × . . .× σn)× τ1). Assuming that
n-element tuples are associated to the left, the wrapped context is equivalent
to σ1 × . . .× σn × τ1, which can then be passed to the body of the function.

The semantics of application (app) first duplicates the free-variable prod-
uct inside the context (using mapr and duplication). Then it splits this con-
text using splitr,s⊕t. The two contexts contain the same variables (as re-
quired by sub-expressions e1 and e2), but different coeffect annotations. The
first context (with index r) is used to evaluate e1 using the semantic function
f. The result is a function Ctτ1 → τ2. The second context (with index s~t)
is used to evaluate e2 and using the semantic function g and wrap it with
context required by the function e1 by applying cobinds,t. The app operation
then applies the function (first element) on the argument (second element).
Finally, numbers (num) become constant functions that ignore the context.

properties . The categorical semantics in Section 5.3 defines a transla-
tion that embeds context-dependent computations in a functional program-
ming language, similarly to how monads and the “do” notation provide a
way of embedding effectful computations in Haskell.

An important property of the translation is that it respects the coeffect
annotations provided by the type system. The annotations of the semantic
functions match the annotations in the typing judgement and so the seman-
tics is well-defined. This provides a further validation for the design of the
type system developed in Section 4.2.2 – if the coeffect annotations for (app)
and (abs) were different, we would not be able to provide a well-defined
semantics using flat indexed comonads.

Informally, the following states that if we see the semantics as a transla-
tion, the resulting code is well-typed. We revisit the property in Lemma 22

once we define the target language and its typing.

Lemma 15 (Correspondence). In the semantics defined in Figure 27, the context
annotations r of typing judgements Γ @ r ` e : τ and function types τ1

r−→ τ2 on
the left-hand side correspond to the indices of mappings Cr in the corresponding
semantic function on the right-hand side.

Proof. By analysis of the semantic rules in Figure 27. We need to check that
the domains and codomains of the morphisms in the semantics (right-hand
side) match.

Thanks to indexing, the correspondence provides more guarantees than for
a non-indexed system. In the semantics, we not only know which values are
comonadic, but we also know what contextual information they are required
to provide. In Section 5.5, we note that this lets us generalize the proofs
about concrete languages discussed in this chapter to a more general setting.

The semantics is also a generalization of the concrete semantics given
when introducing context-aware programming languages in Chapter 3.

106 semantics of flat coeffect calculus

language syntax

v = n | λx.e | (v1, . . . , vn)

e = x | n | πi e | (e1, . . . , en) | e1 e2 | λx.e

τ = num | τ1 × . . .× τn | τ1 → τ2

K = (v1, . . . , vi−1, _, ei+1, . . . en) | v _ | _ e | πi _

reduction rules

(fn) (λx.e) v e[x← v]

(prj) πi(v1, . . . , vn) vi

(ctx) K[e] K[e ′] (when e e ′)

typing rules

(var)
x : τ ∈ Γ
Γ ` x : τ

(num)
Γ ` n : num

(abs)
Γ , x :τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

(app)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

(proj)
Γ ` e : τ1 × . . . τi × . . .× τn

Γ ` πi e : τi

(tup)
∀i ∈ {1 . . . n}. Γ ` ei : τi

Γ ` (e1, . . . , en) : τ1 × . . .× τn

Figure 28: Common syntax and reduction rules of the target language

Theorem 16 (Generalization). Consider a typing derivation obtained according
to the rules for finding unique typing derivations as specified in Section 4.3 for a
coeffect language with liveness, dataflow or implicit parameters.

The semantics obtained by instantiating the rules in Figure 27 with the concrete
operations defined in Example 10, Example 11 or Example 12 is the same as the one
defined in Figure 15, Figure 10 and Figure 17, respectively.

Proof. Expansion of the definitions, using the unique typing derivation for
dataflow and liveness and any typing derivation for implicit parameters.

5.3 translational semantics

Although the notion of indexed comonads presented in the previous section
is novel and interesting on its own, the main reason for introducing it is
that we can view it as a translation that provides embedding of context-
aware domain-specific languages in a simple target functional language. In
this section, we follow the example of effects and monads and we use the
semantics to define a translation akin to the “do” notation in Haskell.

A source program written using a concrete context-aware domain-specific
language (capturing dataflow, implicit parameters or other kinds of context
awareness) with domain-specific language extensions (the prev keyword, or

5.3 translational semantics 107

the ?impl syntax) is translated to a target language that is not context-aware.
The target language is a small functional language consisting of:

• Simple functional subset formed by lambda calculus with support for
tuples and numbers.

• Comonadically-inspired primitives corresponding to counit, cobind and
other operations of flat indexed comonads.

• Additional primitives that model contextual operations of each con-
crete coeffect language (the prev keyword, lookup function for the ?p

syntax and operation that models implicit parameter binding for the
let ?p = . . . notation).

The syntax, typing and reduction rules of the first part (simple functional
language) are common to all concrete coeffect domain-specific languages.
The syntax and typing rules of the second part (comonadically-inspired
primitives) are also shared by all coeffect DSLs, however the reduction rules
for the comonadically-inspired primitives differ – they capture the concrete
notions of context. Finally, the third part (domain-specific primitives) will
differ for each coeffect domain-specific language.

5.3.1 Functional target language

The target language for the translation is a simply typed lambda calculus
with integers and tuples. We include integers as an example of a concrete
type. Tuples are needed by the translation, which keeps a tuple of variable
assignments. Encoding those without tuples would be possible, but cumber-
some. In this section, we define the common parts of the language without
the comonadically-inspired primitives.

The syntax of the target programming language is shown in Figure 28.
The values include numbers n, tuples and function values. The expressions
include variables x, values, lambda abstraction and application and opera-
tions on tuples. We do not need recursion or other data types (although a
realistic programming language would include them). In what follows, we
also use the following syntactic sugar for let binding:

let x = e1 in e2 = (λx.e2) e1

Finally, K[e] defines the syntactic evaluation context in which sub-expressions
are evaluated. Together with the evaluation rules shown in Figure 28, this
captures the standard call-by-value semantics of the common parts of the
target language. The (standard) typing rules for the common expressions of
the target language are also shown in Figure 28.

5.3.2 Safety of functional target language

The functional subset of the language described so far models a simple ML-
like language. We choose call-by-value over call-by-name for no particular
reason and Haskell-like language would work equally well.

The subset of the language introduced so far is type-safe in the standard
sense that “well-typed programs do not get stuck”. Although standard, we
outline the important parts of the proof for the functional subset here, before
we extend it to concrete context-aware languages in Section 5.4.

We use the standard syntactic approach to type safety introduced by Mil-
ner [66]. Following Wright, Felleisen and Pierce [89, 126], we prove the type

108 semantics of flat coeffect calculus

preservation property (reduction does not change the type of an expression)
and the progress property (a well-typed expression is either a value or can
be further reduced).

Lemma 17 (Canonical forms). For all e, τ, if ` e : τ and e is a value then:

1. If τ = num then e = n for some n ∈ Z

2. If τ = τ1 → τ2 then e = λx.e ′ for some x, e ′

3. If τ = τ1 × . . .× τn then e = (v1, . . . , vn) for some vi

Proof. For (1), the last typing rule must have been (num); for (2), it must have
been (abs) and for (3), the last typing rule must have been (tup).

Lemma 18 (Preservation under substitution). For all Γ , e, e ′, τ, τ ′, if Γ , x : τ `
e : τ ′ and Γ ` e ′ : τ then Γ ` e[x← e ′] : τ.

Proof. By induction over the derivation of Γ , x : τ ` e : τ ′.

Theorem 19 (Type preservation). If Γ ` e : τ and e→ e ′ then Γ ` e ′ : τ.

Proof. Rule induction over .
Case (fn): e = (λx.e0) v, from Lemma 18 it follows that Γ ` e0[x← v] : τ.
Case (prj): e = πi(v1, . . . , vn) and so the last applied typing rule must have

been (tup) and Γ ` (v1, . . . , vn) : τ1× . . .× τn and τ = τi. After applying
(prj) reduction, e ′ = vi and so Γ ` e ′ : τi.

Case (ctx): By induction hypothesis, the type of the reduced sub-expression
does not change and the last used rule in the derivation of Γ ` e : τ also
applies on e ′ giving Γ ` e ′ : τ.

Theorem 20 (Progress). If ` e : τ then either e is a value or there exists e ′ such
that e e ′.

Proof. By rule induction over `.
Case (num): e = n for some n and so e is a value.
Case (abs): e = λx.e ′ for some x, e ′, which is a value.
Case (var): This case cannot occur, because e is a closed expression.
Case (app): e = e1 e2 which is not a value. By induction, e1 is either a value

or it can reduce. If it can reduce, apply (ctx) reduction with context _ e.
Otherwise consider e2. If it can reduce, apply (ctx) with context v _. If
both are values, Lemma 17 guarantees that e1 = λx.e ′1 and so we can
apply reduction (fn).

Case (proj): e = πie0 and τ = τ1 × . . . τn. If e0 can be reduced, apply
(ctx) with context πi _. Otherwise from Lemma 17, we have that e0 =

(v1, . . . , vn) and we can apply reduction (prj).
Case (tup): e = (e1, . . . , en). If all sub-expressions are values, then e is also

a value. Otherwise, we can apply reduction using (ctx) with a context
(v1, . . . , vi−1, _, ei+1, . . . , en).

Theorem 21 (Safety of functional target language). If Γ ` e : τ and e ∗e
′

then either e ′ is a value of type τ or there exists e ′′ such that e ′ e ′′ and
Γ ` e ′′ : τ.

Proof. Rule induction over ∗ using Theorem 19 and Theorem 20.

5.3 translational semantics 109

language syntax . Given (C,~,⊕,∧, use, ign,6), extend the program-
ming language syntax with the following constructs:

e = . . . | cobinds,r e1 e2 | counituse e | merger,s e | splitr,s e

τ = . . . | Crτ

K = . . . | cobinds,r _ e | cobinds,r v _ | counituse _

| merger,s _ | splitr,s _

typing rules . Given (C,~,⊕,∧, use, ign,6), add the typing rules:

(counit) Γ ` e : Cuseτ
Γ ` counituse e : τ

(cobind)
Γ ` e1 : Crτ1 → τ2 Γ ` e2 : Cr~sτ1

Γ ` cobindr,s e1 e2 : Csτ2

(merge)
Γ ` e : Crτ1 ×Csτ2

Γ ` merger,s e : C
r∧s(τ1 × τ2)

(split)
Γ ` e : Cr⊕s(τ1 × τ2)

Γ ` splitr,s e : C
rτ1 ×Csτ2

Figure 29: Comonadically-inspired extensions for the target language

5.3.3 Comonadically-inspired translation

In Section 5.2, we presented the semantics of the flat coeffect calculus in
terms of indexed comonads. We treated the semantics as denotational – in-
terpreting the meaning of a given typing derivation of a program in terms
of category theory.

In this section, we use the same structure in a different way. Rather than
treating the rules as denotation in categorical sense, we treat them as transla-
tion from a source domain-specific coeffect language into a target language
with comonadically-inspired primitives described in the previous section.

language extension. Given a coeffect language with a flat coeffect
algebra (C,~,⊕,∧, use, ign,6), we first extend the language syntax and typ-
ing rules with terms that correspond to the comonadically-inspired opera-
tions. This is done in the same way for all concrete coeffect domain-specific
languages and so we give the common additional syntax, evaluation con-
text and typing rules once in Figure 29. We consider examples later in Sec-
tion 5.4.

The new type Cr represents an indexed comonad, which is left abstract for
now. The additional expressions such as counituse and cobindr,s correspond
to the operations of indexed comonads. Note that we embed the coeffect
annotations into the target language – these are known when translating a
term with a chosen typing derivation from a source language and they will
be useful when proving that sufficient context (as specified by the coeffect
annotations) is available.

110 semantics of flat coeffect calculus

The translation is defined over a typing derivation:

JΓ @ use ` xi : τiK = λctx.πi (counituse ctx)
(var)

JΓ @ ign ` n : numK = λctx.n
(num)

JΓ , xi : τ1 @ r ∧ s ` e : τ2K = f

JΓ @ r ` λxi.e : τ1
s−→ τ2K

=

λctx.λv.
let reassoc = λx.
(π1(π1 x), . . . ,πi−1(π1 x),π2 x)

f (mapr∧s reassoc (merger,s (ctx, v)))

(abs)

JΓ @ r ` e1 : τ1
t−→ τ2K = f

JΓ @ s ` e2 : τ1K = g

JΓ @ r ⊕ (s~ t) ` e1 e2 : τ2K

=

λctx.
let ctx0 = mapr ⊕ (s~ t) dup ctx
let (ctx1, ctx2) = splitr,s~ t ctx0
f ctx1 (cobinds,t g ctx2)

(app)

Assuming the following auxiliary operations:

mapr f = cobinduse,r (λx.f (counituse x))
dup = λx.(x, x)

Figure 30: Translation from a flat DSL to a comonadically-inspired target language

Figure 29 defines the syntax and the typing rules, but it does not define
the reduction rules. These – together with the values for a concrete notion of
context – will be defined separately for each individual coeffect language.

contexts and types . The interpretation of contexts and types in the
category now becomes a translation from types and contexts in the source
language into the types of the target language:

Jx1 :τ1, . . . , xn :τn @ rK = Cr(Jτ1K× . . .× JτnK)

Jτ1
r−→ τ2K = CrJτ1K→ Jτ2K
JnumK = num

Here, a context becomes a comonadically-inspired data type wrapping a
tuple of variable values and a coeffectful function is translated into an or-
dinary function in the target language with a comonadically-inspired data
type wrapping the input type.

expressions . The rules shown in Figure 30 define how expressions of
the source language are translated into the target language. The rules are
very similar to those shown earlier in Figure 27. The consequent is now writ-
ten as source code in the target programming language rather than as com-
position of morphisms in a category. However, thanks to the relationship
between λ-calculus and Cartesian closed categories, both interpretations are
equivalent.

5.4 safety of context-aware languages 111

One change from Figure 27 is that we are now more explicit about the
tuple that contains variable assignments. Previously, we assumed that the
tuple is appropriately reassociated. For programming language translation
and the implementation (discussed in Chapter 7), we perform the reassocia-
tion explicitly. We keep a flat tuple of variables, so given Γ = x1 :τ1, . . . , xn :
τn, the tuple has a type τ1 × . . .× τn. In (var), we access a variable using π,
but in (abs), the merge operation produces a tuple (τ1 × . . .× τi−1)× τi that
we turn into a flat tuple τ1 × . . .× τi−1 × τi using the assoc function.

properties . The most important property of the translation is that it
produces well-typed programs in the target language. This is akin to the
correspondence property of the semantics discussed earlier (Theorem 15),
but now it has more obvious practical consequences.

In Section 5.4, we will prove safety properties of well-typed programs
in the target language. The fact that the translation produces a well-typed
program means that we are also proving safety of well-typed programs in
the source context-aware languages.

Theorem 22 (Well-typedness of the translation). Given a typing derivation for
a well-typed closed expression @ r ` e : τ written in a context-aware programming
language that is translated to the target language as (we write . . . for the omitted
part of the translation tree):

J (. . .) K = (. . .)

J @ r ` e : τK = f

Then f is well-typed, i. e. in the target language: ` f : JΓ @ rK→ JτK.

Proof. By rule induction over the derivation of the translation. Given a judge-
ment x1 :τ1 . . . xn :τn @ c ` e : τ, the translation constructs a function of type
Cc(Jτ1K× . . .× JτnK)→ JτK.

Case (var): c = use and τ = τi and so πi(counituse ctx) is well-typed.
Case (num): τ = num and so the body n is well-typed.
Case (abs): The type of ctx is Cr(. . .) and the type of v is Csτ1, calling

merger,s and reassociating produces Cr∧s(. . .) as expected by f.
Case (app): After applying splitr,s~t, the types of ctx1, ctx2 are Cr(. . .) and

Cs~t(. . .), respectively. g requires Cs(. . .) and so the result of cobinds,t
is Ctτ1 as required by f.

5.4 safety of context-aware languages

The language defined in Figure 28 and Figure 29 provides a general struc-
ture that we now use to prove the safety of various context-aware program-
ming languages based on the coeffect language framework. As examples,
we consider a language for dataflow computations (Section 5.4.1) and for
implicit parameters (Section 5.4.2). In both cases, we extend the progress
and preservation theorems of the functional subset of the target language,
but the approach can be generalized as discussed in Section 5.5.

As outlined in the table at the beginning of Part ii, we now covered the
parts of the semantics that are shared by all context-aware languages. This
includes the functional target language with comonadically-inspired unin-
terpreted type Crτ and the syntax for comonadically-inspired uninterpreted
primitives such as cobinds,r and counituse, together with their typing.

112 semantics of flat coeffect calculus

Using dataflow and implicit parameters as two examples, we now add
the domain-specific extensions needed for a concrete context-aware pro-
gramming language. This includes syntax for values and expressions of
the comonad-inspired type Crτ and reduction rules for the comonadically-
inspired operations (cobinds,r, counituse, etc.).

5.4.1 Coeffect language for dataflow

The types of the comonadically-inspired operations are the same for each
concrete coeffect DSL, but each DSL introduces its own values of type Crτ
and also its own reduction rules that define how comonadically-inspired
operations evaluate.

We first consider dataflow computations. As discussed earlier in the se-
mantics of dataflow, the indexed comonad for a context with n past values
carries n + 1 values. When reducing translated programs, the comonadic
values will not be directly manipulated by the user code. In a programming
language, it could be seen as an abstract data type whose only operations are
the comonadically-inspired ones defined earlier, together with an additional
domain-specific operation that models the prev construct.

The Figure 31 extends the target language with syntax, typing rules, addi-
tional translation rule and reductions for modelling dataflow computations.
We introduce a new kind of values written as Df〈v0, . . . , vn〉 and a matching
kind of expressions. We specify how the prev keyword is translated into a
prevr operation of the target language and we also add a typing rule (df)
that checks the types of the elements of the stream and also guarantees that
the number of elements in the stream matches the number in the coeffect.
The additional reduction rules mirror the semantics that we discussed in
Example 12 when discussing the indexed list comonad.

properties . Now consider a target language consisting of the core (ML-
subset) defined by the syntax, reduction rules and typing rules given in
Figure 28 and comonadically-inspired primitives defined in Figure 29 and
also concrete notion of comonadically-inspired value and reduction rules
for dataflow as defined in Figure 31.

In order to prove type safety, we first extend the canonical forms lemma
(Lemma 17) and the preservation under substitution lemma (Lemma 18). Those
need to consider the new (df) and (prev) typing rules and substitution under
the newly introduced expression forms Df〈. . .〉 and prevn. We show that the
translation rule for prev produces well-typed expressions. Finally, we extend
the type preservation (Theorem 19) and progress (Theorem 20) theorems.

Theorem 23 (Well-typedness of the prev translation). Given a typing deriva-
tion for a well-typed closed expression @ r ` e : τ, the translated program f obtained
using the rules in Figure 30 and Figure 31 is well-typed, i. e. in the target language:
` f : JΓ @ rK→ JτK.

Proof. By rule induction over the derivation of the translation.

Case (var, num, abs, app): As before.

Case (prev): Type of ctx is Cn+1τ and so we can apply the (prev) rule.

Lemma 24 (Canonical forms). For all e, τ, if ` e : τ and e is a value then:

1. If τ = num then e = n for some n ∈ Z

2. If τ = τ1 → τ2 then e = λx.e ′ for some x, e ′

5.4 safety of context-aware languages 113

language syntax

v = . . . | Df〈v0, . . . , vn〉
e = . . . | Df〈e0, . . . , en〉 | prevn e
K = . . . | prevn _ | Df〈v0, . . . , vi−1, _, ei+1 . . . , en〉

typing rules

(df)
∀i ∈ {0 . . . n}. Γ ` ei : τ
Γ ` Df〈e0, . . . , en〉 : Cnτ

(prev) Γ ` e : Cn+1τ
Γ ` prevn e : Cnτ

translation

JΓ @n+ 1 ` e : τK = f

JΓ @n ` prev e : τK = λctx.prevn ctx

reduction rules

(counit) counit0(Df〈v0〉) v0

(cobind)
cobindm,n f (Df〈v0, . . . vm+n〉)

(Df〈f(Df〈v0, . . . , vm〉), . . . , f(Df〈vn, . . . , vm+n〉)〉)

(merge)
mergem,n((Df〈v0, . . . , vm〉), (Df〈v ′0, . . . , v ′n〉))

(Df〈(v0,b0), . . . , (vmin(m,n), v ′min(m,n))〉)

(split)
splitm,n(Df〈(v0,b0), . . . , (vmax(m,n),bmax(m,n))〉)
Df〈v0, . . . , vm〉, (Df〈b0, . . . ,bn〉

(prev)
prevn(Df〈v0, . . . , vn, vn+1〉)
Df〈v0, . . . , vn〉

Figure 31: Additional constructs for modelling dataflow in the target language

3. If τ = τ1 × . . .× τn then e = (v1, . . . , vn) for some vi

4. If τ = Cnτ1 then e = Df〈v0, . . . vn〉 for some vi

Proof. (1,2,3) as before; for (4) the last typing rule must have been (df).

Lemma 25 (Preservation under substitution). For all Γ , e, e ′, τ, τ ′, if Γ , x : τ `
e : τ ′ and Γ ` e ′ : τ then Γ ` e[x← e ′] : τ.

Proof. By induction over the derivation of Γ , x : τ ` e : τ ′ as before, with new
cases for Df〈. . .〉 and prevn.

Theorem 26 (Type preservation). If Γ ` e : τ and e e ′ then Γ ` e ′ : τ

Proof. Rule induction over .
Case (fn, prj, ctx): As before, using Lemma 25 for (fn).
Case (counit): e = counit0(Df〈v0〉). The last rule in the type derivation of e

must have been (counit) with Γ ` Df〈v0〉 : C0τ and therefore Γ ` v0 : τ.
Case (cobind): e = cobindm,n f (Df〈v0, . . . vm+n〉). The last rule in the type

derivation of e must have been (cobind) with a type τ = Cnτ2 and as-

114 semantics of flat coeffect calculus

sumptions Γ ` f : Cmτ1 → τ2 and Γ ` Df〈v0, . . . vm+n〉 : Cm+nτ. The
reduced expression has a type Cnτ2:

Γ ` f : Cmτ1 → τ2 ∀i ∈ 0 . . . n. Γ ` Df〈vi, . . . , vi+m〉 : Cmτ1
∀i ∈ 0 . . . n. Γ ` f(Df〈vi, . . . , vi+m〉) : τ2

Γ ` Df〈f(Df〈v0, . . . , vm〉), . . . , f(Df〈vn, . . . , vm+n〉)〉 : Cnτ2
Case (merge, split, next): Similar. In all three cases, the last typing rule in the

derivation of e guarantees that the stream contains a sufficient number
of elements of correct type.

Theorem 27 (Progress). If ` e : τ then either e is a value or there exists e ′ such
that e e ′

Proof. By rule induction over `.
Case (num,abs,var,app,proj,tup): As before, using the adapted canonical forms

lemma (Lemma 24) for (app) and (proj).
Case (counit): e = counituse e1. If e1 is not a value, it can be reduced using

(ctx) with context counituse _, otherwise it is a value. From Lemma 24,
e1 = Df〈v〉 and so we can apply (counit) reduction rule.

Case (cobind): e = cobindm,n e1 e2. If e1 is not a value, reduce using (ctx)
with context cobindm,n _ e. If e2 is not a value reduce using (ctx) with
context cobindm,n v _. If both are values, then from Lemma 24, we have
that e2 = Df〈v0, . . . vm+n〉 and so we can apply the (cobind) reduction.

Case (merge): e = mergem,ne1. If e1 is not a value, reduce using (ctx) with
context e = mergem,n _. If e1 is a value, it must be a pair of streams
(Df〈v0, . . . , vm〉,Df〈v ′0, . . . , v ′n〉) using Lemma 24 and it can reduce using
(merge) reduction.

Case (df): e = Df〈e0, . . . , en〉. If ei is not a value then reduce using (ctx) with
context Df〈v0, . . . , vi−1, _, ei+1 . . . , en〉. Otherwise, e0, . . . , en are values
and so Df〈e0, . . . , en〉 is also a value.

Case (split, prev): Similar. Either sub-expression is not a value, or the type
guarantees that it is a stream with correct number of elements to enable
the (split) or (prev) reduction, respectively.

Theorem 28 (Safety of context-aware dataflow language). If Γ ` e : τ and
e ∗ e ′ then either e ′ is a value of type τ or there exists e ′′ such that e ′ e ′′

and Γ ` e ′′ : τ.

Proof. Rule induction over ∗ using Theorem 26 and Theorem 27.

5.4.2 Coeffect language for implicit parameters

We now turn to our second example. As discussed earlier (Example 11), im-
plicit parameters can be modelled by an indexed product comonad, which
annotates a value with additional context – in our case, a mapping from im-
plicit parameter names to their values. In this section, we embed this model
into the target language.

As with dataflow computations, we take the core functional subset (Fig-
ure 28) with comonadically-inspired extensions (Figure 29) and we specify
a new kind of values of type Crτ and domain-specific reduction rules that
specify how the operations propagate and access the context containing im-
plicit parameter bindings. Again, the Crτ values can be seen as an abstract
data type, which are never manipulated directly, except by the comonadically-
inspired operations (cobinds,r, counituse, etc.).

5.4 safety of context-aware languages 115

domain-specific extensions . The Figure 32 shows extensions to the
target language for modelling implicit parameters. A comonadic value with
a coeffect {?p1, . . . , ?pn} is modelled by a new kind of value written as
Impl(v, {?p1 7→ v1, . . . ?pn 7→ vn}) which contains a value v together with
implicit parameter assignments for all the parameters specified in the coef-
fect. We add a corresponding kind of expression with its typing rule (impl).

There are also two domain-specific operations for working with implicit
parameters. The lookup?p operation reads a value of an implicit parameter
and the letimpl?p,r operation adds a mapping assigning a value to an implicit
parameter ?p. The typing rule (lookup) specifies that the accessed parameter
need to be a part of the context and the rule (letimpl) specifies that the letimpl

operation extends the context with a new implicit parameter binding.
The new translation rules specify how implicit parameter access, written

as ?p, and implicit parameter binding, written as let ?p = e1 in e2 are trans-
lated to the target language. The first one is straightforward. The binding
is similar to the translation for function application – we split the context,
evaluate e1 using the first part of the context ctx1 and then add the new
binding to the remaining context ctx2.

Finally, Figure 32 also defines the reduction rules. The (lookup) rule ac-
cesses an implicit parameter and (letimpl) adds a new binding. The reduction
rules closely model the product comonad discussed in Example 11. Reduc-
tions for (cobind) and (split) restrict the set of available implicit parameters
according to the annotations and (merge) combines them, preferring the val-
ues from the call site.

For the semantics of implicit parameter programs that we consider, the
preference of call site bindings over declaration site bindings in (merge) does
not matter. The unique typing derivations for implicit parameter coeffects
obtained in Section 4.3 always split implicit parameters into disjoint sets, so
preferences do not come into play.

properties . We now prove the type safety of a context-aware program-
ming language with implicit parameters. To do this, we prove safety of the
target functional language with specific extensions for implicit parameters
and we show that the translation from context-aware programming lan-
guage with implicit parameters produces well-typed programs in the target
language.

The target language consists of the core functional language subset (Fig-
ure 28) with the comonadically-inspired extensions (Figure 29) and the domain-
specific extensions for implicit parameters defined in Figure 32. The well-
typedness of the translation has been discussed earlier (Theorem 22) and
we extend it to cover operations specific for implicit parameters below (The-
orem 29).

As for dataflow computations, we prove the type safety by extending the
preservation (Theorem 19) and progress (Theorem 20) for the core functional
subset of the language, but it is worth noting that the key parts of the proofs
are centered around the new reduction rules for comonadically-inspired
primitives and newly defined Impl values. These do not interact with the
rest of the language in any unexpected ways.

Theorem 29 (Well-typedness of the implicit parameters translation). Given
a typing derivation for a well-typed closed expression @ r ` e : τ, the translated
program f obtained using the rules in Figure 30 and Figure 32 is well-typed, i. e. in
the target language: ` f : JΓ @ rK→ JτK.

Proof. By rule induction over the derivation of the translation.

116 semantics of flat coeffect calculus

language syntax

v = . . . | Impl(v, {?p1 7→ v1, . . . , ?pn 7→ vn})

e = . . . | Impl(e, {?p1 7→ e1, . . . , ?pn 7→ en})

| lookup?p e | letimpl?p,r e1 e2

K = . . . | lookup?p _ | letimpl?p,r _ e | letimpl?p,r v _

| Impl(_, {?p1 7→ e1, .., ?pn 7→ en})

| Impl(v, {?p1 7→ v1, .., ?pi−1 7→ vi−1, ?pi 7→ _, ?pi+1 7→ vi+1, ..?pn 7→ en})

typing rules

(impl)
Γ ` e : τ ∀i ∈ {1 . . . n}. Γ ` ei : num

Γ ` Impl(e, {?p1 7→ e1, . . . , ?pn 7→ en}) : C
{?p1,...,?pn}τ

(lookup) Γ ` e : C{?p}τ
Γ ` lookup?p e : num

(letimpl)
Γ ` e1 : num Γ ` e2 : C{?p1,...,?pn}τ

Γ ` letimpl?p,{?p1,...,?pn} e1 e2 : C{?p1,...,?pn,?p}τ

translation

(lookup)
JΓ @ {?p} ` ?p : numK = λctx.lookup?p ctx

(letimpl)

JΓ @ r ` e1 : τ1K = f

JΓ @ s ` e2 : τ2K = g

J

Γ @ r ∪ (s \ {?p)}

` let ?p = e1
in e2 : τ2

K =

λctx.
let ctx0 = mapr ∪ (s\{?p}) dup ctx
let (ctx1, ctx2) = splitr,(s\{?p}) ctx0
g (letimpl?p,(s\{?p}) (f ctx1) ctx2)

reduction rules

(counit) counit∅ (Impl(v, . . .)) v

(cobind)
cobindr,s f (Impl(v, {?p1 7→ v1, . . . , ?pn 7→ vn}))
Impl(f (Impl(v, {?pi 7→ vi | pi ∈ r})), {?pi 7→ vi | pi ∈ s})

(merge)
merger,s(Impl(v, {?p1 7→ v1, . . . , ?pn 7→ vn})

Impl(v ′, {?p ′1 7→ v ′1, . . . , ?p ′n 7→ v ′n}))
Impl((v, v ′), {?pi 7→ vi | ?p ∈ r \ s}∪ {?p ′i 7→ v ′i | ?p

′ ∈ s})

(split)
splitr,s(Impl((v, v ′), {?p1 7→ v1, . . . , ?pn 7→ vn}))
Impl(v, {?pi 7→ vi | pi ∈ r}), Impl(v ′, {?pi 7→ vi | pi ∈ s})

(letimpl)
letimpl?p,r v

′ (Impl(v, {?p1 7→ v1, . . . , ?pn 7→ vn}))
Impl(v, {?pi 7→ vi | ?pi ∈ r, ?pi 6= ?p}∪ {?p 7→ v ′})

(lookup) lookup?pi(Impl(v, {?pi 7→ vi}) vi

Figure 32: Additional constructs embedding implicit parameters into the language

5.4 safety of context-aware languages 117

Case (var, num, abs, app): As before.

Case (lookup): The type of ctx has a coeffect {?p} which includes the parame-
ter ?p as required in order to use the (lookup) typing rule.

Case (letimpl): The type of ctx matches with the input type of mapr∪(s\{?p}).
After duplication and splitting the context, ctx1 and ctx2 have types
Cr(. . .) and Cs\{?p}(. . .), respectively. This matches with the expected
types of f and letimpl. The context returned by letimpl then matches the
one required by g.

Lemma 30 (Canonical forms). For all e, τ, if ` e : τ and e is a value then:

1. If τ = num then e = n for some n ∈ Z

2. If τ = τ1 → τ2 then e = λx.e ′ for some x, e ′

3. If τ = τ1 × . . .× τn then e = (v1, . . . , vn) for some vi

4. If τ = C{?p1,...,?pn}τ1 then e = Impl(v, {?p1 7→ v1, . . . , ?pn 7→ vn})

Proof. (1,2,3) as before; for (4) the last typing rule must have been (impl).

Lemma 31 (Preservation under substitution). For all Γ , e, e ′, τ, τ ′, if Γ , x : τ `
e : τ ′ and Γ ` e ′ : τ then Γ ` e[x← e ′] : τ.

Proof. By induction over the derivation of Γ , x : τ ` e : τ ′ as before, with new
cases for Impl(e, {. . .}), lookup?p and letimpl?p,r.

Theorem 32 (Type preservation). If Γ ` e : τ and e e ′ then Γ ` e ′ : τ

Proof. Rule induction over .
Case (fn, prj, ctx): As before, using Lemma 31 for (fn).
Case (counit): e = counit0(Impl(v, { })). The last rule in the type derivation

of e must have been (counit) with Γ ` Impl(v, { }) : C∅τ which, in turn,
required that Γ ` v : τ.

Case (cobind): e = cobindr,s f (Impl(v, {?p1 7→ v1, . . . , ?pn 7→ vn})). The last
rule in the type derivation of e must have been (cobind) with a type
τ = Csτ2 and assumptions Γ ` Impl(v, {?p1 7→ v1, . . . , ?pn 7→ vn}) : C

rτ

and Γ ` f : Crτ1 → τ2. The reduced expression has a type Csτ2:

Γ ` f : Crτ1 → τ2 Γ ` Impl(v, {?pi 7→ vi | pi ∈ r}) : Crτ1
Γ ` f (Impl(v, {?pi 7→ vi | pi ∈ r})) : τ2

Γ ` Impl(f (Impl(v, {?pi 7→ vi | pi ∈ r})), {?pi 7→ vi | pi ∈ s}) : Csτ2
Case (lookup): e = lookup?pi(Impl(v, { . . . , ?pi 7→ vi . . .})). The last rule in

the type derivation must have been (lookup) with τ = num and an as-
sumption Γ ` Impl(v, { . . . , ?pi 7→ vi . . .}) : C{...,?pi,...}τ, which requires
Γ ` vi : num.

Case (merge, split, letimpl): Similar. In all three cases, the last typing rule in
the derivation of e guarantees that all values of all implicit parameters
that are required for the reduction are available.

Theorem 33 (Progress). If ` e : τ then either e is a value or there exists e ′ such
that e e ′

Proof. By rule induction over `.
Case (num,abs,var,app,proj,tup): As before, using the adapted canonical forms

lemma (Lemma 30) for (app) and (proj).

118 semantics of flat coeffect calculus

Case (counit): e = counituse e1. If e1 is not a value, it can be reduced using
(ctx) with context counituse _, otherwise it is a value. From Lemma 24,
e1 = Impl(v, { }) and so we can apply (counit) reduction rule.

Case (cobind): e = cobindr,s e1 e2. If e1 is not a value, reduce using (ctx)
with context cobindr,s _ e. If e2 is not a value reduce using (ctx) with
context cobindr,s v _. If both are values, then from Lemma 30, we have
e2 = Impl(v, {?pi 7→ vi | ?pi ∈ r∪ s}) and we apply the (cobind) reduction.

Case (merge): e = merger,se1. If e1 is not a value, reduce using (ctx) with
context e = merger,s _. If e1 is a value, it must be a pair of values
(Impl(v, {?pi 7→ vi | ?pi ∈ r}), Impl(v ′, {?pi 7→ vi | ?pi ∈ s})) using
Lemma 24 and it can reduce using (merge) reduction.

Case (impl): e = Impl(e ′, {?p1 7→ e1, . . . , ?pn 7→ en}). If e is not a value, re-
duce using (ctx) with context Impl(_, {?p1 7→ e1, . . . , ?pn 7→ en}). If ei is
not a value, reduce using (ctx) with context Impl(v, {?p1 7→ v1, . . . , ?pi−1 7→
vi−1, ?pi 7→ _, ?pi+1 7→ vi+1, . . . ?pn 7→ en}). Otherwise, e, e0, . . . , en are
values and so Impl(e ′, {?p1 7→ e1, . . . , ?pn 7→ en}) is also a value.

Case (split, letimpl): Similar. Either sub-expression is not a value, or the type
guarantees that it is a comonadic value with implicit parameter bindings
that enable the (split) or (letimpl) reduction, respectively.

Theorem 34 (Safety of context-aware language with implicit parameters). If
Γ ` e : τ and e ∗e

′
then either e ′ is a value of type τ or there exists e ′′ such that

e ′ e ′′ and Γ ` e ′′ : τ.

Proof. Rule induction over ∗ using Theorem 32 and Theorem 33.

5.5 generalized safety of comonadic embedding

In Section 5.4.1 and Section 5.4.2, we proved the safety property of two con-
crete context-aware programming languages based on the coeffect language
framework. The proofs for the two systems were very similar and relied on
the same key principle.

The principle is that the coeffect annotation r on the type modelling the
indexed comonad structure Crτ in the target language guarantees that the
comonadic value will provide the necessary context. As a result the re-
ductions for operations accessing the context do not get stuck. In case of
dataflow, prevn can always access the tail of the stream and counituse can
always access the head (because the stream has a sufficient number of ele-
ments). In case of implicit parameters, the context passed to lookup?p will
always contain a binding for ?p.

Our core functional target language is not expressive enough to capture
the relationship between the coeffect annotation and the structure of the
Df or Impl value and so we resorted to adding those as ad-hoc extensions.
However, given a target language with a sufficiently expressive type system,
the properties proved in Section 5.4 would be guaranteed directly by the
target language. This includes dependently-typed languages such as Idris
or Agda [14, 13], but type-level numerals and sets can also be encoded in
the Haskell type system [79].

In other words, the flat coeffect type system, together with the translation
for introduced in this chapter, can be embedded into a Haskell-like lan-
guages and it can provide a succinct and safe way of implementing context-
aware domain specific languages.

5.5 generalized safety of comonadic embedding 119

coeffects for liveness . As an example, we consider the third in-
stance of coeffect calculus that was discussed in Chapter 4. If we wanted
to follow the development in the previous section for liveness, we would ex-
tend the target language with two kinds of expressions, Dead representing
a dead context with no value and Live representing a context with a value:

e = . . . | Dead | Live e

The typing rules promote the information about whether a value is available
into the type-level and so a context carrying a live value is marked as CLτ

while a dead context has a type CDτ.

(live) Γ ` e : τ
Γ ` Live e : CLτ

(dead)
Γ ` Dead : CDτ

Finally, we need to add reduction rules that define the meaning of the
comonadically-inspired operations for liveness. Those follow the definitions
given in Example 10 when discussing the categorical semantics:

(counit) counitL (Just v) v

(cobind-1) cobindL,L f (Live v) Live (f v)

(cobind-2) cobindD,L f (Live v) Live (f Dead)

(cobind-3) cobindL,D f v Dead

(cobind-4) cobindD,D f v Dead

This language extension is safe because the reductions respect the typing of
the comonadically-inspired operations. The counituse reduction does not get
stuck for well-typed terms because use = L in the coeffect algebra and thus
its argument is of type CLτ and will always be a value Live v.

Similarly, the when reducing cobindr,s, the typing ensures that the value
passed as the second argument is of type Cr~sτ1. In case of liveness, r~ s =
L if either r = L or s = L. This means that reductions (cobind-1) and (cobind-
2) will not get stuck because the value will be Live v and not Dead. The
reduction rules also preserve typing – the resulting value is of type Csτ2,
that is Live v for (cobind-1), (cobind-2) and Dead for (cobind-3) and (cobind-4).

encoding liveness in haskell . The liveness example can be en-
coded in Haskell using type-level features such as generalized algebraic
data types (GADTs) and type families [63, 128, 20], which encode some of
the features known from dependently-typed languages such as Agda [13].
We do not aim to give a complete implementation, but to show that such
encoding is possible and would provide the necessary safety guarantees.

We first define types D and L to capture the coeffect annotations. Then we
define a comonadically-inspired type C r a as a GADT with cases for Live

and Dead contexts. The type parameter r represents a coeffect annotation:

data L

data D

data C r a where

Live :: a→ C L a

Dead :: C D a

The definition matches with the typing rules (live) and (dead). The coeffect
annotation for a live value is L and the annotation for a dead value is D.
To give the type of cobind, we need a type-level function that encodes the
operations of the flat coeffect algebra. We model ~ as Seq. The operation

120 semantics of flat coeffect calculus

is defined on types L and D and returns a type D if and only if both its
arguments are D:

type family Seq r s :: ∗
type instance Seq D D = D

type instance Seq L s = L

type instance Seq r L = L

The counit and cobind operations can then be defined as Haskell functions
that have types corresponding to the typing rules (counit) and (cobind) given
in Figure 29:

counit :: C L a→ a

cobind :: (C r a→ b)→ C (Seq r s) a→ C s b

Here, the additional type parameter is used as a phantom type [58] and
ensures that counit can only be called on a context that contains a value and
so calling the operation is not going to fail. Similarly, the type of the cobind

operation now guarantees that if a function (used as the first argument) or
the result require a live context, it will be called with a value C L a that is
guaranteed to contain a value.

coeffects in dependently-typed languages . If we use the above
encoding, type preservation is guaranteed by the type system of the target
language. The equivalent of the progress property is guaranteed by the fact
that the implementation of the operations is well-defined.

It is worth noting that this is where coeffects need a target language with
a more expressive type system than monads. For monadic computations, it
is sufficient to use a type M a which represents that some effect may happen.
The the type does not specify which effects and, indeed, this means that all
possible effects may happen.

With coeffects, we need to use indexed comonads C r a where the anno-
tation r specifies what context may be required. Without the annotation, a
type C a would represent a comonadic context that has all possible context
available, which is rarely useful in practice.

5.6 related categorical structures

Related work leading to coeffects has already been discussed in Chapter 2

and we covered work related to individual concepts throughout the thesis.
However, there is a number of related categorical structures that are related
to our indexed comonads (Section 5.2.4) that deserve additional discussion.

In Section 5.6.1, we discuss related approaches to adding indices to cate-
gorical structures (mostly monads). In Section 5.6.2, we discuss a question
that often arises when discussing coeffects and that is when is a coeffect (not)
an effect?

5.6.1 Indexed categorical structures

Ordinary comonads have the shape preservation property [78]. Intuitively, this
means that the core comonad structure does not provide a way of modeling
computations where the additional context changes during the computation.
For example, in the NEList comonad, the length of the list stays the same
after applying cobind.

5.6 related categorical structures 121

Indexed comonads are not restricted by this property of comonads. For
example, given the indexed product comonad, in the computation cobindr,sf,
the shape of the context changes from providing implicit parameters r ∪ s
to providing just implicit parameters s. Thus indexed comonads are a gener-
alization of comonads that captures structures that fail to form a comonad
without indexing. In the rest of the section, we look at work that discusses
indexing in the context of monads.

families of monads . When linking effect systems and monads, Wadler
and Thiemann [67] propose a family of monads as the categorical structure.
The dual structure, family of comonads, is defined as follows.

Definition 10. A family of comonads is formed by triples (Cr, cobindr, counitr)
for all r such that each triple forms a comonad. Given r, r ′ such that r 6 r ′, there
is also a mapping ιr ′,r : Cr

′ → Cr satisfying certain coherence conditions.

A family of comonads is not as expressive as an indexed comonads. Many in-
dexed comonads cannot be captured by a family of comonads. This is be-
cause each of the data types needs to form a comonad separately. For exam-
ple, our indexed Maybe does not form a family of comonads (again, because
counit is not defined on CDα = 1). However, given a family of comonads and
indices such that r 6 r~s, we can define an indexed comonad. Briefly, to de-
fine cobindr,s of an indexed comonad, we use cobindr~s from the family,
together with two lifting operations: ιr~s,r and ιr~s,s.

parametric effect monads . Parametric effect monads introduced by
Katsumata [51] (independently to our indexed comonads) are closely related
to our definition. Although presented in a more general categorical frame-
work (and using monads), the model (i) defines the unit operation only on
the unit of a monoid and (ii) the bind operation composes effect annotations
using the provided monoidal structure.

5.6.2 When is a coeffect not a monad

Coeffect systems differ from effect systems in three important ways:

• Semantically, coeffects capture different notions of computation. As
demonstrated in Chapter 2, coeffects track additional contextual prop-
erties required by a computation, many of which cannot be captured
by a monad (e. g. liveness or dataflow). In terms of program analysis
[55], monads capture forward dataflow analyses and comonads corre-
spond to backward dataflow analyses.

• Syntactically, coeffect calculi use a richer algebraic structure with point-
wise composition, sequential composition and context merging (⊕,~,
and ∧) while most effect systems only use a single operation for se-
quential composition (used by monadic bind). Effect systems may use
a richer algebraic structure to support additional language constructs
such as conditionals [71, 92], but not for abstraction and application.

• Syntactically, the second difference is in the lambda abstraction (abs).
In coeffect systems, the context demands of the body can be split be-
tween (or duplicated at) declaration site and call site, while lambda
abstraction in monadic effect systems always defer all effects – creat-
ing a function value has no effect.

122 semantics of flat coeffect calculus

Despite the differences, our implicit parameters resemble, in many ways, the
reader monad. As discussed in Section 5.6.3, the reader monad is semantically
equivalent to the product comonad when we consider just sequential compo-
sition. For a language with lambda abstraction, we need a slight extension to
the usual treatment of monads in order to model implicit parameters using
a monad.

5.6.3 When is coeffect a monad

Implicit parameters can be captured by a monad, but just a monad is not
enough. Lambda abstraction in effect systems does not provide a way of
splitting the context demands between declaration site and call site (or, se-
mantically, combining the implicit parameters available in the scope where
the function is defined and those specified by the caller).

categorical relationship. Before looking at the necessary exten-
sions, consider the two ways of modelling implicit parameters. We assume
that the function r→ num is a lookup function for reading implicit parame-
ter values that is defined on a set r. The two definitions are:

Crτ = τ× (r→ σ) (product comonad)

Mrτ = (r→ σ)→ τ (reader monad)

The product comonad simply pairs the value τwith the lookup function, while
the reader monad is a function that, given a lookup function, produces a τ
value. As noted by Orchard [75], when used to model computation seman-
tics, the two representations are equivalent:

Remark 35. Computations modelled as Crτ1 → τ2 using the product comonad
are isomorphic to computations modelled as τ1 → Mrτ2 using the reader monad
via currying/uncurrying isomorphism.

Proof. The isomorphism is demonstrated by the following equation:

Crτ1 → τ2 = (τ1 × (r→ σ))→ τ2

= τ1 → ((r→ σ)→ τ2) = τ1 →Mrτ2

Orchard [76] calls this intriguing relationship between the product comonad
and reader monad an equipotence and notes that it arises from adjunction be-
tween the monad and the comonad.

The equivalence holds for monads and comonads (as well as indexed mon-
ads and comonads), but it does not extend to flat indexed comonads which
also provide the merger,s operation to model context merging. This can be
supported in monadic computations by adding an additional operation dis-
cussed next.

delaying effects in monads . In the syntax of the language, the above
difference is manifested by the (abs) rules for monadic effect systems and
comonadic coeffect systems. The following listing shows the two rules side-
by-side, using the effect system notation for both of them:

(cabs)
Γ , x :τ1 ` e : τ2 & r∪ s
Γ ` λx.e : τ1

s−→ τ2 & r
(mabs)

Γ , x :τ1 ` e : τ2 & r∪ s

Γ ` λx.e : τ1
r∪s−−−→ τ2 & ∅

In the comonadic (cabs) rule, the implicit parameters of the body are split.
However, the monadic rule (mabs) places all demands on the call site. This

5.6 related categorical structures 123

follows from the fact that monadic semantics uses the unit operation in the
interpretation of lambda abstraction:

Jλx.eK = unit (λx.JeK)

The type of unit is α → Mα∅, but in this specific case, the α is instantiated
to be τ1 →Mr∪sτ2 and so this use of unit has a type:

unit : (τ1 →Mr∪sτ2)→M∅(τ1 →Mr∪sτ2)

In order to split the implicit parameters of the body (r∪ s on the left-hand
side) between the declaration site (∅ on the outer M on the right-hand side)
and the call site (r∪ s on the inner M on the right-hand side), we need an
operation (which we call delay) with the following signature:

delayr,s : (τ1 →Mr∪sτ2)→Mr(τ1 →Msτ2)

The operation reveals the difference between effects and coeffects – intu-
itively, given a function with effects r∪ s, it should execute the effects r
when wrapping the function, before the function actually performs the ef-
fectful operation with the effects. The remaining effects s are delayed as
usual, while effects r are removed from the effect annotation of the body.

Another important aspect of the signature is that the function needs to
be indexed by the coeffect annotations r, s. The indices determine how the
input context demands r∪ s are split – and thus guarantee determinism of
the function at run-time.

The operation cannot be implemented in a useful way for most standard
monads, but the reader monad is, indeed, an exception. It is not difficult to
see how it can be implemented when we expand the definitions of Mrτ:

delayr,s : (τ1 → (r∪ s→ σ)→ τ2)→ ((r→ σ)→ τ1 → (s→ σ)→ τ2)

This suggests that the reader monad is a special case among monads. Our
work suggests that passing read-only information to a computation is better
captured by a product comonad, which also matches the intuition – read-
only information is a contextual capability.

restricting coeffects in comonads . As just demonstrated, we can
extend monads so that the reader monad is capable of capturing the se-
mantics of implicit parameters, including the splitting of implicit parameter
demands in lambda abstraction. Can we also go the other way round and
restrict the comonadic semantics so that all demands are delayed as in the
(mabs) rule, thus modelling fully dynamically scoped parameters?

This is, indeed, possible. Recall that the semantics of lambda abstraction
in the flat coeffect calculus is modelled using merger,s. The operation takes
two contexts (wrapped in an indexed comonad Crα), combines their carried
values and additional contextual information (implicit parameters). To ob-
tain the (mabs) rule, we can restrict the first parameter, which corresponds
to the declaration site context:

merger,s : Crα×Csβ→ Cr∪s(α×β) (normal)

merger,s : C∅α×Csβ→ Cs(α×β) (restricted)

In the (restricted) version of the operation, the declaration site context re-
quires no implicit parameters and so all implicit parameters have to be satis-
fied by the call site. The semantics using the restricted version corresponds
to the (mabs) rule shown above.

124 semantics of flat coeffect calculus

The idea of restricting the operations of the coeffect calculus semantics
could be used more generally. We could allow any of the coeffect algebra
operations ~,∧,⊕ to be partial and thus the restricted (fully dynamically-
scoped) version of implicit parameters could be obtained just by changing
the definition of ∧. Similarly, we could obtain e. g. a fully lexically-scoped
version of the system. The ability to restrict operations to partial functions
has been used in the semantics of effectful computations by Tate [107].

5.7 summary

In the previous chapter, we defined a type system for flat coeffect calculi that
uniformly captures the shared structure of context-aware computations. In
this chapter, we completed the unification by providing semantics for flat co-
effect calculi and proving the safety of coeffect languages for dataflow and
implicit parameters. The semantics shown here also guides the implementa-
tion that is discussed later in Chapter 7.

The development presented in this chapter follows the well-known ex-
ample of effects and monads. We introduced the notion of indexed comonad,
which generalizes comonads and adds additional operations needed to pro-
vide categorical semantics of the flat coeffect calculus and we demonstrated
how implicit parameters, liveness and dataflow computations form indexed
comonads.

We then used the comonadic semantics to define a comonadically-inspired
translation that turns programs written in a domain-specific coeffect lan-
guage into a functional target language. Finally, we extended the target lan-
guage with concrete implementations of comonadic operations for dataflow
and implicit parameters and we presented a syntactic safety proof. In sum-
mary, the proof states that well-typed context-aware programs written in a
coeffect language do not get stuck (when translated to a simple functional
language and evaluated).

The proof relies on the fact that coeffect annotations (provided by the
coeffect type system) guarantee that the required context is available in the
comonadic value that represents the context and we also discussed how
this would guarantee safety in languages with sufficiently expressive type
system such as Haskell.

In the following chapter, we move from flat coeffect calculi, tracking whole-
context properties to structural coeffect calculi, tracking per-variable infor-
mation, thus covering systems from the second half of Chapter 3.

6S T R U C T U R A L C O E F F E C T C A L C U L U S

In Chapter 3, we discussed two notions of context. Context-aware program-
ming languages that capture whole-context properties were generalized by
the flat coeffect calculus in Chapters 4 and 5. Here, we consider per-variable
contextual properties and we introduce the structural coeffect calculus.

The flat coeffect system captures a number of interesting use-cases. For
some of those (liveness and dataflow), flat coeffects provide only imprecise
approximation (for example, marking the whole context as live rather than
marking individual variables). Dataflow and liveness (but not implicit pa-
rameters) can be also seen as per-variable properties. For those, structural
coeffect systems capture more precise information about the context. How-
ever, we also look at other applications that arise from the work on substruc-
tural logics discussed in Section 2.4.

We mirror the development for flat coeffect calculus and develop a small
calculus with a type system that captures per-variable contextual properties.
We outline its categorical semantics and use it as the basis for a translation
that turns well-typed programs in context-aware languages into well-typed
programs in a simple target functional language. We prove syntactic safety
for a sample target language, showing that “well-typed context-aware pro-
grams do not get stuck”.

chapter structure and contributions

• We present a structural coeffect calculus as a type system that is pa-
rameterized by a structural coeffect algebra (Section 6.2). We show how
the system captures pre-variable liveness and dataflow information, as
well as a calculus for bounded reuse (checking how many times is a
variable accessed).

• We present a syntax-directed version of the calculus that is used to ob-
tain unique typing derivation for programs in structural coeffect cal-
culus (Section 6.3). Unlike in flat systems, the procedure for choosing
a unique typing derivation is common to all structural systems.

• We discuss the equational theory of the calculus. We show that type-
preservation holds for all examples of the structural calculus we con-
sider, for both call-by-name and call-by-value reductions (Section 6.5)
and we explore a number of extensions to the minimal calculus based
on λ-calculus, including subcoeffecting and let binding (Section 6.4).

• We extend the indexed comonads introduced in the previous chapter
to structural indexed comonads and use them to provide the semantics of
structural coeffect calculus (Section 6.6). As with the flat version, the
theory serves as a motivation for syntactic translational semantics.

• We give a translational semantics (Section 6.7) that translates programs
from the structural coeffect calculus into a simple functional language
with uninterpreted comonadically-inspired primitives. We give con-
crete operational semantics for the target language for one of our sam-
ple languages and show that well-typed programs, produced by trans-
lation from the coeffect calculus, do not get stuck.

125

126 structural coeffect calculus

6.1 introduction

Compared to Chapter 4, the structural coeffect calculi we consider are more
homogeneous and so finding the common pattern is easier. However, the
systems are more complicated as they need to keep annotations attached to
individual variables and thus require explicit structural rules. Before look-
ing at the system, we briefly consider the most important related work.

6.1.1 Related work

In the previous chapter, we discussed the correspondence between coef-
fects and effects (and between comonads and monads). As noted in Sec-
tion 3.1.3, the λ-calculus is asymmetric in that an expression has multiple
inputs (variables in the context), but just a single result (the resulting value).
So, while there is only one notion of monadic effect system, there are two
separate notions of coeffect system – one that keeps coeffect annotations
per-environment and one that keeps coeffect annotations per-variable.

The work in this chapter is related to substructural type systems [125].
Substructural systems remove some or all of weakening, contraction and ex-
change rules. In contrast, our systems keep all three structural rules, but
use them to manipulate the coeffect annotations in a way that matches the
variable manipulations.

Our work follows the “language semantics” style in that we provide se-
mantics to the terms of ordinary λ-calculus. By contrast the closely related
work on Contextual Modal Type Theory (CMTT) [70] follows the meta-
language style. CMTT extends the terms and types of a language with con-
structs for explicitly manipulating the context. Variables of type A[Ψ] de-
note a value of type A that requires context Ψ. In CMTT, A[Ψ] is a first-class
type, while structural coeffect systems do not expose coeffect annotations as
stand-alone types (indexed comonads only appear in the semantics).

Our structural coeffect systems annotate the whole variable context with
a vector of annotations. For example, a context with variables x and y an-
notated with s and t, respectively is written as x : τ1,y : τ2 @ 〈s, t〉. A benefit
of this approach is that the typing judgements have the same structure as
those of the flat coeffect calculus. As discussed in Section 8.1, this makes it
possible to unify the two systems.

6.2 structural coeffect calculus

In the structural coeffect calculus, functions are annotated with a primitive
(scalar) coeffect annotation. A vector of variables forming the free-variable
context is annotated with a vector of coeffect annotations. These annota-
tions differ for various coeffect calculi; their properties are captured by the
definition of structural coeffect algebra below. The scalar annotations can be
e. g. integers (how many past values we need) or values of a two-point lat-
tice specifying whether a variable is live or not. The expressions and types
of the structural coeffect calculus are defined as follows:

e ::= x | n | λx : τ.e | e1 e2 | let x = e1 in e2

τ ::= num | τ1
r−→ τ2

The expressions and types of structural coeffect calculus are similar to those
of the flat coeffect calculus with two differences. First, we omit the let con-
struct in the core language. In structural coeffects, let binding can be defined

6.2 structural coeffect calculus 127

as a derived rule using abstraction and application (Section 6.4.1). Second,
the coeffect annotations r, s, t on function type now range over values of a
structural coeffect algebra.

6.2.1 Structural coeffect algebra

The structural coeffect algebra structure is similar to that of flat coeffect algebra
with the exception that it drops the ∧ operation. It only provides a monoid
(C,~, use) modelling sequential composition of computations and a monoid
(C,⊕, ign) representing pointwise composition, as well as the 6 relation.

Definition 11. A structural coeffect algebra (C,~,⊕, use, ign,6) is a set C to-
gether with elements use, ign ∈ C, binary operations ~,⊕ such that (C,~, use) and
(C,⊕, ign) are monoids and a binary relation 6 such that (C,6) is a pre-order. That
is, for all r, s, t ∈ C:

r ~ (s ~ t) = (r ~ s) ~ t use ~ r = r = r ~ use (monoid)

r ⊕ (s ⊕ t) = (r ⊕ s) ⊕ t ign ⊕ r = r = r ⊕ ign (monoid)

if r 6 s and s 6 t then r 6 t t 6 t (pre-order)

In addition, the following distributivity axioms hold:

(r⊕ s) ~ t = (r~ t) ⊕ (s~ t)

t ~ (r⊕ s) = (t~ r) ⊕ (t~ s)

The structural coeffect algebra follows the flat coeffect algebra and does not
require symmetry of ⊕ and the annihilation law (ign~ r = ign), although
both of the properties hold for the examples in Section 6.2.4. The structural
coeffect algebra differs from flat coeffect algebra in two important ways:

• The ⊕ operation of structural coeffect algebra is not required to be
idempotent. In structural systems, we can track individual variable ac-
cesses and not requiring idempotence allows interesting systems such
as that for bounded reuse (Section 6.6.4).

• In the flat coeffect calculus, we used the ∧ operation to merge the
annotations of contexts available from the declaration site and the call
site or, in the syntactic reading, to split the context demands. Structural
systems append vectors of annotations instead of merging annotations
and so ∧ is no longer needed.

In the structural coeffect calculus, the scalar coeffect algebra is supplemented
by a vector structure. The vector structure is used to manipulate vectors of
coeffect scalars attached to a variable context. The required structure is cap-
tured by the following definition.

Definition 12. A structural coeffect vector is formed by a structural coeffect
algebra (C,~,⊕, use, ign,6) equipped with the following additional structures:

• Coeffect vectors r, s, t, ranging over elements of the structural coeffect algebra
indexed by vector lengths m,n ∈N.

• A family of operations (indexed by the vector length) that construct a vector
from scalars 〈− 〉n : C× . . .× C → Cn and an operation that returns the
vector length such that len(r) = n for r : Cn

• A pointwise extension of the ~ operator written as t~ s such that
t~ 〈r1, . . . , rn〉 = 〈t~ r1, . . . , t~ rn〉.

128 structural coeffect calculus

• An indexed tensor product ++n,m : Cn × Cm → Cn+m that is bijective and
is used in both directions – for vector concatenation and for splitting – which
is defined as 〈r1, . . . , rn〉++n,m〈s1, . . . , sm〉 = 〈r1, . . . , rn, s1, . . . , sm〉

The fact that the tensor product ++n,m is indexed by the lengths of the two
vectors means that we can use it unambiguously for concatenating two vec-
tors and splitting of a vector, provided that the lengths of the resulting vec-
tors are known. In the following text, we usually omit the indices and write
just r++s, because the lengths of the coeffect vectors can be determined from
the lengths of the matching free variable context vectors. More generally, we
could see the coeffect annotations as containers [3]. This approach is used in
Section 8.1 to unify flat and structural systems.

6.2.2 Structural coeffect types

The type system for the structural coeffect calculus is shown in Figure 33. It
is similar to substructural type systems [125] in how it handles free variable
contexts. In the type system for flat coeffects (Section 4.2.2), the (var) rule
implicitly allows weakening and exchange by ignoring other variables in the
context and (app) implicitly allows contraction by passing the same context
to both sub-expressions.

In the structural system, this is made explicit by adding structural rules.
While substructural type systems usually remove some of the rules, we
keep all three and use them to track how variables are used. This is done
by manipulating the coeffect annotations in parallel with manipulating the
variable contexts. As in substructural type systems, (app) checks the types
of sub-expressions in disjoint parts of the free variable contexts and (var)
requires the context to contain exactly one variable. The typing rule for let
binding is a derived rule and we discuss it later in Section 6.4.1.

variable contexts . In Chapter 4, the free variable context Γ was treated
as a set. In the type system for the structural coeffect calculus, the variable
context is treated as a vector, with an additional condition that a variable
cannot appear multiple times. We also write len(−) for the length of the
vector:

Γ = 〈x1 :τ1, . . . , xn :τn〉 such that ∀i, j . i 6= j =⇒ xi 6= xj
len(〈x1 :τ1, . . . , xn :τn〉) = n

We use the usual notation x1 : τ1, . . . , x1 : τ1 ` e : τ for typing judgements,
but the free variable context should be understood as a vector. The notation
Γ1, Γ2 is used for concatenation of vectors of variables. That is, given a con-
text Γ1 = 〈x1 : τ1, . . . , xn : τn〉 and a context Γ2 = 〈xn+1 : τn+1, . . . , xm : τm〉
then Γ1, Γ2 = 〈x1 :τ1, . . . , xm :τm〉.

In the typing rules, free variable contexts are annotated with structural
coeffect vectors, written as x1 : τ1, . . . , xn : τn @ 〈r1, . . . , rn〉. Meta-variables
ranging over coeffect vectors are written as r, s, t (using bold face and colour
to distinguish them from scalar meta-variables) and the length of a coeffect
vector is written as len(r).

syntax-driven rules . The syntax-driven rules of the type system are
shown in Figure 33 (a). The variable access rule (var) annotates the corre-
sponding variable as being accessed using use. As in substructural systems,
the free variable context contains only the accessed variable. Other vari-
ables can be introduced using explicit weakening. Constants (const) are type

6.2 structural coeffect calculus 129

a.) Syntax-driven typing rules:

(var)
x :τ @ 〈use〉 ` x : τ

(const)
() @ 〈〉 ` n : num

(app)
Γ1 @ r ` e1 : τ1

t−→ τ2 Γ2 @ s ` e2 : τ1
Γ1, Γ2 @ r ++ (t~ s) ` e1 e2 : τ2

(abs)
Γ , x :τ1 @ r++ 〈s〉 ` e : τ2
Γ @ r ` λx : τ1.e : τ1

s−→ τ2

b.) Structural rules for context manipulation:

(weak)
Γ @ r ` e : τ

Γ , x :τ1 @ r++〈ign〉 ` e : τ

(exch)
Γ1, x :τ1,y :τ2, Γ2 @ r++〈s, t〉++q ` e : τ
Γ1,y :τ2, x :τ1, Γ2 @ r++〈t, s〉++q ` e : τ

len(Γ1) = len(r)
len(Γ2) = len(s)

(contr)
Γ1,y :τ1, z :τ1, Γ2 @ r++〈s, t〉++q ` e : τ

Γ1, x :τ1, Γ2 @ r++〈s⊕ t〉++q ` e[z,y← x] : τ
len(Γ1) = len(r)
len(Γ2) = len(s)

Figure 33: Type system for the structural coeffect calculus

checked in an empty variable context, which is annotated with an empty
vector of coeffect annotations.

The (abs) rule assumes that the free variable context of the body can be
split into a potentially empty declaration site and a singleton context contain-
ing the bound variable. The corresponding splitting is performed on the
coeffect vector, uniquely associating the annotation s with the bound vari-
able x. This form of typing rule obviates the ambiguity in splitting of context
demands present in the flat coeffect systems.

In (app), the sub-expressions e1 and e2 use free variable contexts Γ1, Γ2
with coeffect vectors r, s, respectively. The function value is annotated with
a coeffect scalar t. The coeffect annotation of the composed expression is
obtained by combining the annotations associated with variables in Γ1 and
Γ2. Variables in Γ1 are only used to obtain the function value, resulting in
coeffects r. The variables in Γ2 are used to obtain the argument value, which
is then sequentially composed with the function, resulting in t~ s.

structural rules . These are shown in Figure 33 (b). The three struc-
tural rules are not syntax-directed and allow different transformations of
the free variable context. They correspond to the transformations known as
weakening, exchange and contraction from substructural systems.

Rule (weak) allows adding a variable to the context, extending the coeffect
vector with ign to mark it as unused, (exch) provides a way to rearrange
variables in the context, performing the same reordering on the coeffect
vector. Finally recall that variables in the free variable context are required
to be unique. The (contr) rule allows re-using a variable. We can type check
sub-expressions using two separate variables and then unify them using
substitution. The resulting variable is annotated with ⊕ and it is the only

130 structural coeffect calculus

place in the structural coeffect system where context demands are combined
(semantically, this is where the available context is shared).

6.2.3 Understanding structural coeffects

The type system for structural coeffects appears more complicated when
compared to the flat version, but it is in many ways simpler – it removes the
ambiguity arising from the use of ∧ in lambda abstraction and, as discussed
in Section 6.5, has a more desirable equational theory. By contrast, the flat
system allows certain interesting use cases that rely on the flexibility of ∧ in
lambda abstraction (such as implicit parameters), that cannot be expressed
in the structural system.

In flat systems, lambda abstraction splits context demands using ∧ and
application combines them using ⊕. In the structural version, both of these
are replaced with ++. The ∧ operation is not needed, but note the use of ⊕
in the (contr) rule.

This suggests that ∧ and ⊕ serve two roles in flat coeffects. First, they
are used as under-approximations and over-approximations of ++. This is
demonstrated by the (approximation) requirement introduced in Section 4.4.2,
which requires that r∧ t 6 r⊕ t. Semantically, flat abstraction combines two
values representing the available context, potentially discarding parts of it
(under-approximation), while flat application splits the available context (a
single value), potentially duplicating parts of it (over-approximation)1.

Secondly, the operator ⊕ is used when the semantics passes a given con-
text to multiple sub-expressions. In flat systems, the context is shared in
(app) and the additional (pair) rule for constructing tuple values, because
the sub-expressions may share variables. In structural systems, the sharing
is isolated into an explicit contraction rule.

6.2.4 Examples of structural coeffects

The structural coeffect calculus above can be instantiated to obtain the three
structural coeffect calculi presented in Section 3.3. Two of them – structural
dataflow and structural liveness provide a more precise tracking of proper-
ties that can be tracked using flat systems. Formally, any flat coeffect algebra
can be turned into a structural coeffect scalar (by dropping the ∧ operator).
This is useful for liveness and dataflow, but it does not yield a practically
useful system for the flat algebra coeffect for implicit parameters.

On the other hand, some of the structural systems do not have a flat
equivalent, typically because there is no appropriate ∧ operator that could
be added to form the flat coeffect algebra. This is the case, for example, for
the system tracking bounded variable use (Example 15).

Example 13 (Structural liveness). The structural coeffect algebra for liveness is
formed by (L,u,t, L,D,v), where L = {L,D} is the same two-point lattice as in
the flat version, that is D v L with a join t and a meet u.

Example 14 (Structural dataflow). In dataflow, context is annotated with natural
numbers and the structural coeffect algebra is formed by (N,+, max, 0, 0,6).

These two examples have both flat and structural versions. For them, obtain-
ing the structural coeffect vector is easy. As shown by the examples above,
we simply omit the ∧ operation. The laws required by a structural coeffect

1 Because of this duality, earlier version of coeffect systems [83] used ∧ and ∨.

6.3 choosing a unique typing 131

vector are the same as those required by the flat version and so the above
definitions are both valid. Similar construction can be used for the optimized
dataflow example from Section 4.2.4.

It is important to note that this gives us a system with different proper-
ties. Information is now tracked per-variable rather than for entire contexts.
For dataflow, we also need to adapt the typing rule for the prev construct.
Here, we write + for a pointwise extension of the + operator, such that
〈r1, . . . , rn〉+k = 〈r1 + k, . . . , rn + k〉.

(prev)
Γ @ r ` e : τ

Γ @ r+ 1 ` prev e : τ
The rule appears similar to the flat one, but there is an important differ-
ence. Because of the structural nature of the type system, it only increments
the required number of values for variables that are actually used in the
expression e, whereas in the flat coeffect system the rule incremented the
annotation for the whole context. Thanks to the structural nature of the sys-
tem, annotations of variables that do not appear in the expression e can be
left unchanged.

Before looking at properties of structural coeffect systems, we consider a
system for tracking bounded variable use, which is an example of a struc-
tural system that does not have a flat counterpart.

Example 15 (Bounded variable reuse). The structural coeffect algebra for track-
ing bounded variable use is given by (N, ∗,+, 1, 0,6)

Similarly to the structural calculus for dataflow, the calculus for bounded
variable reuse annotates each variable with an integer. However, the inte-
ger now denotes how many times is the variable accessed rather than how
many past values are needed. The resulting type system is the one shown in
Figure 18 in Chapter 3.

6.3 choosing a unique typing

In the structural coeffect calculus, the lambda abstraction rule does not in-
troduce ambiguity in the typing. This is in contrast with flat coeffect systems
(most importantly, the one for implicit parameters), where lambda abstrac-
tion allowed arbitrary splitting of context demands. In structural coeffect
systems, the context demands placed on the call site (attached to the func-
tion type) are those of the bound variable.

However, the type system for the structural coeffect calculus in Figure 33

introduces another kind of ambiguity due to the fact that non-syntax-directed
structural rules can be applied repeatedly and in arbitrary order. As with
the semantics for the flat coeffect calculus in Chapter 5, we define the se-
mantics of the structural coeffect calculus relative to a typing derivation and
so the meaning of a program depends on the typing derivation chosen. In
this section, we specify how to choose the desired unique typing derivation,
following the example of flat coeffect calculi as discussed in Section 4.3.

6.3.1 Syntax-directed type system

In order to choose a unique typing derivation, we follow the example of
substructural type systems [125] and introduce a syntax-directed version of
the type system. This replaces the non-syntax-directed rules for weakening,
exchange and contraction with more complexity in the rules where contexts
are combined (app) and variables removed (abs).

132 structural coeffect calculus

(var)
x :τ @ 〈use〉 ` x : τ

(const)
() @ 〈〉 ` n : num

(app)

Γ1 @ r ` e1 : τ1
t−→ τ2

Γ2 @ s ` e2 : τ1
Γ @ c ` e1 e2 : τ2

Γ @ c = mergevars(t, Γ1 @ r, Γ2 @ s)

(abs)
Γ1 @ t ` e : τ2

Γ2 @ r ` λx : τ1.e : τ1
s−→ τ2

(Γ2 @ r), s = �ndvarx,τ1(Γ1 @ t)

�ndvarx,τ(Γ @ t) = (Γ1, Γ2 @ t1++t2), s where

len(Γ1) = len(t1) and len(Γ2) = len(t2)
x :τ ∈ Γ and Γ @ t = Γ1, x :τ, Γ2 @ t1++〈s〉++t2

�ndvarx,τ(Γ @ t) = (Γ @ t), ign (otherwise)

mergevars(t, Γ1 @ r, Γ2 @ s) = Γ ′1, Γ ′2, Γ @ r ′++(t~ s ′)++c where

Γ1 @ r = x1 :τ1, . . . , xn :τn @ 〈r1, . . . , rn〉
Γ2 @ s = y1 :τ

′
1, . . . ,ym :τ ′n @ 〈s1, . . . , sm〉

Γ @ c = z1 :τ
′′
1 , . . . , zk :τ ′′k @ 〈c1, . . . , ck〉

such that ∀l ∈ {1 . . . k} ∃i, j. (zl :τ ′′l = xi :τi = yj :τ
′
j)

and cl = ri ⊕ (t~ sj)

Γ1 @ r = x1 :τ1, . . . , xn :τn @ 〈r1, . . . , rn〉 such that xi :τi /∈ Γ
Γ2 @ s = y1 :τ

′
1, . . . ,ym :τ ′n @ 〈s1, . . . , sm〉 such that yi :τ ′i /∈ Γ

Figure 34: Syntax-directed type system for the structural coeffect calculus

Given a typing derivation in the deterministic syntax-directed type sys-
tem, we then choose a typing derivation in the original type system that
uniquely specifies how to apply weakening, contraction and exchange. The
algorithm given in Proposition 38 inserts only the necessary structural rules
to rearrange variable context into the shape required by the assumptions.

The syntax-directed version of the type system is shown in Figure 34. The
typing rules for variables (var) and constants (const) are the same as before.
The two interesting rules are lambda abstraction and application.

lambda abstraction. In the lambda abstraction (abs) rule in Figure 33,
we assume that the bound variable is the last variable of the context. In
the syntax-directed system, we do not make the same assumption. Instead,
we use an auxiliary function �ndvarx,τ that takes a typing context Γ @ t and
returns a context with the variable x removed together with the coeffect
originally attached to the variable. The �ndvarx function is defined by two
disjoint cases. The case when the variable x is not present in the context
corresponds to the (weak) structural rule.

function application. The (app) rule in Figure 33 assumes that the
variable contexts of the two sub-expressions can be merged. This requires
that they contain disjoint variables, which can be always obtained by ex-

6.3 choosing a unique typing 133

change and contraction. In the syntax-driven system, we merge coeffects of
shared variables explicitly. This is done in the mergevars function.

As with �ndvarx,τ, the mergevars function is fully deterministic. It returns
a context consisting of three parts. Parts Γ1 and Γ2 represent variables that
appear only in the first or the second context; part Γ contains common vari-
ables. The coeffect annotations corresponding to Γ1 are the original anno-
tations from r; the coeffects corresponding to Γ2 are composed with the
coeffect of the function value t~ s ′ as in the original (app) rule. Finally, for
shared variables, the coeffect is obtained by point-wise composition (as in
contraction) of the coeffect for the two contexts ri ⊕ (t~ sj). The first coef-
fect corresponds to the context demands in the sub-expression e1 and the
second coeffect corresponds to the function argument e2 sequentially com-
posed with the coeffect t of the function (as in ordinary application rule).

6.3.2 Properties

The syntax-directed type checking presented in the previous section gives a
unique typing derivation that can be automatically turned into one of the
valid typing derivations of the original type system presented in Figure 33.
This gives us a unique typing derivation for the structural coeffect calculus.
As with the unique typing derivation for the flat coeffect system, the chosen
typing derivation is used to give semantics of terms of the structural coeffect
calculus. We also note that a well-typed program in the original type system
has a typing derivation in the syntax-driven version.

As when discussing uniqueness of typing for flat coeffect systems (Sec-
tion 4.3), we first give an inversion lemma (Lemma 36) and then prove
uniqueness of typing (Theorem 37).

Lemma 36 (Inversion lemma for syntax-directed structural coeffects). For
the type system defined in Figure 34:

1. If Γ @ c ` x : τ then Γ = x :τ and c = 〈use〉.

2. If Γ @ c ` n : τ then Γ = () and τ = num and c = 〈〉.

3. If Γ @ c ` e1 e2 : τ2 then there is some Γ1, Γ2, τ1 and some t, r, s
such that Γ1 @ r ` e1 : τ1

t−→ τ2 and Γ2 @ s ` e2 : τ1 and also
Γ @ c = mergevars(t, Γ1 @ r, Γ2 @ s).

4. If Γ @ c ` λx :τ1.e : τ then there is some Γ ′, τ2 and some s, t such that
Γ ′ @ t ` e : τ2 and τ = τ1

s−→ τ2 and also (Γ @ c), τ1, s = �ndvarx(Γ1 @ t).

Proof. Follows from the individual rules given in Figure 34.

Theorem 37 (Uniqueness of syntax-directed structural coeffects). In the syntax-
directed type system for structural coeffects defined in Figure 34, when Γ @ r ` e : τ
and Γ @ r ′ ` e : τ ′ then τ = τ ′ and r = r ′.

Proof. Suppose that (A) Γ @ c ` e : τ and (B) Γ @ c ′ ` e : τ ′. We show by
induction over the typing derivation of Γ @ c ` e : τ that τ = τ ′ and c = c ′.

Case (abs): e = λx : τ1.e1. Then τ = τ1
c−→ τ2 for some τ2 and Γ ′ @ t ` e :

τ2 for some Γ ′, t and also (Γ @ c), τ1, s = �ndvarx(Γ
′ @ t). By case (4) of

Lemma 36, the final rule of the derivation (B) must have also been (abs)
and this derivation has a sub-derivation with a conclusion Γ @ c ′ ` e : τ ′2.
By the induction hypothesis τ2 = τ ′2 and c = c ′ and therefore also so

134 structural coeffect calculus

τ = τ ′. Although �ndvarx is a relation, it allows only one possible result
(because the type of the bound variable matches the type annotation).

Cases (var), (const) are direct consequence of Lemma 36.

Case (app) similarly to (abs).

As noted earlier, unique typing derivations obtained using the syntax-directed
type system given in Figure 34 can be automatically turned into typing
derivations of the original (non-syntax-directed) structural coeffect type sys-
tem in Figure 33. Unlike in the flat coeffect system, this does not determine
how context demands are split (as this is done deterministically to match
the variable bindings), but it specifies how are the structural rules (weaken-
ing, exchange and contraction) applied. The following proposition provides
the details.

Proposition 38 (Choosing a unique typing derivation). If Γ @ r ` e : τ (using
the rules in Figure 34) then there is a unique typing derivation using the typing
rules from Figure 33 with a conclusion Γ @ r ` e : τ obtained by induction over the
original typing derivation as follows:

Case (var), (const): The resulting typing derivation uses the corresponding rule of
the non-syntax-directed type system.

Case (abs): Take the typing derivation for the sub-expression e. If the variable x
does not appear in Γ1, apply (weak) followed by (abs). Otherwise assume Γ1 =

x1 :τ1, . . . , xn :τn and x = xi. Apply (exch) repeatedly on variables xi, xi+1
then xi, xi+2 and so on until it is applied on xi, xn. At this point, xi is the
last variable of the vector and we can apply (abs). This produces the same
consequent as the one in the original typing derivation.

Case (app): Take the typing derivations for the sub-expressions e1 and e2 in free-
variable contexts Γ1 and Γ2. For each variable x that appears in both Γ1 and
Γ2, rename the variable to a fresh name x ′ in e1 and to another fresh name x ′′

in e2 and their typing derivations. Now we have disjoint contexts and we can
apply (app) on the target derivations.

Next, apply (exch) until x ′ and x ′′ are last two variables in the vector and
apply (contr), renaming both x ′ and x ′′ to the original name x. Repeat this
step for all variables that were renamed. The resulting variable context is Γ and
the resulting coeffect annotation is the same as in the original typing derivation.

6.4 syntactic properties and extensions

When discussing the structural coeffect calculus in Section 6.2, we consid-
ered a language with variables, constants, application and abstraction. This
lets us focus on the key properties of the coeffects, but it neglects a number
of practical concerns. In this section, we extend the language with let bind-
ing and subcoeffecting. This is useful in practice, but it also shows other in-
teresting aspects of the theory. Additional extensions that make the coeffect
language practically useful are given by the implementation in Chapter 7.

6.4.1 Let binding

In the flat coeffect calculus, we included a special typing rule for let bind-
ing. As discussed in Section 4.5.2, this provides a more precise typing than
the rule derived from abstraction and application, because it removes the

6.5 syntactic equational theory 135

ambiguity introduced by abstraction. For the structural coeffect system, the
typing rule for let binding can be treated as a derived rule. The following
shows the structural typing for let:

(let)
Γ1 @ r ` e1 : τ1 Γ2, x :τ1 @ s ++ 〈t〉 ` e2 : τ2

Γ1, Γ2 @ (t~ r) ++ s ` let x = e1 in e2 : τ2

Thanks to the structural nature of the calculus, the coeffect t that is associ-
ated with the variable x is uniquely determined (as in function abstraction).
It is then sequentially composed with the coeffects attached to the variables
that actually appear in the sub-expression e1.

Proposition 39 (Let binding). In a structural coeffect calculus, the typing of
let x = e1 in e2 can be seen as a derived rule, i. e. its typing is equivalent to the
typing of the expression (λx.e2) e1.

Proof. Consider the following typing derivation for (λx.e2) e1. Note that in
the last step, we apply (exch) repeatedly to swap Γ1 and Γ2.

Γ1 @ r ` e1 : τ1

Γ2, x :τ1 @ s ++ 〈t〉 ` e2 : τ2

Γ2 @ s ` λx.e2 : τ1
t−→ τ2

Γ2, Γ1 @ s ++ (t~ r) ` (λx.e2) e1 : τ2

Γ1, Γ2 @ (t~ r) ++ s ` (λx.e2) e1 : τ2

The assumptions and conclusions match those of the (let) rule.

6.4.2 Subcoeffecting

When discussing the flat coeffect calculus in Section 4.2.1, we noted that the
6 operation for flat coeffect algebra can be defined in terms of ⊕ as follows:

r 6 s ⇐⇒ r ⊕ s = s

This is not the case for the structural coeffect algebra structure. For example,
in the calculus for tracking bounded reuse, the ⊕ operator is defined as +

(on integers) and 6 is just 6 and so the above equivalence does not hold.
For this reason, we included 6 as an explicit part of both of the structures.

The subcoeffecting rule is not syntax directed and we did not include it
in the core calculus in order to keep the discussion about choosing unique
derivation in Section 6.3 focused on the key problem – structural rules. The
subcoeffecting rule for structural coeffect calculus looks as follows:

(sub)
Γ @ r++〈s ′〉++q ` e : τ
Γ @ r++〈s〉++q ` e : τ

(s ′6s)

The sub-coeffecting is applied on individual variables rather than on the
whole context, but it could be easily extended to a relation on vectors 6.
Subtyping on functions can be defined in exactly the same way as for the
flat coeffect calculus (Section 4.5.1), because functions are annotated with a
(single) coeffect scalar. It is worth noting that subcoeffecting is needed in
Lemma 40 (discussed in the next section) when performing a substitution
for a variable in an expression that does not contain the substituted variable.

6.5 syntactic equational theory

The properties of the structural coeffect algebra, together with two addi-
tional weak conditions, guarantee that certain equational properties on terms
hold in all instances of the structural coeffect calculus that we consider

136 structural coeffect calculus

in this thesis. In this section, we look at these common properties. In Sec-
tion 6.5.1, we first briefly compare the equational theories for flat coeffects
(Section 4.4) and structural coeffects (Section 6.5.3).

6.5.1 From flat coeffects to structural coeffects

When discussing syntactic reductions for the flat calculus, we noted that call-
by-name reduction does not, in general, preserve typing for all flat coeffect
calculi. In the structural coeffect calculus, β-reduction and also η-expansion
preserve typing for all instances of the calculus. Using the terminology of
Pfenning and Davies [88], the structural coeffect calculus satisfies both the
local soundness and the local completeness properties.

substitution for flat coeffects (recap). The less obvious (top-
pointed) variant of the substitution lemma for flat coeffects (Lemma 9) re-
quired all operations of the flat coeffect algebra to coincide. This enables
substitution to preserve the type of expressions, because all additional de-
mands arising as the result of the substitution can be associated with the
declaration context. For example, consider the following example where
Haskell-style implicit parameter ?o�set is substituted for the variable y:

y : int @ ∅ ` λx.y+ ?total : int
{?total}−−−−−→ int (before)

() @ {?o�set} ` λx.?o�set+ ?total : int
{?total}−−−−−→ int (after)

The typing judgement obtained in (after) preserves the type of the expression
(function value) from the original typing (before). This is possible thanks to
the non-determinism involved in the typing rule for lambda abstraction –
as all operators of the flat coeffect algebra used here are ∪, we can place the
additional requirement on the outer context. Note that this is not the only
possible typing, but it is a permissible typing.

Here, the flat coeffect calculus gives us typing with limited precision, but
enough flexibility to prove the substitution lemma.

substitution for structural coeffects . By contrast, the substi-
tution lemma (Lemma 40, page 137) for structural coeffects can be proven
because structural coeffect systems provide enough precision to identify ex-
actly with which variable should a context requirement be associated.

The following example shows a situation similar to the previous one.
Here, we use structural dataflow calculus (writing prev e to obtain the pre-
vious value of the expression e) and we substitute w+ z for y:

y : int @ 〈2〉 ` λx.prev (x+ prev y) : int
1−→ int (before)

w : int, z : int @ 2∗〈1, 1〉 ` λx.prev (x+ prev (w+ z))) : int
1−→ int (after)

w : int, z : int @ 〈2, 2〉 ` λx.prev (x+ prev (w+ z))) : int
1−→ int (equivalently)

The type of the function does not change, because the structural type system
associates the annotation 1 with the bound variable x and the substitution
does not affect how the variable x is used.

The other aspect demonstrated in the example is how the coeffect of the
substituted variable affects the free-variable context of the substituted ex-
pression. Here, the original variable y is annotated with 2 and we substitute
it for an expression w+ z with free variables w, z annotated with 〈1, 1〉. The
substitution applies the operation ∗ (which stands for the sequential com-
position ~ from the structural coeffect vector) to the annotation of the new

6.5 syntactic equational theory 137

context – in the above example the coeffect 2∗〈1, 1〉 (after) is equivalent to
the coeffect 〈2, 2〉 (equivalently).

6.5.2 Holes and substitution lemma

As demonstrated in the previous section, reduction (and substitution) in the
structural coeffect calculus may need to replace a single variable with a vector
of variables. More importantly, because the system uses explicit contraction,
we may also need to substitute for multiple variables in the variable context
at the same time.

Consider the expression λx.x + x. It is type-checked by type-checking
x1 + x2, contracting x1 and x2 and then applying lambda abstraction. Dur-
ing the reduction of (λx.x+ x) (y+ z) we need to substitute y1 + z1 for x1
and y2 + z2 for x2. This is similar to substitution lemmas in other struc-
tural variants of λ-calculus, such as the bunched typing system [73]. To ex-
press the substitution lemma later in this section, we follow the example of
bunched type system and define the notion of a context with holes. A context
with holes is a context such as x1 : τ1, . . . , xk : τk @ 〈r1, . . . , rk〉, where some
of the variable typings xi :τi and corresponding coeffects ri are replaced by
holes written as − @−.

Definition 13 (Context with holes). We write ∆[− @−]n for a context with
n holes (in addition to some number of variables). A context with holes is defined
inductively over the number of holes:

∆[− @−]n := −, Γ @ 〈− 〉++s where Γ @ s ∈ ∆[− @−]n−1

∆[− @−]n := x :τ, Γ @ 〈r〉++s where Γ @ s ∈ ∆[− @−]n

∆[− @−]0 := () @ 〈〉

A context with n holes may either start with a hole, followed by a context
with n− 1 holes, or it may start with a variable followed by a context with
n holes. Note that the definition ensures that the locations of variable holes
correspond to the locations of coeffect annotation holes. Given a context
with holes, we can fill the holes with other contexts using the hole filling
operation and obtain an ordinary coeffect-annotated context.

Definition 14 (Hole filling). Given a context with n holes ∆ @ s ∈ ∆[− @−]n,
the hole filling operation written as ∆ @ s[Γ1 @ r1 | . . . | Γn @ rn], replaces holes by
the specified variables and corresponding coeffect annotations and is defined as:

−,∆ @ 〈− 〉++s [Γ1 @ r1 | Γ2 @ r2 | . . .] = Γ1, Γ2 @ r1++r2
where Γ2 @ r2 = ∆ @ s[Γ2 @ r2 | . . .]

x1 :τ,∆ @ 〈r1〉++s [Γ1 @ r1 | Γ2 @ r2 | . . .] = x1 :τ, Γ2 @ 〈r1〉++r2
where Γ2 @ r2 = ∆ @ s[Γ1 @ r1 | Γ2 @ r2 | . . .]

() @ 〈〉 [] = () @ 〈〉

When we substitute an expression with coeffects t (associated with variables
Γ) for a variable that has coeffects s, the resulting coeffects of Γ need to com-
bine t and s. Unlike in the flat coeffect systems, the structural substitution
does not require all coeffect algebra operations to coincide and so the com-
bination is more interesting than in the bottom-pointed substitution for flat
coeffects, where it used the only available operator (Lemma 9).

138 structural coeffect calculus

Lemma 40 (Multi-nary substitution). In a structural coeffect calculus with a
structural coeffect algebra such that r6 r ′ ⇒ ∀s. (r~ s) 6 (r ′~ s) and also
ign 6 (ign~ r), given an expression with multiple holes that are filled by variables
x1 :τ1, . . . , xn :τn with coeffects s1, . . . , sn:

Γ @ r [x1 :τ1 @ 〈s1〉 | . . . | xk :τk @ 〈sk〉] ` er : τr
and a expressions ei with free-variable contexts Γi annotated with ti:

Γ1 @ t1 ` e1 : τ1 . . . Γk @ tk ` ek : τk

substituting the expressions ei for variables xi results in an expression with a
context where the original holes are filled by contexts Γi with coeffects si~ti:

Γ @ r [Γ1 @ s1~ t1 | . . . | Γk @ sk~ tk] ` er[x1 ← e1] . . . [xk ← ek] : τr

Proof. By induction over `, using the multi-nary aspect of the substitution
in the proof of the contraction case (see Appendix B.2).

Lemma 40 has two additional requirements on the structural coeffect
scalar that are similar to those of the substitution lemma for bottom-pointed
flat coeffect systems (Lemma 9). Those two conditions are satisfied for all
our examples (it would be reasonable to require them for all structural co-
effect algebras, but we prefer to keep the original definition more general).
The two requirements are needed in the proof for substitution for subcoef-
fecting rule (discussed in Section 6.4.2) and for weakening, respectively.

6.5.3 Reduction and expansion

In Chapter 4, we discussed call-by-value separately from call-by-name, be-
cause the proof of call-by-value substitution has fewer prerequisites. In this
section, we consider full β-reduction, which encompasses both call-by-value
and call-by-name. We also show that η-expansion preserves the types. Both
of the properties hold for a system with any structural coeffect algebra that
satisfies the additional weak requirements given in Lemma 40.

reduction theorem . In a full β-reduction, written as →β, we can re-
place the redex (λx.e2) e1 by the expression er[x ← es] anywhere inside a
term. The subject reduction theorem guarantees that this does not change
the type of the term.

Theorem 41 (Type preservation). In a structural coeffect system with subcoeffect-
ing (Section 6.4.2) and a structural coeffect algebra formed by (C,~,⊕, use, ign,6)
and operations 〈− 〉 and ~ that satisfies the requirements of Lemma 40, it holds
that if Γ @ r ` e : τ and e→β e ′ using the full β-reduction then Γ @ r ` e ′ : τ.

Proof. Consider the typing derivation for the redex (λx.er) es:

Γs @ s ` es : τs

Γr, x :τs @ r ++ 〈t〉 ` er : τr
Γr @ r ` λx.er : τs

t−→ τr

Γr, Γs @ r ++ (t~ s) ` (λx.er) es : τr
For the substitution lemma, we first rewrite the typing judgement for er,
i. e. Γr, x : τs @ r ++ 〈t〉 ` er : τr as a context with a single hole filled by the
x variable: Γr,− @ r ++− [x : τs @ 〈t〉] ` er : τr. Now we can perform the
substitution using Lemma 40:

Γr,− @ r ++− [x :τs @ 〈t〉] ` er : τr Γs @ s ` es : τs
Γr,− @ r ++− [Γs @ t~ s] ` er[x← es] : τr

Γr, Γs @ r++(t~ s) ` er[x← es] : τr

6.6 categorical motivation 139

The last step applies the hole filling operation, showing that substitution
preserves the type of the term.

Because of the vector structure of coeffect annotations r, s, and 〈t〉, these are
uniquely associated with Γr, Γs, and x respectively. Therefore, substituting
es (which has coeffects s) for x introduces the context demands specified
by s which are composed with the demands t associated with x, i. e. the
variable being substituted.

expansion theorem . Structural coeffect systems also exhibit η-equality,
therefore satisfying both local soundness and local completeness as required by
Pfenning and Davies [88]. Informally, this means that abstraction does not
introduce too much, and application does not eliminate too much.

Theorem 42 (η-expansion). In a structural coeffect system with a structural
coeffect algebra formed by (C,~,⊕, use, ign,6) and operations 〈 − 〉 and ~, if
Γ @ r ` e : τ and e→η e ′ using the full η-reduction then Γ @ r ` e ′ : τ.

Proof. The following derivation shows that λx.f x has the same type and
coeffects as the original expression f:

Γ @ r ` f : τ1
s−→ τ2 x :τ1 @ 〈use〉 ` x : τ1

Γ , x :τ1 @ r ++ (s~ 〈use〉) ` f x : τ2
Γ , x :τ1 @ r ++ 〈s〉 ` f x : τ2
Γ @ r ` λx.f x : τ1

s−→ τ2

The second step uses the fact that s~ 〈use〉 = 〈s~ use〉 = 〈s〉 arising from the
monoid (C,~, use) of the coeffect algebra.

The η-expansion property discussed in this section highlights another dif-
ference between coeffects and effects. The η-equality property does not hold
for many notions of effect. For example, in a language with output effects,
e = (print "hi"; (λx.x)) has different effects to its η-converted form λx.e x be-
cause the immediate effects of e are hidden by the purity of λ-abstraction. In
the coeffect calculus, the (abs) rule allows immediate contextual demands of
e to “float outside” of the enclosing λ. Furthermore, the free monoid nature
of ++ in structural coeffect systems allows the exact immediate demands of
λx.ex to match those of e.

6.6 categorical motivation

To define the semantics of structural coeffect calculus, we follow the same
approach as for flat coeffect calculus in Chapter 5. In this section, we define
categorical semantics for the calculus in terms of structural indexed comonad,
which is an extension of the indexed comonad structure. Similarly to flat in-
dexed comonad, the structural variant adds operations that are needed to
embed full λ-calculus, this time with per-variable contexts.

We use the semantics to guide the categorically-inspired translation dis-
cussed in Section 6.7, which translates context-aware programs from the
structural coeffect calculus to a simple target functional language with unin-
terpreted comonadically-inspired primitives (that correspond to operations
of the structural indexed comonads). We then give operational semantics
for a concrete context-aware language by giving the domain-specific reduc-
tion rules for the comonadically-inspired primitives. As an example, we use
this to prove syntactic type safety of structural dataflow language in Sec-
tion 6.7.3.

140 structural coeffect calculus

6.6.1 Indexed comonads, revisited

The semantics of structural coeffect calculus reuses the definition of indexed
comonad with a minimal change. The additional structure that is required
for context manipulation (merging and splitting) is different and is here
provided by the structural indexed comonad structure that we introduce in
this section.

Recall the definition from Section 5.2.4, which defines an indexed como-
nad over a monoid (C,~, use) as a triple (Cr, counituse, cobindr,s). The triple
consists of a family of object mappings Cr, and two mappings that involve
context-dependent morphisms of the form Crτ1 → τ2.

In the structural coeffect calculus, we work with morphisms of the form
Crτ1 → τ2 representing function values (appearing in the language), but
also of the form C〈r1,...,rn〉(τ1 × . . .× τn) → τ, modelling expressions in a
context. To capture this, we need to revisit the definition and use coeffect
vectors in some of the operations.

Definition 15. Given a monoid (C,~, use) with a pointwise extension of the ~
operator to a vector (written as t~ s) and an operation lifting scalars to vectors
〈− 〉, an indexed comonad over a category C is a triple (Cr, counituse, cobinds,r):

• Cr for all r ∈
⋃
m∈N Cm is a family of object mappings

• counituse is a mapping C〈use〉α→ α

• cobinds,r is a mapping (Crα→ β)→ (Cs~rα→ C〈s〉β)

such that, for all f : Ctα→ β and g : C〈r〉β→ γ:

cobind〈s,use〉 counituse = id (left identity)

counituse ◦ cobinduse,t f = f (right identity)

cobinds,r~t (g ◦ cobindr,t f) = (cobinds,〈r〉 g) ◦ (cobinds~r,t f) (associativity)

The object mapping Cr is now indexed by a vector rather than by a scalar
Cr as in the previous chapter. This new definition supersedes the old one,
because a flat coeffect annotation can be seen as singleton vectors. The
comonad laws are adjusted accordingly.

The operation counituse operates on a vector of length one. This means
that it will always return a single value rather than a vector. The cobinds,r
operation is, perhaps surprisingly, indexed by a coeffect vector and a coef-
fect scalar. This asymmetry is explained by the fact that the input function
(Crα → β) takes a vector of variables, but always produces just a single
value. Thus the resulting function also takes a vector of variables, but al-
ways returns a context with a vector containing just one value.

In the definition of indexed comonad given in this section, we use a vec-
tors of scalar coeffect annotations to match with the type system given in
Section 6.2. A more general definition could be given in terms of modules
over coeffect algebra, which provides a more general definition using stan-
dard structures of category theory. However, for the purpose of defining the
translation in Section 6.7, the concrete definition using vectors of coeffect
annotations suffices.

6.6.2 Structural indexed comonads

The flat indexed comonad structure extends indexed comonads with opera-
tions merger,s and splitr,s that combine or split the additional (flat) context
and are annotated with the flat coeffect operations ∧ and ⊕, respectively.

6.6 categorical motivation 141

In the structural version, the corresponding operations convert between
a vector of values and pairs of contexts containing parts of a vector. The
vectors of coeffect annotations are split or merged using ++ of the structural
coeffect algebra, in a way that mirrors the variable structure.

The following definition includes dupr,s which models duplication of a
variable in a context needed for the semantics of contraction:

Definition 16. Given a structural coeffect algebra formed by (C,~,⊕, use, ign,6)
with operations 〈− 〉 and~, a structural indexed comonad is an indexed comonad
over the monoid (C,~, use) equipped with families of operations merger,s, splitr,s
and dupr,s where:

• merger,s is a family of mappings Crα×Csβ→ Cr++s(α×β)
• splitr,s is a family of mappings Cr++s(α×β)→ Crα×Csβ

• dupr,s is a family of mappings C〈r⊕s〉α→ C〈r,s〉(α×α)

Here, the following equalities must hold:

merger,s ◦ splitr,s ≡ id id ≡ splitr,s ◦merger,s

These operations differ from those of the flat indexed comonad in that the
merge and split operations are required to be inverse functions and to pre-
serve the additional information about the context. This was not required
for the flat system where the operations could under-approximate or over-
approximate.

The dup mapping is a new operation that was not required for a flat cal-
culus. It takes a variable context with a single variable annotated with r⊕ s,
duplicates the value of the variable α and splits the additional context be-
tween the two new variables.

6.6.3 Semantics of structural calculus

The concrete semantics for liveness and bounded variable use shown in Sec-
tions 3.3.1 and 3.3.2 suggests that semantics of structural coeffect calculi tend
to be more complex than semantics of flat coeffect calculi. The complexity
comes from the fact that we need a more expressive representation of the
variable context – e. g. a vector of optional values. Additionally, the struc-
tural system needs to pass separate variable contexts to the sub-expressions.

The latter aspect is fully captured by the semantics shown in this section.
The earlier point is left to the concrete notion of structural coeffect. Our
model still gives us the flexibility of defining the concrete representation of
variable vectors. We explore a number of examples in Section 6.6.4 and start
by looking at a unified categorical semantics defined in terms of structural
indexed comonads.

contexts and functions . In the structural coeffect calculus, expres-
sions in context are interpreted as functions taking a vector wrapped in a
structure indexed with a vector of annotations such as Cr. Functions take
only a single variable as an input and so the structure is annotated with a
scalar, such as Cr, which we treat as being equivalent to a singleton vector
annotation C〈r〉:

Jx1 :τ1, . . . , xn :τn @ 〈r1, . . . , rn〉 ` e : τK : C〈r1,...,rn〉(τ1 × . . .× τn)→ τ

Jτ1
r−→ τ2K = C〈r〉τ1 → τ2

Note that the instances of flat indexed comonad ignored the fact that the
variable context wrapped in the data structure is a product. This is not

142 structural coeffect calculus

The semantics is defined over a typing derivation:

Jx :τ @ 〈use〉 ` x : τK = counituse
(var)

J() @ 〈〉 ` n : numK = const n
(num)

JΓ , x :τ1 @ r++ 〈s〉 ` e : τ2K = f

JΓ @ r ` λx.e : τ1
s−→ τ2K = f ◦ curry merger,〈s〉

(abs)

JΓ1 @ r ` e1 : τ1
t−→ τ2K = f

JΓ2 @ s ` e2 : τ1K = g

JΓ1, Γ2 @ r++(t~s) ` e1 e2 : τ2K = app ◦ f×(cobindt,s g)
◦ splitr,t~ s

(app)

JΓ @ r ` e : τK = f

JΓ , x :τ1 @ r++〈ign〉 ` e : τK = f ◦ snd ◦ splitr,〈ign〉
(weak)

JΓ1, x :τ1,y :τ2, Γ2
@ r++〈s, t〉++q ` e : τK

= f

JΓ1,y :τ2, x :τ1, Γ2
@ r++〈t, s〉++q ` e : τK

=
f ◦ nestr,〈t,s〉,〈s,t〉,q

(merge〈s〉,〈t〉 ◦ swap ◦ split〈t〉,〈s〉)

(exch)

JΓ1,y :τ1, z :τ1, Γ2
@ r++〈s, t〉++q ` e : τK

= f

JΓ1, x :τ1, Γ2 @ r++〈s⊕ t〉++q
` e[z,y← x] : τK

=
f ◦ nestr,〈s⊕ t〉,〈s,t〉,q dups,t

(contr)

Assuming the following auxiliary operations:

nestr,s,s’,t f = merger,s’++t ◦ id× (merges’,t ◦ f× id ◦ splits,t) ◦ splitr,s++t

id x = x

const v = λx.v
curry f x y = λf.λx.λy.f (x,y)
fst (x,y) = x

swap (x,y) = (y, x)
f× g = λ(x,y).(f x,g y)

app (f, x) = f x

Figure 35: Categorical semantics of the structural coeffect calculus

generally the case for the structural indexed comonads – the definitions
shown in Section 6.6.4 are given specifically for C〈r1,...,rn〉(τ1 × . . . × τn)
rather than more generally for Crα.

expressions . A semantics of structural coeffect calculi is shown in Fig-
ure 35. The semantics is written as composition of morphisms using a
number of auxiliary definitions. Due to the equivalence between Cartesian
Closed Categories and the λ-calculus, we will treat it as specifying transla-
tion to a target functional language in Section 6.7.

6.6 categorical motivation 143

The following summarizes how the standard syntax-driven rules work,
highlighting the differences from the flat version:

• When accessing a variable (var), the context now contains only the
accessed variable and so the semantics is just counituse without a pro-
jection. Constants (const) are interpreted by a constant function.

• The semantics of flat function application first duplicated the context
so that the same variables can be passed to both sub-expressions. This
is no longer needed – the (app) rule splits the variables including the
additional context into two parts. Passing the first context to the se-
mantics of e1 gives us a function C〈t〉τ1 → τ2.

A value C〈t〉τ1 required in order to call the function is obtained by
applying cobindt,s to the semantics of e2. The result Ct~s(. . .× . . .×
. . .) → C〈t〉τ1 is then called with the latter part of the split input
context.

• The semantics of function abstraction (abs) is syntactically the same as
in the flat version – the only difference is that we now merge a free-
variable context with a singleton vector, both at the level of variable
assignments and at the level of coeffect annotations.

The semantics for the non-syntax-driven rules (weakening, exchange, con-
traction) performs transformations on the free-variable context. Weakening
(weak) splits the context and ignores the part corresponding to the removed
variable. If we were modelling the semantics in a language with a linear type
system, this would require an additional operation for ignoring an unused
context annotated with ign.

The remaining rules perform a transformation anywhere inside the free-
variable vector. To simplify writing the semantics, we define a helper nestr,s,s’,t
that splits the variable vector into three parts, transforms the middle part
and then merges them, using the newly transformed middle part.

The transformations on the middle part are quite simple. The (exch) rule
swaps two single-variable contexts and the (contr) rule uses the dups,t oper-
ation to duplicate a variable while splitting its additional context.

properties . As in the flat calculus, the main reason for defining the cat-
egorical semantics in this chapter is to provide validation for the design of
the calculus. The following correspondence theorem states that the annota-
tions in the typing rules of the structural coeffect calculus correspond to the
indices of the semantics. Thus, the calculus captures a context-dependent
property if it can be modelled by a structural indexed comonad. As we show
in the next section, this is the case for all three discussed examples (liveness,
dataflow, bounded variable reuse).

Theorem 43 (Correspondence). In all of the typing rules of the structural coeffect
system, the context annotations r and s of typing judgements Γ @ r ` e : τ and
function types τ1

s−→ τ2 correspond to the indices of mappings Cr and C〈s〉 in the
corresponding semantic function defined by JΓ @ r ` e : τK.

Proof. By analysis of the semantic rules in Figure 35.

6.6.4 Examples of structural indexed comonads

The categorical semantics for structural coeffect calculus is easily instanti-
ated to give semantics for a concrete calculus. In this section, we revisit

144 structural coeffect calculus

the three examples discussed throughout this chapter – structural liveness,
dataflow and bounded variable reuse. Some aspects of the first two exam-
ples will be similar to flat versions discussed in Section 5.2.5 – they are
based on the same data structures (option and a list, respectively), but the
data structures are composed differently. Generally speaking, rather than
having a data structure over a product of variables, we now have a vector of
variables over a specific data structure.

The abstract semantics does not specify how vectors of variables should
be represented, so this can vary in concrete instantiations. In all our ex-
amples, we represent a vector of variables as a product written using ×.
To distinguish between products representing vectors and ordinary prod-
ucts (e. g. a product of contexts returned by split), we write vectors using
〈a, . . . ,b〉 rather than the parentheses, used for ordinary tuples.

dataflow. It is interesting to note that the semantics of dataflow and
bounded variable reuse (discussed next) both keep a product of multiple
values for each variable, so they are both built around an indexed list data
structure. However, their cobind and dup operations work differently. We
start by looking at the structure modelling dataflow computations. For read-
ability, variables in bold face (such as a1) range over vectors while ordinary
notation (such as a1) is used for individual values.

Example 16 (Indexed list for dataflow). The indexed list model of dataflow com-
putations is defined over a structural coeffect algebra (N,+, max, 0, 0,6). The data
type C〈n1,...,nk〉 is indexed by required number of past variables for each individual
variable. It is defined over a vector of variables α1× . . .×αk and it keeps a product
containing a current value followed by ni past values:

C〈n1,...,nk〉(α1 × . . .×αk) = (α1 × . . .×α1)︸ ︷︷ ︸
(n1+1)−times

× . . .× (αk × . . .×αk)︸ ︷︷ ︸
(nk+1)−times

The mappings that define the structural indexed comonad include the split and
merge operations that are shared by the other two examples (discussed below):

merge〈m1,...,mk〉,〈n1,...nl〉(〈a1, . . . , ak〉, 〈b1, . . . , bl〉) =
〈a1, . . . , ak, b1, . . . , bl〉

split〈m1,...,mk〉,〈n1,...nl〉〈a1, . . . , ak, b1, . . . , bl〉 =
(〈a1, . . . , ak〉, 〈b1, . . . , bl〉)

The remaining mappings that are required by structural indexed comonad and cap-
ture the essence of dataflow computations are defined as:

counit0 〈〈a0〉〉 = a0

cobindm,〈n1,...,nk〉 f 〈〈a1,0, . . . a1,m+n1〉, . . . , 〈ak,0, . . . ak,m+nk〉〉 =
〈〈 f〈〈a1,0, . . . a1,n1〉, . . . , 〈ak,0, . . . ak,nk〉〉, . . . ,
f〈〈a1,m, . . . a1,m+n1〉, . . . , 〈ak,m, . . . ak,m+nk〉〉 〉〉

dupm,n〈〈a1, . . . ,amax(m,n)〉〉 = 〈〈a1, . . . ,am〉, 〈a1, . . . ,an〉〉

The definition of the indexed list data structure relies on the fact that the
number of annotations corresponds to the number of variables combined
using −×−. It then creates a vector of lists containing ni + 1 values for the
i-th variable (the annotation represents the number of required past values
so one more value is required).

The split and merge operations are defined separately, because they are not
specific to the example. They operate on the top-level vectors of variables

6.6 categorical motivation 145

(without looking at the representation of the variable). This means that we
can re-use the same definitions for the following two examples (with the
only difference that ai, bi will there represent options rather than lists).

The mappings that explain how dataflow computations work are cobind

(representing sequential composition) and dup (representing context shar-
ing or parallel composition). In cobind, we get k vectors corresponding to k
variables, each with m+ ni values. The operation calls f m-times to obtain
m past values required as the result of type C〈m〉β.

The dupm,n operation needs to produce a two-variable context contain-
ing m and n values, respectively, of the input variable. The input provides
max(m,n) values, so the definition is simply a matter of restriction. Finally,
counit extracts the value of its single variable.

bounded reuse . As mentioned earlier, the semantics of calculus for
bounded reuse is also based on the indexed list structure. Rather than repre-
senting possibly different past values that can be shared (see the definition
of dup), the list now represents multiple copies of the same value as each
value can only be accessed once. This semantics follows that of Girard [40].

Example 17 (Indexed list for bounded reuse). The indexed list model of bounded
variable reuse is defined over a structural coeffect algebra (N, ∗,+, 1, 0,6). The data
type C〈n1,...,nk〉 is a vector containing ni values of i-th variable:

C〈n1,...,nk〉(α1 × . . .×αk) = (α1 × . . .×α1)︸ ︷︷ ︸
n1−times

× . . .× (αk × . . .×αk)︸ ︷︷ ︸
nk−times

The merge and split operations are defined as in Example 16. The operations that
capture the behaviour of bounded reuse are:

counit1 〈〈a0〉〉 = a0

dupm,n〈〈a1, . . . ,am+n〉〉 = 〈〈a1, . . . ,am〉, 〈am+1, . . . ,am+n〉〉

cobindm,〈n1,...,nk〉 f 〈〈a1,0, . . . a1,m∗n1〉, . . . , 〈ak,0, . . . ak,m∗nk〉〉 =
〈 f〈〈a1,0, . . . a1,n1−1〉, . . . , 〈ak,0, . . . ak,nk−1〉〉, . . . ,
f〈〈a1,(m−1)∗n1 , . . . a1,(m−1)∗n1〉, . . . , 〈ak,m∗nk−1, . . . ak,m∗nk−1〉〉 〉

The counit operation is defined as previously – it extracts the only value of
the only variable. In the bounded variable reuse system, variable sharing
is annotated with the + operator (in contrast with max used in dataflow).
The dupm,n operation thus splits the m+ n available values between two
vectors of length m and n, without sharing a value. The cobind operation
works similarly – it splits m ∗ ni available values of each variable into m
vectors containing ni copies and then calls the f function m-times to obtain
m resulting values without sharing any input value.

liveness . In both dataflow and bounded reuse, the data type is defined
as a vector of values obtained by applying the indexed list type constructor
to types of individual variables. We can generalize this pattern. Given a
parameterized (indexed) type constructorDlα, we define C〈l1,...,ln〉 in terms
of a vector of Dli types. For liveness, the definition lets us reuse some of the
mappings used when defining the semantics of flat liveness. However, we
cannot fully define the semantics of the structural version in terms of the
flat version – the cobind operation is different and we need an appropriate
dup operation.

146 structural coeffect calculus

Example 18 (Structural indexed option). Given a structural coeffect algebra
formed by ({L,D},u,t, L,D,v) and the indexed option data type Dl, such that
DDα = 1 and DLα = α, the data type for structural indexed option comonad is:

C〈n1,...,nk〉(α1 × . . .×αk) = Dn1α1 × . . .×Dnkαk
The merge and split operations are defined as earlier. The remaining operations
model variable liveness as follows:

cobindL,〈l1,...,ln〉 f 〈a1, . . . ,an〉 = 〈f 〈a1, . . . ,an〉〉
cobindD,〈D,...,D〉 f 〈(), . . . , ()〉 = 〈D〉

dupD,D〈()〉 = 〈(), ()〉
dupL,D〈a〉 = 〈a, ()〉
dupD,L〈a〉 = 〈(),a〉
dupL,L〈a〉 = 〈a,a〉

counitL 〈a〉 = a

When the expected result of the cobind operation is dead (second case), the
operation can ignore all inputs and directly return the unit value (). Other-
wise, it passes the vector of input variables to f as-is – no matter whether the
individual values are live or dead. The L annotation is a unit with respect
to ∩ and so the annotations expected by f are the same as those required by
the result of cobind.

The dup operation resembles with the flat version of split – this is expected
as duplication in the flat calculus is performed by first duplicating the vari-
able context (using map) and then applying split. Here, the duplication re-
turns a pair. Depending on the required coeffect annotations, this may copy
(duplicate) the value, or it may produce an empty context.

Finally, counit extracts a value which is always present as guaranteed by
the type C〈L〉α→ α. The lifting operation models subcoeffecting which can
turn a context with a value into a dead context (second case); otherwise it
behaves as identity.

properties . The concrete categorical semantics presented in this section
is a generalization of the concrete semantics given when introducing context-
aware programming languages in Chapter 3.

Theorem 44 (Generalization). Consider a typing derivation obtained according
to the rules for finding unique typing derivations as specified in Section 6.3 for a
coeffect language with liveness, dataflow or bounded variable use.

The semantics obtained by instantiating the rules in Figure 35 with the concrete
operations defined in Example 18, Example 16 or Example 17 is the same as the one
defined in Figure 19, Section 3.3.3 and Section 3.3.2, respectively.

Proof. Expansion of the definitions for the unique typing derivation.

6.7 translational semantics

In the previous section, we used category theory to give a unified model ca-
pable of capturing the semantics of our three context-aware language based
on the structural coeffect calculus. Although the categorical model is inter-
esting on its own, we use it in the same way as in Chapter 5 – to define
a translation from source context-aware languages to a simple target func-
tional language. As for flat coeffect calculus, we show that the translation
produces well-typed programs in the target language. For a sample context-

6.7 translational semantics 147

language syntax . Given a structural coeffect algebra, extend the pro-
gramming language syntax with the following constructs:

e = . . . | cobinds,r e1 e2 | counituse e | merger,s e | splitr,s e | dupr,s e

τ = . . . | Cr(τ1 × . . .× τk)
K = . . . | cobinds,r _ e | cobinds,r v _ | counituse _

| merger,s _ | splitr,s _ | dupr,s _

typing rules . Given a structural coeffect algebra, add the typing rules:

(counit) Γ ` e : C〈use〉τ
Γ ` counituse e : τ

(cobind)
Γ ` e1 : Cr(τ1 × . . .× τk)→ τ Γ ` e2 : Cs~rτ1(τ1 × . . .× τk)

Γ ` cobinds,r e1 e2 : C〈s〉τ

(merge)
Γ ` e : Cr(τ1 × . . .× τl)×Cs(τl+1 × . . .× τk)

Γ ` merger,s e : C
r++s(τ1 × . . .× τk)

(split)
Γ ` e : Cr++s(τ1 × . . .× τk)

Γ ` splitr,s e : C
r(τ1 × . . .× τl)×Cs(τl+1 × . . .× τk)

(dup) Γ ` e : C〈r⊕s〉τ
Γ ` dupr,s e : C

〈r,s〉(τ× τ)

Figure 36: Comonadically-inspired extensions for structural coeffects

aware programming language, we then show that well-typed programs (pro-
duced by the translation) do not get stuck.

This section mirrors the development presented in Chapter 5 for flat co-
effect calculus. We extend the simple target language with additional con-
structs inspired by structural indexed comonads (Section 6.7.1), define the
translation to the target language (Section 6.7.2) and prove safety of one
sample language (Section 6.7.3) – we choose structural dataflow to allow
easy comparison with the flat system.

6.7.1 Comonadically-inspired language extensions

In Section 5.3.1, we defined the syntax, typing rules and operational seman-
tics for a simple functional programming language. We then extended it
with uninterpreted constructs inspired by the flat indexed comonad structure
and used it as the translation target for the flat coeffect calculus. In this sec-
tion, we take the same core language and extend it with constructs inspired
by the structural indexed comonad.

Given a coeffect language with a structural coeffect algebra formed by
(C,~,⊕, use, ign,6) and operations 〈− 〉 and ~,++, we extend the core func-
tional language with operations shown in Figure 36. The syntax extensions
add comonadically-inspired operations that mirror those defined in Sec-

148 structural coeffect calculus

tion 6.6.2. The typing for the operations corresponds to their categorical
counterparts.

We also include an uninterpreted type Crτ1 × . . .× τk, which models a
contextual (comonadic) value indexed by a vector of annotations. As in the
categorical model for structural coeffects, context consisting of multiple vari-
ables is not modelled as ordinary tuple – it can only be manipulated by the
comonadically-inspired operations. In the target language, this is done by
defining the Cr type over zero or more underlying types. In Figure 36, we
need to explicitly specify the types of individual components in typing rules
for (merge), (split) and (cobind).

As with flat coeffects, the extensions described here are common for all
concrete instances of structural context-aware languages. For each concrete
language, we need to provide values of type Crτ and reduction rules for
comonadically-inspired operations.

6.7.2 Comonadically-inspired translation

When translating context-aware programs to the functional language, vari-
able contexts become values of comonadically-inspired data types contain-
ing a value for each variable in the context. Function inputs become comonadically-
inspired values containing exactly one variable. More formally:

Jx1 :τ1, . . . , xn :τn @ 〈r1, . . . , rn〉K = C〈r1,...,rn〉(Jτ1K× . . .× JτnK)

Jτ1
r−→ τ2K = C〈r〉Jτ1K→ Jτ2K
JnumK = num

The translation rules are defined in Figure 37. As in the case of the flat
coeffect calculus, the definition directly follows the categorical semantics
shown in Figure 37. We expand the definitions so that the result is a valid
program in the target language rather than a composition of morphisms.

As with flat coeffects, the correspondence property of the semantics (The-
orem 43) can now be adapted into well-typedness of the translation. Given
a well-typed program in the structural coeffect calculus, the translation pro-
duces a well-typed program in the target language. This is true for all
context-aware languages based on the structural coeffect calculus and it pro-
vides us with the first part of type safety theorem. The second part is type
safety of the target language with concrete domain-specific extensions as
discussed in Section 6.7.3.

Theorem 45 (Well-typedness of the translation). Given a typing derivation for
a well-typed closed expression @ 〈〉 ` e : τ written in a structural context-aware
programming language that is translated to the target language as (we write . . . for
the omitted part of the translation tree):

J (. . .) K = (. . .)

J @ 〈〉 ` e : τK = f

Then f is well-typed, i. e. in the target language: ` f : J() @ 〈〉K→ JτK.

Proof. By rule induction over the derivation of the translation. Given a judge-
ment x1 : τ1 . . . xn : τn @ c ` e : τ where c = 〈c1, . . . , cn〉, the translation
constructs a function of type Cc(Jτ1K× . . .× JτnK)→ JτK.

Case (var): c = 〈use〉 and so counituse ctx is well-typed.
Case (num): τ = num and so the body n is well-typed.

6.7 translational semantics 149

The translation is defined over a typing derivation:

Jx :τ @ 〈use〉 ` x : τK = λctx.counituse ctx
(var)

J() @ 〈〉 ` n : numK = λctx.n
(num)

JΓ , x :τ1 @ r++ 〈s〉 ` e : τ2K = f

JΓ @ r ` λx.e : τ1
s−→ τ2K = λctx.λv.f (merger,〈s〉 (ctx, v))

(abs)

JΓ1 @ r ` e1 : τ1
t−→ τ2K = f

JΓ2 @ s ` e2 : τ1K = g

JΓ1, Γ2 @ r++(t~s) ` e1 e2 : τ2K
=

λctx.
let (ctx1, ctx2) = splitr,t~ s ctx
f ctx1 (cobindt,s g ctx2)

(app)

JΓ @ r ` e : τK = f

JΓ , x :τ1 @ r++〈ign〉 ` e : τK
=

λctx.
let (ctx1, _) = splitr,〈ign〉 ctx
f ctx1

(weak)

JΓ1, x :τ1,y :τ2, Γ2
@ r++〈s, t〉++q ` e : τK

=
f

JΓ1,y :τ2, x :τ1, Γ2
@ r++〈t, s〉++q ` e : τK =

λctx. f(nestr,〈t,s〉,〈s,t〉,q (λctx ′.
let (ctx1, ctx2) = split〈t〉,〈s〉
merge〈s〉,〈t〉 (ctx2, ctx1)))

(exch)

JΓ1,y :τ1, z :τ1, Γ2
@ r++〈s, t〉++q ` e : τK

=
f

JΓ1, x :τ1, Γ2 @ r++〈s⊕ t〉++q
` e[z,y← x] : τK

=
λctx.f (nestr,〈s⊕ t〉,〈s,t〉,q

dups,t ctx)

(contr)

Assuming the following auxiliary definition:

nestr,s,s’,t = λf.λctx.
let (ctx1, ctx ′) = splitr,s++t ctx
let (ctx2, ctx3) = splits,t ctx ′

merger,s’++t (ctx1,merges’,t (f ctx2, ctx3))

Figure 37: Translation from a structural coeffect calculus

Case (abs): The type of ctx is Cr(. . .) and the type of v is C〈s〉τ1, calling
merger,〈s〉 produces a context of type Cr++〈s〉(. . .× τ1) as expected by f.

Case (app): After applying splitr,t~s the types of ctx1, ctx2 are Cr(. . .) and
Ct~s(. . .), respectively. g requires Cs(. . .) and so the result of cobindt,s is
C〈t〉τ1 as required by f.

Case (weak): After applying splitr,〈ign〉 the type of ctx1 is Cr(. . .) as required.
Case (exch), (contr): The auxiliary definition nestr,s,s’,t keeps parts of the con-

text corresponding to coeffect annotations r, q unchanged and trans-
forms the nested part. In (exch), the provided lambda function is of
type C〈s,t〉(τ1 × τ2) → C〈t,s〉(τ2 × τ1). In (contr), the type of dups,t is

150 structural coeffect calculus

C〈s⊕t〉τ→ C〈s,t〉(τ× τ) (assuming nest is expanded, rather than treated
as a value within the language).

6.7.3 Structural coeffect language for dataflow

The target language with comonadically-inspired primitives provides a frame-
work that can be used to model a variety of structural context-aware lan-
guages and prove their safety. As outlined in Section 5.5, the key princi-
ple that guarantees the safety of the target language is a correspondence
between coeffect annotations and the values they represent. In a more ex-
pressive target language (such as Haskell or Agda), it would be sufficient to
provide an implementation of the comonadically-inspired primitives for the
concrete domain-specific language.

Our simple target language is not expressive enough to capture the cor-
respondence in the type system and so we instead follow the same method-
ology as when discussing safety for flat coeffect languages in section Sec-
tion 5.4 and show safety for a sample concrete context-aware language. We
consider the structural coeffect language for dataflow. The definitions can
be compared with the flat version discussed in Section 5.4.1, which high-
lights the similarities and differences between the flat and structural notion
of context.

domain-specific extensions . The Figure 38 extends the target func-
tional language with constructs, typing rules, translation rules and reduc-
tion rules needed for modelling structural dataflow. In the structural model,
the type C〈r0,...,rn〉(τ0 × . . .× τn) represents a structure that provides val-
ues and additional contexts for variables of types τ0, . . . , τn with contextual
capabilities as specified by corresponding coeffect annotations r0, . . . , rn.

In case of dataflow, the comonadically-inspired structure keeps vectors of
past values for each of the variables in the context. In the syntax, we write
v and e for vectors of values and expressions, respectively. The expression
Df〈e0, . . . , ek〉 is then formed by a vector of variable assignments where each
variable assignment is a vector of current and past values. When reducing
expressions to values, we reduce values from left to right and from current-
most value to the last past value. This is specified by the context K.

When type-checking expressions that create the Df values, we use an aux-
iliary judgement Γ `vec e : τ,n. The judgement checks that a vector of ex-
pressions e contains exactly n expressions of type τ. This is captured by the
(vec) rule, which is then used to check individual elements of the context in
the (df) rule.

properties . Now consider a target language consisting of the core (ML-
subset) defined by the syntax, reduction rules and typing rules given in
Figure 28 (Chapter 5) with primitives inspired by structural indexed comon-
ads defined in Figure 36 and also concrete notion of comonadically-inspired
value and reduction rules for dataflow as defined in Figure 38.

As with the examples discussed in Chapter 5, the resulting language is
type safe. Together with the well-typedness of the translation (Theorem 45),
this guarantees type safety of the structural coeffect calculus for dataflow.
In order to prove type safety, we first extend the canonical forms lemma
(Lemma 17) and the preservation under substitution lemma (Lemma 18). Those
need to consider the new (df) and (prev) typing rules and substitution under
the newly introduced expression forms Df〈. . .〉 and prevn. We show that the

6.7 translational semantics 151

language syntax

v = . . . | Df〈v0, . . . , vk〉 v = 〈v0, . . . , vk〉
e = . . . | Df〈e0, . . . , ek〉 | prevn0,...,nk e e = 〈e0, . . . , ek〉
K = . . . | Df〈v0, . . . , 〈vj,0, . . . , vj,i−1, _, ej,i+1 . . . , ej,n〉, . . . , ek〉

. . . | prevn0,...,nk _

typing rules

(vec)
∀i ∈ {0 . . . n}. Γ ` ei : τ
Γ `vec 〈e0, . . . , en〉 : τ,n

(df)
∀i ∈ {0 . . . k}. Γ `vec ei : τi,ni

Γ ` Df〈e0, . . . , ek〉 : C〈n0,...,nk〉(τ0 × . . .× τk)

(prev)
Γ ` e : C〈n0+1,...,nk+1〉(τ0 × . . .× τk)

Γ ` prevn0,...,nk e : C
〈n0,...,nk〉(τ0 × . . .× τk)

translation

JΓ @ 〈n0 + 1, . . . ,nk + 1〉 ` e : τK = f

JΓ @ 〈n0, . . . ,nk〉 ` prev e : τK = λctx.prevn0,...,nk ctx

reduction rules

(counit) counit0(Df〈〈v0〉〉) v0

(cobind)
cobindm,〈n1,...,nk〉 f Df〈〈a1,0, . . . a1,m+n1〉, . . . , 〈ak,0, . . . ak,m+nk〉〉
Df〈〈 f(Df〈〈a1,0, . . . a1,n1〉, . . . , 〈ak,0, . . . ak,nk〉〉), . . . ,

f(Df〈〈a1,m, . . . a1,m+n1〉, . . . , 〈ak,m, . . . ak,m+nk〉〉) 〉〉

(merge)
merge〈m0,...,mk〉,〈n0,...,nl〉((Df〈v0, . . . , vk〉), (Df〈v ′0, . . . , v ′l〉))
Df〈v0, . . . , vk, v ′0, . . . , v ′l〉

(split)
split〈m0,...,mk〉,〈n0,...,nl〉(Df〈v0, . . . , vk, v ′0, . . . , v ′l〉)

(Df〈v0, . . . , vk〉, Df〈v ′0, . . . , v ′l〉)

(prev)
prev〈n1,...,nk〉(Df〈〈v1,0, . . . , v1,n1 , v1,n1+1〉, . . . , 〈vk,0, . . . , vk,nk , vk,nk+1〉〉)
Df〈〈v1,0, . . . , v1,n1〉, . . . , 〈vk,0, . . . , vk,nk〉〉

(dup) dupm,n(Df〈〈v0, . . . , vmax(m,n)〉〉) Df〈〈v0, . . . , vm〉, 〈v0, . . . , vn〉〉

Figure 38: Additional constructs for modelling structural dataflow

translation rule for prev produces well-typed expressions. Finally, we extend
the type preservation (Theorem 19) and progress (Theorem 20) theorems.

Theorem 46 (Well-typedness of the prev translation). Given a typing deriva-
tion for a well-typed closed expression @ 〈〉 ` e : τ, the translated program f ob-
tained using the rules in Figure 37 and Figure 38 is well-typed, i. e. in the target
language: ` f : J() @ 〈〉K→ JτK.

Proof. By rule induction over the derivation of the translation.

Case (var, num, abs, app): As before.

Case (prev): Type of ctx is C〈n0+1,...,nk+1〉(τ0× . . .×τk) and so we can apply
the (prev) rule to obtain C〈n0,...,nk〉(τ0 × . . .× τk) as required by f.

Lemma 47 (Canonical forms). For all e, τ, if ` e : τ and e is a value then:

1. If τ = num then e = n for some n ∈ Z

152 structural coeffect calculus

2. If τ = τ1 → τ2 then e = λx.e ′ for some x, e ′

3. If τ = τ1 × . . .× τn then e = (v1, . . . , vn) for some vi

4. If τ = C〈n1,...,nk〉(τ1 × . . .× τk) then e = Df〈v0, . . . vn〉 for some vi such
that vi = 〈v0, . . . , vni〉.

Proof. (1,2,3) as before; for (4) the last typing rule must have been (df).

Lemma 48 (Preservation under substitution). For all Γ , e, e ′, τ, τ ′, if Γ , x : τ `
e : τ ′ and Γ ` e ′ : τ then Γ ` e[x← e ′] : τ.

Proof. By induction over the derivation of Γ , x : τ ` e : τ ′ as before, with new
cases for Df〈. . .〉 and prevn.

Theorem 49 (Type preservation). If Γ ` e : τ and e e ′ then Γ ` e ′ : τ.

Proof. Rule induction over .
Case (fn, prj, ctx): As before, using Lemma 48 for (fn).
Case (counit): e = counit0(Df〈〈v0〉〉). The last rule in the type derivation of e

must have been (counit) with Γ ` Df〈v0〉〉 : C〈0〉τ and therefore Γ ` v0 : τ.
Case (cobind): e = cobindm,〈n1,...,nk〉 f (Df〈v0, . . . vk〉) such that ∀i ∈ {1 . . . k}

vi = 〈v0, . . . , vni〉. The last rule in the type derivation of e must have
been (cobind) with a type τ = C〈m〉τ ′ and assumptions:

– Γ ` f : C〈n1,...,nk〉(τ1 × . . .× τk)→ τ2 and
– Γ ` Df〈v0, . . . vk〉 : C〈m+n1,...,m+nk〉(τ1 × . . .× τk)

Using the (df) rule, the reduced expression has a type C〈m〉τ ′.
Case (merge, split, next): Similar. In all three cases, the last typing rule in

the derivation of e guarantees that the context contains correct number
of vectors and each vector contains a sufficient number of values of a
correct type.

Theorem 50 (Progress). If ` e : τ then either e is a value or there exists e ′ such
that e e ′.

Proof. By rule induction over `.
Case (num,abs,var,app,proj,tup): As before, using the adapted canonical forms

lemma (Lemma 47) for (app) and (proj).
Case (counit): e = counituse e1. If e1 is not a value, it can be reduced using

(ctx) with context counituse _, otherwise it is a value. From Lemma 47,
e1 = Df〈〈v〉〉 and so we can apply (counit) reduction rule.

Case (cobind): e = cobindm,〈n1,...,nk〉 e1 e2. If e1 is not a value, reduce
using (ctx) with context cobindm,〈n1,...,nk〉 _ e. If e2 is not a value re-
duce using (ctx) with context cobindm,〈n1,...,nk〉 v _. If both are values
then we have e2 = Df〈〈a1,0, . . . a1,m+n1〉, . . . , 〈ak,0, . . . ak,m+nk〉〉 from
Lemma 47 and so we can apply the (cobind) reduction.

Case (merge): e = merge〈m0,...,mk〉,〈n0,...,nl〉e1. If e1 is not a value, reduce us-
ing (ctx) with context e = merge〈m0,...,mk〉,〈n0,...,nl〉 _. If e1 is a value, it
must be a pair of vectors (Df〈v0, . . . , vk〉,Df〈v ′0, . . . , v ′l〉) using Lemma 47

and it can reduce using (merge) reduction.
Case (df): e = Df〈e0, . . . , en〉. If ei is not a value then reduce using (ctx) with

the context Df〈. . .〉. Otherwise, e0, . . . , en are values and so Df〈e0, . . . , en〉
is also a value.

Case (split, prev): Similar. Either sub-expression is not a value, or the type
guarantees that it is a stream with correct number of elements to enable
the (split) or (prev) reduction, respectively.

6.8 summary 153

Theorem 51 (Safety of context-aware dataflow language). If Γ ` e : τ and
e ∗ e ′ then either e ′ is a value of type τ or there exists e ′′ such that e ′ e ′′

and Γ ` e ′′ : τ.

Proof. Rule induction over ∗ using Theorem 49 and Theorem 50.

6.8 summary

This chapter completes the key development of this thesis – the presentation
of the coeffect framework, consisting of two calculi capturing properties of
context-aware computations introduced in Chapter 3. In Chapters 4 and 5,
we focused on whole-context properties of computations and we developed
flat coeffect calculus to capture them. This chapter develops structural coeffect
calculus, which captures per-variable contextual properties. The system pro-
vides a precise analysis of liveness and dataflow and allows other interesting
uses such as tracking of variable accesses based on bounded linear logic.

Following the structure of the previous two chapters, the structural coef-
fect calculus is parameterized by a structural coeffect algebra. The two defini-
tions are similar – both require operations ~ and ⊕ that model sequential
and pointwise composition, respectively. For flat coeffects, we required ∧

to model context merging. For structural coeffects, we instead use a vector
(free monoid) with the ++ operation – which serves a similar purpose as ∧.
In order to keep track of separate annotations for each variable, we use a
system with explicit structural rules (contraction, weakening and exchange)
that manipulate the structure of variables and the structure of annotations
at the same time.

The structural coeffect calculus has desirable equational properties that
are satisfied only by certain flat coeffect calculi. In particular, we show that
β-reduction and η-expansion have the typing preservation property for any
instance of the structural coeffect calculus. These two strong properties are
desirable for programming languages, but are often not satisfied (e. g. by
languages with effects).

Finally, we discuss the semantics of the structural coeffect calculus in in
terms of structural indexed comonads. As in Chapter 5, we first use the cate-
gorical semantics to unify the different notions of context (bounded reuse,
dataflow and liveness) and then use it as a basis for translation that turns
well-typed programs written in the structural coeffect calculus into well-
typed programs of a simple functional language. We give concrete reduction
rules for the target language, modelling structural dataflow and prove type
safety of the language.

Part III

T O WA R D S P R A C T I C A L C O E F F E C T S

In the first part of the thesis, we argued for the importance of
context in programming languages. As programs execute in in-
creasingly diverse and rich environments, languages need to un-
derstand and check how programs use such context. In the sec-
ond part, we developed theoretical foundations (type system and
semantics) for context-aware programming languages. What re-
mains to be done if context-aware programming languages are
to become “the next big thing”?

In this part, we explore practical aspects of implementing context-
aware programming languages based on coeffects and related fu-
ture work. We discuss a prototype implementation (Chapter 7),
which links together all parts of the theory discussed in the previ-
ous part. Building a production-ready programming language is
outside the scope of the thesis, so we instead focus on conveying
the concept of coeffects to broader audience and make the imple-
mentation available as a web-based interactive essay (Section 7.3)
at: http://tomasp.net/coe�ects.

In Chapter 8, we outline unification of flat and structural coef-
fects (Section 8.1), which may be more suited for embedding in
practical languages and we discuss alternative approaches for
using coeffects in programming languages (Section 8.2).

http://tomasp.net/coeffects

7I M P L E M E N TAT I O N

In the previous three chapters, we presented two coeffect calculi that cap-
ture two kinds of contextual properties. The calculi are parameterized and
can be instantiate to capture concrete notions of context. They consist of
type systems (parameterized by coeffect algebra) and semantics (parameter-
ized by small number of comonadically-inspired primitives). The theory can
be seen as a framework that simplifies the implementation of safe context-
aware programming languages. To support this claim, this chapter presents
a prototype implementation of the coeffect framework and uses it to build
three concrete languages – language with implicit parameters and both flat
and structural versions of a dataflow language.

The implementation directly follows the theory presented in Chapters 4,
5 and 6. It consists of a common framework that provides type checking
and translation to a simple functional target language with comonadically-
inspired primitives. Each concrete context-aware language then adds a domain-
specific rule for choosing a unique typing derivation (as discussed in Sec-
tion 4.3) together with a domain-specific definition of the comonadically-
inspired primitives that define the runtime semantics (see Section 5.4).

The main goal of the implementation is to show that the theory is practi-
cally useful and to present it in a more practical way. However, we do not
intend to build a complete real-world programming language. For this rea-
son, the implementation is available primarily as an interactive essay1 online
at http://tomasp.net/coe�ects.

chapter structure and contributions

• We discuss how the implementation follows the theory (Section 7.1)
presented earlier. This applies to the implementation of the type checker
and the implementation of the translation to a simple target language
that is then interpreted. We also discuss how the common framework
makes it easy to implement additional context-aware languages (Sec-
tion 7.1.3).

• We consider a number of case studies (Section 7.2) that illustrate inter-
esting aspects of the theories discussed earlier. This includes the typ-
ing of lambda abstraction and the difference between flat and struc-
tural systems (Section 7.2.1) and the comonadically-inspired transla-
tion (Section 7.2.2).

• The implementation is available not just as downloadable code, but
also in the format of interactive essay (Section 7.3), which aims to make
coeffects accessible to a broader audience. We discuss the most inter-
esting aspects of the web-based presentation and briefly discuss some
of the interesting implementation detail (Section 7.3.2).

1 The interactive essay format is based on Bret Victor’s work on explorable explanations [115] and is
further explained in Section 7.3.1

157

http://tomasp.net/coeffects

158 implementation

7.1 from theory to implementation

The theory discussed so far provides the two key components of the imple-
mentation. In Chapter 4, we discussed the type checking of context-aware
programs and Chapter 5 models the execution of context-aware programs
(in terms of translation and operational semantics). For structural coeffects,
the same components are discussed in Chapter 6. In this section, we discuss
how these provide foundation for the implementation.

7.1.1 Type checking and inference

To simplify the writing of context-aware programs, the implementation pro-
vides a limited form of type inference (in contrast, previous chapters de-
scribed just type checking). This is available for convenience. We do not claim
any completeness result about the algorithm and we do not present full for-
malization. However, it is worth noting how the domain-specific procedures
for choosing a unique type derivation (Section 4.3) are adapted.

The type inference works in the standard way [91, 29] by generating type
constraints and solving them. Solving of type constraints is done in the
standard way, but we additionally collect and solve coeffect constraints. In
this section, we focus only on coeffect constraints (as generation and solving
of type constraints is standard). The following (abs) rule demonstrates the
notation used in this section:

(abs)
Γ , x :τ1 @ r ` e : τ2 | C

Γ @ s ` λx :τ1.e : τ1
t−→ τ2 | C∪ {t = r∧ s}

The judgement Γ @ r ` e : τ | C denotes that an expression e in a context
Γ @ r has a type τ and produces coeffect constraints C. In the (abs) rule, we
annotate the function body, function type and declaration site with new co-
effect variables r, t and s, respectively and we generate a coeffect constraint
t = r∧ s that captures the (abs) rule from flat coeffect calculus (Figure 22).

In order to obtain unique type derivation for each term (using the algo-
rithms discussed in Section 4.3), we generate additional coeffect constraints
for each lambda abstraction of each flat coeffect language, as this is where
flat coeffects permit multiple possible typings.

Example 19 (Flat implicit parameters.). As discussed in Section 4.3, when choos-
ing unique typing derivation for implicit parameters, we keep track of the implicit
parameters available in the lexical scope (written as ∆). In the lambda abstraction
rule, the implicit parameters required by the body (tracked by r) are split so that all
parameters available in lexical scope are captured and only the remaining parame-
ters (r \∆) are required from the caller of the function.

From the presentation in Section 4.3, it might appear that resolving the ambi-
guity related to lambda abstraction for implicit parameters requires a type system
different from the type system shown earlier in Section 4.2.2. This is not the case.
We track implicit parameters in scope ∆, but the rest of the (abs) rule from the
implementation only generates an additional coeffect constraint. The adapted (abs)
rule for implicit parameters looks as follows:

(abs)
Γ , x :τ1;∆ @ t ` e : τ2 | C

Γ ;∆ @ r ` λx :τ1.e : τ1
s−→ τ2 | C∪ {t = r∧ s, r = ∆, s = t\∆}

Given a typing derivation for the body, we generate an additional constraint that
restricts r (declaration site demands) to those available in the current static scope ∆
and a constraint that restricts the delayed (call site) demands s to t\∆.

7.1 from theory to implementation 159

Example 20 (Flat dataflow). In a context-aware language for dataflow (and in
language with liveness tracking), the inherent ambiguity of the (abs) rule is resolved
by placing the context demands of the body on both the declaration site and the call
site. In Section 4.3, this was defined by replacing the standard coeffect (abs) rule
with a rule (idabs) that uses an annotation r for the body of the function, declaration
site coeffect and call site coeffect.

As with implicit parameters, the implementation does not require changing the
core (abs) typing rule of the flat coeffect system. Instead, the unique resolution is
obtained by generating additional coeffect constraints:

(abs)
Γ , x :τ1 @ t ` e : τ2 | C

Γ @ s ` λx :τ1.e : τ1
t−→ τ2 | C∪ {t = r∧ s, r = t, s = t}

Here, the two additional constraints restrict both r and s to be equal to the coeffect
of the body t and so the only possible resolution is the one specified by (idabs).

7.1.2 Execution of context-aware programs

Context-aware programs are executed by translating the source program
into a simple functional target language with domain-specific primitives.
For simplicity, programs in the simple target language are then interpreted,
but they could equally be compiled using standard techniques for compiling
functional code. The translation follows the rules defined in Section 5.3 (for
flat coeffect languages) and Section 6.7 (for structural coeffect languages).
The result of the translation is a program that consists of the following:

• Functional constructs. Those include binary operations, tuples, let
binding, constants, variables, function abstraction and application. The
interpreter keeps a map of assignments for variables in scope and re-
cursively evaluates the expression.

• Comonadic operations. Those are the comonadic primitives provided
by indexed comonads – cobind, counit together with merge and split for
flat coeffects or merge and choose for structural coeffects. The transla-
tion that produces these is shared by all context-aware languages, but
their definition in the interpreter is domain-specific.

• Domain-specific operations. Each context-aware language may ad-
ditionally include operations that model domain-specific operations.
For dataflow, this is prev (accessing past values) and for implicit pa-
rameters, this is letimpl and lookup for implicit parameter binding and
access, respectively.

The fact that the prototype implementation is based on the theoretical frame-
work provided by coeffect calculi means that it has the desirable properties
proved in Section 5.4 and Section 6.7. In particular, evaluating a well-typed
context-aware program in a context that provides sufficient contextual capa-
bilities will not cause an error.

In the interactive essay (Section 7.3), we further use the coeffects to au-
tomatically generate a user interface that requires the user to provide the
required contextual capabilities (past values for individual variables, or val-
ues for implicit parameters).

Another benefit of using the common framework is that the implemen-
tation can be easily extended to support further languages with additional
contextual properties.

160 implementation

7.1.3 Supporting additional context-aware languages

The prototype implementation supports two of the context-aware languages
discussed in this thesis: implicit parameters and dataflow. Those are suffi-
cient to demonstrate all important aspects of the system, but the implemen-
tation could be extended to support the remaining languages discussed in
the thesis. Thanks to the fact that the implementation is based on the com-
mon coeffect framework, this requires minimal amount of work. In order
to extend the prototype implementation with support for liveness, bounded
reuse tracking or other context-aware language, the following four additions
are required:

1. A domain-specific function abstraction rule that resolves the ambigu-
ity in the general (abs) rule of the flat coeffect calculus. For liveness, the
handling would be the same as for dataflow, but for other flat coeffect
systems, another resolution mechanism might be used instead.

2. A domain-specific instance of the coeffect algebra needs to be pro-
vided. This consists of defining the set of coeffect annotations and
associated operations. In order to support the type inference in the
prototype implementation, the constraint solver needs to be extended
to solve constraint using the coeffect algebra. For liveness, this would
be solving simple two-point lattice constraints.

3. For evaluation, a new data type of comonadic values needs to be
added. For liveness, this would be an option value that may or may
not contain a value. The semantics of comonadic operations on the
values needs to be defined.

4. For context-aware languages that have additional primitives (such as
prev e or ?param), the parser and AST needs to be extended, custom
type-checking and translation rules added and domain-specific primi-
tive operations (with their semantics) provided. Liveness and bounded
reuse do not have additional custom syntax and so supporting these
does not require this step.

The list is akin to the steps that are needed when supporting a new effectful
computation in a language that supports monadic “do” notation, with the
exception that in step (4), we can also modify the parser and AST, as op-
posed to just defining primitive effectful functions. This could be addressed
by making the host language more extensible and flexible. The step (3) cor-
responds to implementing a new monad. The step (2) applies when using
indexing to track effects more precisely [79]. The only step that does not
have a counterpart in effectful/monadic languages is (1).

When adding a new context-aware programming language, much of the
existing infrastructure can be reused. This includes the implementation of
the core coeffect and type checking rules and also the translation for stan-
dard language constructs as well as the interpreter for the target language.

7.2 case studies

The prototype implementation illustrates a number of interesting aspects
of coeffect systems. Those appear as examples in the interactive essay (dis-
cussed in Section 7.3), but we briefly review them in this section.

7.2 case studies 161

7.2.1 Typing context-aware programs

We first consider two case studies of how coeffect type checking works. The
first one exposes the ambiguity resolution algorithm for the typing of im-
plicit parameters and the second one exposes the difference between flat
and structural system for dataflow.

abstraction for implicit parameters . As discussed in Section 7.1.1,
the implementation of the language with implicit parameters resolves the
ambiguity in the lambda abstraction by generating a coeffect constraint that
restricts the set of parameters required from the declaration site to those
that are lexically available. Remaining parameters are required from the call
site. This is illustrated by the following example:

let both =

let ?fst = 100 in

fun trd → ?fst + ?snd + trd in

let ?fst = 200 in

both 1

In this expression, the lambda function on the third line requires implicit
parameters ?fst and ?snd. Since ?fst is available in scope, the type of both

is a function that requires only ?snd. In the text-based notation used in the
prototype, the type of the function both is: num -{?snd:num}-> num.

flat and structural dataflow. In flat dataflow, the context de-
mands of the body is required from both the declaration site and from the
call site. In structural dataflow, the context demands are tracked separately
for each variable, which provides a more precise type. Consider the follow-
ing two examples (the let keyword is used to define a curried function of
two arguments):

let oldy x y = x + prev y in

oldy

When type checking the expression using the flat system, the type of oldy
is inferred as num -{1}-> num -{1}-> num, but when using the structural
system, the type becomes num -{0}-> num -{1}-> num.

This illustrates the difference between the two – the flat system keeps only
one annotation for the whole body (which requires 1 past value). In lambda
abstraction (or function declaration written using let), this requirement is
duplicated. The structural system keeps information per-variable and so the
resulting type reflects the fact that only the variable y appears inside prev.

7.2.2 Comonadically-inspired translation

In addition to running coeffect programs, the implementation can also dis-
play the result of the translation to the simple functional target language
with comonadically-inspired primitives. The following two case studies il-
lustrate important aspects of the translation for flat coeffect systems (Sec-
tion 5.3) and structural coeffect systems (Section 6.7).

merging implicit parameter contexts . The following example il-
lustrates the lambda abstraction for implicit parameters. It defines a param-
eter ?param and then returns a function value that captures it, but also re-
quires an implicit parameter ?other:

162 implementation

let ?param = 10 in

fun x → ?param + ?other

Translating the code to the target language produces the code below. The
reader is encouraged to view the translation in the interactive essay (Sec-
tion 7.3), which displays the types and coeffect annotations of the individual
values and primitives. As in the theory, the comonadically-inspired primi-
tives are families of operations indexed by the coeffects (we omit the anno-
tations here):

let (ctx2, ctx3) = split (duplicate finput) in

let ctx1 = letimpl?param (ctx2, 10) in
fun x →
let ctx4 = merge (x, ctx1) in
let (ctx5, ctx6) = split (duplicate ctx4) in

lookup?param ctx5 + lookup?other ctx6

The finput value on the first line models an empty context in which the
expression is evaluated and is of type Cignunit. The ign annotation captures
the fact that there are no implicit parameters in the context and the type unit

specifies that the context carries no variables.
The context is duplicated and the second part ctx3 is not needed, be-

cause 10 is a constant. The first part ctx2 is passed to letimpl, which as-
signs an implicit parameter value in the newly returned context ctx1 of type
C{?param}unit (the hidden dictionary now contains a value for the implicit
parameter ?param, but the context does not contain value bindings for any
ordinary variables (the unit type can be seen as an empty tuple).

In the body of the function, the context ctx1 is merged with the context
provided by the variable x. The type of ctx4 is C{?param,?other}(num× unit).
This is then split into two parts that contain just one of the implicit parame-
ters and those are then accessed using lookup.

composition in structural dataflow. In structural coeffect sys-
tems, the translation works differently in that the context passed to a sub-
expression contains only assignments for the variables used in the sub-
expression (in the flat version, we always duplicated the variable context
before using split). To illustrate this, consider the following simple function:

fun x→ fun y→ prev x

In structural coeffect systems, the comonadic value is annotated with a vec-
tor of coeffect annotations that correspond to individual variables. The ini-
tial structural input sinput is a value of type C[]() containing no variables
(for structural coeffect systems, we write () rather than unit to make that
more explicit). The translated code then looks as follows:

fun x→
let ctx1 = merge (x, sinput)in
(fun y→
let ctx2 = merge (y, ctx1) in
counit (prev (choose〈0,1〉 ctx2))

The two variables are merged with the initial context, obtaining a value ctx2

of type C[0,1]num× num that contains two dataflow values with 0 and 1 past
values, respectively.

7.3 interactive essay 163

Figure 39: Interactive evaluation of implicit parameters (left) and dataflow (right)

For simplicity, the implementation does not use the split/merge pair of
operations of the structural coeffects to obtain the correct subset of variables.
This can be done, but it would make the translated code longer and more
cumbersome. Instead, we use a higher-level operation choose (which can
be expressed in terms of split/merge) that projects the variable subset as
specified by the index. Here, 〈0, 1〉 means that the first variable should be
dropped an the second one should be kept.

The resulting single-variable context is then passed to prev (to shift the
stream by one) and then to counit to obtain the current value.

7.3 interactive essay

As explained in the introduction of this chapter, the purpose of the imple-
mentation presented in this thesis is not to provide a real-world program-
ming language, but to support the theory discussed in the rest of the thesis.
The goal is to explain the theory and inspire authors of real-world program-
ming languages to include support for context-aware programming, ideally
using coeffects as a sound foundation. For this reason, the implementation
needs to be:

• Accessible. Anyone interested should be able to experiment with the
implemented languages without downloading the source code and
compiling it and without installing specialized software.

• Explorable. It should be possible to explore the inner workings – how
is the typing derived, how is the source code translated to the target
language and how is it evaluated.

To make the work accessible, we implement sample context-aware languages
in a way that makes it possible to use them in any standard web browser
with JavaScript support (Section 7.3.2) without requiring any server-side
component. Following the idea that “the medium is the message” [64], we
choose a medium that encourages exploration and make the implementation
available not just as source code that can be compiled and run locally, but
also in the format of an interactive essay (Section 7.3.1). The live version of
the essay can be found at: http://tomasp.net/coe�ects.

http://tomasp.net/coeffects

164 implementation

Figure 40: Function smoothing the X coordinate (left) with a sample run (right).

7.3.1 Explorable language implementation

The interactive essay format used of the implementation is based on Bret
Victor’s work on explorable explanations [115]. Bret Victor describes what the
interactivity enables as follows:

Do our reading environments encourage active reading? Or do they
utterly oppose it? A typical reading tool, such as a book or website,
displays the author’s argument, and nothing else. The reader’s line of
thought remains internal and invisible, vague and speculative. We form
questions, but can’t answer them. We consider alternatives, but can’t
explore them. We question assumptions, but can’t verify them. And so,
in the end, we blindly trust, or blindly don’t, and we miss the deep
understanding that comes from dialogue and exploration.

The interactive essay we present encourages active reading in the sense sum-
marized in Victor’s quote. We show the reader an example (program, typing
derivation or translation), but the reader is encouraged to modify it and see
how the explanation in the essay adapts.

The idea of active reading is older and has been encouraged in the context
of art in Josef Albers’ classic 1963 work on color [5] (which was turned into
an interactive essay 60 years later [90]). More recently, similar formats have
been used to explain topics in areas such as signal processing [96] (explain-
ing Fourier transformations) and sociology [46] (visualizing and explaining
game theoretical model of segregation in society [97]). To our best knowl-
edge, the format has not previously been used in the area of programming
language theory and so we briefly outline some of the interesting features
that our essay provides in order to encourage active reading.

interactive program execution. After providing the practical mo-
tivation for coeffects (based on Chapter 1), the interactive essay shows the
reader the two sample context-aware programming languages. Readers can
write code in a panel that type checks the input, generates a user interface
for entering the required context and runs the sample code.

The panels for implicit parameters and for dataflow computations are
shown in Figure 39. The sample code on the left adds two implicit param-
eters and the generated UI lets the user enter implicit parameter values as
required by the context in the typing judgement. The sample on the right

7.3 interactive essay 165

Figure 41: Source code with type information and explorable typing derivation.

calculates the average of the current and past value in a dataflow; the UI lets
the user enter past values required by the type of the function.

The essay guides the readers through a number of programs (shown in
Section 7.2.1) and encourages them to run and try modifying them. For
implicit parameters, this includes the case where an implicit parameter is
available at both declaration site and call site (showing that the declaration
site value is captured). For dataflow, the examples include the comparison
between the inferred type when using flat and structural type systems.

reactive dataflow. The interactive program execution lets the reader
run sample programs, but not in a particularly realistic context. To show a
more real-world scenario, the essay includes a widget shown in Figure 40.
This lets the user write a function taking a stream of X and Y coordinates and
calculate value based on the current and past values of the mouse pointer.
The X and Y values, together with the result are plotted using a live chart.

In the example run shown above, the sample program calculates the av-
erage of the last 12 values of the X coordinate (green line in Figure 40). The
example also illustrates one practical use of the coeffect type system – when
running, the widget keeps the coordinates in a pre-allocated fixed-size array,
because the coeffect type system guarantees that at most 12 past values will
be accessed.

explorable typing derivations . Perhaps the most important aspect
of the implemented context aware programming languages is their coeffect
and type system. In a conventional implementation, the functioning of the
type system would remain mostly hidden – we would get an “OK” message
for a well-typed program and a type error for invalid program (likely not
very informative, given that reporting good error messages for type errors
is a notoriously hard problem even for mature language implementations).

The presented interactive essay provides two features to help the reader
understand and explore typing derivations. First, when reading code sam-
ples in the text, tooltips show the typing of individual identifiers, most in-
terestingly functions (Figure 41, above).

Second, a later part of the essay provides a type checker that lets the user
enter a source code in a context aware programming language and produces
an explorable typing derivation for the program. The output (shown in Fig-
ure 41, below) displays a typing judgement with assumptions and conclu-

166 implementation

Figure 42: Source code with comonadically-inspired translation

sions and lets the reader navigate through the typing derivation by clicking
on the assumptions or conclusions. This way, the reader can see how is the
final typing derivation obtained, exploring interesting aspects, such as the
abstraction rule (shown in Figure 41).

comonadically-inspired translation. The last interactive element
of the essay lets the reader explore the translation of source context aware
language to a target simple functional language (Section 7.1.2). Compared
with the monadic “do” notation [87], the comonadic translation is more
complex for two reasons.

First, it merges all variables into a single (comonadic) value representing
the context. Second, there is a flat and structural variation of the system. For
these two reasons, understanding the translation based just on the rules is
harder than for monads. The essay lets readers see translations for carefully
chosen case studies that illustrate the key aspects of the translation (some
discussed in Section 7.2.2), but also for their own programs encouraging
active reading. Sample input and output are shown in Figure 42.

7.3.2 Implementation overview

The core part of our implementation mostly follows standard techniques
for implementing type checkers and interpreters for statically-typed func-
tional programming languages. Two interesting aspects that are worth dis-
cussing are the JavaScript targetting (for running the language implementa-
tion in a web browser) and integration with client-side (JavaScript) libraries
for building the user interface. The full source code can be obtained from
https://github.com/coe�ects/coe�ects-playground. It is structured as follows:

• Parsing is implemented using a simple parser combinator library; ast.fs
defines the abstract syntax tree for the languages; parsec.fs implements
the parser combinators and lexer.fs with parser.fs parse the source code
by first tokenizing the input and then parsing the stream of tokens.

• The type checking is implemented by typechecker.fs, which annotates
an untyped AST with types and generates set of type and coeffect
constraints. The constraints are later solved (using domain-specific al-
gorithms for each of the languages) in solver.fs.

• Type-checked programs in context-aware languages are translated to
simple target functional subset of the language in translation.fs; evalua-
tion.fs then interprets programs in the target language. The interpreta-
tion does not handle the source language and so programs containing
context-aware constructs cannot be interpreted directly.

https://github.com/coeffects/coeffects-playground

7.4 related work 167

• The user interface of the interactive essay (Section 7.3.1) is implemented
partly in F# and partly in JavaScript. The two most important compo-
nents include a pretty-printer pretty.fs which formats source code (with
type tooltips) and typing derivations and gui.fs that implements user
interaction (e.g. navigation in explorable typing derivations).

As discussed in Section 7.1.3, the implementation can be easily extended to
support additional context-aware programming languages. This is due to
the fact that it is based on the unified theory of coeffects. In practice, adding
support for liveness tracking would require adding a domain-specific con-
straint solver in solver.fs and extending the interpreter in evaluation.fs with
a new kind of comonadically-inspired data type (indexed maybe comonad)
with its associated operations.

7.4 related work

To our best knowledge, combining Bret Victor’s idea of explorable explana-
tions with programming language theory (as discussed in Section 7.3) is a
novel contribution of our work. On the technical side, we build on a number
of standard methods.

parsing and type checking . The implementation of the parser, type
checker and interpreter follows standard techniques for implementing func-
tional programming languages. In order to be able to compile the implemen-
tation to JavaScript (see below), we built a small parser combinator library
[49] rather than using one of the already available libraries [112].

targetting javascript. In order to make the implementation accessi-
ble to a broad audience, it can be executed in a web browser. This is achieved
by automatically translating the implementation from F# to JavaScript. We
use an F# library called FunScript [15] (which is a more recent incarnation of
the idea developed by the author [82]). We choose F#, but similar tools exist
for other functional languages such as OCaml [118]. It is worth noting that
FunScript is implemented as a library rather than as a compiler extension.
This is done using the meta-programming capabilities of F# [102].

client-side library integration. An interesting aspect of the in-
teractive essay user interface is the integration with third-party JavaScript
libraries. We use a number of libraries including JQuery (for web browser
DOM manipulation) and MathJax [19] (for rendering of typing derivation).
In order to call those from F# code, we use a number of mapping meth-
ods described in [86]. For example, the following F# declaration is used to
invoke the Queue function in MathJax:

[〈JSEmitInline("MathJax.Hub.Queue({0});")〉]
let queueAction (f : unit → unit) : unit = failwith "JS only!"

The JSEmitInline syntax on the first line is an attribute that instructs Fun-
Script to compile all invocations of the queueAction function into the JavaScript
literal specified in the attribute (with {0} replaced by the argument).

168 implementation

7.5 summary

This chapter supplements the theory of coeffects presented in the previous
three chapters with a prototype implementation. We implemented three sim-
ple context-aware programming languages that track implicit parameters
and past values in dataflow computations, the latter both in flat (per-context)
and structural (per-variable) way.

The implementation discussed in this chapter provides evidence for our
claim that the theory of coeffects can be used as a basis for a wide range of
sound context-aware programming languages. Our implementation consists
of a shared coeffect framework (handling type checking and translation).
Each context-aware language then adds a domain-specific rule for choos-
ing a unique typing derivation, an interpretation of comonadically-inspired
primitives and (optionally) domain-specific primitives such as the prev con-
struct for dataflow.

We make the implementation available in the usual form (as source code
that can be downloaded, compiled and executed), but we also present it
in the form of interactive essay. This encourages active reading and lets the
reader explore a number of aspects of the implementation including the type
checking (through explorable typing derivations) and the translation. The
key contribution of this thesis is that it provides a unified way for thinking
about context in programming languages and the interactive presentation
of the implementation is aligned with this goal. Programming languages of
the future will need a mechanism akin to coeffects and we aim to provide a
convincing argument supported by a prototype implementation.

8U N I F I E D C O E F F E C T S Y S T E M S

The prototype implementation discussed in the previous chapter directly
follows the two coeffect calculi presented in this thesis. It links together all
aspects of the coeffect theory (type system, semantics, safety proofs) and it
provides practical support for the presented theoretical work. In this chap-
ter, we consider alternative ways of embedding the theory of coeffects in
practical programming languages and we also outline further directions in
which the theory can be further developed.

The most important alternative directions revisit three design decisions
made in this thesis. First, rather than discussing flat and structural coeffects,
we can treat them in a single unified calculus tracking both kinds of con-
text dependence (Section 8.1). Second, rather than using “language seman-
tics” style (Section 2.3.1), we could use a “meta-language” style and extend
the host language with explicit constructs for working with coeffects (Sec-
tion 8.2). Third, rather than implementing a prototype coeffect language, we
could embed coeffects into an existing language using techniques inspired
by Haskell’s “do” notation (Section 8.3).

chapter structure and contributions

• We start by unifying the two kinds of coeffects discussed so far. We
introduce the unified coeffect calculus (Section 8.1), which generalizes
flat and structural systems and which can be instantiated to track both
flat and structural properties.

• We discuss an alternative approach to defining coeffect systems based
on the meta-language style (Section 8.2), which highlights the relation-
ship between our work and related work arising from modal logics
such as CMTT [70].

• We consider a way of implementing coeffects based on embedding
comonadic computations via a lightweight syntactic extension and a
rich type system akin to Haskell’s “do” notation (Section 8.3.1).

• Finally, we discuss extensions needed for real-world source languages
with constructs such as conditionals and further applications of coef-
fects arising from substructural and bunched logics (Section 8.3.2)

The unified coeffect calculus presented in Section 8.1 is a novel result that
completes the theory developed in this thesis and has been discussed in
detail in a separate joint publication by the author [84]. We present it as
further work here, because we do not supplement the unified calculus with
the same operational treatment as the flat and structural coeffect calculi.
Finally, the Sections 8.2 presents important related work and Section 8.3
presents important further work.

8.1 the unified coeffect calculus

The type systems of the flat coeffect calculus (Figure 22) and the structural
coeffect calculus (Figure 33) differ in a number of ways. Understanding the
differences is the key to reconciling the two systems:

169

170 unified coeffect systems

• The structural coeffect calculus contains explicit rules for context ma-
nipulation (weakening, contraction, exchange). In the flat coeffect cal-
culus, these rules are not explicit, but they can be derived thanks to the
fact that variables in the context can be freely reordered. The (var) rule
differs to permit implicit exchange and weakening in the flat system
(by ignoring other variables in the context) and (app) implicitly permits
contraction (by duplicating the context passed to sub-expressions).

• In the structural coeffect calculus, the variable context is treated as a
vector and is annotated with a vector of (scalar) coeffects. In the flat
coeffect calculus, the variable context is a finite partial function (from
names to types) and is annotated with a single (scalar) coeffect.

• In the flat coeffect calculus (Figure 22), we distinguish between split-
ting context demands and merging of context demands (⊕ and ∧, re-
spectively). In the structural coeffect calculus, the operations (which
model appending and splitting vectors) are invertible and so the struc-
tural coeffect algebra uses the same tensor product ++. In essence ⊕
and ∧ represent under- and over-approximation of ++. In the struc-
tural coeffect system, the ⊕ operation is still needed in the contraction
rule.

In the unified calculus presented in this section, we address the three differ-
ences as follows. We include explicit rules for context manipulation in the
calculus; in systems that arise from flat calculi, the structural rules do not
change coeffects and can thus be applied freely. We generalize the structure
of coeffect annotations using the notion of a “container” which can be spe-
cialized to obtain a single annotation or a vector of annotations. This could
potentially be alternatively specialized to capture other structures such as
trees in bunched typing [73]. Finally, we keep the ⊕ operation (needed in
the contraction rule), but we distinguish between splitting and merging of
context demands (using the notation ⊥⊥ and

⊥⊥

, respectively). For structural
coeffect calculi, the two operators coincide, but for flat coeffect calculi, they
differ and provide the needed flexibility.

8.1.1 Shapes and containers

Our generalization of coeffect structure using a coeffect container is based on
containers of Abbott et al. [3]. Containers have later been linked to comon-
ads by Ahman et al. [4], but here we use them as part of the coeffect algebra,
rather than to provide semantics of context-aware languages.

Intuitively a container describes data types such as lists, trees or streams.
A container is formed by shapes (e. g. lengths of lists)1. For every shape,
we can obtain a set of positions in the container (e. g. offsets in a list of a
specified length). More formally:

Definition 17. A container consists of a pair (S,P), usually written as S . P.
Here, S is a set of shapes and P is a shape-indexed family of sets such that for each
shape s ∈ S, Ps, also written as P(s), is a set of positions for shape s.

Well-known examples of containers include lists, non-empty lists, (unboun-
ded) streams, trees and the singleton data type (which contains exactly one
element). Containers relevant to our work are lists and singleton data types:

1 Shapes can be intuitively thought of as sizes, but this is not precise as some containers have
multiple shapes of the same length, e. g. for perfectly balanced, left- and right-leaning trees.

8.1 the unified coeffect calculus 171

• The container representing lists is given by S . P where shapes are
integers S = Nat (lengths of a list). The set of positions for a given
length n is the set of indices P(n) = {1 . . . n}.

• The container representing the singleton data type is given by S . P
where shapes are given by a singleton set S = {∗} and the set of po-
sitions for the shape ∗ contains exactly one position. To follow the
intuition based on offset or index, we write the single position as 0,
that is P(∗) = {0}.

In the unified coeffect calculus, the structure of coeffect annotations is de-
fined by a container with additional operations (discussed later) that links
it with the free-variable context Γ .

8.1.2 Structure of coeffects

In the structural coeffect calculus, coeffect annotations are formed by vec-
tors of coeffect scalars. The annotations in the unified coeffect calculus are
similar, but the notion of vector is replaced with a more general container.
The primitive coeffect annotations in the unified calculus are formed by co-
effect scalars, which have the same structure as in the structural coeffect
calculus (Definition 11). In this section, we refer to it as unified coeffect al-
gebra (we repeat the definition below for clarity). Then we define unified
coeffect containers which determines how coeffect scalar values are attached
to the free-variable context. Finally, we define the unified coeffect label which
consists of shape-indexed coeffect algebra values.

As in the structural coeffect calculus, the contexts in the unified calculus
are annotated with shape-indexed coeffects, written as Γ @ r ` e : τ; functions
take just a single input parameter and so are annotated with scalar coeffect
values σ r−→ τ.

coeffect algebra . The following definition of the coeffect algebra struc-
ture repeats Definition 11 from the Chapter 6, with the only change that we
now refer to it as unified coeffect algebra.

Definition 18. A unified coeffect algebra (C, ~, ⊕, use, ign, 6) is a set C to-
gether with elements use, ign ∈ C, binary operations ~,⊕ such that (C,~, use) and
(C,⊕, ign) are monoids and a binary relation 6 such that (C,6) is a pre-order. That
is, for all r, s, t ∈ C:

r ~ (s ~ t) = (r ~ s) ~ t use ~ r = r = r ~ use (monoid)

r ⊕ (s ⊕ t) = (r ⊕ s) ⊕ t ign ⊕ r = r = r ⊕ ign (monoid)

if r 6 s and s 6 t then r 6 t t 6 t (pre-order)

In addition, the following distributivity axioms hold:

(r⊕ s) ~ t = (r~ t) ⊕ (s~ t)

t ~ (r⊕ s) = (t~ r) ⊕ (t~ s)

As previously, the monoid (C,~, use) models sequential composition; the
laws guarantee an underlying category structure; use and ign represent an
accessed and unused variable, respectively. The ⊕ operation models combin-
ing of context demands arising from multiple parts of a program. Its mean-
ing depends on the coeffect container. The operation can either combine
requirements of individual variables (structural coeffects) or requirements
attached to the whole context of multiple sub-expressions (flat coeffects).

172 unified coeffect systems

coeffect containers . The coeffect container is a container that deter-
mines how scalar coeffects are attached to free-variable contexts. In addi-
tion to a container S . P formed by shapes and shape-indexed sets of po-
sitions, the coeffect container provides a mapping that returns the shape
corresponding to a free-variable context.

The mapping between the shape of the variable context and the shape
of the coeffect annotation is not necessarily bijective. For example, coeffect
annotations in flat systems have just a single shape S = {∗}.

In the coeffect judgment Γ @ r ` e : τ, the coeffect annotation r is drawn
from the set of coeffect scalars C indexed by the shape corresponding to Γ .
We write l = len(Γ) for the shape corresponding to Γ and Pl is the set of
positions for the given shape. A coeffect r can now be seen as a function
Pl → C that returns a scalar coeffect r ∈ C for each of the position defined
by the shape l. We write the set of positions for a shape l as P(l) and a
function that returns scalar coeffect as an exponent r ∈ CP(l).

Additionally, the coeffect container is equipped with an operation that ap-
pends shapes (when concatenating variable contexts) and two special shapes
in S representing the empty context and the singleton context.

Definition 19. A coeffect container structure (S . P, �, 0̂, 1̂, len(−)) comprises
a container S . P with a binary operation � on S for appending shapes, a mapping
from free-variable contexts to shapes len(Γ) ∈ S, and elements 0̂, 1̂ ∈ S such that
(S, �, 0̂) is a monoid.

The elements 0̂ and 1̂ represent the shapes of the empty and the singleton free-
variable context, respectively. The � operation corresponds to concatenation of free-
variable contexts. Given Γ1 and Γ2 such that s1 = len(Γ1), s2 = len(Γ2), we require
that s1 � s2 = len(Γ1, Γ2).

As discussed earlier, we use two kinds of coeffect containers. Those that
describe the structure of vectors (for structural coeffects) and those that de-
scribe the shape of trivial singleton container (for flat coeffects):

Example 21. A structural coeffect container is defined as (S . P, |–|,+, 0, 1) where
S = N and P(n) = {1 . . . n}. The shape mapping |Γ | returns the number of variables
in Γ . Empty and singleton contexts are annotated with 0 and 1, respectively, and
shapes of combined contexts are added so that |Γ1, Γ2| = |Γ1|+ |Γ2|.

Therefore, a coeffect annotation is a vector r ∈ CP(n) and assigns a coeffect scalar
r(i) ∈ C for each position (corresponding to a variable xi in the context).

Example 22. A flat coeffect container is defined as (S . P, |− |, �, ?, ?). The con-
tainer is defined as a singleton data type S = {?} and P(?) = {0} with a constant
function |Γ | = ? and a trivial operation ? � ? = ?.

That is, there is a single shape ? with a single position and all free-variable con-
texts have the same singleton shape. Therefore, a coeffect annotation is drawn from
C{?} which is isomorphic to C and so a coeffect scalar r ∈ C is associated with every
free-variable context.

Example 23. Similarly, we can also define a coeffect container with no positions,
i. e. (S . P, |− |, �, ?, ?) where S = {?}, P(?) = ∅, |Γ | = ? and ? � ? = ?. This
reduces our system to the simply-typed λ-calculus with no context annotations,
because P(?) = ∅ and so coeffect annotations would be from the empty set C∅.

unified coeffect label . The unified coeffect calculus annotates typ-
ing judgments with shape-indexed coeffect annotations. The unified coeffect
label combines a coeffect algebra and a coeffect container to define shape-
indexed coeffects and operations for manipulating these.

8.1 the unified coeffect calculus 173

The definition here reconciles the third point discussed in Section 8.1 – the
fact that flat coeffects use separate operations for splitting and merging (⊕
and ∧) while structural coeffects use the tensor ++. In the unified calculus,
we use two operators that can, however, coincide.

Definition 20. Given a unified coeffect algebra (C,~,⊕, use, ign,6) and a coeffect
container (S . P, len(−), �, 0̂, 1̂) a unified coeffect label extends the two structures
with (

⊥⊥

,⊥⊥,⊥) where ⊥ ∈ CP(0̂) is a coeffect annotation for the empty context
and

⊥⊥

,⊥⊥ are families of operations that combine coeffect annotations indexed by
shapes. That is ∀n,m ∈ S:

⊥⊥m,n : CPm × CPn → CP(m�n)

⊥⊥

m,n : CPm × CPn → CP(m�n)

A coeffect label induces the following three additional operations:

〈− 〉 : C→ CP(1̂)

〈x〉 = λ_.x

~m : C× CP(m) → CP(m)

r~ s = λs.r~ s(s)

len(−) : CP(m) → m

len(r) = m

The 〈 − 〉 operation lifts a scalar coeffect to a shape-indexed coeffect that
is indexed by the shape of a singleton context. The ~m operation is a left
multiplication of a vector by a scalar. As we always use bold face for vectors
and ordinary face for scalars (as well as a distinct colour), using the same
symbol is not ambiguous. We also tend to omit the subscript m and write ~.

Finally, we define len(−) as an operation that returns the shape of a given
shape-indexed coeffect. The only purpose is to simplify notation, as we tend
to avoid subscripts, but often need to specify that shapes of variable context
and coeffect match, e. g. len(r) = len(Γ).

splitting and merging coeffects . The operators ⊥⊥ and
⊥⊥

com-
bine shape-indexed coeffects associated with two contexts. For example, as-
sume we have Γ1 and Γ2 with coeffects r ∈ CP(m) and s ∈ CP(n). In the
structural system, the context shapes m,n denote the number of variables
in the two contexts. The combined context Γ1, Γ2 has a shape m �n and the
combined coeffects r

⊥⊥

s, r⊥⊥ s ∈ CP(m�n) are indexed by that shape.
For structural coeffect systems such as bounded reuse, both ⊥⊥ and

⊥⊥

are
just the tensor product × of vectors. For flat coeffect systems, the operations
can be defined independently, letting

⊥⊥

= ∧ and ⊥⊥ = ⊕.
The difference between

⊥⊥

and ⊥⊥ is clarified by the semantics [84], where
r

⊥⊥

s is an annotation of the codomain of a morphism that merges the capa-
bilities provided by two contexts (in the syntactic reading, splits the context
demands), while r⊥⊥ s is an annotation of the domain of a morphism that
splits the capabilities of a single context into two parts (in the syntactic read-
ing, merges their context demands). Syntactically, this means that we always
use

⊥⊥

in the rule assumptions and ⊥⊥ in conclusions.

8.1.3 Unified coeffect type system

We define the unified coeffect system in Figure 43. It resembles the structural
type system shown in Figure 33. Rather than explaining the rules one-by-
one, we focus on how the unified system differs from the structural system.

The type system for the unified coeffect calculus is parameterized by a
coeffect algebra (C,~,⊕, use, ign,6) (Definition 18) together with a coeffect
label (

⊥⊥

,⊥⊥,⊥) (Definition 20) and the derived constructs 〈− 〉, len(−) and
~. As in the structural system, free-variable contexts Γ are treated as vectors

174 unified coeffect systems

a.) Syntax-driven typing rules:

(var)
x :τ @ 〈use〉 ` x : τ

(const)
c :τ ∈ ∆

() @⊥ ` c : τ

(app)
Γ1 @ r ` e1 : τ1

t−→ τ2 Γ2 @ s ` e2 : τ1
Γ1, Γ2 @ r ⊥⊥ (t~ s) ` e1 e2 : τ2

(abs)
Γ , x :τ1 @ r

⊥⊥

〈s〉 ` e : τ2
Γ @ r ` λx.e : τ1

s−→ τ2

(let)
Γ1 @ r ` e1 : τ1 Γ2, x :τ1 @ s

⊥⊥

〈t〉 ` e2 : τ2

Γ1, Γ2 @ (t~ r) ⊥⊥ s ` let x = e1 in e2 : τ2

b.) Structural rules for context manipulation:

(sub)
Γ1, x :τ1, Γ2 @ r

⊥⊥

〈s ′〉

⊥⊥

q ` e : τ
Γ1, x :τ1, Γ2 @ r⊥⊥〈s〉⊥⊥q ` e : τ

(s ′6s)

(weak)
Γ @ r ` e : τ

Γ , x :τ1 @ r⊥⊥〈ign〉 ` e : τ

(exch)
Γ1, x :τ1,y :τ2, Γ2 @ r

⊥⊥

〈s〉

⊥⊥

〈t〉

⊥⊥

q ` e : τ
Γ1,y :τ2, x :τ1, Γ2 @ r⊥⊥〈t〉⊥⊥〈s〉⊥⊥q ` e : τ

len(Γ1) = len(r)
len(Γ2) = len(s)

(contr)
Γ1,y :τ1, z :τ1, Γ2 @ r

⊥⊥

〈s〉

⊥⊥

〈t〉

⊥⊥

q ` e : τ
Γ1, x :τ1, Γ2 @ r⊥⊥〈s⊕ t〉⊥⊥q ` e[z,y← x] : τ

len(Γ1) = len(r)
len(Γ2) = len(s)

Figure 43: Type system for the unified coeffect calculus

of distinct variables with associativity built-in. The order of variables mat-
ters, but can be changed using the exchange rule. The context annotations
r, s, t are shape-indexed coeffects (rather than simple vectors as before). As
before, function arrows are annotated with coeffect scalars.

syntax-driven rules . The (var) rule is syntactically the same as in
the structural system, but it should be read differently. The 〈− 〉 operation
does not create a vector, but a coeffect container of shape 1̂ that returns the
coeffect scalars use for all positions in the singleton shape. The (const) rule
annotates empty context with a special annotation of the shape 0̂.

In a structural system, the two annotations correspond to a singleton and
empty vector, respectively. However, for a singleton shape with one position,
the annotations are equivalent to annotating variables with a scalar use and
constants with a scalar ign.

In the (app), (abs) and (let) rules, the only change from the structural sys-
tem is that the vector concatenation ++ is now replaced with context split-
ting/merging of the unified coeffect label. As already mentioned, we use
splitting of context demands

⊥⊥

in rule assumptions and merging of context
demands ⊥⊥ in rule conclusions.

Note that we use the terms merging and splitting in the syntactic (top-
down) sense. As discussed in Section 4.2.3, we can also read the rules in

8.1 the unified coeffect calculus 175

semantic (bottom-up) sense, in which case assumptions merge available con-
textual information and conclusions split available contextual information.

structural rules . The merging/splitting operations in the structural
rules are generalized in the same way as in the rules above. It is also worth
noting that structural coeffect systems use vectors of elements while the
unified system uses the container structure. For example, 〈s, t〉 and 〈t, s〉 in
the (exch) rule denoted two-element vectors. In the unified system, this is
replaced with merging/splitting of two lifted scalars: 〈s〉

⊥⊥

〈t〉 and 〈t〉⊥⊥〈s〉.
In structural systems, the two notations mean the same thing – we are

simply concatenating or splitting two singleton vectors. However, this gen-
eralization allows us to capture flat coeffect systems as well. The lifting op-
eration in flat systems simply returns the lifted scalar; operators

⊥⊥

and ⊥⊥
correspond to operations on coeffect scalars. As discussed in Section 8.1.5,
thanks to the properties of the coeffect algebra, the operations of contrac-
tion, weakening and exchange that do not affect the coeffect annotation are
admissible for all flat systems embedded in the unified coeffect calculus.

8.1.4 Structural coeffects

The unified coeffect system uses a general notion of context shape, but it has
been designed with structural and flat systems in mind. In this and the next
section, we show how it captures the two coeffect systems from Chapter 4

and Chapter 6.
The unified calculus closely resembles the structural system and so us-

ing it to model structural systems is easy – given a (structural) coeffect al-
gebra, we use the coeffect container that describes a vector of annotations
(Example 21) and define a coeffect label formed by a vector (free monoid) of
scalars.

Definition 21. Given a coeffect algebra (C,~,⊕, use, ign,6) a structural coeffect
system is defined by:

• A coeffect container (S . P, |–|,+, 0, 1) where S = N and P(n) = {1 . . . n}

and |x1 :τ1, . . . , xn :τn| = n.

• A coeffect label (×,×, ε) where × and ε are shape-indexed versions of the
binary operation and the unit of a free monoid over C. That is ε : CP(0) is an
empty vector and × : CP(n) × CP(m) → CP(n+m) appends vectors.

The definition is valid since the shape operations form a monoid (N,+, 0)
and len(–) (calculating the length of a list) is a monoid homomorphism from
the free monoid to the monoid of shapes.

properties . An important property of the unified system is that, when
used in a structural way as discussed above, it gives calculi with the same
properties as the structural system described in Chapter 6. This can be easily
seen by comparing the Figure 43 with the Figure 33 and using the free
monoid interpretation of the unified coeffect label.

Remark 52. The system described in Definition 21 is equivalent to the structural
coeffect system described in Figure 33. That is, a typing derivation using a struc-
tural coeffect embedded in the unified system is valid if and only if the corresponding
derivation is valid in the structural system.

176 unified coeffect systems

Using the above definition, our unified coeffect system can capture per-
variable coeffect properties discussed in Section 3.3. This includes the sys-
tem for bounded reuse (which is only used in the structural form) and pre-
cise tracking of per-variable dataflow and liveness.

8.1.5 Flat coeffects

The same unified coeffect system can be used to capture systems that track
whole-context (flat) coeffects such as implicit parameters. This is achieved
using a singleton-shaped container for coeffect annotations. The resulting
system has explicit structural rules (and is syntactically different from the
standard flat coeffect system), but we show that they are equivalent.

Flat coeffect systems are characterised by a singleton set of shapes (Exam-
ple 22). In this setting, the context annotations CP(?) are defined as function
values {0} → C. The domain of the function is a singleton set and so the
values are equivalent to coeffect scalars C. In addition to the coeffect alge-
bra structure, we need to define ⊥⊥ and

⊥⊥

. Our examples of flat coeffects
use ⊕ (merging of scalar coeffects) for ⊥⊥ (merging of coeffect annotations).
The

⊥⊥

operation (corresponding to ∧ in flat coeffect calculus) is provided
explicitly.

Definition 22. Given a coeffect algebra (C,~,⊕, use, ign,6) and a binary opera-
tion ∧ : C× C→ C such that (r∧ s)6 (r⊕ s), the unified coeffect label modelling
a flat coeffect systems consists of:

• A flat coeffect container (S . P, |− |, �, ?, ?) as defined in Example 22.

• A flat coeffect label (∧,⊕, ign), i. e. ⊥⊥ = ⊕ and ⊥ = ign with an
additional binary operation

⊥⊥
= ∧.

Intuitively, the requirement (r∧ s) 6 (r⊕ s), which could be also written
as (r

⊥⊥

s) 6 (r⊥⊥ s), denotes that splitting context demands and then re-
combining them preserves all the requirements from the assumptions. The
system may be imprecise and conclusions can overapproximate assump-
tions, but it cannot lose requirements. This is fundamental for showing that
exchange and contraction are admissible in the unified system.

properties . To show that the typing of flat properties in the unified
system is equivalent to the typing in the flat system, we show that a valid
typing judgement in the first system is a valid typing judgement in the
second system and vice versa.

In one direction, we show that the unified system (capturing flat proper-
ties) permits weakening, contraction and exchange rules that do not change
the coeffect annotations. This guarantees that a valid judgement in flat sys-
tem is also valid in the unified system.

Lemma 53. A unified coeffect calculus capturing flat properties admits weakening
that does not change the coeffect annotation.

Proof. The rule is admissible as shown using the following derivation:

Γ @ r ` e : τ
Γ , x :τ1 @ r ⊥⊥ 〈ign〉 ` e : τ
Γ , x :τ1 @ r⊕ ign ` e : τ
Γ , x :τ1 @ r ` e : τ

8.1 the unified coeffect calculus 177

We write r rather than r, because we are tracking flat properties. The first
step is an application of the (weak) rule. Next, we use the fact that ⊥⊥ = ⊕
and 〈ign〉 = ign, which is the unit of the monoid (C,⊕, ign).

Lemma 54. A unified coeffect calculus capturing flat properties admits exchange
rule that does not change the coeffect annotation.

Proof. We use the idempotence of ∧ and ⊕ together with the (exch) rule:

Γ1, x :τ1,y :τ2, Γ2 @ r ` e : τ
Γ1, x :τ1,y :τ2, Γ2 @ r∧ r∧ r∧ r ` e : τ
Γ1, x :τ1,y :τ2, Γ2 @ r

⊥⊥

〈r〉

⊥⊥

〈r〉

⊥⊥

r ` e : τ
Γ1,y :τ2, x :τ1, Γ2 @ r⊥⊥〈r〉⊥⊥〈r〉⊥⊥r ` e : τ
Γ1,y :τ2, x :τ1, Γ2 @ r⊕ r⊕ r⊕ r ` e : τ

Γ1,y :τ2, x :τ1, Γ2 @ r ` e : τ
Using idempotence, we first duplicate the annotation r to get a coeffect in
the form r

⊥⊥

〈r〉

⊥⊥

〈r〉

⊥⊥

r as required by the assumption of the (exch) rule.
Note that 〈− 〉 can be added freely as 〈r〉 is equivalent to r. After applying
(exch), we use idempotence of ⊥⊥.

Lemma 55. A unified coeffect calculus capturing flat properties admits contraction
rule that does not change the coeffect annotation.

Proof. Similarly to exchange, the proof uses idempotence of ∧ and ⊕:

Γ1,y :τ1, z :τ1, Γ2 @ r∧ r∧ r∧ r ` e : τ
Γ1,y :τ1, z :τ1, Γ2 @ r

⊥⊥

〈r〉

⊥⊥

〈r〉

⊥⊥

r ` e : τ
Γ1, x :τ1, Γ2 @ r⊥⊥〈r⊕ r〉⊥⊥r ` e[z,y← x] : τ

Γ1, x :τ1, Γ2 @ r⊕ r⊕ r⊕ r ` e[z,y← x] : τ

In the last two lemmas, we need to turn the coeffect into a form that is re-
quired by the exchange and contraction rules. Aside from idempotence, we
could use the unit property and obtain e. g. ign∧ r∧ ign∧ ign. However, this
approach does not work because ⊕ and ∧ may have different unit elements
(in fact, we do not even require the existence of a unit for ∧).

In the other direction, we need to show that any valid judgement in the
unified system (tracking flat properties) is also valid in the flat system. The
syntax-directed rules are the same in both systems, but we need to show that
any use of (explicit) weakening, contraction and exchange can be derived in
the flat system.

Lemma 56. Weakening, as defined in a unified coeffect calculus capturing flat
properties, is admissible in the flat coeffect calculus.

Proof. Similar to the proof in Lemma 53. The property follows from the fact
that ⊥ = 〈ign〉 is the unit of ⊕.

Lemma 57. Contraction, as defined in a unified coeffect calculus capturing flat
properties, is admissible in the flat coeffect calculus.

Proof. The application of (contr) rule has the following form:

Γ1,y :τ1, z :τ1, Γ2 @ r∧ s∧ t∧q ` e : τ
Γ1,y :τ1, z :τ1, Γ2 @ r

⊥⊥

〈s〉

⊥⊥

〈t〉

⊥⊥

q ` e : τ
Γ1, x :τ1, Γ2 @ r⊥⊥〈s⊕ t〉⊥⊥q ` e[z,y← x] : τ

Γ1, x :τ1, Γ2 @ r⊕ s⊕ t⊕q ` e[z,y← x] : τ

From Definition 22, we know that (r∧ s∧ t∧q) 6 (r⊕ s⊕ t⊕q). Thus, the
judgement can be derived using the (sub) rule of flat coeffect calculus.

178 unified coeffect systems

Lemma 58. Exchange, as defined in a unified coeffect calculus capturing flat prop-
erties, is admissible in the flat coeffect calculus.

Proof. The application of (exch) rule has the following form:

Γ1, x :τ1,y :τ2, Γ2 @ r∧ s∧ t∧q ` e : τ
Γ1, x :τ1,y :τ2, Γ2 @ r

⊥⊥

〈s〉

⊥⊥

〈t〉

⊥⊥

q ` e : τ
Γ1,y :τ2, x :τ1, Γ2 @ r⊥⊥〈t〉⊥⊥ 〈s〉⊥⊥q ` e : τ
Γ1,y :τ2, x :τ1, Γ2 @ r⊕ t⊕ s⊕q ` e : τ

From idempotence of ∧, we get that r∧ s∧ t∧q = r∧ t∧ s∧q. Thus the
judgement can be derived using (sub) as in contraction.

A consequence of the equivalence discussed above is that the unified coeffect
system can capture all properties that can be captured by the flat coeffect
system – including implicit parameters, rebindable resources, Haskell type
classes (discussed by Orchard [76]), dataflow and variable liveness.

8.2 coeffect meta-language

In Section 2.3.1, we discussed two ways of using monads in programming
language semantics as introduced by Moggi [67]. The first approach is to
use monads in the semantics of an effectful language. The second approach
is to extend the language with (additional) monadic constructs that can then
be used for writing effectful monads explicitly.

In this thesis, we focused on the first approach. In both flat and structural
coeffect calculi, the term language is that of a simply-typed λ-calculus, and
we used (flat or structural) indexed comonads to give the semantics for the
language and to derive a type system for it.

In this section, we briefly discuss the other technique. That is, we em-
bed indexed comonads into a λ-calculus as additional constructs of the
meta-langauge. To do that, we introduce the type constructor Crτ which
represents a value τ wrapped in additional context (semantically, this corre-
sponds to an indexed comonad) and we add language constructs that corre-
spond to the operations of indexed comonads. The coeffect meta-language
so derived highlights the relationship between coeffects and closely related
work on contextual modal type theory (CMTT) [70]. Developing the system
further is also an interesting future research direction.

8.2.1 Coeffects and contextual modal type theory

As discussed in Section 2.3.3, context-aware computations are related to
modal logics – comonads have been used to model the � modality and as a
basis for meta-languages that include � as a type constructor [11, 88, 11, 70].
Nanevski et al. [70] extend an S4 term language to a contextual modal type
theory (CMTT). From the perspective of this thesis, CMTT can be viewed as
a meta-language version of our coeffect calculus.

context in cmtt and coeffects . Aside from the fact that coeffect
calculi use comonads for semantics and CMTT embeds comonads (the �
modality) into the meta-language, there are two important differences.

Firstly, the context in CMTT is a set of variables required by a computa-
tion, which makes CMTT useful for meta-programming and staged com-
putations. In coeffect calculi, the context requirements are formed by an

8.2 coeffect meta-language 179

abstract coeffect algebra, which is more general and can capture variable
contexts, but also integers, two-point lattices for liveness, etc.

Secondly, CMTT uses different intuitive understanding of the comonad
(type constructor) and the associated operations. In the categorical seman-
tics of coeffect calculi, the Crτ constructor refers to a value of type τ together
with additional context specified by the coeffect annotation r (e. g. a list of
past values or additional resources).

By contrast, in CMTT2 the type CΨτ models a value that requires the con-
text Ψ in order to produce value τ. This also changes the interpretation of
the two operations of a comonad:

counit : Cuseα→ α

cobind : (Crα→ β)→ Cr~sα→ Csβ

As discussed in Section 2.3.3, these signatures can be read in two different
ways. One is the coeffect reading used in this thesis and another is the CMTT
reading. The annotations have a different meaning in the two readings:

• Coeffect interpretation. The counit operation extracts a value and
does not require any additional context; the cobind operation requires
context r~ s, uses the part specified by r to evaluate the function, end-
ing with a value β together with remaining context s.

• CMTT interpretation. The counit operation evaluates a computation
that requires no additional context to obtain a α value; given a function
that turns a computation requiring context r into a value β, the cobind

operation can turn a computation that requires context r~ s into a
computation that requires just s and contains β (a part of the context
demands is eliminated by the function).

Although the different readings do not affect formal properties of the sys-
tems, it is important to understand the difference when discussing the two
systems as they provide a different intuition.

In the following section, we present a sketch of a comonadically-inspired
meta-language, which attempts to bridge the gap between coeffects and
CMTT. Just like CMTT, it embeds comonads as language constructs, but
it annotates them with a (flat) coeffect algebra, thus it generalizes CMTT
which tracks only sets of variables. Future work on the general coeffect
meta-language would thus be an interesting development for both coeffect
systems and CMTT.

8.2.2 Coeffect meta-language

The coeffect meta-language could be designed using both flat and structural
indexed comonads. For simplicity, this section only discusses the flat variant.
The syntax of types and terms of the language includes the type constructor
Crτ and four additional language constructs:

τ ::= α | τ1 → τ2 | Crτ

e ::= v | λx.e | e1 e2 | !e
| let box x = e1 in e2
| split e1 into x,y in e2
| merge e1, e2 into x in e2

2 To avoid using different notations, we write CΨτ instead of the original [Ψ]τ

180 unified coeffect systems

a.) Typing rules for the simply typed λ-calculus

(var)
x : τ ∈ Γ
Γ ` x : τ

(app)
Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

(abs)
Γ , x : τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

b.) Additional typing rules arising from flat indexed comonads

(cobind)
Γ ` e1 : Cr~sτ1 Γ , x : Crτ1 ` e2 : τ2

Γ ` let box x = e1 in e2 : Csτ2

(counit) Γ ` e : Cuseτ
Γ `!e : τ

(split)
Γ ` e1 : Cr⊕sτ1 Γ , x : Crτ1,y : Csτ1 ` e2 : τ2

Γ ` split e1 into x,y in e2 : τ2

(merge)

Γ ` e1 : Crτ1 Γ ` e2 : Csτ2
Γ , x : Cr∧s(τ1 × τ2) ` e2 : τ3

Γ ` merge e1, e2 into x in e2 : τ3

Figure 44: Type system for the (flat) coeffect meta-language

The !e and let box constructs correspond to the counit and cobind oper-
ation of the comonad. To make our meta-language expressive enough for
flat indexed comonads, we also include split and merge that embed the
corresponding operations.

types for coeffect meta-language . The type system for the lan-
guage is shown in Figure 44. The first part shows the usual typing rules for
simply-typed λ-calculus. For simplicity, we omit typing rules for pairs, but
those need to be present as the merge operation works on tuples.

The second part of the typing rules is more interesting. The (counit) opera-
tion extracts a value from a comonadic context and corresponds to variable
access in coeffect calculi. The let box construct (cobind) takes an input e1
with context r~ s and a computation that turns a variable x with a context
r into a value τ2. The result is a computation that produces a τ2 value with
the remaining context specified by s. Note that the expressions e2 and e1
correspond to the first and second arguments of the cobind operation. The
keyword let box is chosen following CMTT3.

The split and merge constructs follow a similar pattern. They both apply
some transformation on one or two values in a context and then add the
new value as a fresh variable to the variable context. We do not discuss
subcoeffecting, but it could be easily added following the method used in
Section 5.2.5.

3 The rule is similar to the letbox rule for ICML [70, p. 14], although it differs because of our
generalization of comonads where bind composes coeffect annotations rather than requiring
the same annotation everywhere.

8.3 related and future work 181

JΓ @ use ` xi : τiKv = πi(!v)

JΓ @ r ⊕ (s~ t) ` e1 e2 : τ2Kv =

split v into vs, vrt in
JΓ @ s ` e1 : τ1

t−→ τ2Kvs (let box vr = vrt in JΓ @ r ` e2 : τ1Kvr)

JΓ @ r ` λx.e : τ1
s−→ τ2Kv = λx.

merge v, x into vrs in J(Γ , x : τ1) @ r∧ s ` e : τ2Kvrs

Figure 45: Embedding the flat coeffect calculus in the coeffect meta-language

8.2.3 Embedding flat coeffect calculus

The meta-language approach of embedding comonads within a language is
more general than the semantics approach. This thesis focuses on a syntacit-
cally more restricted use that better guides the design of a type system for
context-aware programming languages.

We first demonstrate that the flat coeffect calculus can be embedded in
the meta-language described in the previous section. This may be desirable,
e. g. when using the meta-language for reasoning about context-aware com-
putations. We briefly consider this embedding as it illuminates the relation-
ship between coeffects and CMTT. It is not possible to embed coeffect calculi
in CMTT without generalisation such as the one presented here, because co-
effect systems have a more general structure of annotations.

Given a typing judgement Γ @ r ` e : τ in the flat coeffect calculus, we
define JΓ @ r ` e : τKv as its embedding in the coeffect meta-language. The
translation (Figure 45) is indexed by v, which is a name of variable used to
represent the entire variable context of the source language. The embedding
resembles the semantics discussed in Section 5.3. This is not surprising as
the meta-language directly mirrors the operations of an indexed comonad.

8.3 related and future work

This section summarizes two interesting directions for future work and the
related work in the area. First, we look at a way of embedding coeffects in
existing languages such as Haskell that is inspired by Haskell’s “do” nota-
tion for monads (Section 8.3.1). Second, we discuss extensions to the theory
of coeffects that are needed for real-world programming languages and we
consider how the system could be extended to generalize languages based
on substructural and bunched logics (Section 8.3.2).

8.3.1 Embedded context-aware DSLs

Many of the examples of contextual computation that we discussed earlier
have been implemented as a single-purpose programming language feature
(e. g. implicit parameters [59] or distributed computations [68, 26]). How-
ever, the main contribution of this thesis is that it captures multiple different
notions of context-aware computations using just a single common abstrac-
tion. For this reason, future practical implementations of coeffects should
not be single-purpose language features, but rather reusable abstractions
that can be instantiated with a concrete coeffect algebra specified by the user.
One approach towards this goal is to build a specialized context-aware lan-

182 unified coeffect systems

guage such as the one implemented in Chapter 7. An alternative method is
to embed context-aware DSLs into a richer target functional language.

In order to do this, the target programming language needs to provide
two features; one that allows easier embedding of context-aware compu-
tations themselves in programs akin to the “do” notation for monads in
Haskell and one that allows tracking of the contextual information in the
type system.

embedding contextual computations The embedding of contex-
tual computations into programming languages can follow the successful
model of effectful computations. In purely functional programming languages
such as Haskell, effectful computations are embedded by implementing their
model within the language and inserting the necessary (monadic) plumbing.
This is made easier by the “do” notation or monad comprehensions [87, 39],
which insert the monadic operations automatically.

The recently proposed “codo” notation [78] provides similar automation
for context-aware computations based on comonads. The notation follows
the semantics of our flat coeffect calculus (Chapter 4). Extending the “codo”
notation to support calculi based on the structural coeffect calculus (Chap-
ter 6) is interesting future work – this would require tracking the use of
variables and the application of corresponding operations on the coeffect
annotations, according to the structural rules.

In ML-like languages, effects (and many coeffects) are built-in into the
language semantics, but they can still benefit from a special notation for
explicitly marking effectful (coeffectful) blocks of code. In F#, this is done
using computation expressions [85] that differ from the “do” notation in two
ways. First, they support a wider range of constructs, making it possible
to wrap existing F# code within a block without other changes. Second,
they support other abstractions including monads, applicative functors and
monad transformers. It would be interesting to see if computation expres-
sions can be extended to support programming with computations based
on flat/structural indexed comonads.

More lightweight syntax for effectful computation can be obtained by au-
tomatically insertin the necessary monadic plumbing (without special syn-
tax). This has been done for effectful computations in Lightewight ML [101]
and a similar approach would be worth exploring for coeffects.

coeffect annotations as types The other aspect of practical imple-
mentation of coeffects is that of tracking the context demands (coeffect an-
notations) in the type system. To achieve this (without resorting to a single-
purpose language feature) the type system needs to be able to capture vari-
ous kinds of coeffect algebras. The structures required in this thesis include
sets (with union or intersection), natural numbers (with addition, maxi-
mum, minimum and multiplication), two-point lattice (for liveness) and free
monoids (vectors of annotations).

In a joint work on embedding effect systems in Haskell [79], we demon-
strated that the recent additions to the Haskell type system provide enough
power to implement structures such as sets at the type level. Using these to
embed coeffect systems in Haskell is one fruitful future direction for imple-
menting applied context-aware languages.

In dependently-typed languages such as Agda or Idris [13, 14], the embed-
ding of coeffects can be implemented more directly (as terms implementing
sets or lattices can be lifted to the type level). However, we believe that

8.3 related and future work 183

coeffect tracking does not require full dependent types and can be made
accessible in more mainstream languages. Dependent ML [127] provides
an interesting example of a language with limited dependent typing (arith-
metic) which is still close to its non-dependently-typed predecessor ML.

Another approach for embedding computations into the type system has
been pioneered by F# type providers [103]. Technically, type providers are
compiler extensions that generate types based on external data sources or
other information in order to provide easy access to data or services. A simi-
lar approach could be used for embedding algebras such as coeffect algebras
into the type system. An algebra provider would then be a library that spec-
ifies the objects of the algebra, its equational laws and rules for type infer-
ence. This could provide an easy-to-use way of embedding coeffect tracking
in pragmatic languages such as F#. It is worth noting that the mechanism
could also subsume F# units of measure [53]; these could then be seen as
one such algebra provider.

8.3.2 Extending the theory of coeffects

richer coeffect languages . The coeffect calculi presented in this
thesis are based on a simple λ-calculus, comprising variables, lambda ab-
straction, application and let-binding. This approach lets us focus on fun-
damental properties of coeffect systems (and explain how coeffect system
differ from the better-known effect systems), but it is hardly sufficient for a
realistic programming language.

Further work is to extend the coeffect systems presented here to a full
programming language. A useful starting point is the work of Nielson and
Nielson [71] who consider a similar development for effect systems, adding
conditionals, recursion and polymorphism.

Coeffect annotations in context-aware programming languages can con-
tain a significant amount of information. Thus, the programming language
also needs a form of type inference that can propagate such information.
This has been done for effect systems [62]. For coeffects, the prototype im-
plementation discussed in Chapter 7 provides basic support for type infer-
ence. This work has concentrated on the definition of coeffect systems and
type checking; detailed treatment of type inference is future work.

language semantics . As discussed in Section 2.3, comonads can be
used to define the semantics of a programming language in two ways. The
first, “language semantics”, approach is to use a single comonad to de-
scribe the semantics of a specific context-aware property. The second, “meta-
language” approach is to extend the language with explicit constructs rep-
resenting the operations of the underlying comonad.

The categorical semantics in this thesis used the “language semantics”
style, but mainly as a guide for the development of the type systems. Further
work includes more precise treatment of the categorical structure of indexed
comonads. This has partly been done for flat coeffects by Orchard [76]. A
joint work with Orchard [84] shows the first steps for structural systems.
As discussed in Section 8.1, further work is to develop a similar categorical
model for the unified coeffect calculus, possibly using the categorical notion
of containers [3].

We briefly outlined a calculus based on the “meta-language” approach in
Section 8.2. Developing this technique further could unify coeffect systems
with the work on Contextual Modal Type-Theory (CMTT) [70] and allow

184 unified coeffect systems

other interesting applications of coeffects such as meta-programming [70]
and distributed computing with explicit modalities [68].

substructural and bunched logics . In the flat and structural co-
effect calculi, we attach annotations to the entire context and to individual
variables, respectively. This chapter sketched unification of the two systems.

An intriguing question is whether coeffects can generalize bunched typing
[73], which uses a tree-like structure of variable contexts (also discussed
in Section 2.4). The current definition of the unified coeffect calculus is likely
not expressive enough – bunched typing requires tree-like variable context,
while we use a vector. Finding a simple coeffect system that is capable of
capturing bunched typing is thus an interesting further work. Indeed, this
could lead to numerous uses of coeffects as bunched typing is the basis for
widely-used separation logic [74].

8.4 summary

In this chapter, we looked at three alternative directions for further develop-
ment of coeffects. The unified coeffect system (Section 8.1) is a novel technical
contribution that unifies the flat and structural system presented in the pre-
vious two chapters. This provides an alternative to the separate treatment of
per-context and per-variable contextual dependencies at the cost of making
the system more complex. To unify the two, we introduced coeffect container,
which determines how coeffect annotations are attached to variable contexts.
We then discussed two instances of the structure that capture flat and struc-
tural properties.

Next, we discussed how our work relates to meta-language based on
comonads (Section 8.2). We present a coeffect meta-language that extends a
simple functional programming language with additional language con-
structs corresponding to contextual operations. This is similar to the target
languages used in the translational semantics in Chapter 5, but it follows a
notation similar to the one used by contextual modal type theory (CMTT).
This elucidates the relationship between our work and CMTT.

Finally, we considered an alternative approach to practical implementa-
tion of coeffect systems. Rather than building a specialized programming
language (as we did in Chapter 7), we discuss the technical requirements for
embedding coeffects as a domain-specific language (DSL) into a statically-
typed functional language with a rich type system such as Haskell. This can
be done by following the successful example of Haskell’s “do” notation.

9C O N C L U S I O N S

Some of the most fundamental academic work is not that which solves hard
research problems, but that which changes how we understand the world.
Some philosophers argue that language is the key for understanding how we
think, while in science the dominant thinking is determined by paradigms
[56] or research programmes [57]. Programming languages play a similar role
for computer science and software development.

This thesis aims to change how developers and programming language
designers think about contexts or execution environments of programs. Such
contexts or execution environments have numerous forms – mobile appli-
cations access network, GPS location or user’s personal data; journalists
obtain information published on the web or through open government data
initiatives; in dataflow programming, we have access to past values of ex-
pressions. The notion of coeffect provides a single programming language
abstractions that allows us to view the above examples as instances of the
same notion of context-aware properties, rather than as disjoint cases.

In this chapter, we give a brief overview of the technical contributions of
this thesis (Section 9.1). The thesis looks at two kinds of context-dependence,
identifies common patterns and captures those using two coeffect calculi. It
gives a formal semantics using categorical insights and uses it as a basis for
prototype implementation. Finally, Section 9.2 concludes the thesis.

9.1 contributions

As observed in Chapter 1, modern computer programs run in rich and di-
verse environments or contexts. The richness means that environments pro-
vides additional resources and capabilities that may be accessed by the pro-
gram. The diversity means that programs often need to run in multiple
different environments, such as mobile phones, servers, web browsers or
even on the GPU. In this thesis, we present the foundations for building
programming languages that simplify writing software for such rich and
diverse environments.

notions of context. In λ-calculus, the term context is usually refers
to the free-variable context. However, other programming language features
are also related to context or program’s execution environment. In Chapter 3,
we revisit many of such features – including resource tracking in distributed
computing, cross-platform development, dataflow programming and live-
ness analysis, but also Haskell’s implicit parameters.

The main contribution of Chapter 3 is that it presents the disjoint language
features in a unified way. We show type systems and semantics for many of
the languages, illuminating the fact that they are closely related.

Considering applications is one way of approaching the theory of coef-
fects introduced in this thesis. Other pathways to coeffects are discussed in
Chapter 2, which looks at theoretical developments leading to coeffects, in-
cluding the work on effect systems, comonadic semantics and linear logics.

185

186 conclusions

flat coeffect calculus . The applications discussed in Chapter 3 fall
into two categories. In the first category (Section 3.2), the additional contex-
tual information are whole-context properties. They either capture properties
of the execution environment or affect the whole free-variable context.

In Chapter 4, we develop a flat coeffect calculus which gives us an uni-
fied way of tracking whole-context properties. The calculus is parameterized
by a flat coeffect algebra that captures the algebraic properties of contextual
information. Concrete instances of flat coeffects include Haskell’s implicit
parameters, whole-context liveness and whole-context dataflow.

We define a type system for the calculus (Section 4.2), discuss how to re-
solve the ambiguity inherent in context-aware programming for sample lan-
guages we consider (Section 4.3) and study equational properties of the cal-
culus (Section 4.4). In the flat coeffect calculus, β-reduction and η-expansion
do not generally preserve the type of an expression, but we identify two con-
ditions satisfied by two of our instances when this is the case.

structural coeffect calculus . The second category of context-
aware systems discussed in Section 3.3 captures per-variable contextual prop-
erties. The systems discussed here resemble substructural logics, but rather
than restricting variable use, they track how the variables are used.

We characterise systems with per-variable contextual properties in Chap-
ter 6, which describes our structural coeffect calculus (Section 6.2). Similarly
to the flat variant, the calculus is parameterized by a structural coeffect alge-
bra. Concrete instances of the calculus track bounded variable use (i. e. how
many times is a variable accessed), dataflow properties (how many past
values are needed) and liveness (i. e. can variable be accessed).

The structural coeffect calculus has desirable equational properties (Sec-
tion 6.5). In particular, type preservation for β-reduction and η-expansion
holds for all instances of the structural coeffect calculus. This follows from
the fact that structural coeffects associate contextual requirements with in-
dividual variables and preserves the connection by including explicit struc-
tural rules (weakening, exchange and contraction).

semantics and safety. Both forms of coeffect calculi are parameter-
ized and can be instantiated to obtain a language with a type system that
tracks concrete notion of context dependence. The coeffect calculus can be
seen as a framework for building concrete domain-specific context-aware
programming languages. In addition to the type system, the framework
also provides a way for defining the semantics of concrete domain-specific
context-aware languages, guides their implementation and simplifies safety
proofs.

This is done using a comonadically-inspired semantics. We generalize the
category-theoretical dual of monad to indexed comonad and use it to define
the semantics of context-aware programs for both the flat coeffect calculus
(Chapter 5) and the structural coeffect calculus (Section 6.6). Due to the
ambiguity inherent in contextual properties, we define the semantics over a
typing derivation, but we also give a domain-specific algorithm for choosing
a unique typing derivation for each of our sample languages (Section 4.3
and Section 6.3).

We use comonads in a syntactic way, following the example of Haskell’s
use of monads and treat it as a translation from source context-aware pro-
gramming language to a simple target functional language. The target lan-
guage includes uninterpreted comonadically-inspired primitives whose con-

9.2 summary 187

crete reduction rules need to be provided for each concrete context-aware
domain-specific language. We give concrete definitions and prove type safety
for three sample context-aware languages (Section 5.4 and Section 6.7). To-
gether with well-typedness of our translation, these guarantee that “well-
typed context-aware programs do not get stuck”.

interactive essay. Associated with this essay is an interactive web-
based essay, which implements three simple context-aware languages (Chap-
ter 7). In addition to traditional prototype language implementations, the
essay provides a number of novel features. As usual, it lets users write and
evaluate sample programs, but it also lets them explore the details of the
coeffect theory – this includes an interactive way of exploring typing deriva-
tions and program semantics. The essay also provides a number of case
studies that highlight interesting aspects of the theory.

The implementation serves two purposes. First, it links together all parts
of the theory developed in this thesis (Section 7.2). It uses the flat and struc-
tural coeffect calculi to build a language framework that is then instantiated
to implement three concrete context-aware languages. The framework pro-
vides the type system and translation (based on the comonadically-inspired
semantics) that is used for program execution. This shows the practical ben-
efits of using the theory of coeffects as a basis of real-world programming
languages.

Second, the web-based essay (http://tomasp.net/coe�ects) discussed in
Section 7.3 is novel from the pedagogical perspective. It makes our work ac-
cessible and explorable. Building a production-ready programming language
is outside the scope of the thesis, so instead, our goal is to explain the the-
ory and inspire authors of real-world programming languages to include
support for context-aware programming, ideally using coeffects as a sound
foundation. For this reason, we make the implementation accessible over
web without requiring installation of specialized software and we make it
explorable to encourage active reading.

9.2 summary

We believe that understanding what programs require from the world is
equally important as how programs affect the world.

The latter has been uniformly captured by effect systems and monads.
Those provide not just technical tools for defining semantics and designing
type systems, but they also shape our thinking – they let us view seem-
ingly unrelated programming language features (exceptions, state, I/O) as
instances of the same concept and thus reduce the number of distinct lan-
guage features that developers need to understand.

This thesis aims to provide a similar unifying theory and tools for captur-
ing context-dependence in programming languages. We showed that pro-
gramming language features (liveness, dataflow, implicit parameters, etc.)
that were previously treated separately can be captured by a common frame-
work developed in this thesis. The main technical contribution of this thesis
is that it provides the necessary tools for programming language design-
ers – including parameterized type systems, categorical semantics based on
indexed comonads and equational theory.

If there is a one thing that the reader should remember from this thesis, it
is the fact that there is a unified notion of context, capturing many common
scenarios in programming.

http://tomasp.net/coeffects

B I B L I O G R A P H Y

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus
of dependency. In Proceedings of POPL, 1999.

[2] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static
race detection for java. volume 28, pages 207–255. ACM, Mar. 2006.

[3] M. Abbott, T. Altenkirch, and N. Ghani. Containers: Constructing
strictly positive types. Theoretical Computer Science, 342(1):3–27, 2005.

[4] D. Ahman, J. Chapman, and T. Uustalu. When is a container a
comonad? In Proceedings of International Conference on Foundations of
Software Science and Computational Structures, FOSSACS’12, 2012.

[5] J. Albers. Interaction of color. Yale University Press, 2013.

[6] A. W. Appel. Modern compiler implementation in ML. Cambridge Uni-
versity Press, 1998.

[7] R. Atkey. Parameterised notions of computation. Journal of Functional
Programming, 19, 2009.

[8] J. E. Bardram. The Java context awareness framework (JCAF) – A
service infrastructure and programming framework for context-aware
applications. In Pervasive Computing, pages 98–115. Springer, 2005.

[9] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic,
and R. De Simone. The synchronous languages 12 years later. Proceed-
ings of the IEEE, 91(1):64–83, 2003.

[10] G. Biegel and V. Cahill. A framework for developing mobile, context-
aware applications. In Pervasive Computing and Communications, 2004,
pages 361–365. IEEE, 2004.

[11] G. Bierman and V. de Paiva. On an intuitionistic modal logic. Studia
Logica, 65:2000, 2001.

[12] G. Bierman, M. Hicks, P. Sewell, G. Stoyle, and K. Wansbrough. Dy-
namic rebinding for marshalling and update, with destruct-time λ. In
Proceedings of International conference on functional programming, ICFP
’03, pages 99–110, New York, NY, USA, 2003. ACM.

[13] A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda–a func-
tional language with dependent types. In Theorem Proving in Higher
Order Logics, pages 73–78. Springer, 2009.

[14] E. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional Program-
ming, 23(05):552–593, 2013.

[15] Z. Bray. Funscript: F# to JavaScript with type providers. Available at
http://funscript.info/, 2016.

[16] F. Breuvart and M. Pagani. Modelling coeffects in the relational se-
mantics of linear logic. In Leibniz International Proceedings in Informatics,
volume 41. Schloss Dagstuhl, 2015.

189

http://funscript.info/

190 bibliography

[17] S. Brookes and S. Geva. Computational comonads and intensional
semantics. Applications of Categories in Computer Science. Lon-
don Mathematical Society Lecture Note Series, Cambridge University
Press, 1992.

[18] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. A core quanti-
tative coeffect calculus. In ESOP, pages 351–370, 2014.

[19] D. Cervone. MathJax: a platform for mathematics on the web. Notices
of the AMS, 59(2):312–316, 2012.

[20] M. M. T. Chakravarty, G. Keller, and S. P. Jones. Associated type syn-
onyms. In Proceedings of International Conference on Functional Program-
ming, ICFP ’05, pages 241–253, 2005.

[21] J. Cheney, A. Ahmed, and U. A. Acar. Provenance as dependency anal-
ysis. In Proceedings of International conference on database programming
languages, DBPL’07, pages 138–152, Berlin, Heidelberg, 2007.

[22] J. Cheney, S. Chong, N. Foster, M. Seltzer, and S. Vansummeren. Prove-
nance: a future history. In Proceedings of Conference on object oriented pro-
gramming systems languages and applications, OOPSLA ’09, pages 957–
964. ACM, 2009.

[23] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-
integrated query. In Proceedings of ICFP, ICFP ’13, pages 403–416, 2013.

[24] J. Clarke. SQL Injection Attacks and Defense. Syngress, 2009.

[25] J.-L. Colaço and M. Pouzet. Type-based initialization analysis of a
synchronous dataflow language. International Journal on Software Tools
for Technology Transfer (STTT), 6(3):245–255, 2004.

[26] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web program-
ming without tiers. FMCO ’00, 2006.

[27] P. Costanza and R. Hirschfeld. Language constructs for context-
oriented programming: an overview of ContextL. In Proceedings of
Symposium on dynamic languages, DLS ’05, pages 1–10, New York, NY,
USA, 2005. ACM.

[28] K. Crary, D. Walker, and G. Morrisett. Typed memory management
in a calculus of capabilities. In Proceedings of Symposium on principles
of programming languages, pages 262–275. ACM, 1999.

[29] L. Damas. Type assignment in programming languages. PhD thesis, The
University of Edinburgh, 1984.

[30] R. Davies and F. Pfenning. A modal analysis of staged computation.
Journal of the ACM, 48(3):555–604, May 2001.

[31] Developers (Android). Creating multiple APKs for different API lev-
els. http://developer.android.com/training/multiple-apks/api.html, 2013.

[32] W. Du and L. Wang. Context-aware application programming for mo-
bile devices. In Proceedings of the 2008 C3S2E Conference, C3S2E ’08,
pages 215–227, New York, NY, USA, 2008. ACM.

http://developer.android.com/training/multiple-apks/api.html

bibliography 191

[33] A. Filinski. Towards a comprehensive theory of monadic effects. In
Proceeding of International conference on functional programming, ICFP ’11,
2011.

[34] C. Flanagan and S. Qadeer. A type and effect system for atomicity.
In Proceedings of Conference on Programming Language Design and Imple-
mentation, PLDI ’03.

[35] O. Frieder and M. E. Segal. On dynamically updating a computer
program: From concept to prototype. Journal of Systems and Software,
14(2):111–128, 1991.

[36] M. Gabbay and A. Nanevski. Denotation of syntax and metaprogram-
ming in contextual modal type theory (CMTT). CoRR, abs/1202.0904,
2012.

[37] D. R. Ghica and A. I. Smith. Bounded linear types in a resource semir-
ing. In Programming Languages and Systems, pages 331–350. Springer,
2014.

[38] D. K. Gifford and J. M. Lucassen. Integrating functional and impera-
tive programming. In Proceedings of Conference on LISP and func. prog.,
LFP ’86, 1986.

[39] G. Giorgidze, T. Grust, N. Schweinsberg, and J. Weijers. Bringing
back monad comprehensions. In Proceedings of Symposium on Haskell,
Haskell ’11, pages 13–22, 2011.

[40] J.-Y. Girard, A. Scedrov, and P. J. Scott. Bounded linear logic: a mod-
ular approach to polynomial-time computability. Theoretical computer
science, 97(1):1–66, 1992.

[41] Google. What is API level. Retrieved from http://developer.android.

com/guide/topics/manifest/uses-sdk-element.html#ApiLevels.

[42] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language Lustre. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[43] W. Halfond, A. Orso, and P. Manolios. Wasp: Protecting web applica-
tions using positive tainting and syntax-aware evaluation. IEEE Trans.
Softw. Eng., 34(1):65–81, Jan. 2008.

[44] W. G. Halfond, A. Orso, and P. Manolios. Using positive tainting and
syntax-aware evaluation to counter sql injection attacks. In Proceedings
of International symposium on foundations of software engineering, pages
175–185. ACM, 2006.

[45] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In Proceedings of Symposium on principles and
practice of parallel programming, pages 48–60. ACM, 2005.

[46] V. Hart and N. Case. Parable of the polygons: A playable post on the
shape of society. Available at http://ncase.me/polygons/, 2014.

[47] M. Hicks, J. T. Moore, and S. Nettles. Dynamic software updating.
In Proceedings of Conference on Programming Language Design and Imple-
mentation, PLDI ’01, pages 13–23. ACM, 2001.

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
http://ncase.me/polygons/

192 bibliography

[48] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, 7(3), 2008.

[49] G. Hutton and E. Meijer. Monadic Parser Combinators. Technical Re-
port NOTTCS-TR-96-4, Department of Computer Science, University
of Nottingham, 1996.

[50] P. Jouvelot and D. K. Gifford. Communication effects for message-
based concurrency. Technical report, Massachusetts Institute of Tech-
nology, 1989.

[51] S.-y. Katsumata. Parametric effect monads and semantics of effect
systems. In Proceedings of Symposium on principles of programming lan-
guages, POPL ’14, pages 633–645, New York, NY, USA, 2014. ACM.

[52] A. Kennedy. Types for units-of-measure: Theory and practice. In Cen-
tral European Functional Programming School, pages 268–305. Springer,
2010.

[53] A. J. Kennedy. Relational parametricity and units of measure. In
Proceedings of Symposium on principles of programming languages, pages
442–455. ACM, 1997.

[54] R. B. Kieburtz. Codata and Comonads in Haskell. Unpublished
manuscript, 1999.

[55] G. A. Kildall. A unified approach to global program optimization. In
Proceedings of Symposium on principles of programming languages, pages
194–206. ACM, 1973.

[56] T. S. Kuhn. The structure of scientific revolutions. University of Chicago
Press, 1970.

[57] I. Lakatos. Methodology of scientific research programmes: philosophical
papers. Cambridge University Press, 1980.

[58] D. Leijen and E. Meijer. Domain specific embedded compilers. In
Proceedings of Conference on Domain-specific Languages, DSL ’99, pages
109–122. ACM, 1999.

[59] J. R. Lewis, M. B. Shields, E. Meijer, and J. Launchbury. Implicit pa-
rameters: dynamic scoping with static types. In Proceedings of POPL,
POPL ’00, 2000.

[60] F. Loitsch and M. Serrano. Hop client-side compilation. Trends in
Functional Programming, TFP, pages 141–158, 2007.

[61] K. Lorincz, B.-r. Chen, J. Waterman, G. Werner-Allen, and M. Welsh.
Resource aware programming in the Pixie OS. In Proceedings of the
6th ACM conference on Embedded network sensor systems, pages 211–224.
ACM, 2008.

[62] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
Proceedings of Symposium on principles of programming languages, POPL
’88, pages 47–57, New York, NY, USA, 1988. ACM.

[63] C. McBride. Faking it: Simulating dependent types in Haskell. Journal
of functional programming, 12(4-5):375–392, 2002.

bibliography 193

[64] M. McLuhan and Q. Fiore. The medium is the message. New York,
123:126–128, 1967.

[65] E. Meijer, B. Beckman, and G. Bierman. LINQ: reconciling object, rela-
tions and XML in the .NET framework. In Proceedings of international
conference on management of data, SIGMOD ’06, pages 706–706, 2006.

[66] R. Milner. The Definition of Standard ML: Revised. MIT press, 1997.

[67] E. Moggi. Notions of computation and monads. Inf. Comput., 93:55–92,
July 1991.

[68] T. Murphy, VII., K. Crary, and R. Harper. Type-safe distributed pro-
gramming with ML5. In International Symposium on Trustworthy Global
Computing, TGC’07, pages 108–123. Springer, 2007.

[69] T. Murphy VII, K. Crary, R. Harper, and F. Pfenning. A symmetric
modal lambda calculus for distributed computing. LICS ’04, pages
286–295, 2004.

[70] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type the-
ory. ACM Trans. Comput. Logic, 9(3):23:1–23:49, June 2008.

[71] F. Nielson and H. R. Nielson. Type and effect systems. In Correct
System Design, pages 114–136. Springer, 1999.

[72] D. L. Niki Vazou. Remarrying effects and monads. Proceedings of
MSFP, 2014.

[73] P. O’Hearn. On bunched typing. Journal of Functional Programming,
13(4):747–796, July 2003.

[74] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In Proceedings of International work-
shop on computer science logic, CSL ’01, pages 1–19, 2001.

[75] D. Orchard. Should I use a Monad or a Comonad? Unpublished draft,
2012.

[76] D. Orchard. Programming contextual computations. PhD thesis, Univer-
sity of Cambridge, 2013.

[77] D. Orchard and A. Mycroft. Efficient and correct stencil computation
via pattern matching and static typing. In Proceedings of DSL 2011,
arXiv preprint arXiv:1109.0777, 2011.

[78] D. Orchard and A. Mycroft. A notation for comonads. In Implementa-
tion and Application of Functional Languages, pages 1–17. Springer, 2013.

[79] D. Orchard and T. Petricek. Embedding effect systems in Haskell. In
Proceedings Haskell Symposium, Haskell ’14, pages 13–24, 2014.

[80] T. Petricek. Evaluations strategies for monadic computations. In
Proceedings of Mathematically Structured Functional Programming, MSFP
2012.

[81] T. Petricek. Understanding the world with F#. Available at http://

channel9.msdn.com/posts/Understanding-the-World-with-F.

[82] T. Petricek. Client-side scripting using meta-programming. In Bachelor
thesis, Charles University in Prague, 2007.

http://channel9.msdn.com/posts/Understanding-the-World-with-F
http://channel9.msdn.com/posts/Understanding-the-World-with-F

194 bibliography

[83] T. Petricek, D. Orchard, and A. Mycroft. Coeffects: unified static anal-
ysis of context-dependence. In Proceedings of International Conference
on Automata, Languages, and Programming - Volume Part II, ICALP 2013.

[84] T. Petricek, D. Orchard, and A. Mycroft. Coeffects: A calculus of
context-dependent computation. In Proceedings of International confer-
ence on functional programming, ICFP ’14, pages 123–135, 2014.

[85] T. Petricek and D. Syme. The F# computation expression zoo. In
Proceedings of Practical Aspects of Declarative Languages, PADL 2014.

[86] T. Petricek, D. Syme, and Z. Bray. In the age of web: Typed functional-
first programming revisited. In Post-proceedings of ML Workshop, ML
2014.

[87] S. Peyton Jones. Haskell 98 language and libraries: the revised report. Cam-
bridge University Press, 2003.

[88] F. Pfenning and R. Davies. A judgmental reconstruction of modal
logic. Mathematical. Structures in Comp. Sci., 11(4):511–540, Aug. 2001.

[89] B. C. Pierce. Types and programming languages. MIT press, 2002.

[90] Potion Design Studio, based on the work of Josef Albers. Interaction of
color: App for iPad. Available at http://yupnet.org/interactionofcolor/,
2013.

[91] F. Pottier and D. Rémy. The essence of ML type inference. In Advanced
Topics in Types and Programming Languages, 2005.

[92] C. W. Probst, C. Hankin, and R. R. Hansen, editors. Semantics, Logics,
and Calculi - Essays Dedicated to Hanne Riis Nielson and Flemming Nielson
on the Occasion of Their 60th Birthdays, volume 9560 of Lecture Notes in
Computer Science. Springer, 2016.

[93] A. Russo, K. Claessen, and J. Hughes. A library for light-weight
information-flow security in Haskell. In Proceedings of Haskell Sym-
posium, Haskell ’08, pages 13–24, 2008.

[94] A. Sabelfeld and A. C. Myers. Language-based information-flow secu-
rity. IEEE J.Sel. A. Commun., 21(1):5–19, Sept. 2006.

[95] T. Sans and I. Cervesato. QWeSST for Type-Safe Web Programming.
In Third International Workshop on Logics, Agents, and Mobility, LAM’10,
2010.

[96] J. Schaedler. Seeing circles, sines, and signals: A compact primer
on digital signal processing. Available at https://github.com/

jackschaedler/circles-sines-signals, 2015.

[97] T. Schelling. Dynamic models of segregation. Journal of mathematical
sociology, 1(2):143–186, 1971.

[98] M. Serrano. HOP: A fast server for the diffuse web. In Coordination
Models and Languages, pages 1–26. Springer, 2009.

[99] P. Sewell, J. J. Leifer, K. Wansbrough, F. Z. Nardelli, M. Allen-Williams,
P. Habouzit, and V. Vafeiadis. Acute: High-level programming lan-
guage design for distributed computation. Journal of Functional Pro-
gramming, 17(4-5):547–612, July 2007.

http://yupnet.org/interactionofcolor/
https://github.com/jackschaedler/circles-sines-signals
https://github.com/jackschaedler/circles-sines-signals

bibliography 195

[100] V. Simonet. Flow Caml in a nutshell. In Proceedings of the first APPSEM-
II workshop, pages 152–165, 2003.

[101] N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic
programming in ML. In Proceedings of International conference on func-
tional programming, ICFP ’11, pages 15–27, New York, NY, USA, 2011.
ACM.

[102] D. Syme. Leveraging .NET meta-programming components from F#:
integrated queries and interoperable heterogeneous execution. In Pro-
ceedings of the 2006 workshop on ML, pages 43–54. ACM, 2006.

[103] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Petricek. Themes
in information-rich functional programming for internet-scale data
sources. In Proceedings of the 2013 Workshop on Data Driven Functional
Programming, DDFP ’13, pages 1–4, 2013.

[104] D. Syme, A. Granicz, and A. Cisternino. Building mobile web appli-
cations. In Expert F# 3.0, pages 391–426. Apress, 2012.

[105] D. Syme, T. Petricek, and D. Lomov. The F# asynchronous program-
ming model. In Practical Aspects of Declarative Languages, pages 175–
189. Springer, 2011.

[106] J. Talpin and P. Jouvelot. The type and effect discipline. In Logic in
Computer Science, 1992. LICS’92., pages 162–173, 1994.

[107] R. Tate. The sequential semantics of producer effect systems. In Pro-
ceedings of Symposium on principles of programming languages, POPL ’13,
pages 15–26, New York, NY, USA, 2013. ACM.

[108] The F# Software Foundation. F#. See http://fsharp.org, 2014.

[109] P. Thiemann. A unified framework for binding-time analysis. In The-
ory and Practice of Software Development, pages 742–756. Springer, 1997.

[110] F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3(3):121–189, 1995.

[111] M. Tofte and J.-P. Talpin. Region-based memory management. Infor-
mation and Computation, 132(2):109–176, 1997.

[112] S. Tolksdorf. FParsec – a parser combinator library for F#. Available
at http://www.quanttec.com/fparsec, 2013.

[113] T. Uustalu and V. Vene. The essence of dataflow programming. In
Proceedings of the third asian conference on programming languages and
systems, APLAS’05, pages 2–18, 2005.

[114] T. Uustalu and V. Vene. Comonadic Notions of Computation. Electron.
Notes Theor. Comput. Sci., 203:263–284, June 2008.

[115] B. Victor. Explorable explanations. Available at http://worrydream.

com/ExplorableExplanations/, 2011.

[116] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Cross site scripting prevention with dynamic data tainting and static
analysis. In Proceeding of the network and distributed system security sym-
posium, volume 42, 2007.

http://fsharp.org
http://www.quanttec.com/fparsec
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/ExplorableExplanations/

196 bibliography

[117] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure
flow analysis. J. Comput. Secur., 4:167–187, January 1996.

[118] J. Vouillon and V. Balat. From bytecode to JavasSript: the js_of_ocaml
compiler. Software: Practice and Experience, 2013.

[119] B. Wadge. Monads and intensionality. In International Symposium on
Lucid and Intensional Programming, volume 95, 1995.

[120] W. W. Wadge and E. A. Ashcroft. LUCID, the dataflow programming lan-
guage. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[121] P. Wadler. Strictness analysis aids time analysis. In Proceedings of
Symposium on principles of programming languages, pages 119–132, 1988.

[122] P. Wadler. Linear types can change the world! In Programming Concepts
and Methods. North, 1990.

[123] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In Proceedings of Symposium on principles of programming languages,
POPL ’89, pages 60–76, New York, NY, USA, 1989. ACM.

[124] P. Wadler and P. Thiemann. The marriage of effects and monads. ACM
Trans. Comput. Logic, 4:1–32, January 2003.

[125] D. Walker. Substructural Type Systems, pages 3–43. MIT Press.

[126] A. K. Wright and M. Felleisen. A Syntactic Approach to Type Sound-
ness. Information and computation, 115(1):38–94, 1994.

[127] H. Xi. Dependent ML: An approach to practical programming with
dependent types. Journal of Functional Programming, 17(02):215–286,
2007.

[128] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and
J. P. Magalhães. Giving Haskell a promotion. In Proceedings of Work-
shop on types in language design and implementation. ACM, 2012.

AA P P E N D I X A

This appendix gives full typing derivations for the examples presented in
Chapter 3, which demonstrate simple coeffect calculi for implicit parame-
ters, liveness and dataflow.

a.1 coeffect typing for implicit parameters

The example on page 37 considers the typing of a function that adds the
values of two implicit parameters: λx.?a+?b. Note that addition is a function
(and so we write (+) ?a ?b) that requires no implicit parameters. Thus our
typing derivation starts with:

Γ0 = (+) : int
∅−→ int

∅−→ int

The typing for the sub-expression (+) ?a is shown in Figure 46 (a). Note that
the resulting function does not require any implicit parameters, so there is
no non-determinism so far. It is worth noting that this would change if we
used η-expansion and wrote (λy.(+) ?a). We refer to the above as ∆. The
rest of the expression is shown in Figure 46 (b).

Here, the last rule applies (app) and so we non-deterministically split the
set of required resources. This means that we need r1, r2 such that r1 ∪ r2 =

{?a : int, ?b : int}. The Figure 46 (c) summarizes the 9 options.

a.2 coeffect typing for liveness

The Section 3.2.3 discusses a coeffect system where the coeffect annotations
capture whether a variable may be accessed (marked as live using L) or
whether it is definitely not used (marked as dead using D). The following
three examples are considered:

(λx.42) y (1)

twoTimes 42 (2)

(λx.x) 42 (3)

The typing derivation for the expression (1) is shown in Figure 47 (a). The
most interesting aspect about the previous example is the use of the (app)
rule, which marks the resulting context as dead, even though a variable is
accessed in the second part of the expression (this part never needs to be
evaluated).

Assuming Γ0 = twoTimes : int
L−→ int, the typing derivation for (2) is

shown in Figure 47 (b). Here, the variable context is marked as live. This
is not because the argument of twoTimes is marked as live, but because
the function itself is a variable that (always) needs to be obtained from the
variable context. Finally, the derivation for (3) is shown in Figure 47 (c).

197

198 bibliography

a.3 coeffect typing for dataflow

The Section 3.2.4 presents a coeffect type system that tracks the maximal
number of past values required by a dataflow computation. The discussion
includes the following example:

(if (prev tick) = 0

then (λx→ prev x)

else (λx→ x)) (prev counter)

In order to give typing for the above example, we first need to extend the
language with conditionals. The typing rule for the if construct is:

(if)
Γ @m ` e : bool Γ @n ` e1 : τ Γ @n ` e2 : τ

Γ @ max(m,n) ` if e then e1 else e2 : τ1

Given a condition that requires m past and two (alternative) bodies that
each require n past values, the composed expression requires at most the
maximum of the two, i. e. the same context is passed to both the condition
and the body using point-wise composition. As we will see, the fact that
both branches require the same number of past values means that we need
to use the subcoeffecting rule.

Assuming Γ0 = tick : int, counter : int, the Figure 48 shows the typing
derivation for the example. In the first part, we derive the types for the
sub-expressions of the application and the conditional. Note that to obtain
compatible function types, we use subcoeffecting before abstraction in the

typing of (λx.x) – the type int
1−→ int is a valid overapproximation. Finally,

the typing of the application yields the requirement of two past values, cal-
culated as max(1, 1+ 1).

bibliography 199

a.) Typing for the sub-expression (+) ?a

(app)

(var)
Γ0, x : int @ ∅ ` (+) : int

∅−→ int
∅−→ int

Γ0, x : int @ {?a : int} ` ?a : int
(param)

Γ0, x : int @ {?a : int} ` (+) ?a : int
∅−→ int

b.) Typing for the expression (+) ?a ?b

(app)
∆ Γ0, x : int @ {?b : int} ` ?b : int

(abs)
Γ0, x : int @ {?a : int, ?b : int} ` (+) ?a ?b : int

Γ0 @ r1 ` λx.(+) ?a ?b : int
r2−→ int

c.) Possible splittings of the implicit parameters

r1 = {} r2 = {?a : int, ?b : int}

r1 = {?a : int} r2 = {?a : int, ?b : int}

r1 = {?b : int} r2 = {?a : int, ?b : int}

r1 = {?a : int, ?b : int} r2 = {?a : int, ?b : int}

r1 = {?a : int, ?b : int} r2 = {}

r1 = {?a : int, ?b : int} r2 = {?a : int}

r1 = {?a : int, ?b : int} r2 = {?b : int}

r1 = {?a : int} r2 = {?b : int}

r1 = {?b : int} r2 = {?a : int}

Figure 46: Coeffect typing for implicit parameters

200 bibliography

a.) Typing for the expression (λx.42) y

(app)

(abs)

(const)
y :τ, x :τ @D ` 42 : int

y :τ @D ` λx.42 : τ D−→ int
(var)

y :τ @ L ` y : τ

y :τ @Dt (LuD) ` (λx.42) y : int

y :τ @D ` (λx.42) y : int

b.) Typing for the expression twoTimes 42

(app)

(var)
Γ0 @ L ` twoTimes : int

L−→ int
(var)

Γ0 @D ` 42 : int

Γ0 @ Lt (Du L) ` twoTimes 42 : int

Γ0 @ L ` twoTimes 42 : int

c.) Typing for the expression (λx.x) 42

(app)

(abs)
(var)

x : int @ L ` x : int
() @ L ` λx.x : int L−→ int

(const)
() @D ` 42 : int

() @ Lt (LuD) ` (λx.x) 42 : int
() @ L ` (λx.x) 42 : int

Figure 47: Coeffect typing for liveness

bibliography 201

a.) Typing for sub-expressions of the conditional and for the argument

(prev)
Γ0 @ 0 ` tick : int

Γ0 @ 1 ` prev tick : int

Γ0 @ 1 ` (prev tick) = 0 : bool

(prev)

(var)
Γ0, x : int @ 0 ` x : int

(abs)
Γ0, x : int @ 1 ` prev x : int

Γ0 @ 1 ` λx.prev x : int 1−→ int

(abs)

(sub)

(var)
Γ0, x : int @ 0 ` x : int

Γ0, x : int @ 1 ` x : int

Γ0 @ 0 ` λx.x : int 1−→ int

(prev)

(var)
Γ0 @ 0 ` counter : int

Γ0 @ 1 ` prev counter : int

b.) Typing for the composed expression

(app)

(if)
(. . .)

Γ0 @ 1 ` (if . . . then . . . else . . .) : int
1−→ int

Γ0 @ 1 ` (. . .) : int

Γ0 @ max(1, 1+ 1) ` (if . . . then . . . else . . .) (. . .) : int

Γ0 @ 2 ` (if . . . then . . . else . . .) (. . .) : int

Figure 48: Coeffect typing for dataflow

BA P P E N D I X B

This appendix provides additional details for some of the proofs for equa-
tional theory of flat coeffect calculus from Chapter 4 and structural coeffect
calculus from Chapter 6.

b.1 substitution for flat coeffects

In Section 4.4.3, we stated that, for a bottom-pointed flat coeffect algebra
(i. e. ∀r ∈ C . r> use), the call-by-name substitution preserves type if all op-
erators of the flat coeffect algebra coincide (Lemma 9). This section provides
the corresponding proof.

Lemma (Bottom-pointed substitution). In a bottom-pointed flat coeffect calculus
with an algebra (C,~,⊕,∧, use, ign,6) where ∧ = ~ = ⊕ and the operation is
also idempotent and commutative and r6 r ′ ⇒ ∀s.r~ s 6 r ′~ s then:

Γ @S ` es : τs ∧ Γ1, x : τs, Γ2 @ r ` er : τr
⇒ Γ1, Γ , Γ2 @ r~S ` er[x← es] : τr

Proof. Assume that Γ @S ` es : τs and we are substituting a term es for
a variable x. Note that we use upper-case S to distinguish the coeffect of
the expression that is being substituted into an expression. Using structural
induction over `:

(var) Given the following derivation using (var):

Γ1,y : τ, Γ2 @ use ` y : τ

There are two cases depending on whether y is the variable x or not:

• If y = x then also τ = τs and thus y[x ← es] = es. Using the assump-
tion, implicit weakening and the fact that use is a unit of ~:

Γ @S ` y[x← es] : τs

Γ1, Γ , Γ2 @S ` y[x← es] : τ

Γ1, Γ , Γ2 @ use~S ` y[x← es] : τ

• If y 6= x then y[x ← es] = y. Using the fact that use is the bottom
element and subcoeffecting:

Γ1,y : τ, Γ2 @ use ` y : τ

Γ1,y : τ, Γ2 @ use~S ` y : τ

(const) Similar to the (var) case when the variable is not substituted.

(sub) Given the following typing derivation using (sub):

Γ1, x : τs, Γ2 @ r ′ ` e : τ
Γ1, x : τs, Γ2 @ r ` e : τ (r ′6r)

From the induction hypothesis, we have that Γ1, Γ , Γ2 @ r ′~S ` e[x← es] : τ.
The condition on 6 means that r ′~S 6 r~S and so we can apply the (sub)
rule to obtain Γ1, Γ , Γ2 @ r~S ` e[x← es] : τ.

203

204 bibliography

(abs) Given the following typing derivation using (abs):

Γ1, x : τs, Γ2,y : τ1 @ r ∧ s ` e : τ2
Γ1, x : τs, Γ2 @ r ` λy.e : τ1

s−→ τ2

Assume w.l.o.g. that x 6= y. From the induction hypothesis, we have that:

Γ1, Γ , Γ2,y : τ1 @ r~ s ` e[x← es] : τ2

Now using the fact that ∧ = ~, associativity and commutativity and (abs):

Γ1, Γ , Γ2,y : τ1 @ (r∧ s)~S ` e[x← es] : τ2

Γ1, Γ , Γ2,y : τ1 @ (r~S)∧ s ` e[x← es] : τ2

Γ1, Γ , Γ2 @ r~S ` λy.(e[x← es]) : τ1
s−→ τ2

Γ1, Γ , Γ2 @ r~S ` (λy.e)[x← es] : τ1
s−→ τ2

(app) Given the following typing derivation using (app):

Γ1, x : τs, Γ2 @ r ` e1 : τ1
t−→ τ2 Γ1, x : τs, Γ2 @ s ` e2 : τ1

Γ1, x : τs, Γ2 @ r ⊕ (s~ t) ` e1 e2 : τ2

From the induction hypothesis, we have that:

Γ1, Γ , Γ2 @ r~S ` e1[x← es] : τ1
t−→ τ2

Γ1, Γ , Γ2 @ s~S ` e2[x← es] : τ1
(∗)

Now using the (app) rule and the fact that ⊕ = ~, associativity, commuta-
tivity and idempotence (note that all three properties are needed):

(∗)
Γ1, Γ , Γ2 @ (r~S) ⊕ ((s~S)~ t) ` e1[x← es] e2[x← es] : τ2

Γ1, Γ , Γ2 @ (r ⊕ (s~ t)) ~ S ` (e1 e2)[x← es] : τ2

(let) Given the following typing derivation using (let):

Γ1, x : τs, Γ2 @ r ` e1 : τ1 Γ1, x : τs, Γ2,y : τ1 @ s ` e2 : τ2
Γ1, x : τs, Γ2 @ s ⊕ (s~ r) ` let y = e1 in e2 : τ2

From the induction hypothesis, we have that:

Γ1, Γ , Γ2 @ r~S ` e1[x← es] : τ1

Γ1, Γ , Γ2,y : τ1 @ s~S ` e2[x← es] : τ2
(†)

Now using the (let) rule and similarly to the (app) case:

(†)
Γ1, Γ , Γ2 @ (s~S) ⊕ ((s~S)~ (r~S)) ` let y = e1[x← es] in e2[x← es] : τ2

Γ1, Γ , Γ2 @ (s ⊕ (s~ r))~S ` (let y = e1 in e2)[x← es] : τ2

bibliography 205

b.2 substitution for structural coeffects

In order to prove that β-reduction and η-expansion preserve the type of an
expression in Section 6.5.2, we required a multi-nary form of the substitution
lemma (Lemma 40). This section provides the corresponding proof.

Lemma (Multi-nary substitution). Given an expression with multiple holes filled
by variables xTi :τTi with coeffects sk:

Γ @ r [xT1 :τT1 @ 〈s1〉 | . . . | xTk :τTk @ 〈sk〉] ` er : τr
and a expressions eTi with free-variable contexts ΓTi annotated with Ti:

Γ1 @ T1 ` eT1 : τT1 . . . Γk @ Tk ` eTk : τTk

then substituting the expressions eTi for variables xTi results in an expression with
a context where the original holes are filled by contexts ΓTi with coeffects si~Ti:

Γ @ r [ΓT1 @ s1~T1 | . . . | ΓTk @ sk~Tk] ` er[xT1 ← eT1] . . . [xTk ← eTk] : τr

Proof. Assume that Γ @ Ti ` eTi : τTi and we are substituting terms eTi
for variables xTi. Furthermore, we assume that are variables that are being
substituted for actually appear in the original term (which means that k is at
most the number of variables). Note that we use upper-case T to distinguish
the coeffect of the expression that is being substituted into an expression.
Using structural induction over `:

syntax-driven typing rules

(var) Given the following derivation using (var):

y : τ @ 〈use〉 ` y : τ

Here, the context contains exactly one variable and so k = 1. There are two
cases depending on whether y is the (only substituted) variables xT1 or not:

• If y = xT1 then also τ = τT1 and thus y[xT1 ← eT1] = eT1. In this
case, the context contains only a single hole Γ @ r = − @−. Using the
assumption and the fact that use is a unit of ~:

ΓT1 @ Ti ` y[xT1 ← eT1] : τr

Γ @ r [ΓT1 @ Ti] ` y[xT1 ← eT1] : τr

Γ @ r [ΓT1 @ use~Ti] ` y[xT1 ← eT1] : τr

• If y 6= xT1 then there is no substitution that could be performed (y
does not appear in the context) and so (trivially):

Γ @ r [] ` y : τr

(const) Similar to the (var) case when the variable is not substituted.

(app) In the (app) rule, the context Γ is obtained as a tensor product Γ1, Γ2.
Given Γ of length k, we assume that Γ1 has length l and Γ2 has length k− l.
Now, given the following typing derivation using (app):

Γ1 @ s1[xT1 @ 〈s1〉 | . . . | xTl @ 〈sl〉] ` e1 : τ1
t−→ τ2

Γ2 @ s2[xTl+1 @ 〈sl+1〉 | . . . | xTk @ 〈sk〉] ` e2 : τ1

Γ1, Γ2 @ s1 ++ (t~ s2) [xT1 @ 〈s1〉 | . . . | xTl @ 〈sl〉,
xTl+1 @ 〈t~ sl+1〉 | . . . | xTk @ 〈t~ sk〉] ` e1 e2 : τ2

206 bibliography

Here, we use t ~ s2 as a pointwise extension of ∧ that is additionally ap-
plied to holes such that t ∧ − = −. That is, a hole in the context remains
a hole and so the second part of the context is filled with t~ si for all
i ∈ {l+ 1 . . . k}. Next, from the induction hypothesis, we have that:

Γ1 @ s1[ΓT1 @ s1~T1 | . . . | ΓTl @ sl~Tl] ` e1 [. . .] : τ1
t−→ τ2

Γ2 @ s2[ΓTl+1 @ sl+1~Tl+1 | . . . | ΓTk @ sk~Tk] ` e2 [. . .] : τ1
(∗)

Now using the (app) rule in the first step and associativity of~ on the second
part of the context in the second step:

(∗)

Γ1, Γ2 @ s1 ++ (t~ s2) [ΓT1 @ s1~T1 | . . . | ΓTl @ sl~Tl,
ΓTl+1 @ t~ (sl+1~Tl+1) | . . . | ΓTk @ t~ (sk~Tk)] ` (e1 e2) [. . .] : τ2

Γ1, Γ2 @ s1 ++ (t~ s2) [ΓT1 @ s1~T1 | . . . | ΓTl @ sl~Tl,
ΓTl+1 @ (t~ sl+1)~Tl+1 | . . . | ΓTk @ (t~ sk)~Tk] ` (e1 e2) [. . .] : τ2

(abs) Without the loss of generality, we can assume that the bound vari-
able is not one of the variables being substituted. Thus, the last variable (and
the corresponding coeffect) are not holes. The typing derivation using (abs)
then looks as follows:

Γ , x :τ1 @ r++ 〈s〉 [xT1 :τT1 @ 〈s1〉 | . . . | xTk :τTk @ 〈sk〉] ` e : τ2
Γ @ r [xT1 :τT1 @ 〈s1〉 | . . . | xTk :τTk @ 〈sk〉] ` λx.e : τ1

s−→ τ2

From the induction hypothesis, we have that:

Γ , x :τ1 @ r++ 〈s〉 [ΓT1 @ s1~T1 | . . . | ΓTk @ sk~Tk] ` e [. . .] : τ2
Because the last position in the vector of variables is an actual variable rather
than a hole, we just need to apply the (abs) rule:

Γ , x :τ1 @ r++ 〈s〉 [ΓT1 @ s1~T1 | . . . | ΓTk @ sk~Tk] ` e [. . .] : τ2
Γ @ r [ΓT1 @ s1~T1 | . . . | ΓTk @ sk~Tk] ` λx.e [. . .] : τ1

s−→ τ2

(let) In the structural coeffect calculus let-binding can be viewed as a
syntactic sugar for abstraction/application and so the case follows from (abs)
and (app).

Compared to the similar proof for the flat coeffect calculus, the proof for
the structural system requires fewer properties of the coeffect algebra. In
particular, we only needed associativity of ~ in the (app) rule the fact that
use is a unit of ~ in (var).

structural rules

(contr) In case of contraction, we can assume that the two variables
to be contracted (in the assumption) are not the variables that are being
substituted. However, the resulting variable (in the conclusion) can be one
of the variables being substituted for.

• Assuming that x 6= xTi for all i, the original derivation is:

Γ1,y :τ1, z :τ1, Γ2 @ r++〈s, t〉++q
[xT1 :τT1 @ 〈s1〉 | . . . | xTk :τTk @ 〈sk〉] ` e : τ

Γ1, x :τ1, Γ2 @ r++〈s⊕ t〉++q
[xT1 :τT1 @ 〈s1〉 | . . . | xTk :τTk @ 〈sk〉] ` e[z,y← x] : τ

bibliography 207

Applying (contr) to the induction hypothesis gives the required result:

Γ1,y :τ1, z :τ1, Γ2 @ r++〈s, t〉++q
[ΓT1 @ s1~T1 | . . . | ΓTk @ sk~Tk] ` e [. . .] : τ

Γ1, x :τ1, Γ2 @ r++〈s⊕ t〉++q
[ΓT1 @ s1~T1 | . . . | ΓTk @ sk~Tk] ` e[z,y← x][. . .] : τ

• In the other case, x = xTi for some i. The original typing is:

Γ1,−,−, Γ2 @ r++〈−,−〉++q [xT1 :τT1 @ 〈s1〉 | . . . |
y :τ1 @ 〈s〉 | z :τ1 @ 〈t〉 | . . . | xTk :τTk @ 〈sk〉] ` e : τ

Γ1,−, Γ2 @ r++〈− 〉++q [xT1 :τT1 @ 〈s1〉 | . . . |
x :τ1 @ 〈s⊕ t〉 | . . . | xTk :τTk @ 〈sk〉] ` e[z,y← x] : τ

Applying (contr) to the induction hypothesis gives the following result:

Γ1,−,−, Γ2 @ r++〈−,−〉++q [ΓT1 @ s1~T1 | . . . |
ΓTi @ s~Tk | ΓTi @ t~Tk | . . . | ΓTk @ sk~Tk] ` e [. . .] : τ

Γ1,−, Γ2 @ r++〈− 〉++q [ΓT1 @ s1~T1 | . . . |
ΓTi @ (s~Tk)⊕(t~Tk) | . . . | ΓTk @ sk~Tk] ` e [. . .] : τ

Here the ⊕ operation represents a pointwise extension of ⊕. Thus for
ith substituted coeffect, we have (s~ Ti) ⊕ (t~ Ti). Using the distribu-
tivity law of structural coeffect algebra, we obtain the required struc-
ture: (s⊕ t) ~ Ti.

(sub) As in the (contr) case, in the (sub) case we distinguish two
situations. If the subcoeffecting is applied to variable that is not being
substituted for, then the case is easy (subcoeffecting does not interact
with substitution), so we only consider the case when x is one of the
variables being substituted for:

Γ1,−, Γ2 @ r++〈− 〉++q [xT1 :τT1 @ 〈s1〉 | . . . |
x :τ1 @ 〈s ′〉 | . . . | xTk :τTk @ 〈sk〉] ` e : τ

Γ1,−, Γ2 @ r++〈− 〉++q [xT1 :τT1 @ 〈s1〉 | . . . |
x :τ1 @ 〈s〉 | . . . | xTk :τTk @ 〈sk〉] ` e : τ

(s ′ 6 s)

From the induction hypothesis, we have the following:

Γ1,−, Γ2 @ r++〈− 〉++q [ΓT1 @ s1~T1 | . . . |
ΓTi @ s ′~Tk | . . . | ΓTk @ sk~Tk] ` e : τ

To complete the case, we need to apply (sub) repeatedly on each of the
variables in ΓTi. For ith variable xi, the coeffect annotation is s ′~ Ti. Us-
ing the fact that combining coeffects with ~ preserves the ordering, we
get that (s ′~ Ti)6(s~ Ti) and so the conditions of (sub) are satisfied.

(weak) We again need to consider whether the removed variable
is one of the variables that are being substituted for. If this is not the
case, the proof is easy, so we only look at the other case:

Γ @ r [xT1 :τT1 @ 〈s1〉 | . . . | xTk :τTk @ 〈sk〉] ` e : τ
Γ ,− @ r++〈− 〉 [xT1 :τT1 @ 〈s1〉 | . . . | xTk :τTk @ 〈sk〉 | x :τ1 @ ign] ` e : τ

208 bibliography

Now, we use the induction hypothesis, apply the (weak) rule and use
properties of the structural coeffect algebra:

Γ @ r [ΓT1 @ s1~T1 | . . . |
ΓTk−1 @ sk−1~Tk−1] ` e [. . .] : τ

(sub)

Γ ,− @ r++〈− 〉 [ΓT1 @ s1~T1 | . . . |
ΓTk−1 @ sk−1~Tk−1 | x :τ1 @ ign] ` e [. . .] : τ

Γ ,− @ r++〈− 〉 [ΓT1 @ s1~T1 | . . . |
ΓTk−1 @ sk−1~Tk−1 | x :τ1 @ ign~Tk] ` e [. . .] : τ

The derivation first applies the standard (weak) rule and then uses sub-
coeffecting rule and the property ign 6 (ign~ r) to obtain conclusion
of the required form.

(exch) In the (exch) case, the property follows directly from the
induction hypothesis. The required conclusion is obtained by applying
(exch) repeatedly (as we now need to exchange not just two individual
variables, but two contexts, possibly containing multiple variables).

	Declaration
	Abstract

	Acknowledgements
	Contents

	Context-aware programming
	1 Why context-aware programming matters
	1.1 Why context-aware programming matters
	1.1.1 Context awareness #1: Platform versioning
	1.1.2 Context awareness #2: System capabilities
	1.1.3 Context awareness #3: Confidentiality and provenance
	1.1.4 Context-awareness #4: Checking array access patterns

	1.2 Towards context-aware languages
	1.2.1 Context-aware languages in action
	1.2.2 Understanding context with types

	1.3 Theory of context dependence
	1.4 Thesis outline

	2 Pathways to coeffects
	2.1 Coeffects via static and dynamic binding
	2.1.1 Variable binding
	2.1.2 Implicit parameter binding
	2.1.3 Resolving ambiguity

	2.2 Coeffects via type and effect systems
	2.2.1 Simple effect system.
	2.2.2 Simple coeffect system.

	2.3 Coeffects via language semantics
	2.3.1 Effectful languages and meta-languages
	2.3.2 Marriage of effects and monads
	2.3.3 Context-dependent languages and meta-languages

	2.4 Coeffects via substructural and bunched logics
	2.4.1 Substructural type systems.
	2.4.2 Bunched type systems.

	2.5 Context oriented programming
	2.6 Summary

	3 Context-aware systems
	3.1 Structure of coeffect systems
	3.1.1 Effectful lambda abstraction
	3.1.2 Notions of context
	3.1.3 Scalars and vectors

	3.2 Flat coeffect systems
	3.2.1 Implicit parameters and type classes
	3.2.2 Distributed computing
	3.2.3 Liveness analysis
	3.2.4 Dataflow languages
	3.2.5 Permissions and safe locking

	3.3 Structural coeffect systems
	3.3.1 Liveness analysis revisited
	3.3.2 Bounded variable use
	3.3.3 Dataflow languages revisited
	3.3.4 Security, tainting and provenance

	3.4 Beyond passive contexts
	3.5 Summary

	Coeffect calculi
	4 Types for flat coeffect calculus
	4.1 Introduction
	4.1.1 A unified treatment of lambda abstraction

	4.2 Flat coeffect calculus
	4.2.1 Flat coeffect algebra
	4.2.2 Type system
	4.2.3 Understanding flat coeffects
	4.2.4 Examples of flat coeffects

	4.3 Choosing a unique typing
	4.3.1 Implicit parameters
	4.3.2 Dataflow and liveness

	4.4 Syntactic equational theory
	4.4.1 Syntactic properties
	4.4.2 Call-by-value evaluation
	4.4.3 Call-by-name evaluation

	4.5 Syntactic properties and extensions
	4.5.1 Subcoeffecting and subtyping
	4.5.2 Typing of let binding
	4.5.3 Properties of lambda abstraction
	4.5.4 Language with pairs and unit

	4.6 Summary

	5 Semantics of flat coeffect calculus
	5.1 Introduction and safety
	5.2 Categorical motivation
	5.2.1 Comonads are to coeffects what monads are to effects
	5.2.2 Categorical semantics
	5.2.3 Introducing comonads
	5.2.4 Generalising to indexed comonads
	5.2.5 Flat indexed comonads
	5.2.6 Semantics of flat calculus

	5.3 Translational semantics
	5.3.1 Functional target language
	5.3.2 Safety of functional target language
	5.3.3 Comonadically-inspired translation

	5.4 Safety of context-aware languages
	5.4.1 Coeffect language for dataflow
	5.4.2 Coeffect language for implicit parameters

	5.5 Generalized safety of comonadic embedding
	5.6 Related categorical structures
	5.6.1 Indexed categorical structures
	5.6.2 When is a coeffect not a monad
	5.6.3 When is coeffect a monad

	5.7 Summary

	6 Structural coeffect calculus
	6.1 Introduction
	6.1.1 Related work

	6.2 Structural coeffect calculus
	6.2.1 Structural coeffect algebra
	6.2.2 Structural coeffect types
	6.2.3 Understanding structural coeffects
	6.2.4 Examples of structural coeffects

	6.3 Choosing a unique typing
	6.3.1 Syntax-directed type system
	6.3.2 Properties

	6.4 Syntactic properties and extensions
	6.4.1 Let binding
	6.4.2 Subcoeffecting

	6.5 Syntactic equational theory
	6.5.1 From flat coeffects to structural coeffects
	6.5.2 Holes and substitution lemma
	6.5.3 Reduction and expansion

	6.6 Categorical motivation
	6.6.1 Indexed comonads, revisited
	6.6.2 Structural indexed comonads
	6.6.3 Semantics of structural calculus
	6.6.4 Examples of structural indexed comonads

	6.7 Translational semantics
	6.7.1 Comonadically-inspired language extensions
	6.7.2 Comonadically-inspired translation
	6.7.3 Structural coeffect language for dataflow

	6.8 Summary

	Towards practical coeffects
	7 Implementation
	7.1 From theory to implementation
	7.1.1 Type checking and inference
	7.1.2 Execution of context-aware programs
	7.1.3 Supporting additional context-aware languages

	7.2 Case studies
	7.2.1 Typing context-aware programs
	7.2.2 Comonadically-inspired translation

	7.3 Interactive essay
	7.3.1 Explorable language implementation
	7.3.2 Implementation overview

	7.4 Related work
	7.5 Summary

	8 Unified coeffect systems
	8.1 The unified coeffect calculus
	8.1.1 Shapes and containers
	8.1.2 Structure of coeffects
	8.1.3 Unified coeffect type system
	8.1.4 Structural coeffects
	8.1.5 Flat coeffects

	8.2 Coeffect meta-language
	8.2.1 Coeffects and contextual modal type theory
	8.2.2 Coeffect meta-language
	8.2.3 Embedding flat coeffect calculus

	8.3 Related and future work
	8.3.1 Embedded context-aware DSLs
	8.3.2 Extending the theory of coeffects

	8.4 Summary

	9 Conclusions
	9.1 Contributions
	9.2 Summary

	Bibliography
	A Appendix A
	A.1 Coeffect typing for implicit parameters
	A.2 Coeffect typing for liveness
	A.3 Coeffect typing for dataflow

	B Appendix B
	B.1 Substitution for flat coeffects
	B.2 Substitution for structural coeffects

