

Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Tomáš Petříček

Reactive Programming with Events

Department of Theoretical Computer Science and Mathematical Logic

Supervisor: Don Syme

Study programme: Theoretical Computer Science

2010

1

I hereby certify that I wrote the thesis myself using only the referenced sources.
I give consent with lending the thesis.

Prague, 15 April, 2010 Tomáš Petříček

2

Contents

Introduction ... 7

1. Standard event handling techniques ... 7

2. Approach and existing work ... 9

3. Main contributions of this thesis ... 11

Background and related work ...13

1. Functional techniques .. 13

2. First-class compositional events ... 16

3. Monads and computation expressions.. 20

4. Synchronous languages ... 28

5. Concurrent languages .. 31

6. Reactive languages .. 37

Approach and problem description ...43

1. Reactive programming .. 43

2. Issues and limitations .. 46

3. Approach description .. 48

4. Sample solution .. 50

Garbage collection for reactive programs ...52

1. Problems with mixing styles ... 52

2. Garbage in the dual world .. 55

3. Garbage collection algorithm .. 57

4. Implementing the reactive library .. 61

5. Correspondence with the model ... 66

6. Chapter summary and related work .. 68

Pattern matching for reactive and concurrent programming70

1. Motivation .. 71

2. Monadic pattern matching ... 74

3. Semantics .. 79

4. Merging computations ... 81

5. Choosing .. 87

6. Reasoning about monadic matching .. 88

7. Design alternatives and future work ... 90

8. Chapter summary and related work .. 94

Reactive event-driven computations...96

1. Reactive library by example .. 97

2. Case Study: Simple reactive game .. 101

3. Formal semantics ... 108

4. Guarantees .. 120

5. Abstract imperative computations .. 123

3

Ideas for future work ... 128

1. Garbage collection in reactive scenario ... 128

2. Compile time checking for match! ... 129

3. Committing monadic computations .. 130

4. Automatic verification of reactive programs ... 131

5. Real-world reactive scenarios ... 132

Overview of contributions and conclusion ... 134

1. Overview of contributions .. 134

2. Conclusion ... 136

Imperative and object-oriented F# ... 141

3. Imperative programming .. 141

4. Object-oriented programming .. 142

Counting clicks using combinators ... 144

Merge for commutative monads .. 145

4

Title: Reactive Programming with Events
Author: Tomáš Petříček
Department: Department of Theoretical Computer

 Science and Mathematical Logic
Supervisor: Don Syme, Microsoft Research Cambridge
Supervisor's e-mail address: dsyme@microsoft.com

Abstract: The reactive programming model is largely different to what we’re used

to as we don’t have a full control over the application’s control flow. As a result, re-
active applications need to be structured differently and need to be written using
different patterns. We build an easier way for developing reactive applications. Our
work integrates declarative and imperative approach to reactive programming and

uses the notion of event as the unifying concept. We discuss the problem of me-
mory management in this scenario and develop a technique for collecting not only
events that are not reachable, but also events that cannot trigger any action. Next,
we present a language extension that makes it possible to wait for occurrences of

events that match some defined pattern. The extension isn’t bound to the reactive
programming model and can be used for concurrent and parallel programming
scenarios as well. Finally, we develop a reactive programming library that builds

on top of the ideas discussed earlier and we present semantics of the library to

enable formal reasoning about reactive programs.

Keywords: reactive programming; monads; events; pattern matching

Název práce: Reactive Programming with Events

Autor: Tomáš Petříček

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoucí práce: Don Syme, Microsoft Research Cambridge

E-mail vedoucího: dsyme@microsoft.com

Abstrakt: Programovací model pro reaktivní aplikace je v mnoha ohledech ne-

obvyklý, protože nemáme plnou kontrolu nad řízením běhu aplikace. Z toho důvo-

du mají reaktivní aplikace jinou strukturu a musí být psány pomocí jiných návr-
hových vzorů. V této práci prezentujeme snazší způsob pro vývoj reaktivních apli-
kací. Naše práce propojuje deklarativní a imperativní přístup pomocí sjedno-

cujícího konceptu událostí. V první části práce se zaměříme na správu paměti a
prezentujeme techniku pro automatické uvolňování objektů reprezentujících
událost nejen v situaci kdy událost není referencována z programu ale také
v situaci kdy událost již nemůže způsobit žádnou reakci. Dále prezentujeme roz-

šíření jazyka, které umožňuje zápis kódu čekajícího na několik událostí. Toto roz-

šíření není pevně vázané na reaktivní programování a je tedy možné využít ho
například i pro paralelní programování. Na závěr prezentujeme knihovnu pro
reaktivní programování, která využívá všechny výše uvedené myšlenky a popí-

šeme sémantiku jazyka, která umožňuje formální dokazování vlastností reaktiv-
ních programů.

Keywords: reaktivní programování; monády; událost; porovnávání vzorů

5

Preface

I did most of the work presented in this thesis during an internship at Microsoft
Research Cambridge between October 2008 and April 2009, which was supervised
by Don Syme. I am very glad that Don was kind enough to supervise not only the
internship, but also my work on this thesis. My interest in reactive programming

dates back to 2007 when I worked on my Bachelor thesis (6) dealing with web
programming. In fact, some examples that I will present later in this thesis look
surprisingly alike to the Figure 11 from my Bachelor thesis.

The work presented in this thesis extends a relatively simple programming
model that I developed with Don Syme during my internship. The model is presen-

ted in Chapter 16 of a book about functional programming that I wrote with the
assistance of Jon Skeet (1). Since the publication, this programming model has

attracted some attention by the F# community. I was also privileged enough to be

invited to the Lang.NET conference at Microsoft campus to present this work (3),

which provided me with a lot of valuable feedback and comments.

This thesis is partly based on articles that I wrote with Don Syme about our
work. Some portions of Chapter III and most of the Chapter IV are based on the

article (2), which was accepted for presentation at the International Symposium in

Memory Management 2010 and will be published by ACM. The Chapter V is based

on a yet unpublished draft (available on the attached CD). However an extended

abstract based on the article advanced to the second round of Student Research
Competition at the PLDI conference (4).

(1) T. Petricek with J. Skeet. Real-World Functional Programming With examples
in F# and C#. ISBN: 978-1933988924. Manning, 2009.

(2) T. Petricek, D. Syme. Collecting Hollywood’s Garbage: Avoiding Space-Leaks in
Composite Events. To appear in Proceedings of ISMM 2010.

(3) T. Petricek, D. Syme. Reactive pattern matching for F#. Presented at Lang.NET
2009, Available at http://tinyurl.com/matchbang

(4) T. Petricek. Reactive and concurrent programming using pattern matching
(extended abstract). Accepted at PLDI Student Research Competition 2010.

(5) T. Petricek. Client side scripting using meta-programming. Bachelor thesis,
Charles University in Prague, 2007. Available at: http://tinyurl.com/fswebtools

6

Acknowledgements

First of all, I would like to thank to Don Syme for inviting me to an internship at
Microsoft Research in Cambridge, for supervising my work during the internship
and also for supervising this thesis. The shape of the work presented in this thesis
has been formed during our long discussions by various whiteboards available at

the Cambridge Lab and at The Green Man in Grantchester.

The Cambridge Lab has been a very inspiring place and I’m grateful to every-
one who I had a chance to discuss the project with. Namely, I’d like to thank to

James Margetson, Simon Peyton Jones, Claudio Russo and also many other people
who provided interesting and useful comments during my presentation at the end

of the internship.

I also received numerous useful comments during the presentation at the

Lang.NET conference. I would like to thank Philip Wadler and others for asking the

right questions. Discussions with the members of the F# language team and the

Reactive Extensions for .NET team at Microsoft were another source for extremely

valuable feedback. In particular, I would like to thank to Wes Dyer, Dmitry Lomov
and Erik Meijer.

 7

Chapter I

Introduction

A lot of the code that programmers write assumes that it’s in the driving seat—that
we’re in control of what happens at each step. This is also the classical style of

programming for which most of the languages and control-flow constructs were
designed. Unfortunately, this model breaks down for many modern types of appli-
cations. For example, in parallel programming, computations are carried out simul-
taneously, concurrent programming models need to synchronize running proces-

ses and reactive programming requires waiting for events (such as user input), and
acting in response.

The main focus of this thesis is on reactive programming models, but we also

present some results that deal with parallel and concurrent programming and are,

in general, more widely applicable. For the introduction, we’ll start by focusing on

reactive applications as they are intuitively easy to understand and demonstrate
the problem nicely.

A typical Windows application needs to handle a variety of user interface

events. Moreover, it may invoke asynchronous calls that instruct the operating

system to perform some operation in background and notify the program of the

result of the operation. The program may also perform some long-running compu-

tation on a background thread and once it completes, it needs to display the result
in the user interface. In all these situations, the execution of this type of application
is controlled by events, and the application is concerned with reacting to them. For

this reason, this principle is sometimes called inversion of control and is some-
times lightheartedly referred to as the Hollywood Principle1.

1. Standard event handling techniques

In most of the systems, event handling is implemented by some form of message
loop that repeatedly receives a message from the system and handles the message
(for example by modifying some program state stored in a global variable). In

modern systems, the event loop is typically hidden from the user and messages are
dispatched to a method of the application object, which is responsible for handling
of one types of messages (such as MouseClick).

1 “Don’t call us, we’ll call you”

Chapter I: Introduction

8

Let’s start by looking at an example. We want to implement an application
displayed in Figure 1, which keeps some numeric state, displays the current state
using a label and provides buttons for incrementing and decrementing the number.

Figure 1. Counting the number of clicks

As most of the examples in this thesis, we’ll write the code in the F# language [30],
which targets the .NET platform. The language supports functional, imperative as
well as object-oriented programming styles (discussed in more details in Chapter

II). The following implementation uses the standard imperative and object-orien-
ted approach:

type Program() =
 let mutable count = 0;

 // Omitted: initialization of the user interface

 member x.IncrementClick (sender:obj) (e:EventArgs) =
 count <- count + 1
 lblInfo.Text <- String.Format("Clicks: {0}", count)

 member x.DecrementClick (sender:obj) (e:EventArgs) =
 count <- count - count;
 lblInfo.Text <- String.Format("Clicks: {0}", count)

The code declares a class Program with a single mutable field count and two met-

hods to handle Click events of the two buttons that are added to the main window.

We could make the example nicer by declaring only one handler method and using

the sender parameter to determine which of the buttons was clicked. However,

code duplication isn’t our primary concern.

This approach to dealing with events is limited in many ways. The following list
gives several reasons that motivate our work:

• Encapsulation of behavior patterns. Suppose that we wanted to create

another counter whose value would be incremented by a left button click and
decremented by a right button click. Can we encapsulate the counting behavior
into a reusable component?

• Event interaction patterns. Let’s say we’d like to react to some combination of

events. For example, we may want to react to the Click event only when the
user previously pressed the Ctrl key (meaning that the MouseDown event was

triggered and the Key property of the argument carried by the event had some

specified value). Or, let’s say that we’d like to react to the situation when the
user presses a mouse button in one location, moves the mouse pointer to
another location and releases the button. Is there some way to express these

(and similar) interactions of events in a succinct and readable way?

Chapter I: Introduction

9

• Encoding state machines. Many user interaction scenarios can be elegantly

described as state machines. For example, when drawing a shape, there are two
transitions. When the user presses Esc, she cancels the drawing which causes
transition to the initial state. When she finishes drawing, the program
transitions to the state in which it stores the newly drawn shape. Encoding this

kind of program using a mutable state is painful, as we need a single mutable
variable to hold the current state and numerous other variables to hold
properties of individual states.

• Referential transparency. In functional programming, we avoid mutation,

which has numerous benefits. For example, it makes programs easier to reason
about, it simplifies unit-testing and it allows us to parallelize programs more
easily. However, when using events in the style presented above, we rely on

mutable state. Ideally, we’d like to write reactive programs that have the
properties mentioned above.

In the following section, we’ll give a high-level overview of the approach that we
follow in this thesis and then we’ll review our main contributions.

2. Approach and existing work

In this section, we’ll give a brief overview of our approach to the problem. We don’t
aim to give a full and in depth overview here, we just present the background that

is necessary for stating the main contributions of this work. The approach to the

problem is in detail described in Chapter III and the existing work that we use as a

basis for our work as well as the related work is in detail discussed in Chapter II.

2.1 Existing programming models

Techniques for writing reactive applications appear in different applications inclu-

ding synchronous languages from hardware programming, languages for program-

ming robots and functional libraries for creating user-interface. In general, they

can be categorized either as declarative (also called data-flow) or imperative (or
control-flow).

The first approach is based on composing programs from primitives that

represent some basic meaning or operation using combinators that compose

primitives in some well defined way (for example, sequential or parallel compo-

sition). This approach is used in the synchronous language Lustre [10] and in
techniques originating from Fran and functional reactive programming [1, 17].

When using the second approach, we encode programs as sequences of impe-

rative actions. These actions may include emitting some signal or waiting for a
signal (in hardware programming), repeating a sequence of operations until some

condition holds or until something occurs or, for example, pausing the computa-
tion. This approach is used in the synchronous language Esterel [11, 12], in the

Erlang [13] language (which is based on message-passing concurrency and the
interesting operation is waiting for a message), but also in Haskell project named
Imperative Streams [3] (which uses monads to make the computation sequential).

Chapter I: Introduction

10

2.2 Reactive programming with events

In F#, we can program with events using the naïve imperative programming model
described in section 1. In addition, the F# core library already provides a relatively

limited support for the declarative (or data-flow) reactive programming model
[19]. However, it didn’t contain any advanced implementation of the imperative (or
control-flow) programming model that would allow operations such as waiting for
an event. We believe that both of the programming models have some benefits and
that the best approach is to provide the user with both of the options and let her

choose a model more appropriate for a specific task.

We provide an advanced library based on the imperative approach. The library

uses F# computation expressions with a single extension that we design. The user
can use operations such as waiting for a specified event and our extension makes it
possible to wait for more complicated interaction patterns (such as a combination
of MouseDown with a previous KeyDown event with the Key property set to a valuer
representing the Ctrl key). This library also makes it possible to use many of the

existing programming patterns that the users of functional language are familiar
with such as encoding of state machines using mutually recursive functions.

Indeed, we don’t want to provide two different programming models in a way,

such that the user can use one or the other. As a result, we need to make it possible
to combine parts of the application that are written using different techniques. We

do this by building our library around the notion of an event, which is already used

in the declarative model [19]. An event can be viewed as an asynchronous output

channel of some running computation. The computation can trigger the event at

some point and by sending some value to the channel. Other application’s compo-
nents can register with events to receive values from the channel. More formally,

we can model events as a (possibly infinite) sequence of time/value pairs.

2.3 Expressing event interactions

As noted in section 1, we want to be able to express certain interactions of events

in a succinct and readable way. Examples of the common patterns include waiting

for the first of multiple events, waiting for all specified events and combinations
such as waiting for first two of three provided events. This waiting should be em-

bedded in the imperative programming model, so that it can be used as one of the

operations that form the computation.

One way to solve these challenges is to design a specialized language, which
provides a clear solution with the best possible syntax. However, this approach

also binds the language to a single programming model. For our work this means

that we would be designing language useful mainly for reactive programming,
which is an important, but still a relatively limited area. This approach has been
used by languages that are based on the Join calculus [31] such as JoCaml [32] and
Cω [33]. These languages focus on the field of concurrent programming, but are in

many ways closely related to our reactive programming model.

On the other hand, we can develop the solution solely as a library. This makes
it possible to add the programming model to a widely used, general purpose pro-

gramming language and it allows developers to freely choose the most appropriate
programming model or even combine multiple models. However, the disadvantage

Chapter I: Introduction

11

is that we are restricted by the syntax of the host language. Some examples of this
approach from the concurrent programming field are encodings of Join calculus in
C# [34], which relies on somewhat cumbersome syntax; the encoding of the same

programming model in Scala [36], which uses extensible pattern matching in Scala
to provide more elegant syntax. Another example is Concurrent ML [57], which
provides concurrent programming model based on events2. As it is embedded in
the ML language, it provides a functional DSL (domain specific language) for com-
posing more complicated events.

An approach that lies between designing a new language and embedding the
model as a library is to identify a repeating pattern in the library-based solutions

and to provide a syntactic sugar that can be used by a larger number of libraries.
This approach is successfully utilized by Haskell’s monads [29] as well as some
more recent extensions (e.g. arrows [47] and applicative functors [42]) and is also
used by computation expressions in F# [28]. We find it especially valuable in the
situation where there are multiple programming models for a particular domain

and the user may want to choose between several options. For this reason, we
believe that this is the best way to tackle the reactive programming area as well.

2.4 Note on programming languages

We present the examples in F#, which is a language from the ML family. This
language is both practically useful (as it targets the .NET platform and is now inclu-

ded in Visual Studio 2010), but thanks to the ML background, it should be also

familiar to the academic community. However, the concepts described in this

thesis are directly applicable to many mixed functional/imperative languages

including Scala, C# 3.0, and Python, but (somewhat surprisingly) also JavaScript,
which is becoming increasingly important.

3. Main contributions of this thesis

The overall goal of the thesis is to develop a reactive framework that makes it pos-

sible to combine the declarative and imperative style, easily encode event inter-

actions and to reason about code written using our library. In order to achieve this,
we make original contributions to the following three areas:

• Avoiding space leaks in reactive applications. When combining the decla-
rative and imperative style of reactive programming, it becomes easy to

introduce patterns where the usual garbage collector for objects cannot
automatically dispose all components that we intuitively consider garbage.

We formally define the notion of garbage for reactive applications based on the
duality between objects and events and we present a formal algorithm for

collection of garbage in this environment.

Building on top of the theoretical model, we show how to improve the existing
F# library [19] so that it doesn’t cause leaks when used in the mixed model.
This allows us take advantage of the clarity and simplicity of the declarative

approach as well as the expressivity of the imperative model.

2 In Concurrent ML, events are used as the primary synchronization primitive, which is a notion

very different to our events, which are used solely as communication channels.

Chapter I: Introduction

12

• Pattern matching for monadic computations. In order to express waiting for

a combination of event occurrences, we design an extension of monads that
adds support for pattern matching on monadic values. Our extension keeps not
only a familiar syntax of ML pattern matching, but also a familiar semantics,
which makes it easy to use it even in a non-standard programming model, but

also allows easy reasoning about programs.

The goal of our design is to create a more widely useful syntactic extension, so
we demonstrate it not only using our reactive programming model based on
events, but also in several concurrent and parallel programming scenarios. All
these three encodings are implemented as a library extension that benefits from

the syntax we introduce.

The extension is implemented in terms of two primitive operations that have to
be provided for each type of computation. We analyze these operations formally
and describe algebraic laws that should hold about them. We also study how the

extension relates to existing types of computations such as commutative
monads.

• Reactive programming library. Finally, we design a reactive programming

library based on the imperative approach. When using the library, the code is

structured into state machines, which is a natural way of thinking about com-
plex interaction patterns. The library also makes it possible to write modular

reactive code, which makes applications easier to debug. The design also ena-

bles easy unit testing, which is otherwise difficult for reactive applications.

To enable easy reasoning about reactive programs written using the library, we

present a formal semantics of the subset of the used language. We also present

the notion of semi-discrete time, which is particularly useful for modelling

reactive programs where a source event can cause a series of reactions (also

events) that all occur before the source event can be triggered again.

3.1 Road map of the thesis

The rest of this thesis is organized as follows. Chapter II reviews the existing work
we build on and related work in the field of reactive programming as well as other

relevant areas. Chapter III presents a big picture overview of our approach, shows

our ultimate goal and reviews the problems that need to be solved.

The next three chapters present the main novel ideas of this thesis. Chapter IV
focuses on the problems of memory leaks in event-based reactive applications,

Chapter V presents our langauge extension that adds pattern matching to monadic
computations and Chapter VI presents our reactive programming model based on
the imperative approach and gives a formal semantics of the model.

Finally, Chapter VII discusses several future directions that we’d like to explo-
re and Chapter VIII gives a brief overview of the novel ideas discussed in this thesis
that we find the most interesting. The appendices include additional information

and proofs of some formal statements presented in the thesis.

 13

Chapter II

Background and related work

This section gives an overview of the existing work that we use as the basis for this
thesis. In section 1 we’ll briefly review some functional programming techniques

that are crucial for our work. In section 2 we’ll discuss the existing F# library for
declarative programming with events. Our imperative library for reactive prog-
ramming is based on monads which are discussed in section 3. For readers who
aren’t familiar with the F# language, we provide a brief review of features that are

specific to F# in Appendix A.

We’ll also discuss several languages and libraries that are related to our work

and provided some inspiration. Synchronous languages discussed in section 4 are

designed for a different environment (safety-critical embedded systems), but deal

with many problems of reactive programming. Concurrent languages that we re-

view in section 5 emphasize synchronization of concurrently executing processes
or threads, but contain many useful ideas about expressing complicated interac-

tion patterns. Finally, in section 6, we’ll discuss other languages and libraries that

deal with reactive programming in the context of application software.

1. Functional techniques

As already discussed, the approach of our thesis is to provide declarative and im-

perative programming models for reactive programming. In addition, we provide
an extension for expressing operations involving combinations of events based on

pattern matching. All of these three techniques are rooted in concepts from fun-

ctional languages, but lift the standard form of the concept to the reactive envi-
ronment. In this section, we review the basic functional techniques we build on.

1.1 Pattern matching

This language feature is supported by most of the functional languages. It makes it
possible to analyze a value (for example a tuple of lists) and specify what code
should be executed for individual cases (for example, when the first element of the

first list is smaller than the first element of the second list). This is particularly
useful in functional programming, where many data structures are transparent,
meaning that we can analyze the underlying values from which the data structure
is composed. The following example shows a recursive function merge that merges

two ordered lists into an ordered list:

Chapter II: Background and related work

14

1: let rec merge xs ys =
2: match xs, ys with
3: | x::xs', y::ys' when x <= y -> x::(merge xs' ys)
4: | x::xs', y::ys' -> y::(merge xs ys')
5: | rest, [] | [], rest -> rest
6:
7: > merge [1; 5; 6; 9] [1; 2; 3; 7];;
8: val it : int list = [1; 1; 2; 3; 5; 6; 7; 9]

The pattern matching is written using the match construct (line 2) which consists of
several clauses (lines 3, 4 and 5). The merge function takes two lists of numbers as
parameters and it gives a list of tuples as an argument to the match construct. We
use the head::tail pattern to decompose a list into a head containing the first ele-

ment and a tail representing the rest of the list.

The first clause deconstructs the tuple using a pattern first, second and then

uses nested patterns to deconstruct both of the lists into their first heads and tails.
When the first element of the first list is smaller than the first element of the
second list (line 3), we recursively merge the rest of the first list with the second
list and append the first element of the first list to the front of the result. The
second clause (line 4) handles the remaining case when both of the lists are non-

empty and the last clause (line 5) handle the case when one of the lists is empty.

It is worth noting that a value that matches the first clause (line 3) would also

match the second clause (line 4), since the second clause is the same with the

exception that it doesn’t specify additional condition using the when construct. In

ML-family of languages, clauses are tested in order in which they are written,

which means that the second clause will be called only for values that don’t also
match the first clause.

Our language extension presented in Chapter V is based on pattern matching,

so we find it important to give a comprehensive example. One of the key benefits of

our extension is that it preserves the usual syntax and also semantics of ML pattern

matching (including the fact that the order of clauses matters).

1.2 Encoding state machines

Another functional technique that inspired our work is the ability to easily encode

state machines using recursive functions. The general approach is that each state is

encoded as a recursive function and transitions from the state are represented as
tail-calls to other functions (note that the use of tail-calls means that the execution

of the code in the original state will not continue later). It is worth noting that this

is more powerful than usual theoretical finite-state machines as functions may keep
some additional state in the parameters.

The Figure 2 visualizes a sample state machine that tests whether a numeric
sequence consists of ascending sub-sequence followed by a descending sub-seq-
uence. The transitions are annotated with the condition that must hold for the cur-

rently processed element x and the previous element prev.

Chapter II: Background and related work

15

Figure 2. Accepting numeric sequences consisting specific pattern.

According to the previous description, we can encode the state machine using two

functions that represent the ascending and descending state. Our functions also
need to keep a state consisting of the previous processed number and the list con-
taining the numbers yet to be processed. The following listing shows the complete
implementation including two sample uses of the function:

let rec ascending prev l =
 match l with
 | x::xs when x >= prev -> ascending x xs
 | x::xs -> descending x xs
 | [] -> true
and descending prev l =
 match l with
 | [] -> true
 | x::xs when x <= prev -> descending x xs
 | _ -> false
and start l =
 ascending 0 l

> start [1; 3; 4; 1];;
val it : bool = true

> start [1; 3; 1; 3];;
val it : bool = false

Many reactive applications follow similar pattern with the exception that transi-

tions are caused by events such as MouseClick or combinations of patterns. Code
written using our reactive library (presented in Chapter VI) is often structured as

state machines similar to the one presented above.

What makes the library interesting is the fact that we often need to have a

large number of state machines running in parallel (for example, representing

individual features of the application). However, we’d like to implement the system
as single-threaded to make sure that it can run correctly on the main GUI (graphi-
cal user interface) thread. Since most of the state machines driving the user
interface don’t perform any extensive computations, the single-threaded model is

sufficient and much easier to work with.

1.3 Processing lists with higher-order functions

When working with lists, we can use pattern matching and recursion or we can use

higher-order functions that implement frequently used operations for working
with lists. These operations can be parameterized and composed into more
complex ones, which makes it possible to express complex operations in a simple

declarative way.

Chapter II: Background and related work

16

To give an example, we’ll look at the List.map function, which takes a list and a
function. It applies the function to all elements of the input list and returns a new
list consisting of the values obtained as the result:

val List.map : ('a -> 'b) -> list<'a> -> list<'b>

> List.map (fun n -> n + 10) [1; 2; 3]
val it : list<int> = [11; 12; 13]

The type signature shown on the first line demonstrates that the function is
generic and can work with lists containing elements of any type. It also shows that
the returned values may be of different type. If we want to apply multiple list pro-
cessing operations in a sequence, we can use the pipelining operator (|>), which
passes the value on the left-hand side as an argument to the function on the right-

hand side. The following example first filters a list and then calculates the square of
all elements of the filtered list:

let numbers = [1 .. 9]
numbers
 |> List.filter (fun n -> n % 2 = 1)
 |> List.map (fun n -> n * n)

The important thing to note is that events are in many ways similar to lists.
The difference is that list immediately contains all the values, while event genera-

tes values one-by-one at different times during the execution of the application.

This observation motivates the design of existing declarative library for reactive

programming which we’ll introduce in section 2. The library is also the subject of

Chapter IV where we discuss how to improve the existing implementation in order

to avoid memory leaks.

2. First-class compositional events

In .NET, an event is a special member of a class just like a method or property that

can be used only directly. In particular, the only two operations supported by
events are registering a handler with an event and unregistering a handler from an

event. We would use the first operation in Chapter I in the code that initializes the

user interface like this:

let btnUp = new Button(Text = "Increment")
let btnDown = new Button(Text = "Decrement")
btnUp.Click.AddHandler(new EventHandler(x.IncrementClick))
btnDown.Click.AddHandler(new EventHandler(x.DecrementClick))

This snippet creates two buttons and then registers the methods IncrementClick
and DecrementClick as the handlers of the Click events of the two buttons. To do
this, we use the AddHandler operation and we pass it a newly created value of the

EventHandler type. This is a delegate type, which can be viewed simply as a wrap-
per for functions of some specific type that is commonly used to represent han-
dlers of user interface events3.

3 There are two reasons why .NET uses delegates instead of simple function values. The first reason

is that delegates also provide reference equality comparison and the second reason is that function

values aren’t directly supported by the .NET runtime.

Chapter II: Background and related work

17

2.1 Using events as values

The article [19] presents a different approach to working with events, which is
used in the F# language. Instead of treating events specially, F# exposes events as

normal values implementing some interface that provide ordinary methods for
registering and unregistering handlers. This means that in the above example,

btnUp.Click was just a property returning a value of type IEvent<EventArgs>. This is
the interface type used to represent events. The two methods provided by the in-
terface are AddHandler (for registering handlers) and RemoveHandlers (for unre-

gistering handlers).

This may seem like a minor difference, but it enables radically different style

of programming with events. We can now write functions that take events as argu-
ments or return newly created events as their result. This makes it possible to de-
fine higher-order functions for working with events that are in many ways similar
to list processing functions discussed in section 1.3.

The following example demonstrates event handling using this approach. We
create a new event that is triggered only when the user clicks using the right
mouse button. The value carried by the event will be always 1:

val Event.filter : ('a -> bool) -> IEvent<'a> -> IEvent<'a>

val Event.map : ('a -> 'b) -> IEvent<'a> -> IEvent<'b>

let rightClicks =
 btnTest.MouseDown
 |> Event.filter (fun e -> e.Button = MouseButtons.Right)
 |> Event.map (fun _ -> 1)

The listing first shows the type signatures of the two higher-order functions that

we use in the code. Their types are similar to the types of list processing functions

from section 1.3, with the difference that instead of lists of type list<'a>, we’re

now working with events of type IEvent<'a>. The MouseDown property of a button

exposes an event of type IEvent<MouseEventArgs>, which carries information about
the mouse action (such as the mouse button used and coordinates).

To construct the event described above, we first use the Event.filter function

to construct an event carrying a value of type MouseEventArgs, which is triggered

only when the click was caused by the right mouse button. Next, we use Event.map

with a lambda function that ignores the argument and always returns 1 to create
the desired event of type IEvent<int>.

2.2 Declarative event handling in practice

To demonstrate working with first-class events and higher-order functions for
working with them, we’ll re-implement the example from section 1. Solutions that
are based on composable declarative components are often easy to visualize. The
data-flow in our sample application is visualized in Figure 3.

The idea is that we take the click events and turn them into events carrying an
integer value just like in the previous example. We’ll create events that carry either

+1 or –1 depending on which button was clicked. Then we merge these two events

and use the Event.scan function to sum the values carried by the events.

Chapter II: Background and related work

18

Figure 3. An event-processing pipeline used in the sample application;
the two boxes on the left represent source events, and the lighter boxes
represent events created using processing functions.

The Event.scan function deserves some explanation. It takes an initial state (in our
case the number 0) and a function that is used to calculate new state from the ori-

ginal state and the current value carried by the source event. This calculated value
is stored as the new value of the state and is also used to trigger the resulting
event. The entire behavior can be coded as follows:

1: let incEvent = btnUp.Click |> Event.map (fun _ -> 1)
2: let decEvent = btnDown.Click |> Event.map (fun _ -> -1)
3:
4: Observable.merge incEvent decEvent
5: |> Event.scan (+) 0
6: |> Event.map (sprintf "Count: %d")
7: |> Event.add (fun msg -> lbl.Text <- msg)

To make the code more readable, we don’t encode the whole pipeline as a single

expression, even though that would be perfectly possible. Instead, we first declare

two helper events (lines 1 and 2). The type of both incEvent and decEvent is

IEvent<int>, which means that they represent events carrying integers. The value

carried by the event raised by the Increment button is always +1, and the value of
the other event is always –1.

We merge these events (line 4) to create an event that will be triggered every

time either button is clicked. The event carries integer values, so we can use
Event.scan to sum the values starting with 0 as an initial value. We’re using the

plus operator for aggregation, so for each click the function will add +1 or –1. Next,

we use Event.map to format the carried number as a string (line 6). The last combi-
nator in the processing pipeline registers a handler with the previously created
event and runs the specified function whenever the event occurs. It returns a unit

value as the result, so it can be used only at the end of the processing pipeline.

2.3 Semantics of declarative event handling

In this section, we’ll briefly look at formal definition of the meaning of code written

using a subset of the declarative event-handling library. We’ll provide a similar de-

finition for our imperative library later in this thesis, so this can be viewed as an
introduction to the problem (although the declarative library hasn’t been descri-

bed formally before). The syntax of our declarative language looks as follows:

evt = id External event (such as btn.Click)
 | Event.filter expr evt Filtering event using the specified predicate
 | Event.map expr evt Projection using the specified function
 | Event.scan expr1 expr2 evt Aggregation using function and initial state

 | Event.merge evt1 evt2 Merging two specified events

Chapter II: Background and related work

19

Although the F# library provides several other combinators, the subset presented
above covers most of the interesting cases. An event can be constructed from ex-
ternal events (such as events of user interface controls) or by applying some (para-

meterized) combinator to other event or events. Aside from relatively simple
combinators such as Event.map and Event.filter, we also included the Event.scan
combinator, which is interesting as it keeps some state and the Event.merge which
takes multiple events as inputs.

We’ll model an event as an ordered set containing time/value pairs. The value
is anything that can be calculated as a result of evaluating F# expression. We don’t
define the semantics of F# expressions and we’ll simply refer to the definition of

Standard ML [54], which is the basis for F#. For now, we’ll say that time is some
abstract value as we won’t need to perform any calculations with it (we’ll simply
use the time provided by external events). The definition of the meaning is given in
terms of the two following functions:

→e : expr → (env → value)

→ : evt → (env → [time ⨯ value])

The first function defines the semantics of a standard expression. When given an

environment that contains values of free variables of the expression and the mean-

ing of external events, it produces a value that represents the result. The second
function defines the meaning of an event. When given an environment, it returns
an ordered set (a list) of time/value pairs as discussed above. The environment
can be used as a function, so env(id) when id is an identifier of an event gives us a
list of time/value pairs representing an external event (this is the only use of envi-
ronments that we’ll need in the following definitions). The formal semantics of

declarative event processing language is defined by the rules displayed in Figure 4.

" = "$%(&')
"$% ⊦ &' → "

 (*+,"-$./)

"$% ⊦ "%, → " "$% ⊦ ("+0- %1) →2 31

"$% ⊦ 45678. 9:;86< "+0- "%, → =(,1, %1) ∈ e | 31 = 8<@6}
 (B&/,"-)

"$% ⊦ "%, → " "$% ⊦ ("+0- %1) →2 $1

⊦ 45678. CDE "+0- "%, → =(,1, $1) | (,1, %1) ∈ "} (F.0)

"$% ⊦ "%, → " "$% ⊦ &$&, →2 GH "$% ⊦ ("+0- G1IJ %1) →2 G1 (∀& ≥ 1)

"$% ⊦ 45678. NOD7 "+0- &$&, "%, → =(,1, G1) |(,1, %1) ∈ "}
 (PQ.$)

"$% ⊦ "%,J → "J "$% ⊦ "%,R → "R"$% ⊦ 45678. C6<S6 "%,J "%,R → "J ∪ "R (F"-U")

Figure 4. Formal semantics of declarative event processing.

Chapter II: Background and related work

20

The above definition describes a model without side-effects, meaning that a fun-
ction provided, for example, as a predicate cannot print to the console or perform
any other side-effect. However, in practice this is possible in F# and so it is reason-

able to discuss when the function will be evaluated. For example, will we listen to
an event even if there are no handlers attached to it? We’ll focus on this question in
more details in Chapter IV.

We’ll conclude this section with a brief overview of some limitations of this model:

• Events never end. The events described above never end, which limits the

expressive power of the model. For example, we cannot write a combinator that
would behave as one event until the event ends and then ran a function to get
another event and continue behaving as the second event.

• Limited expressivity. It is worth noting that we cannot write recursive dec-
larations of events. This has positive consequences, most notably the fact that

processing an event cannot diverge (if we use predicates and functions that
don’t diverge). On the other hand, this clearly shows that the expressivity of
declarative processing using is very limited. In Chapter IV, we’ll also look at
example where encoding relatively simple behavior is surprisingly difficult.

• Encoding state machines. The declarative approach based on the combinators
presented above is also not powerful enough to provide some natural way of

encoding state machines. This is one of the problems that motivated the work in

this thesis (especially in Chapter VI).

• Removing event handlers. The implementation of event combinators pre-

sented in [19] and discussed in this section doesn’t support removal of regi-
stered handlers. This means that if we create an event value and then use it im-

peratively (using AddHandler and RemoveHandler) we may introduce memory

leaks. We solve this limitation in Chapter IV.

In this section, we introduced first-class compositional events that are available in

F# and that are used (in an improved form) as one part of our reactive program-

ming technique. The second part that we’ll present later is based on monads and

on F# computation expressions that are introduced in the next section.

3. Monads and computation expressions

Monads are a theoretical concept coming from category theory, which has proven

useful in computer science [59]. Monads can be viewed as a useful abstraction for

representing some types of computations [29] and some languages even provide a
convenient notation for writing monadic computations [60]. In this section, we’ll
give a brief overview of monadic computations. Next, we’ll look at language exten-
sion for writing monadic computations provided by F# and finally, we’ll look how

to encode monads and related computation types using this language feature.

3.1 Monadic computations

A monadic computation is a computation that has some special aspect or effect. In

pure languages like Haskell, monads can be used for creating computations that

maintain and modify some local state or perform side-effects such as printing to
the console. This is possible, because monadic computations can be composed in a

Chapter II: Background and related work

21

way that makes the computation sequential and as a result, the side-effects will be
run in a well-defined order.

However, monadic computations can be also used to represent computations
that have some non-standard aspect. For example, the Maybe monad represents
computations that may fail at any time returning a special value Nothing as the
result. The List monad can be used to write non-deterministic computations that

can yield multiple results. The most prominent example of monadic computation
in F# is called asynchronous workflows and represents a computation that may
produce result at some later time (by calling a function specified by the user of the
workflow).

Standard definition. A monadic computation is represented by some generic type

M<'a> where the type parameter specifies the type of value (or values) produced as
the result of monadic computation (internally, the type may be for example a

function or list). When writing code using monadic computations, we don’t use the
underlying type directly and instead, we use two operations that every monadic
computation must provide. The operations define the behavior of the monad and
have the following type signatures (for some monad M<'a>):

bind : M<'a> -> ('a -> M<'b>) -> M<'b>
return : 'a -> M<'a>

In order to define a correct monad, the two operations need to satisfy certain alge-

braic equations. These equations guarantee that we can rewrite a monadic expres-

sion in certain ways without changing its meaning and are also useful for proving

properties about monadic computation in theory. The following definition shows
the three monad laws described in [29]. We denote the bind operation as “≫=”:

 return a ≫= f ≡ f a (Left identity)

 m ≫= return ≡ m (Right identity)

 (m ≫= f) ≫= g ≡ m ≫= (\x → f x ≫= g) (Associativity)

Alternative definition. The previous formulation is useful when working with
monads in practice, because the bind operation represents sequential composition

of monadic computations (and so it is suitable for encoding of computations). In

some cases, it is more convenient to use an alternative definition which is more
closely related to the original concept from category theory. This definition is equi-
valent and uses the following three operations:

map : M<'a> -> ('a -> 'b) -> M<'b>
join : M<M<'a>> -> M<'a>
unit : 'a -> M<'a>

To show that the two definitions are, indeed, equivalent, we need to show how to
implement these three functions in terms of two operations presented above and

vice-versa. The following listing shows the implementation:

let join a = bind (fun v -> v) a
let map f a = bind (return << f) a
let unit v = return v

let bind a f = join (map f a)
let return v = unit v

Chapter II: Background and related work

22

In addition to implementing the new set of functions in terms of the first one, we
also need to re-formulate the three monad laws. This can be done simply using the
implementation, but we can get a more elegant formalization as presented in [45].

In this thesis, we’ll mostly work with the first definition of monad (which is more
usual from the programming point of view), however Chapter V uses the second
definition in several places as it makes the discussion easier to follow.

3.2 Asynchronous workflows

Perhaps the most prominent example of monadic computation in F# is called asyn-

chronous workflows [4]. It represents potentially long-running computations such
as I/O that may be executed in background by the system. Asynchronous workflow

is started by giving it a callback that should be called when the workflow
completes. It may run eagerly and trigger the callback when it completes, but more
often it uses some system call that takes a callback as an argument (such as
asynchronous socket operations). This means that asynchronous workflows allow
us to write complex I/O operations without blocking a system thread.

In F#, the two monadic operations are combined in a class type (discussed in
Appendix A) with members Bind and Return. The library provides a single instance

of the class called computation builder that is used when writing code using the

computation expression syntax. The following example uses the async builder to
write a workflow that downloads the content of a web page:

let downloadUrl(url) = async {
 let req = HttpWebRequest.Create(url)
 let! rsp = req.AsyncGetResponse()
 let rd = new StreamReader(rsp.GetResponseStream())
 let! html = rd.AsyncReadToEnd()
 return html }

The body of the function is enclosed in the async { … } block which denotes that

we’re creating a computation expression defined using the async builder. Inside the

block, we can use some non-standard constructs that are translated to calls to the
computation builder. In this example, we’re using let! which corresponds to bind

and return, which corresponds to the monadic return operation. For example, the

value returned by AsyncReadToEnd has a type Async<string>, but we’re using mo-
nadic bind, so the type of the html value is string. When the F# compiler processes

the computation expression, it transforms the computation to the following code:

1: let downloadUrl(url) =
2: let req = HttpWebRequest.Create(url)
3: async.Bind(req.AsyncGetResponse(), fun rsp ->
4: let rd = new StreamReader(rsp.GetResponseStream())
5: async.Bind(rd.AsyncReadToEnd(), fun html ->
6: async.Return(html)))

The two operations that return value of type Async<'a> are primitive asynchronous

workflows provided by the F# library that perform some long running operation
that can be implemented by providing callback to the system. For example, on the
line 3, we use Bind to compose a workflow returned by AsyncGetResponse with the
rest of the computation, which is provided as a lambda function. The Bind opera-

tion decides when to run the function. It may run it after the server replies, but if
the network communication fails, the function may not be executed at all.

Chapter II: Background and related work

23

The value returned from the downloadUrl function is the result of the Bind ope-
ration. In our example, it will be a value of type Async<string>. This shows that
computation expressions provide a way for composing computations. We have

some basic workflows and we can build more complicated ones that represent
more complex operations. To run the returned workflow, we need some operation
that understands the underlying structure of the type and knows how to run it. In
case of asynchronous workflows, there are several functions such as Async.Spawn,
which starts the operation on a background thread.

3.3 Computation expressions

In this section, we’ll briefly review the most important parts of the F# computation

expression syntax and we’ll look how they are translated to functions provided by
the computation builder. The F# language specification [30] describes the syntax
and translation in full details. We’ll concern ourselves with the following subset of
the full syntax:

expr = expr { cexpr } Computation expression

cexpr = let pat = expr in cexpr Binding value
 | let! pat = expr in cexp Binding computation

 | return expr Return result

 | return! expr Return computation
 | yield expr Yielding value

 | yield! expr Yielding computation

 | cexpr1 ; cexpr2 Composing computations

 | if expr then cexpr1 else cexpr2 Conditional computation

 | if expr then cexpr Conditional computation
 | match expr-list with Value pattern matching

 pat-listi -> cexpri

The syntax includes several constructs that are not available in the core F# lang-

uage and that are directly translated to calls to computation builder operations.

This includes the constructs we already introduced (let! and return) and return!

Constructs yield and yield! are in many ways similar to return/return! pair. They
are mainly useful when we need to syntactically distinguish a computation that

may produce multiple values, because the yield keyword seems more natural in
this case. We’ll see an example of such computation in the next section.

The syntax also provides variants of several standard expressions such as if,
match and sequencing using semicolon. Some of them can be used without provi-
ding any special support in the computation expression builder, while some of

them require a special support. Similarly to these, the syntax also allows using for
and while loops as well as resource management constructs use and use!, and
constructs for exception handling which are all discussed in [30].

The F# compiler performs a simple syntactical transformation, which means
that if we don’t provide some of the operations (e.g. to support yield), it will not

give any error unless the user writes yield in the computation. This makes the de-
sign very flexible as we may provide only some of the primitives to create different

kinds of computations. The following list shows all the operations that a computa-

tion builder may provide to support the syntax presented above:

Chapter II: Background and related work

24

type MonadBuilder =
 abstract Bind : M<'a> -> ('a -> M<'b>) -> M<'b>
 abstract Return : 'a -> M<'a>
 abstract Yield : 'a -> M<'a>
 abstract Combine : M<'a> -> M<'a> -> M<'a>
 abstract Zero : M<unit>

Computation expressions don’t specify any meaning of these operations and even
the type signature isn’t technically enforced. However, a computation should obey
some laws (such as the monad laws discussed earlier). We’ll describe the transla-
tion that transforms a code written inside m { … } block to an ordinary F# code

using the following function:

 ⟦ – ⟧cexpr : cexpr → ident → expr
The function takes a construct from the syntactic category of computation expres-
sions and an identifier (which refers to the computation builder) and produces a
value from the syntactic category of ordinary F# expressions. The translation of
computation expressions is started as follows:

⟦ expr { cexpr } ⟧ = let m = expr in ⟦ cexpr ⟧cexpr m

Note that the construct preceding the block is can be any F# expression. The com-
piler assigns the result of this expression to a new variable to avoid evaluating its

side-effects multiple times and then uses the identifier. The translation rules that

define the function are shown in Figure 5.

⟦ let pat = expr in cexpr ⟧cexpr m = let pat = expr in ⟦ cexpr ⟧cexpr m ⟦ let! pat = expr in cexpr ⟧cexpr m = bindm (fun pat -> ⟦ cexpr ⟧cexpr m) expr ⟦ return expr ⟧cexpr m = returnm expr ⟦ return! expr ⟧cexpr m = expr ⟦ yield expr ⟧cexpr m = yieldm expr ⟦ yield! expr ⟧cexpr m = expr ⟦ cexpr1 ; cexpr2 ⟧cexpr m = combinem cexpr1 cexpr2 ⟦ cexpr ; cexpr ⟧cexpr m = combinem cexpr cexpr ⟦ if expr then cexpr ⟧cexpr m = if expr then ⟦ cexpr1 ⟧cexpr m else zerom ⟦ if expr then cexpr1

else cexpr2 ⟧cexpr m
=

if expr then ⟦ cexpr1 ⟧cexpr m

 else ⟦ cexpr2 ⟧cexpr m

 ⟦ match expr-list with
 pat-listi -> cexpri ⟧cexpr m

=
match expr-list with
pat-listi -> ⟦ cexpri ⟧cexpr m

Figure 5. Translation rules for F# computation expressions

It is worth noting that, unlike Haskell, the F# type system doesn’t support higher
kinded types, so it isn’t possible to write code generic over the monad type. In the
usual F# use, this doesn’t seem to be a frequent problem.

As already noted, the F# compiler doesn’t place any restrictions on which
operations should the computation builder support. However, the usual definitions
follow several patterns that are based on certain algebraic structures that are

useful for representing computations. We’ll review the common structures in the

next section.

Chapter II: Background and related work

25

3.4 Monads, monoids, additive monads

Computation expressions can be used to encode three common structures (or “de-
sign patterns”) used in functional programming. The first two of them are related

to well-known mathematical objects from algebra and the last one is a combination
of the first two types. F# computation expressions are interesting by their ability to
express all three patterns using just a single language feature.

Monoids. Mathematically, a monoid is a set P together with an associative binary
operation ∙ and an identity element & ∈ P such that ∀. ∈ P: & ∙ . = . ∙ & = .. An ex-ample of monoids known from mathematics is the set of natural numbers with zero as the identity element and addition as the operation or a set of natural numbers with 1 and multiplication.

However, monoids also appear in many scenarios in programming. There are
many data structures that can be viewed as monoids. For example a string together

with an empty string as the identity and concatenation forms a monoid. A similar
example is a list (with empty list and concatenation).

Let’s now look how we can use F# computation expressions for working with

the string monoid. When declaring a computation builder for working with mo-

noids, we need to provide the Zero member (which will return the identity ele-
ment) and the Combine member which will apply the binary operation to the two

arguments. In addition, we also need to provide Yield element, so that the user has

some way for passing individual elements from the computation to the monoid:

type StringMonoid() =
 member x.Combine(s1, s2) = String.Concat(s1, s2)
 member x.Zero() = ""
 member x.Yield(s) = s

let str = new StringMonoid()

Now we can use this computation to write code that generates a string value as the

result. The simplest possible example would look like this:

> str { yield "Hello "
 yield "world!" };;
val it:string = "Hello world"

The F# compiler translates the computation above to a call to the Combine opera-
tion with two calls to the Yield primitive as arguments. However, the key interes-
ting thing about computation expressions is that we can use normal F# code inside
the computation as well and the monoid computation is used only to accumulate

the result. The following function shows an example that creates a string with nice-

ly formatted numbers in a specified range:

1: let rec numbers a b = str {
2: yield string a
3: if a < b then
4: yield ", "
5: yield! numbers (a + 1) b }
6:
7: > numbers 1 3;;
8: val it : string = "1, 2, 3"

Chapter II: Background and related work

26

The code is implemented as a recursive function. It starts by returning the first
number in the range formatted as a string (line 2). Next, it checks whether it needs
to generate more numbers. If yes, it adds a separator to the result (line 4) and then

recursively generates all numbers within a range starting from the next number.
Note that we’re using if .. then .. expression without the else branch. In this
case, the F# compiler automatically inserts a call to the Zero member to the else
branch, so the last iteration will compose the number with the identity element,
which is an empty string.

Monads. We already presented an example of computation expression used for
encoding monads when talking about asynchronous workflows, because asynchro-

nous workflows are based on the Continuation monad. Other useful examples of
monads include a computation that may fail at any point, a computation that has
read-only access to some state, a computation that has read/write access to some
state or for example a computation that can be executed step-by-step (that is, the
computation is automatically divided into steps and we can run a single step, then

perform some other work and then run the next step).

To demonstrate working with monads in F#, we’ll create a computation buil-

der for working with the monad that may fail. We’ll use the option<'a> type as the

monadic type. This is a discriminated union with two cases. A failure is represent-
ed using the None case and a success that produced a value is represented as

Some(value). To define a monadic computation, we need to provide the members
Bind and Return, which can be done as follows:

type MaybeMonad() =
 member x.Bind(m, f) =
 match m with
 | Some(v) -> f v
 | None -> None
 member x.Return(v) = Some(v)

let maybe = new MaybeMonad()

The Return operation simply wraps the value into a monadic value that represents a

computation that succeeded. The Bind operation is more interesting. It gets a value

of type option<'a> as the first argument and a function that takes a value 'a and

produces the result of type option<'b> as the second argument. If the first argu-

ment represents a computation that failed, we also return failure (because there is
no way of obtaining a value of type 'a). If the computation contains a value, we
extract the value and run the rest of the computation (passed as a function).

To demonstrate the computation, let’s say that we have a function tryRead-
Number that reads a string from the user and tries to convert it to an integer. If it
fails, it returns None. We also have a function db.TryFindProduct, which takes an ID

of a product and tries to find it, returning None if the product doesn’t exist. Then we
can write a function that reads an ID from the user and tries to find the name of the
specified product like this:

1: let rec productNameByID() = maybe {
2: let! id = tryReadNumber()
3: let! prod = db.TryFindProduct(id)
4: return prod.Name }

Chapter II: Background and related work

27

When performing an operation that may fail, we need to call it using the let! con-
struct from our computation. This way we can access the actual value in case the
computation succeeds. If the computation fails when reading a number from the

user or when searching for a product, it will return None automatically. The return
operation at the end of the computation expression wraps the name of the product
into a value of type option<string> containing Some(name) which is returned when
the computation succeeds.

Additive monads. The last type of computations that we’ll discuss combines the
features of monoids and monads. In Haskell, it is represented by the MonadPlus type
class. It allows us to produce multiple elements and to compose them using a pro-

vided binary operation (just like monoid), but it also allows composing computa-
tions using the let! construct.

Perhaps the most prominent example of this type of computations is a type

list<'a>. To define a monoid, we’ll provide the Zero member (returning an empty
list), the Yield member (which creates a singleton list) and the Combine member
(which concatenates the lists). Note that the yield construct plays the same role as
the return construct for monads, so we can choose which construct to use depen-

ding on which syntax seems more appropriate. To make the computation a monad,

we also need to provide the Bind opertion, which can run the rest of the computa-
tion for all values available in the given list and then concatenate all the produced

lists. The following computation builder gives the definition:

type ListMonadPlus() =
 member x.Zero() = []
 member x.Yield(v) = [v]
 member x.Combine(a, b) = a @ b
 member x.Bind(l, f) = l |> List.map f |> List.concat

let list = new ListMonadPlus()

The implementation of the computation builder is mostly straightforward. The
only interesting operation is Bind which first uses List.map to create a list of lists

and then uses the List.concat function (corresponding to monadic join) to flatten

the list. We can use this computation for example to generate a list of cities in a
rather sophisticated fashion:

> let cities = list {
 yield "York"
 yield "Orleans" }

 let moreCities = list {
 let! n = cities
 yield n
 yield "New " + n }
 ;;
val moreCities : list<string> =

 ["York"; "New York"; "Orleans"; "New Orleans"]

The first declaration uses only the monoid part of the computation and it creates a

list containing two cities. The second computation uses let! to run the rest of the

computation (which returns the name and the name prefixed with “New”) for both
of the cities. After the concatenation, this gives us a list containing 4 city names.

Chapter II: Background and related work

28

4. Synchronous languages

Although our work focuses on the development of standard computer applications,
we can find useful inspiration in languages that were developed for safety-critical
embedded systems such as flight control systems. The programming model used in

synchronous languages [6] has some interesting properties:

• These languages are based on solid mathematical foundations that make it

possible to formally reason about programs. Although this isn’t critical for our
use, we try to keep the model formally tameable and present several examples
of formal reasoning as well.

• They are designed for simple execution model, where a clock tick or an event
causes a reaction that takes a finite time and memory. When developing

embedded systems, we need to prove this property formally. This aspect isn’t
critical for our work, but it raises some interesting future possibilities.

Out programming model is in many ways similar to the one used by synchronous
languages and the solution we present bears similarity to two languages from the
synchronous world. In this section, we’ll give a brief overview of the declarative

language Lustre and imperative language Esterel.

4.1 Declarative Lustre

The Lustre language [10] is designed for sample-driven architectures (with a

clock). To make it possible to reason about programs easily, it requires that

programs contain no zero-delay loops, which means that a calculation may not

depend on its result from the current time tick and as a result, it cannot hang.

In Lustre, a variable represents a time-varying value. This means that we’re

writing equations that define the output of some computation for all clock ticks at

once as opposed to specifying just a single value for the current time. For example,

the expression input + 1 means that for each tick, the output value will be the in-

put value at that tick incremented by one (a constant can be viewed as a constant

stream). In addition, Lustre provides two operators that have more complex
behavior with respect to time:

• Previous. The expression pre(stream) gives us the value of stream variable in

the previous clock tick. At the time 0, the value is undefined.

• Initialization. To avoid using undefined values, we can write init -> stream,

which uses the value of init at time 0 and then the value of stream.

The following example, adapted from [6], shows a simple Lustre program that
counts the number of rising edges in a stream input:

edge = false -> (input and not pre(input));
edgecount = 0 -> if edge then pre(edgecount) + 1
 else pre(edgecount);

The first definition specifies that the value of edge is true only when the value of
input is presently true and has been false in the previous step. This means that the
result will be true only at the single tick when the value of input changes from
false to true. The second definition specifies that the value of edgecount is incre-

Chapter II: Background and related work

29

mented by one at the tick when the value of edge is true and stays the same in all
other ticks. It is worth noting that whenever we use the pre operator inside a
definition, we also use the -> operator to provide the initial value, because the first

step would be otherwise undefined.

Lustre programs can be structured using nodes, which are functions that take
time-varying values as arguments and return them as the result. Types such as int

or bool are interpreted as streams of int and bool values, respectively, that change
with every clock tick. The following node implements a resettable counter that
counts the number of times input was set to true and can be restarted by setting
the value of reset stream to true:

1: node COUNT(input, reset : bool)
2: returns (count : int);
3: let
4: count = if (true -> reset)
5: then 0
6: else if input then pre(count) + 1
7: else pre(count);
8: tel

The node takes two streams of type bool as parameters and returns a single stream

of type int. At the first tick or when the value of reset is true, the value of count is
set to zero (lines 4 and 5). Otherwise, we increment the previous value when the

value of input is true or keep the previous value of count.

Now that we’ve explored a small example of working with Lustre in practice,

let’s review some of its properties. We already claimed that Lustre uses declarative

programming model similar to the one used when writing declarative event han-

dling code using higher-order functions in F# (discussed in section 2.2):

• A difference is that F# events happen one at the time, while Lustre signals are

processed all at once when a clock tick occurs. This is a fundamental difference

between the programming models. However, we could simulate the Lustre

behavior to some extent by having a global tick event and synchronizing all

external events with this global clock (this might be appropriate for example for

an action game that is implemented using a busy loop).

• The synchronization of streams in Lustre makes it possible to implement ope-

rators that take two streams as arguments and perform some calculation with
the current value (e.g. inputA + inputB). In F#, one event may occur multiple

times before the second one and so it is a question how many times should the

resulting event be triggered. However, operations that take a single stream such
as input + 1 can be implemented using Event.map:

 input |> Event.map ((+) 1)

• In Lustre, nodes are functions that take time-varying values as arguments and

return them as results. We can structure declarative event-driven programs in

F# similarly by writing functions that take IEvent<'a> values as parameters. A
special (and more expressive) case of these functions are higher-order fun-

ctions for working with events that also take a function as argument. As far as
we’re aware, this construct isn’t supported in Lustre, but could be probably
easily provided using code inlining.

Chapter II: Background and related work

30

• Lustre programs may not contain syntactically recursive definitions that refer

to a value of a stream inside its definition without using the pre operator. The
functions for working with events discussed in section 2.3 don’t provide any
way for creating recursive references either4. If we wanted to access the pre-
vious value of an event, we could use the Event.scan function.

The programming model developed in this thesis combines declarative and impe-
rative approach. The Lustre language is similar to the declarative model and inci-
dentally, there is another synchronous language, which is similar to our imperative
programming model.

4.2 Imperative Esterel

Programs in the Esterel language [11, 12] are imperative and are written as a seq-
uence of imperative constructs such as assignments and loops. A program can

consist of multiple threads that execute concurrently and communicate via signals.
Similarly to the Lustre language, Esterel is synchronous and uses a single global
clock. When the clock ticks, each thread may perform one step of the execution.

Within a single step, the thread may, for example, set values of some signals or
mutate some state. However, each step must end with some construct where the

thread starts waiting for some event or the next tick. In addition, a step must finish
in a finite time and the Esterel compiler uses theorem proving techniques to gua-

rantee that this property holds.

We demonstrate the Esterel langauge using program that implements a beha-

vior similar to the one we’ve just seen in Lustre. The following program adapted

from [11] implements a single thread that counts the number of times CLICK signal
occurred and can be reset by setting the RST signal. The count is reported using the

VAL signal:

1: module Counter:
2: input RST, CLICK;
3: output VAL(integer);
4:
5: var v : integer in
6: do
7: v := 0;
8: loop
9: await CLICK;
A: v := v+l;
B: emit VAL(v)
C: end
D: watching RST;
E: end

The module declares that it takes two input signals that don’t carry any value (at
each tick, they are either set or not) and a single output signal that carries an inte-
ger (lines 2 and 3). The body declares a local integer value to store the count (line

5). Note that unlike in Lustre, this is an ordinary integer value that we will mutate
at various times as the thread executes. The body is implemented using the do …

4 However, it is possible to create a recursive event declaration using the underlying type that re-

presents events. This may give a valid definition or a construction that causes infinite looping.

Chapter II: Background and related work

31

watching statements, which keeps the body running until the RST signal is set. When
that happens, the thread stops, so we’d need an additional loop to implement the
behavior in the previous example. Inside the body, we first initialize the local vari-

able to 0 (line 7) and then run a loop.

When the thread is started, it will reach the loop within a single clock tick. As
noted earlier, the execution of a step must finish in a limited time. To achieve this,

we start waiting for the CLICK signal (line 9). This operation waits until the first
next tick when the signal is set, which prevents us from creating an infinite loop.
When the signal is set, we increment the local variable, emit the current count
through the VAL signal and then continue looping (all within a single time step).

The Esterel language is closely related to the imperative programming model that
we develop and present in Chapter VI:

• Our imperative model is very similarly structured. Programs are written as

computations that consist of imperative statements, although we prefer to use
recursion for looping. Our programming model also has a construct corres-

ponding to the emit and await from Esterel.

• When reacting to an event, an Esterel program needs to finish in a finite time,

usually by waiting for another event or the next tick. Our programming model

doesn’t require this property to be proven formally, but a program needs to
start waiting after performing some response in order to be well-behaved.

• Threads in Esterel are actually executing concurrently (using different compo-

nents of the embedded system). Our imperative model doesn’t contain any

global clock and concurrent execution in this scenario is difficult. As the result
our model is single-threaded, which requires, for example, different treatment

of time.

Lustre and Esterel are in many ways similar to our declarative and imperative

programming models, however, to our best knowledge, they cannot be combined

when developing a single system.

5. Concurrent languages

Many high-level languages for concurrent programming use sophisticated con-

structs for expressing synchronization between concurrently executing threads. In
our reactive programming model, we don’t need to synchronize threads, but we
need to encode patterns for synchronization of events. That is, we want to express

that a composed event should be triggered when the underlying events are trig-
gered according to some pattern and possibly also carrying some values.

In this section, we’ll look at some interesting synchronization primitives. The

languages based on join calculus provide synchronization primitive called join or
chord, which can be used for encoding rendezvous, but can also encode data trans-
fer that blocks only one or none of the involved threads (which is especially useful
for asynchronous programming).

The Concurrent ML language is based on the idea of events, which differs from
our notion, because it synchronizes the sender and the receiver of the event (and

as such can have only one receiver). However, it provides some interesting ideas

Chapter II: Background and related work

32

for working with events. Finally, we’ll also look at the Manticore language, which is
an extension of Concurrent ML that provides syntactic support for many frequent
parallel programming patterns.

5.1 Join calculus languages

Join calculus is a formalism [31], which provides a foundation for distributed prog-
ramming languages. However, it has also proven useful as an inspiration for the

design of programming languages dealing with concurrency. We’ll briefly review
two programming languages that are based on Join calculus. Cω adds concurrency
abstractions to the C# language and JoCaml extends the functional language OCaml
(which in many ways influenced F#).

Cω language. Cω [33] extends C# by adding two new concepts: asynchronous me-

thods and chords. An asynchronous method is a method that can be called without
blocking the caller and that are not guaranteed to complete immediately after they

are called. A chord is a synchronization pattern that includes multiple method dec-
larations separated using '&’ followed by a single body. The body of the chord runs
only when all of the methods that form the chord have been called.

Method calls are implicitly queued by the runtime. When we call an asyn-

chronous method that cannot run immediately (because it is declared as part of
some chord that requires other method calls) is queued, but the caller can continue

immediately without blocking. However, when calling a synchronous method that

returns some value, the caller blocks until the method call is dequeued and a body

of some chord is executed (and a value is returned).

The following example (adapted from [33]) implements a concurrent un-

bounded buffer. The buffer is represented as a class with an asynchronous method

Put that takes a string and a synchronous method Get that returns a string:

public class Buffer {
 public string Get() & public async Put(string str) {
 return str;
 }
}

After creating an instance of the Buffer class, the user can call both Get and Put

methods. When calling Put from some thread, the method call will be queued
(together with the string value passed as the argument to Put) without blocking
the thread. When calling the Get method, there are two possibilities. When there is

a pending call to the Put method, the call will be dequeued and the body of the
chord will run immediately. As a result the argument that was originally given to
the Put method will be returned as the result to the caller of Get method. On the
other hand, if there are no queued calls to the Put method, the caller will be

blocked until a value is provided by a call to Put by some other thread.

JoCaml. The JoCaml language [32] has been developed prior to Cω with the main

focus on distributed systems. It doesn’t distinguish between synchronous and

asynchronous method calls, so when we need to return a result from a chord (na-
med join in JoCaml), we need to pass a continuation to one of the methods.

Chapter II: Background and related work

33

The following example implements a more sophisticated buffer using JoCaml.
In the previous implementation, we didn’t have access to the entire queue of
strings, so it was for example, impossible to provide method returning the number

of elements in the buffer. The following implementation doesn’t rely on the implicit
queuing and stores the elements in a list:

1: def push(v) & Empty() = Some(v)
2: or push(x) & Some(xs) = Some(x::xs)
3: or pop(r) & Some(xs) =
4: match xs with
5: | x::[] -> r(x) & Empty()
6: | x::xs -> r(x) & Some(xs)

The implementation provides two public functions called push and pop and two
private functions Some and Empty that are used to store the state of the stack. We

need to distinguish between the case when the stack is empty and when it contains
some value, because we can only accept a call to the pop method when there is a
value in the stack.

This case of non-empty stack is handed in the join on line 3. When there is only
a single element in the stack (line 5) we return it through the continuation and set

the state of the stack to Empty. When there are more values (line 6) we return the

first one and indicate that the stack still contains some values by calling Some. Note

that when a user calls the pop method, but the state of the stack is Empty, the call

will be blocked until a call to the push function is made (from another thread),

which in turn invokes the function Some (line 1 or 2).

Pattern matching for Joins. The previous example was somewhat cumbersome.
We needed to define two local helper methods, because there is no way to write a

join that would fire only when the Some method was called with a non-empty list as

the argument. This motivated the extension [51], which adds support for writing

ML-style patterns (as discussed in section 1.2) in the declaration of functions that

form the join.

The following example implements the same stack as the one shown in the

previous example, but uses patterns for encoding join that can be triggered only

when there is a call to pop and the stack contains a non-empty list. In fact, the
extended JoCaml compiler translates the following code to the one we presented in
the previous section.

def pop(r) & State(x::xs) = r(x) & State(xs)
 or push(x) & State(xs) = State(x::xs)

The first join essentially corresponds to the last join from the previous exam-

ple. It can run only when there is a pending call to pop and a call to State with a
non-empty list as the argument. When the State function has been called previ-

ously with an empty list, we need to wait until a call to push function is made and
an element is added to the stack.

The existing work on languages based on Join calculus is related to this thesis
in two ways. Firstly, we take some of the ideas used in these languages and take

them over to the reactive scenario and secondly, we introduce a general-purpose

Chapter II: Background and related work

34

language extension for F# that is capable of encoding a programming model based
on the Join calculus:

• Our reactive programming model provides a construct that encodes waiting for
an event (similarly to await from Esterel). It is possible to wait for multiple

events in a way that is similar to waiting for multiple pending calls in the Join
calculus. Moreover, we also support pattern matching on the values carried by
events, which gives the language additional expressive power, similar to the
extended variant of JoCaml.

• As we can see, the embedding of Join calculus in JoCaml is based on a syntax
similar to pattern matching and can be extended to support pattern matching to

a larger extent. Our extension of the F# language with monadic pattern ma-
tching (Chapter V) has a similar expressive power, but at the same time, it sup-
ports programming models other than Join calculus.

• The discussion in [51] also presents an interesting observation about the when

clause which can be used in ML-style pattern-matching constructs (demon-
strated in section 1.1). The authors note that while supporting patterns inside
declarations of individual functions can be done by a simple translation to the

restricted language, supporting the when clause is difficult and would largely

affect the performance. This observation also applies to some of the program-
ming models that can be implemented using our F# extension.

5.2 Concurrent ML and Manticore

Concurrent ML [57] is a concurrent library implemented on top of the SML lang-

uage (a language from the ML-family). Concurrent ML programs are structured
into multiple threads that can communicate and synchronize by sending messages

via channels and receiving them. This makes it possible to implement a wide range

of concurrency primitives using this, relatively simple, library.

The syntax of Concurrent ML is the same as the syntax of SML and all concur-
rent programming features are provided as functions. The Manticore language [38]

builds on top of Concurrent ML and adds syntactic support for several common
patterns used in parallel programming, such as the support for futures.

Concurrent ML. As already mentioned, concurrently executing threads in Concur-
rent ML (CML) can communicate via channels. The communication is based on

rendezvous. Obviously, when receiving a message from a channel, the receiver is

blocked until some sender provides a message, but a similar mechanism applies to
the sender as well. When sending a message, the sender is blocked until some
other thread receives the message.

To implement this communication, Concurrent ML provides two blocking fun-
ctions send and recv that take a channel and send or receive a value. The novel
feature of CML is that it decouples sending or receiving of a message and a
synchronization that is performed afterwards. The value that represents syn-

chronization is called event. When reading a value from a channel, we can use the

blocking recv function, but CML also provides a non-blocking function recEvt that
returns an event on which we can synchronize at some later point. To synchronize

on an event, we can use the (blocking) sync function:

Chapter II: Background and related work

35

val recEvt : channel<'a> -> event<'a>
val sync : event<'a> -> 'a

The blocking function recv is simply implemented as a composition of recEvt and

sync. However, the most interesting aspect of Concurrent ML is that it provides nu-
merous combinators for creating events that synchronize in a more sophisticated
way. We can for example construct an event that synchronizes on the first possible
event from a list. Some of the primitive functions for composing events are shown
in the following listing:

// Creates event representing non-deterministic choice of events

val choose : list<event<'a>> -> event<'a>

// Creates a new event by applying function after synchronization

val wrap : event<'a> -> ('a -> 'b) -> event<'b>

// Creates a delayed event. When synchronizing on the returned

// event, the function returns an actual event to synchronize on

val guard : (unit -> event<'a >) -> event<'a>

We’ll demonstrate working with choose and wrap in practice. The guard combi-
nator allows us to create an event that performs some action only when it is

synchronized on. The construct can be used for example for sending a request to a
server. The following example (adapted from [61]) implements a thread that

repeatedly reads a pair of numbers from two provided source channels (syn-

chronizing on an input channel as soon as the number becomes available) and

sends the addition of the numbers to the provided output channel:

1: fun add (inCh1, inCh2, outCh) =
2: forever () (fn () => let
3: val (a, b) = sync(choose [
4: wrap (recEvt inCh1, fn a => (a, recv inCh2))
5: wrap (recEvt inCh2, fn b => (recv inCh1, b))])
6: in send(outCh, a + b) end
7:)

The implementation uses a forever combinator that repeatedly runs the provided

lambda function (line 2). Inside the body, we first need to obtain the two numbers

that we want to add. This is done by synchronizing on an event composed using

the choose combinator (line 3). The choose function makes a choice between two
events. The event on line 4 synchronizes on receiving from the inCh1 channel and
then (using the post-synchronization combinator wrap) performs a blocking call to
read a value from the inCh2 channel. The second event (line 5) performs the same

operations in the opposite order.

Manticore. When working with Concurrent ML, we need to write all operations
using standard SML functions. This gives us a way for expressing useful abstrac-

tions, but it makes the syntax somewhat cumbersome. The Manticore language

adds syntactic support for several common parallel programming patterns. These
patterns include data-parallel constructs such as parallel arrays (a construct for
creating arrays based on the set-builder notation that is evaluated in parallel) and

parallel tuples (expressions that initialize individual elements of the tuple run in
parallel), but also constructs for parallel value bindings based on futures.

Chapter II: Background and related work

36

We’ll demonstrate two constructs that are both internally implemented using
futures, which is an abstraction implemented using the low-level Concurrent ML
machinery. The first example shows the pval construct which is a variable binding

that starts evaluating in background and is automatically synchronized on when
we access its value later in the code. The following function takes a binary tree as
an argument and multiplies all values stored in the tree recursively:

1: fun treeProd (Leaf n) = n
2: | treeProd (Node (treeL, treeR)) =
3: let pval futureL = treeProd treeL
4: pval futureR = treeProd treeR
5: in (futureL * futureR) end

The function uses pattern matching to distinguish two cases. When the tree given
as the argument is a leaf, we immediately return the value stored in the leaf (line
1). When the tree is a node with two sub-trees (line 2), we need to recursively mul-

tiply elements in both of the sub-trees and then multiply the results. This is done
using the pval construct which starts performing the recursive call in background
(lines 3 and 4). When we attempt to multiply the two values (line 5), the current
threads needs to synchronize and wait until both of the computations running in
background complete.

One possible improvement that we may want to implement would be to add a

short-circuiting behavior. When one of the computations finish earlier producing 0

as the result, we know that the overall result will be also 0 and we could return

immediately. In Concurrent ML, this could be done using the choose combinator

and Manticore makes this possible using the pcase (parallel case) construct:

1: fun treeProd (Leaf n) = n
2: | treeProd (Node (treeL, treeR)) =
3: pcase treeProd(treeL) & treeProd(treeR)
4: of 0 & ? => 0
5: | ? & 0 => 0
6: | l & r => l * r

The structure of the function is the same as in the previous version, but the body of

the case that handles a node is different. The pcase construct takes several compu-
tations, separated by ‘&’ as the argument (line 3) and it consists of several parallel
patterns that match against the computations. The last pattern (line 6) consists of

two standard ML patterns that assign the result to a symbol and it may be called
whenever both of the computations complete. The first two patterns (lines 4 and

5) use so called wildcard pattern written as “?”. It denotes that the pattern may

match even if the value of the computation is not available yet. The other pattern is
a constant value “0”, so the first two cases may run if one of the computations pro-

duces zero, regardless of whether the other computation has completed or not.

Note that the pcase construct is in many ways similar to joins that support pat-
tern matching on the carried values. The difference is that pcase is implemented in
terms of more primitive operations, but it has been shown that joins can be also

implemented using other concurrency primitives such as software transactional
memory [35]. The Concurrent ML and Manticore research relates to the work
presented in this thesis in the following ways:

Chapter II: Background and related work

37

• The syntax for pattern matching on features provided by the pcase construct

allows us to express patterns such as waiting or one or two futures depending
on value produced by one of the futures and it uses familiar pattern matching
syntax. Our extension from Chapter V has similar expressivity. In Chapter VI, we
use it for waiting on combinations of events in a way similar to Manticore.

• Our language extension isn’t bound to a specific programming model and can be
used outside of the reactive programming field. In fact, it is possible to use it for

programming with futures, which gives us the same programming model as the
one provided by Manticore (without focusing only on parallelism).

• Manticore is implemented in terms of combinators provided by Concurrent ML

such as choose. Our language extension works in a similar way. In order to use it
with some programming model, the developer needs to provide two primitive
constructs (and one of them is similar to choose in CML)

6. Reactive languages

The languages discussed in the previous two sections focused on different types of

programs than the ones we concern ourselves with in this thesis, but they shared

some of the problems that we need to tackle. In this section we’ll review languages

and libraries that aim at the same domain as we, but use a different approach.

We’ll start by looking at projects that originated from the influential work on

Functional reactive animations (Fran) by Elliott and Hudak [1] who presented a

purely functional way of describing animations in a declarative way. Then we’ll

look at an alternative approach which is also embedded in functional Haskell, but

uses monads to implement an imperative programming model and finally, we’ll

look at a recent project by Meijer [5], which implements a variation on Fran using

the LINQ project, which is now a part of the C# language.

6.1 Functional reactive programming

Programs written using any FRP library are written using two concepts. The first

concept is called behavior and represents a value that is defined at any point and
may change with the time. The second concept is called an event and represents an

action that happens (possibly repeatedly) at some precisely specified time. In FRP

solutions, the time is modelled as continuous.

The notion of continuous time allows some elegant constructions. For exam-

ple, we can define a constant behavior that has a value 1 at all times. Then we can
use a combinator for integration of numeric behaviors and the result will be a be-

havior that represents the current time. On the other hand, continuous time makes
the implementation more difficult as we need to guarantee that the runtime will

handle all events (which occur at a specific time).

FRP frameworks generally provide several ways for converting events to
behaviors and vice-versa. We can for example declare a behavior whose value is

the value carried by an event when it occurred the last time. In the other way

round, we can define an event that is triggered whenever a value of a behavior
changes or when it reaches some threshold.

Chapter II: Background and related work

38

Fran. We’ll start by looking at the library called Fran [1], which is the basis of all
functional reactive frameworks, but we’ll use an F# implementation presented in
[62, Chapter 15], which focuses on working with behaviors. A behavior is a value of

type Behavior<'a> and represents a value of type 'a that may change with the time.

For example, a value Behavior<float32> represents a floating point number
that can change. This is a useful concept for creating animations, because if we

create an ellipse whose location is specified as a value Behavior<float32>, we get an
ellipse that moves depending on the time. An animation is represented as a value
of type Behavior<Drawing>, which simply means that an animation is a drawing that
changes over time. Let’s look at some of the primitive behaviors as well as fun-

ctions and operators for working with behaviors provided by the library:

// Primitive behavior returning the sine of the current time

val wiggle : Behavior<float32>
// Creates a constant behavior that always has the same value

val forever : float32 -> Behavior<float32>

// At every time, multiplies the current values of the arguments

val (*) : Behavior<float32> -> Behavior<float32> -> Behavior<float32>
// Composes two drawings by drawing the second one over the first one

val (--) : Behavior<Drawing> -> Behavior<Drawing> -> Behavior<Drawing>

// Result has a value that the input had before the specified time

val wait : float32 -> Behavior<float32> -> Behavior<float32>

// Moves the specified drawing by the specified offset. At every time,

// the current drawing will be moved by the current value of offsets

val translate : Behavior<float32> -> Behavior<float32> ->
 Behavior<Drawing> -> Behavior<Drawing>

The above primitives can be used for constructing many interesting animations.

We can use overloaded multiplication operator to create a behavior that oscillates

between larger values. For example, wiggle * (forever 100.0f) creates a value

that oscillates between -100 and +100. The following code demonstrates how to
create an animation that displays a sun in the center and the Earth rotating around

the Sun at some specified distance. Initially, sun and earth are two constant

drawings:

1: let rotate dist img =
2: let pos = wiggle * (forever dist)
3: translate pos (wait 0.5f pos) img
4:
5: let solarSystem =
6: sun -- rotate 160.0f earth

The rotate function takes a float value and some drawings. It starts by declaring a
sinusoidal value oscillating in the specified distance (line 2). To create a circular
movement, we need to use a value of the cosine function as the second coordinate.

One way to do this is to simply delay the sinusoidal value by the half of the ampli-
tude (line 3). Once we have a function for rotating drawings, we can define the
solar system, which consists of the Sun and a rotating Earth (line 6). The two
objects are composed using the -- operator, which draws one image over the

other.

Chapter II: Background and related work

39

Yampa. Yampa [63] is a modern implementation of Functional reactive program-
ming in the Haskell language. It uses arrows [47], which is an abstract representa-
tion of specific types of computations that is particularly useful for reactive compu-

tations. In addition, Yampa uses arrow syntax [48] which makes it easier to write
programs based on the arrow abstraction.

When programming in Yampa, we’re composing computations of type SF a b,

which represents a time-varying function that takes an input of type a and produ-
ces a result of type b. A computation that takes some input and creates an event
that fires at some time, carrying a value of type b, is represented as SF a (Event b).
For example, when programming robots, we may want to create a computation

that takes the current state of the robot as the input and returns a time-varying
speed of the robot. To create a speed that has a value 10 until the robot gets stuck
(which is signalized by the event rsStuck) and then stops the robot by changing the
speed to 0, we can use the following code:

speed :: SF SimbotInput Speed
speed = (constant 10 &&& rsStuck) `switch` \() -> constant 0

The switch construct takes two inputs (written on the left hand side and separated

by ‘&&&’) and a single parameter (provided on the right hand side), which is a fun-

ction. The first input is constant 10 and it specifies the initial time-varying value of
the speed and the second input is an event rsStuck. Whenever the event fires, the

switch construct runs the provided function to obtain a new time-varying value. In

our example, the new value will be constant 0, so the robot stops running as soon

as the rsStuck event fires.

Although values of type SF a b (called stream functions) closely resemble

ordinary functions of type a -> b, they are different. Firstly, stream functions may

depend on some other aspect such as the time and secondly, stream functions are

constructed only using a limited set of primitives. In order to make construction of

stream functions easier, Paterson has designed arrow syntax [48]. The following

example uses this extension to create a more sophisticated stream function that

controls the speed of the robot. The speed is controlled using the incrVelsEvt event

that is triggered when the user pushes some button to increase the speed of the

robot:

1: speed :: SF SimbotInput Speed
2: speed = proc inp -> do
3: rec e <- incrVelEvs -< inp
4: v <- drSwitch (constant 1) -< (inp, e `tag` constant (v+1))
5: returnA -< v

The arrow syntax starts with the proc keyword and is followed by an identifier that

represents the input of a stream function (in our case, a value of type SimbotImput).
We’re using a recursive definition, so the next line starts with the rec keyword. The

body of the stream function consists of several bindings of the form e <- f <- i.
This means that we’re taking some input i, pass it through a stream function f and
(eventually) obtain a result e. In our example, we first define a value that is present
whenever the incrVelEvs event fires (line 3). Next, we use a drSwitch function

which takes an initial value of the speed as an argument (constant 1). The input for
the function (written on the right hand side of “-<”) is the original SimbotImput

Chapter II: Background and related work

40

value and an event that carries a new stream function to be used instead of the
previous one. We use the tag function to replace the value carried by the event e
with a new value, which is a stream function that takes the current robot speed

and increments it by one.

Explaining the system Yampa is beyond the scope of this brief introduction.
However, we have shown how Functional reactive programs can be composed

from events and behaviors. The relations with our work are following:

• The part of Functional reactive programming libraries that deals behaviors is in

many ways complementary to the reactive programming library presented in
this thesis, because our main concern is working with events. However, we
believe that behaviors could be implemented as an abstraction over events.

• Functional reactive programming provides a powerful set of combinators for
reacting to events such as switch. However, to our best knowledge, there is no

direct way for encoding a state machine with transitions driven by events in
FRP. This motivated us to design an imperative addition to a reactive prog-
ramming library (Chapter VI) that makes this naturally possible.

6.2 Imperative streams

While Functional reactive programs are modelled using a continuous time, the Im-
perative streams [3] library uses discrete time steps and is in many ways more

similar to synchronous languages. Another difference is that Imperative streams

directly support imperative operations. In FRP, all actions (such as controlling a

robot) need to be returned as a result of some stream function and processed by a

top-level loop.

In Imperative streams, we structure programs using streams. A stream is con-

structed by an (imperative) computation that may use various looping constructs,

may be defined recursively and may perform side-effects. Most importantly, the

computation that defines a stream may also produce values that will be added to

the stream at the current (discrete) time.

The following example shows an imperative stream that counts the number of
times a button was pressed. The mouse button is itself represented as a stream

that produces a value when a button is clicked. The programming model is syn-

chronous, so there is a global clock and all reactions to a mouse event are proces-
sed within a single tick.

1: countClicks :: St Int
2: countClicks =
3: let loop numClicks =
4: until (next mouseButton)
5: (lift numClicks)
6: (do putStrLnI0 "Click"
7: loop (numClicks + 1))
8: in loop 0

As we can see from the type signature, the countClicks stream will contain values
of type Int (line 1). It is constructed using a recursive function loop that stores the

current number of clicks in a parameter (line 3). Inside the body of the function,
we use the until combinator.

Chapter II: Background and related work

41

The stream constructed by calling until streamCtrl streamOne streamTwo
behaves as streamOne until a value is produced in the streamCtrl stream. After that
it starts behaving as streamTwo and continues like this forever. In our example, the

initial stream is lift numClicks (line 5) which is a stream that produces the value
passed as the argument at the time when it is started and then does nothing. Once
a value is produced in the mouseButton stream, the second stream provided to until
is started. It prints the string “Click” (line 6) and then recursively invokes the loop
function to produce the new count and start waiting for another click.

The notion of stream is somewhat similar to the notion of event that we use as
the basic building block in this thesis. Our approach is to combine declarative and

imperative approach for working with events and Imperative streams are closely
related to the imperative part of our solution:

• The computation that constructs imperative stream forms an additive monad

(meaning that it implements the MonadPlus type class). The lift operation cor-
responds to the yield primitive that we would use in F#. Our imperative com-

putation from Chapter VI follows the same pattern, but it uses a different im-
plementation of the bind primitive, which makes the programming model in
many ways different.

• One similarity that is particularly interesting and that was demonstrated in the

previous example is the use of recursive functions for creating streams. The

pattern where we declare a recursive loop function that describes a stream and

start it with an initial value as the argument will be used in many places in the

Chapter VI.

• A notable difference between our solution and Imperative streams is that we

don’t use the synchronous programming model. In imperative streams, this

aspect is very important as it allows an implementation of bind that takes the

current value of a stream at each tick.

6.3 Reactive Extensions for .NET

The last library that builds on top of the concepts developed by Fran is Microsoft’s
Reactive Extensions for .NET [9]. Similarly to our work, the library focuses on

working with events. It builds on top of the LINQ project [7], which extends the C#

language with syntax for writing queries. The syntax has been used mainly for
working with in-memory collections of data and with databases, but it isn’t tied to
a specific programming model and it is possible to define an implementation
working with any data type.

Reactive Extensions for .NET provide an implementation that works on top of
the IObservable<'a> type, which is similar to the IEvent<'a> type discussed earlier.
The query syntax is used for constructing new, derived events from basic events

provided by the system such as mouse events. We can use simple operations such

as filtering and projection (which is similar to working with events using higher-
order functions in F# as discussed in section 2.2). However, Reactive Extensions
for .NET provide larger number of operators including several operators that can

be used for combining values from multiple events in a way similar to joins.

Chapter II: Background and related work

42

The following example shows a query that implements drawing of rectangles.
The user starts by pressing the mouse button and then moves with the mouse
cursor to draw a rectangle. The drawing is stopped by releasing the mouse button:

1: var rectangles =
2: from start in mouseDown
3: from move in mouseMove.Until(mouseUp)
4: let rc = CreateRectangle
5: (start.EventArgs.X, start.EventArgs.Y,
6: move.EventArgs.X, move.EventArgs.Y)
7: select rc;
8:
9: rectangles.Subscribe(DrawRectangle);

The meaning of the from clause is that it handles all occurrences of the event that

we take values from and runs the rest of the computation for each occurrence. In
the example above, we first wait for the mouseDown event (line 2). For each of the
occurrence, we start processing mouseMove events, but only until the mouseUp event
occurs (line 3). This means that the subsequent lines will be executed for each

mouseMove event that follows some mouseDown event, but before the mouse button
was released.

The values carried by the events store information about the cursor location,

so we use them to create a rectangle from the location of the mouseDown event to the

current mouseMove event (lines 4 – 6). Then we trigger the constructed event with

the rectangle as an argument using the select clause (line 7). Finally, we register a

method that draws the rectangle as a handler for the constructed event.

• One difference between IObservable<'a> and IEvent<'a> is that the former type

provides mechanism for notifying the user that it stopped producing events and

will never occur again. This makes it possible to implement operations such as

concatenation of two event streams. We use a relatively simple extension of the
IEvent<'a> type that adds support for this notification.

• Reactive Extensions provide numerous operators for joining events. In a non-

synchronous programming model, there are several possible semantics and

Reactive Extensions provides extensive review [64].

• Similarly to Imperative streams and our imperative programming model,

Reactive Extensions are also (in some way) based on monads, because the

operation that is needed for supporting queries with multiple from clauses is
similar to the monadic bind. Reactive Extensions use bind that calls the rest of

the computation for each occurrence of an event, which is a different

implementation than the one we use.

 43

Chapter III

Approach and problem description

In the previous chapters, we introduced the area of reactive programming and we
discussed numerous approaches for writing reactive programs in different types of

environments. In this chapter, we present a high-level overview of the approach
we develop in this thesis. We start by reviewing two reactive programming
models. The first one is the declarative model (already discussed in section 2 of the
previous chapter) and the second one is an imperative programming model. We’ll

discuss the benefits of the two models and we’ll argue that it is beneficial to
develop a single framework that makes it possible to combine the two approaches.

We’ll briefly review some of the problems that we solve in this thesis. The two

key problems are that, firstly, combining the two approaches to reactive prog-

ramming in the naïve way makes it easy to introduce memory leaks and, secondly,

when using the imperative programming model we need more expressive power
to express waiting on different combinations of events. Finally, we discuss how our

approach differs from the existing techniques presented in the previous chapter.

Our approach is in many ways novel, so we briefly introduce the more specific

contributions of the thesis.

1. Reactive programming

In this section, we review the two approaches to reactive programming and we’ll
discuss how they complement each other. We’ll present the imperative style using

a simple encoding based on F# asynchronous workflows that we introduced in [62,

Chapter 16]. As we’ll see later, using asynchronous workflows isn’t sufficient for
more complex scenarios, but it can be nicely used to introduce the problem.
Finally, we also demonstrate that our approach isn’t by any means limited to the

F# language – we’ll present a re-implementation of a part of the library in Java-
Script. Now, let’s start by looking at the unifying concept of an event.

1.1 Event as the unifying concept

Events in F# appear as an abstract type which allows the user to register and
unregister handlers. A handler of type Handler<'a>, is a wrapped function (unit ->
'a), with a support for comparison via reference equality. An event is declared as

an interface type. A somewhat simplified declaration that we’ll use in this thesis

looks as follows:

Chapter III: Approach and problem description

44

type IEvent<'a> =
 abstract AddHandler : Handler<'a> -> unit
 abstract RemoveHandler : Handler<'a> -> unit

A simple event keeps a mutable list of registered handlers and invokes all handlers
from the list when it is triggered. The interface only represents a value that can be
used for listening to an event, so when creating a simple event, we can for example

create a class that implements the interface and provides additional method to
trigger the event.

1.2 Declarative event handling

In the declarative style, we write code using an algebra of events (a combinator
library) that allows us to compose complex events from simple ones. The following
example demonstrates how the declarative approach looks in F#. We take a
primitive event btn.MouseDown (representing clicks on a button named btn) and

constructs a composed event value called rightClicks:

1: let rightClicks = btn.MouseDown
2: |> Event.filter (fun me ->
3: me.Button = MouseButtons.Right)
4: |> Event.map (fun _ -> "right click!")

We’re using the pipelining operator |> (also known as the reverse application),
which takes a value together with a function and passes the value as an argument

to the function. This means that the MouseDown event will be given as an argument

to filter function and the overall result is then passed to map.

The MouseDown event carries values of type MouseEventArgs and is triggered
whenever the user clicks on the button. We use the filter primitive (line 2) to

create an event that is triggered only when the value carried by the original event

represents a right click. Next, we apply the map operation (line 4) and construct an

event that always carries a string value "right click!". This approach is similar to

Fran [2] and has the following properties:

• Composability. We can build events that capture complex logic from simpler

events using easy to understand combinators. The complexity can be hidden in

a library, as we can create functions that construct composed events.

• Declarative. The code written using combinators expresses what events to

produce, not how to produce them. This makes the code more readable and
easy to describe formally (as we demonstrated in Chapter II).

• Limited expressivity. On the other hand, the F# combinator library is limited

in some ways and makes it difficult to encode several important patterns (e.g.
arbitrary state machine)5.

1.3 Imperative event handling

In the imperative style, we attach and detach handlers to events imperatively. To
create a more complex event, we construct a new event and trigger it from a

handler attached to other events. In F#, we can embed this behavior into asyn-

5 In many cases, this is possible, but there is no obvious “natural” encoding of a state machine (such

as using mutually recursive functions).

Chapter III: Approach and problem description

45

chronous workflows [4]. A workflow allows us to perform long-lasting operations
without blocking the program. Technically, an asynchronous computation is
represented as a function that starts the operation. When it is started, it gets a

continuation as an argument. The operation should invoke the computation when
the operation completes and a result is available.

To work with events, we can define a primitive asynchronous operation

AwaitEvent, which takes an event value, waits for the first occurrence of the event
and then runs the continuation. The implementation relies on imperatively
registering a handler when the asynchronous operation starts and unregistering it
when the event occurs for the first time.

The following code listing shows the implementation of AwaitEvent. The
operation takes an event value as an argument, waits for its first occurrence and
then resumes the workflow (at most once) giving it the value carried by the event

as an argument:

1: let AwaitEvent (e:IEvent<'a>) : Async<'a> =
2: Async.FromContinuations (fun (cont, _, _) ->
3: let rec hndl = Handler(fun sender arg ->
4: e.RemoveHandler(hndl)
5: cont arg)
6: e.AddHandler(hndl))

AwaitEvent constructs a primitive asynchronous operation using the FromConti-

nuation method. The provided lambda function is called with a continuation cont

as an argument when the workflow starts. Inside the lambda function, we create a

handler (line 3); register it with the event and then return. When the event fires (at
some later time), we remove the handler (line 4) and then invoke the continuation

given as an argument (line 5) to run the rest of the workflow.

Now, we can use this primitive to get a powerful imperative programming

model which is similar to Imperative Streams [3] or the Esterel language [11, 12]:

1: let clickCounter = new Event<int>()
2:

3: let rec loop count = async {
4: let! _ = btn.MouseDown |> Async.AwaitEvent
5: clickCounter.Trigger (count + 1)
6: let! _ = Async.Sleep 1000
7: return! Loop (count + 1) }
8: loop 0 |> Async.StartImmediate

The listing shows a function loop, which asynchronously waits for an occurrence of

the MouseDown event (line 4) and then triggers the clickCounter event (created on
line 1) with the incremented number of clicks as an argument. Next, it asyn-
chronously waits one second and recursively calls itself and starts waiting for
another click. Finally, we imperatively start the loop (line 8). Implementing the

same functionality using event combinators is possible, but it leads to code that is
much harder to understand. For curiosity, we included this implementation in the
Appendix B.

When the AwaitEvent operation completes the handler registered with the

MouseDown event is unregistered, so all clicks that occur while sleeping (line 6) are

Chapter III: Approach and problem description

46

ignored (there is no implicit caching of events). This means that the code shows a
counter of clicks that limits the frequency of clicks to 1 click per second. In general,
this approach has the following properties:

• Imperative. The code is written as a sequence of operations (e.g. waiting for an

event occurrence) and modifies the state of events by registering and unregi-
stering handlers or by triggering events.

• Single-threaded. Code in this style can be single-threaded using cooperative

multi-tasking implemented using coroutines. This makes the concurrency in the
model deterministic.

• Composable. Even though the implementation is imperative, the created event

processors can be easily composed. In the listing, we constructed an event value

clickCounter, which can be published, while the loop function remains hidden.

• Expressive. We can easily encode arbitrary finite state machines using mutu-
ally recursive functions (using the return! primitive). In the example, we have a

simple case with just two states: 1) waiting for click and 2) waiting one second.

So far, we demonstrated the reactive programming model using the F# implemen-
tation. However, the approach is by no means limited to F# or some highly specific

programming environment. It mainly relies on the support for higher order

functions, which is now present in many languages including C# 3.0, Scala, Python,

Ruby, but also for example JavaScript.

1.4 Compositional events in other environments

An implementation of event-based programming model is already available for C#

3.0 [5] and JavaScript library [24] builds on similar ideas. We created a simple
implementation of F# event combinators in JavaScript (available on our web site

[27]). The following example shows JavaScript version of the code from section 2.2.

Note that this is very similar to code written using the, nowadays very popular,

declarative jQuery library [25]:

1: var rightClicks = $("btn").mouseDown.
2: filter (function (me) {
3: return me.button == 2; }).
4: map (function (_) {
5: return "right click!"; });

The listing starts by accessing a primitive event value representing clicks on a

button (line 1). The event value provides a filter function for filtering events and
map for projection. We use them to create an event that carries the specified string
value (line 5) and is triggered when the button value is 2, corresponding to the
right click (line 3). As JavaScript doesn’t have any equivalent to asynchronous

workflows from F#, the imperative example would be slightly more complicated,
but it can be implemented as well.

2. Issues and limitations

The previous section introduced an imperative programming model based on the
AwaitEvent primitive, which works in a very limited scenario. We now discuss

some of the issues and limitations of the presented approach.

Chapter III: Approach and problem description

47

2.1 Combining event handling techniques

We can view the declarative programming style of event processing as a higher-
level approach. It allows us to write a limited set of operations in a way that is

succinct, elegant and easy to reason about. On the other hand, the imperative style
is lower-level, but as the previous discussion shows, it is extremely important for
the ability to easily express state machines.

Now that we have two complementary approaches, it seems like a perfect
solution to combine them and use the one that’s more appropriate for the part of
the problem that we need to solve. Unfortunately, combining the techniques brings
some important implementation challenges.

When using the declarative style alone, we don’t concern ourselves with
removing handlers, because the event processing pipeline remains active during
the entire application lifetime. As a result the present implementation of the

higher-order functions for working with events never removes a handler from the
source event. This means that the following example causes memory leaks:

1: let rec loop count = async {
2: clickCounter.Trigger count
3: let! me =
4: btn.MouseDown
5: |> Event.filter (fun me -> me.Button = MouseButtons.Right)
6: |> Async.AwaitEvent
7: return! Loop (count + 1) }

We implemented a simple imperative loop that uses Event.filter to wait only for

click events caused by the right mouse button (line 5). The Event.filter function
adds a handler to the btn.MouseDown event during every iteration of the loop, but

the handler is never removed, even though the AwaitEvent primitive correctly

unregisters a handler from the source event (in our example, the event returned by

the Event.filter function).

2.2 Limited expressivity of AwaitEvent

The AwaitEvent primitive makes it possible to wait for the first occurrence of a
single event inside an asynchronous workflow. However, in many situations we

need to wait for one of several events, for a subsequent occurrence of two events

or for an occurrence that carries a specific value as an argument.

In [62, Chapter 16], we added an overloaded version of the AwaitEvent that
supports waiting the first of multiple events, which is perhaps the most frequently
needed combination in practice. However, this solution is still very limited. We

demonstrate it using a counter that supports resetting. It counts clicks on the btn
button and can be reset by clicking on the btnReset button:

1: let rec loop count = async {
2: clickCounter.Trigger count
3: let! e = Async.AwaitEvent(btn.Click, btnReset.Click)
4: match e with
5: | Choice1Of2(m) -> return! loop (count + 1)
6: | Choice2Of2(m) -> return! loop 0 }

Chapter III: Approach and problem description

48

The sample is again implemented using a recursive loop that stores the current
count in the value of a parameter. When it runs it first reports the current count to
the clickCounter event (line 2). Then it starts waiting for two events simulta-

neously (line 3). The overloaded version of AwaitEvent returns a value of type
Choice<'a, 'b> to the asynchronous workflow when the first of the two events
occurs. The result is tagged with a label Choice1Of2 when the first event was
triggered first or with the label Choice2Of2 in the opposite case. Once we obtain the
value, we use pattern matching to choose the appropriate reaction. If the user

clicked on the counting button, we increment the count (line 5) and if the event
was caused by the reset button, we set the count to zero (line 6).

The overloaded version of AwaitEvent handles only one specific scenario and if
we want to use it, we need to explicitly pattern match on somewhat mysterious la-
bels Choice1Of2 and Choice2Of2 that lack any clear meaning. We would like to avoid
this and use convenient syntax, possibly similar to joins or the pcase construct
from Manticore.

3. Approach description

In this section, we give a brief high-level overview of the approach we use to solve

the discussed problems. In addition to combining of the declarative and imperative
programming models and limited expressivity of the AwaitEvent primitive, we also

introduce the monadic computation we use instead of asynchronous workflows.

3.1 Mixing declarative and imperative

As we’ll see, there is nothing fundamentally wrong with the declarative program-
ming approach that would make it impossible to create an implementation that

would work when combined with the imperative approach. However, we need to

carefully analyze the situations that may occur when combining the two

approaches.

One possible solution would be to design a specialized garbage collection algo-
rithm for the reactive programming scenario. This approach would be probably
the safest possible as it would transfer the responsibility from the user to the

runtime. This would be just one more step in the direction that is followed by most

of the modern high-level programming systems (where garbage collection automa-
tically reclaims unused passive objects). However, implementing a GC algorithm
isn’t a solution viable from the practical point of view.

Instead, we’ll present a mental framework that makes reasoning about the
problem easier and allows us to design a correct implementation of standard F#
combinators. Since users don’t (usually) need to provide their own combinators
this solves the problem once and for all without placing any requirements on the

side of the user.

3.2 Pattern matching on events

One way to encode more complicated patterns of waiting for events is to use a

combinator library. This technique is used by Concurrent ML when expressing

synchronization on events. The benefit of this approach is that it doesn’t require

Chapter III: Approach and problem description

49

any language extension, because combinators are just functions or custom opera-
tors. On the other hand, we find this solution somewhat cumbersome to use.

Our solution is to design a syntax based on pattern matching, which is a fami-
liar construct in functional languages. The user can match on multiple events and
can provide multiple clauses. A clause can be triggered only when the required
events produce some value and when the value matches the required pattern. This

way, we don’t get a fully general language for specifying combinations of events,
but we get a simple and easy to use solution that works very well in most of the
practical situations.

One problem with languages based on Join calculus or with Manticore is that
they are very specific and support only a single programming model. We believe
that this is the reason why these techniques aren’t (so far) used by mainstream
languages. To avoid the danger of being too specific, we design an extension that is

general purpose and can be used not only in the reactive programming scenario,
but also for various concurrent programming models. In particular, we’ll show that
it can be used for encoding Manticore-style working with futures and concurrency
model based on the Join calculus.

3.3 Event builder computations

When using the imperative programming model based on asynchronous work-

flows, we need to explicitly construct an event and then trigger it imperatively

from a workflow (which itself has to be imperatively started). To provide a more

straightforward way for constructing events imperatively, we design a language

based on the F# computation expression syntax.

We call the construct event builder computation and the result of using it is a

value of type IEvent<'a> and a running process that can trigger it. Eevent builder

computations have the following properties:

• Yielding values. Event builder computations provide the yield construct for
triggering the constructed event. This is similar to the lift primitive of

Imperative streams and similarly to imperative streams, our yield constructs
represents the return operation of a monad.

• Imperative monad. Our computation is based on the computation expression

syntax but, strictly speaking, doesn’t conform to any of the common mathema-
tical structures that are usually used with computation expressions. The moti-
vation for this is that our bind operation implements imperative waiting for the

first occurrence of an event, which breaks some of the usual monad laws.
However, we believe that our type of computation is interesting on its own.
We’ll establish a set of laws that hold about it and present another useful
example of this type of computation.

• Semi-discrete time. Our programming model is neither synchronous (as in
synchronous languages or Imperative stream), nor based on the continuous

time (as in FRP). We develop a notion of semi-discrete time that makes it pos-
sible to express the fact that a reaction to an event may trigger multiple events
in response, but that makes the model deterministic without relying on sophi-

sticated implementation techniques (such as interval analysis in FRP).

Chapter III: Approach and problem description

50

To briefly summarize the most important points of our approach, we’ll conclude
the chapter by looking at a basic example that demonstrates several of the impor-

tant aspects discussed in this section.

4. Sample solution

To demonstrate the approach developed in this thesis, we’ll look at one part of an
application for drawing rectangles. This is an interesting problem because the
application needs to react to several combinations of events. When discussing
Reactive Extensions for .NET, we implemented a part that is responsible for an

immediate feedback when drawing. Here, we’ll look at a different component.

We’ll implement an event that triggers once after the user finishes drawing a

rectangle. In response to this event, we could for example store the rectangle in a
list of all drawn shapes. Note that this is a part of a larger example that is discussed
in Chapter VI, so other components of the application will be discussed later. To
make the example more interesting, we also handle cancellation of the drawing.
When the user starts drawing (by pressing the mouse button) and then hits the Esc

key before releasing the button, the rectangle will be ignored:

1: let rectangles =
2: let rec loop() = event {
3: let! down = form.MouseDown
4: match! form.MouseUp, form.KeyDown with
5: | !up, !ke when ke.KeyCode = Keys.Escape ->
6: yield! loop()
7: | !up, _ ->
8: yield Rectangle(down.X, down.Y, up.X, up.Y)
9: yield! loop() }
A: loop()

The expression declares an event of type Event<Rectangle> named rectangles. The

event will be triggered when the user successfully enters a rectangle. To construct

the event, we use event builder computation that uses a recursive function named
loop (line 2). The computation first starts by waiting for the first occurrence of the
MouseDown event (line 3). When the event occurs, we need to wait for the MouseUp

event, but we also need to handle the case when Esc key was pressed in the mean-

time. This can be implemented using our extension that allows us to write pattern
matching on events.

We match on the MouseUp and the KeyDown events (line 4). The first clause (line
5) can run only when the KeyDown event fires carrying a value representing the Esc
key and when the MouseUp event fires (in an arbitrary order). The second clause

(line 7) requires only the occurrence of MouseUp event. This means that when the

MouseUp event fires, we can always select one of the clauses to continue (and
cancel the other). If the Esc key was pressed in the meantime, we select the first

clause, because our extension preserves the semantics of ML pattern matching
where the order of clauses is important.

When the Esc key was pressed, we recursively continue looping without gene-
rating a rectangle (line 6). If the user draws a rectangle without clicking Esc, then

Chapter III: Approach and problem description

51

we use the yield construct to trigger the constructed event (line 8) with the newly
created rectangle as the argument and then continue looping to wait for another

MouseDown event. The example shows the following aspects of our approach:

• We demonstrated how the event builder computations look. The notable

aspects are that we can use let! construct for waiting for a single occurrence of
an event and that we can use the yield construct to trigger the constructed
event. The fact that we’re waiting only for a single occurrence of an event (or a
first viable combination of events) means that the typical pattern used when

writing a computation is to use recursive functions (that are suitable for
encoding state machines).

• Our approach is imperative, which means that the computation needs to reach

the let! construct first, in order to handle the next occurrence of an event.
However, we guarantee that (under some well-defined conditions) the proces-
sing of the reaction will complete before the next event can occur. This is the

key idea behind our concept of semi-discrete time.

• Finally, the example also demonstrated generalized pattern matching on events.
We’ve seen that it can be used for specifying which events must occur before a

clause can run and the example also shows that we can specify some condition

on the value carried by the event. We believe that the above example shows that
pattern matching syntax is more convenient than a solution based on

combinator libraries.

 52

Chapter IV

Garbage collection for
reactive programs

In this chapter, we focus on the problem of garbage collection in the reactive prog-

ramming scenario. For events, we need to consider not only whether the event
value is reachable, but also whether it can have any effect. An incorrect treatment
can lead to unexpected behavior and can cause memory leaks when combining the

two styles of reactive programming. In particular, the key contributions of this
chapter are the following:

• We state which events are garbage and show that this definition is dual to the

notion of garbage for objects. We compose these two concepts into a single one

that is useable for an environment containing both events and objects (Section

2). To build a better intuition, we present a formal algorithm for garbage
collection (Section 3) in this environment.

• We present an implementation of combinators for declarative event-driven

programming in F#, which does not suffer from memory leaks (Section 4) and

we show how it follows from our formal model (Section 5).

Our approach is pragmatic, so we target mainly established platforms. We aim to
show how to develop a correct, memory-leak free reactive library without
modifying the garbage collection algorithm and using only features available at

most of the platforms. The GC algorithm presented in this chapter serves mainly as

a useful mental model for reasoning about the problem.

1. Problems with mixing styles

We already briefly introduced the problem that appears when we try to mix the
declarative and imperative styles in Chapter III. We discuss it in a more detail in

this section, but first, we briefly introduce some aspects of our programming
model that are important for understanding how to treat events with respect to
garbage collection.

1.1 Event-based programming model

In our reactive library, events are values like any other. In the formal model, we’ll
distinguish between these two constructs. This allows us to treat objects and events
differently in the garbage collection algorithm. This is desirable as events are in

many ways special.

Chapter IV: Garbage collection for reactive programs

53

Private references. One notable property of events is that all references to other
events or objects are private. They are captured in a closure and cannot be
accessed by the user of the event. This has an important practical implication for

our implementation. If an event e1 references event e2 and object o1 references e1,
we cannot directly access the event e2 from code that uses o1.

Created by combinators. When developing the reactive programming library,

we’ll use the described garbage collection techniques only for collecting events
that are created by declarative event combinators. Notably, due to the limited set
of combinators, this guarantees that there won’t be any cyclic references between
events. Our formal model (Section 4) is fully general, but our reactive library

(Section 4) takes advantage of this simplification. In the absence of cycles, we can
safely use a variant of reference-counting in the library implementation.

Side-effects. Our programming model can be embedded in an impure functional

language, so the predicates provided as parameters to combinators (e.g. Event.map)
may contain side-effects. It is not intuitive when and how often the side-effects
should happen, so they are discouraged. However, we make the following very
weak guarantees that are fulfilled by both implementations discussed in this

chapter as well as [5]:

• When a handler is attached to an event created by a combinator with an

effectful predicate, the side-effect is executed one or more times when the

source event occurs.

• When no handler is attached to the event, the effect may be executed zero or

more times when the source event occurs.

Next, we’ll explore an example that motivated the work presented in this chapter.

It will clarify which events should be garbage collected.

1.2 Disposing processing chains

It is possible to implement event combinators using a very simple pattern6. In this

pattern, each combinator creates a new event (a stateful object that stores a list of
event handlers) and registers a handler to the source event that triggers the
created event:

1: let map f (src : IEvent<_>) =
2: let ev = new Event<_>()
3: src.AddHandler(Handler(fun x ->
4: ev.Trigger(f x)))
5: ev.Publish

The listing shows the Event.map combinator. It registers a handler (lines 3, 4) to the
source event and when the event occurs, it applies the function f to the carried
value and triggers the created event. As we can see, it never unregisters the han-

dler that was attached to the source event using the AddHandler member.

Let’s demonstrate what exactly happens when we create an event processing
chain using several combinators, add an event handler, wait for the first occur-

6 This pattern has been used in F# libraries including version 1.9.7.8, which is the latest version

available at the time of writing this thesis.

Chapter IV: Garbage collection for reactive programs

54

rence of the event and then remove the handler. This behavior is just a special case
of what we can write using the AwaitEvent function:

1: let awaitFirstLeftClick src k =
2: let clicks = src.MouseDown
3: |> Event.filter (fun m ->
4: m.Button = MouseButtons.Left)
5: |> Event.map (fun m -> (m.Y, m.X))
6: let rec hndl = new Handler<_>(fun arg ->
7: clicks.RemoveHandler(hndl)
8: k arg)
9: clicks.AddHandler(hndl)

The function takes a continuation k and a source event src as parameters. It uses
event combinators to create an event that is triggered only when the source event

was caused by a left click (lines 2 to 5). On the line 6, we create a handler object
(using F# value recursion [20]). When it is called, it unregisters itself from the
event and invokes the continuation (lines 7, 8). Finally, the function registers the
handler returning a unit value as the result.

Figure 6. References in the processing chain after it is created (A); when

references from window are lost (B); after the handler is removed (C);

events are shown as circles, objects as diamonds; window is marked as a
root object; white color means that object or event is not referenced (and
will be garbage collected)

The Figure 6 shows objects and references between them, which are created by
running the previous function. When constructing the event clicks, each
combinator creates a reference from the source event to the newly created event
(by registering an event handler). The initial situation, right after running the line

7, is shown in (A). The executing program still keeps references to the local values
of the function (hndl and »map«) and the closure of the hndl value references the
event »map« (captured because of the reference on line 5).

We can see what happens when the function returns in (B). The stack frame
for the call is dropped, so the root object loses direct references to the constructed

event and the handler. At this point, we don’t want to dispose any part of the chain!
It can still do something useful (run the handler and trigger the continuation). As

Chapter IV: Garbage collection for reactive programs

55

the diagram shows, there are still references from window to all events, so the
implementation above behaves as we need.

The situation displayed in (C) is more interesting. When the event occurs, the
handler unregisters itself from »map«. There are no other references to hndl and it
can be garbage collected. The rest of the processing chain isn’t disposed, because it
is still referenced from the root. Arguably, the chain cannot do anything useful

now, as there are no attached handlers. When the source event occurs, it will only
run the specified predicates, which is allowed, but not necessary (as discussed in
3.1). More importantly, when we add and remove handlers in a loop (e.g. the
example in section 2.2), we’ll create a large number of abandoned events that

cannot be garbage collected. Obviously, this isn’t the right implementation.

2. Garbage in the dual world

Due to the inversion of control, event-driven applications are in a way dual to
“control-driven” applications. To our knowledge, this duality hasn’t been described
formally in the academic literature, but it has been observed by Meijer [5]. He
explains that a type representing events is dual to a type representing sequences.

Interestingly, we can use the principle of duality when talking about garbage

collection in the reactive scenario as well.

2.1 Garbage in worlds of objects and events

In section 1.2, we’ve discussed a case where an event intuitively appeared to be

useless, but wasn’t disposed by the GC, because it was still referenced. This

example suggests that we need a different definition of “garbage” for reactive
applications. Formally, we model references between objects as an oriented graph ^ = (_, *) consisting of vertices V and edges E. A set of roots ` ⊆ _ models objects

of a program that are not the subject of garbage collection (such as objects

currently on the stack etc).

A vertex % ∈ _ is object-reachable if and only if there exist a path (%c , … , %e, %) where %c ∈ `. Objects that are garbage are those that are not object-reachable. (1)

Let’s now focus on events. In section 1.2, we stated that events are useless if they

cannot trigger any handler. We’ll define this notion more formally. We take leaves g ⊆ _ to be events with attached handlers. Then the event value is useful if we can
follow references from it and reach one of the leaf events (meaning that triggering

of an event can cause some action). If we were in a world where everything is an
event and the events are triggered from the outside, then we could use the fol-

lowing definition:

A vertex % ∈ _ is event–reachable if and only if there exists a path (%, %c , … , %e) where %e ∈ g. Events that are garbage are those that are not event-reachable. (2)

We can observe that the definition of event-reachable (2) is equivalent to the

definition of object-reachable (1) in the inverted reference graph (taking leaves L as

Chapter IV: Garbage collection for reactive programs

56

roots R). This explains why we were referring to the duality principle in the
introduction of this section. The reactive world isn’t dual only when it comes to
types (as noted by Meijer), but also when it comes to the definition of garbage.

2.2 Garbage in the mixed world

In practice, we’re working with an environment that contains both objects and
events. When collecting garbage, we want to mix the two approaches outlined in

the previous section. We want to follow the object-reachable definition for objects
and event-reachable definition for events.

Combining the two notions requires some care. We will take the roots R of the

graph to be the root objects, but how can we incorporate events? In this section,
we’ll look at an intuitively clear way to define collectability for a mixed world. We
start by distinguishing between objects and events:

Let vertices _ be a union of two disjunct sets _2 ∪ _c where _2 is the set of events and _c is the set of objects.
Events in the mixed environment aren’t triggered from the outside, but by other

events or objects that reference them. This means that events that are not object-

reachable are also garbage in the mixed world. A more subtle problem is deter-

mining leaf events that “are useful”. We will explain the definition shortly:

We define the set of leaf events T as follows:

l = m% ∈ _2 n∃vo ∈ _c: %c is p3q"Q,--".Qℎ.3/"

and s(%c , %) ∈ * ∨ (%, %c) ∈ *u v

(3)

An object or event % ∈ _ is collectable if and only if it is not object-reachable given roots R or if it is an event (% ∈ _2) and it is not event-reachable given leaves T. (4)

As already discussed, we check object-reachability of both events and objects (4).

For events we apply an additional rule, using a constructed set of event leaves T.
The elements of T in (3) are defined as a disjunction of two conditions. The first
one specifies events that are directly referenced by some object. In this case, we

mark them as “useful”, because they can be directly accessed by program and the

program may intend to register a handler with them at some later point. The
second condition specifies events that directly reference some object, which

corresponds to the fact that there is some registered event handler.

The definition is demonstrated by Figure 7. As we can see, all events directly
referenced by objects or referencing an object (handler) are marked as leaves.

Using the first part of (4), we mark objects and events in the lower part as garbage,
because they are not referenced from the root object. The upper part demonstrates

events that become garbage due to the second part of the definition. They are

referenced from the root object, but there is no path leading to any leaf event.

Chapter IV: Garbage collection for reactive programs

57

Figure 7. Mixed garbage definition. (A) shows initial reference graph that

mixes objects (diamonds) with events (circles); root objects and
calculated leaf events are marked with rings. (B) shows which objects and
events are garbage (filled with white color).

The next section describes a garbage collection algorithm for the mixed envi-
ronment of objects and events, taking advantage of the aforementioned duality.

3. Garbage collection algorithm
Implementing a specialized GC algorithm is a difficult task in practice, so we in-

stead describe how to build an algorithm using a standard GC algorithm for collec-
ting objects that are not object-reachable. Such algorithms are already well-under-

stood and are implemented and optimized on many platforms.

3.1 Constructing the algorithm

The input of our algorithm is a reference graph ^ = (_, *) with a set of root objects `. It works in three steps. The first two steps perform pre-processing dealing with

the integration of environments and the third step uses the duality principle.

Pre-collection. As already discussed, only events that are referenced by an object

or another event can be triggered. As a result, we first need to collect objects and

more importantly also events that are not object-reachable using (1). This corres-

ponds to running a GC algorithm on the original reference graph containing both
events and objects. This can be described as follows:

_yz2 = =% ∈ _|% is p3q"Q,--".Qℎ.3/"}

(_yz2, *yz2) = ^yz2 = ^[_yz2] (5)
The graph ^yz2 is a subgraph of G induced by the reduced set of vertices _yz2.

We’ll also need a reduced set of object vertices _cyz2 = _yz2 ∩ _c and event ver-

tices _2yz2 = _yz2 ∩ _2. We can easily see that the constructed graph doesn’t con-

tain any collectable objects or events as defined by the first part of (4).

Mock references. From this point, we want to treat events separately from
objects, so events will no longer keep other objects alive by referencing them. To

make sure that all object-reachable will remain object-reachable we add mock refe-

rences to simulate chains of events. We’ll add references from event sources
(objects that reference events) to all event handlers (objects that are referenced by
events) that are reachable by following only event vertices. More formally:

Chapter IV: Garbage collection for reactive programs

58

*yz2�
= *yz2 ∪ �(%, �)�%, � ∈ _cyz2

: 02(%, �)� (6)

02(%, �) = ∃0.,ℎ(%, %J, … , %e, �): $ > 0 ∧ ∀&: %1 ∈ _2yz2
The predicate pe states that there is a path between two vertices, which visits only
events and its length is at least two. By adding edges to the graph (6), we ensure
that all event handlers that can be triggered by an event will be referenced. Note
that these event handlers correspond to the second part of the condition specifying

leaf events T in the definition (3).

Duality principle. The previous two steps performed pre-processing that is
necessary when we want to integrate events and objects. Now we can use the key

idea of this article, which is the duality between the definitions of object-reachable
and event-reachable. We construct a transformed garbage graph ^∗:

^∗ = s_yz2 , ='(")| " ∈ *yz2�
}u where (7)

'(�, %) = m(�, %) �ℎ"$ � ∈ _cyz2
(%, �) �ℎ"$ � ∈ _2yz2 �

The function d reverses references leading from an event to any other vertex. It
unifies the notion of object-reachable from (1) and event-reachable from (2). This

allows us to handle the second part of the collectability definition (4) using a stan-

dard GC algorithm for passive objects. Finally, we run it on the garbage graph ^∗:
_�1e = =% ∈ _yz2|% is p3q"Q,--".Qℎ.3/" from ` in ^∗} (8)

The definition (8) gives us the final set of objects and events that are not garbage.

To get the final reference graph, we take the result of pre-processing (5) and take a

subgraph induced by _�1e.
3.2 Garbage collection example

Before we discuss the correctness of the algorithm, let’s look at Figure 8, which

demonstrates the construction steps using a minimal example with most of the
important situations.

The diagram (A) shows an initial state with a root object referencing an event
source. The source can trigger a MouseDown event, which is propagated through the
chain to a handler. During the pre-processing, we run garbage collection to remove

events that cannot be triggered, which removes the evt1 event and we also add a

mock reference from source to handler, which allows us to reverse references of
the chain (B).

Finally, (C) shows what happens after reversing the edges that lead from

events. Thanks to this operation, we start applying the dual rule to events, so all
events that cannot trigger any leaf event become garbage (e.g. evt2 in the diagram).
However, thanks to pre-processing, we don’t affect collectability of non-events.

The algorithm intuitively follows the definition, so it shouldn’t be difficult to be-
lieve that it is correct. However, the following section presents a more formal proof
of the algorithm correctness.

Chapter IV: Garbage collection for reactive programs

59

Figure 8. Graph construction. Objects are shown as diamonds and events
are displayed as circles; dashed lines are references to events and objects

that were garbage collected.

3.3 Correctness of the algorithm

To show that the algorithm is correct, we analyze two cases. First, if an object or an
event is collectable, it will be collected by our algorithm and second, if an object or

an event is not collectable, our algorithm won’t collect it.

Case I.: Collectable. The definition (4) describes two cases in which an object or

an event % ∈ _ is collectable. First, it may not be object-reachable, which means

that there is no path from the roots ` to it. In this case, our algorithm will collect %

in the first pre-processing step (5), which simply collects all vertices that are not

object-reachable. The second case is more interesting. An event %2 ∈ _2 is collect-

able if it is not event-reachable, meaning that there is no path from it to any leaf

event from l. This means:

There isn’t any path7 from %2 to an event that is referenced by an object (first condition in (3)) or to an object (second condition in (3)). (9)

Now, we need to show that %2 will not be object-reachable after we reverse the

reference graph in (7).

• Firstly, all existing edges leading to %2 are from events (otherwise %2 would be

in l), so they will be reversed and can’t be a part of a path leading from any root

object to %2 .

7 This may also include paths of length 1 (with only a single vertex).

(A) Initial state

root
source

handler

MouseDown

»join«evt1

evt2

(B) Preprocessing

(C) Duality construction

root
source

handler

MouseDown

»join«
evt1

evt2

root
source

handler

MouseDown

»join«evt1

evt2

Chapter IV: Garbage collection for reactive programs

60

• Secondly, all edges leading from %2 will be reversed, which creates new paths
leading to %2 . However, due to (9), all new paths will be only from events, and so
they also cannot lead from any root object.

In summary, if the object or event was collectable, it will be collected in pre-
processing. If an event wasn’t event-reachable (but was object-reachable) it will not

be object-reachable after we reverse the references and will be collected in (8).

Case II. Not collectable. On the other hand, let’s take any object or event % ∈ _
that is not collectable. First of all, there must be some path to % from some root

object, which means that it is object-reachable. As a result, it won’t be garbage
collected in the first pre-processing step (5), where we ensure that all objects and
events are reachable. For the rest of the algorithm, we need to distinguish between
two cases: when % is an object and when % is an event. In the first case, % ∈ _c and
there is a path to it from some root object. We want to show that after reversing
references in (7) there will still be a path to object %.

We take the original path and replace any sub-path (�, %J, … %e, �) such that ∀&: %1 ∈ _2 and �, � ∈ _c with the mock edge (�, �). The mock edge exists, be-cause the path matches the predicate 02(�, �) from (6).
The newly constructed path consists only of edges between objects, and so it

will not be affected by any alteration of edges between events. As a result the ob-

ject % won’t be collected in (8). In the second case we have % ∈ _2 that is not collect-

able, so there is a path from % to some leaf event - ∈ l as defined in (4). After

reversing the references, there will be a path from - to %. Now, we need to show
that - won’t be object-collectable.

• If the leaf event / ∈ l was originally referenced by some object-reachable object % ∈ _c, it will be still be referenced after reversing references (the edge (%, /)
won’t be modified). Moreover, % will still be object-reachable as shown in the
first sub-case of this section.

• If the leaf event / ∈ l originally referenced some object-reachable object % ∈ _c,
it will be referenced by this object after reversing references (because the edge (%, /) will be reversed). Just like in the previous point, % will still be object-

reachable.

3.4 Removing events during collection

As noted earlier, we use the formal algorithm mainly as a formal model and it
motivates the implementation of a reactive library in the next section, but first we
briefly discuss an aspect that would be important for an actual implementation of

the algorithm.

When removing an event from the memory (for example evt2 in Figure 8),
there won’t be any references to it from objects, because that would make the

event a leaf event and it wouldn’t be collected. However, it may be referenced

from other events. To avoid dangling references, we need to deal with these
possible references when collecting the event.

Ideally, the garbage collector would have some knowledge about events and it
could remove the reference to the collected event from the source event (for

Chapter IV: Garbage collection for reactive programs

61

example if an event in the actual system contained a list of referenced events).
Another approach would be to redirect the reference to a special null event, which
doesn’t perform any action when triggered.

4. Implementing the reactive library
The algorithm proposed in section 3 has the advantage that it can be built on top of
a standard GC algorithm, but we wanted to avoid modifying the runtime alto-

gether. In this section, we discuss an implementation of combinators which is in-
spired by the previous discussion and implements almost identical behavior.

As discussed in section 1.2, a naïve implementation of event combinators

registers a handler to the source event (using the AddHandler function). It keeps a
mutable list of handlers and returns a new IEvent<'a> value, which adds or
removes handlers to or from this internal list. When the source event fires the
combinator chooses whether to trigger the handlers and also calculates a value to

use as an argument. This implementation is faulty, because it never removes the
handler from the source event.

4.1 Implementation requirements

Let’s briefly summarize the requirements for the new implementation. Section 1.2

already discussed the most important aspect:

• Collectable event chains. When the user unregisters all previously registered

handlers and when there is no other reference to the event value, the entire

processing chain should be available for garbage collection. This corresponds to

the definition of garbage for events from section 2.

• No explicit referencing. When there is a handler attached to the event value

representing the chain, the chain shouldn’t be collected as the handler can still

perform some useful work.

• Stateful. As we’ll clarify in section 3.2, the current semantics of event combina-

tors is stateful, meaning that the mutable state of a combinator can be observed

by multiple handlers. We want to preserve this semantic property.

• Composability. When we create a chain using a sequence of pipelined Event.-

xyz transformations, we should be able to freely split it into several indepen-

dent pieces (e.g. we should not require adding a special combinator to the end

or the beginning of the event processing pipeline).

The original implementation didn’t meet the first requirement. However, when
designing a library that satisfies the first condition, it is easy to accidentally break
another one. The requirement for stateful combinators deserves more explanation.

4.2 Stateful and stateless model

Certain combinators maintain a state. The same state is shared by all handlers
attached to a single event value. We can demonstrate this behavior using one more

example that counts clicks:

1: let counter = btn.MouseDown
2: |> Event.map (fun _ -> 1) |> Event.scan (+) 0
3:
4: let rec loop() = async {
5: let! num = counter |> Async.AwaitEvent

Chapter IV: Garbage collection for reactive programs

62

6: printf "count: %d" num
7: return! loop() }

We take the MouseDown event and project it into an event that carries the value 1

each time the button is clicked. The stateful combinator Event.scan uses the second
argument as an initial state (line 2). Whenever the source event occurs, it uses the
function provided as the first argument (in our case +) to calculate a new state
from the previous one and the value carried by the event. The returned event is
triggered (carrying the current state) each time the state is recalculated.

Next, we switch to the imperative event handling style and implement a
processing loop that prints the current count whenever counter event fires. The

loop repeatedly attaches a handler to the event (line 5), so the code works only if
the state stored by the event is shared between all event handlers.

Let’s compare the two possible implementations of event combinators that

maintain a state between two occurrences of the event (such as Event.scan):

• Stateless. In this model, we create a unique instance of the state for each

attached event handler. This model keeps the code referentially transparent,
but it works well only in a purely declarative scenario. If we ran the example

above using a stateless implementation, it would print 1 for every click, which is

somewhat unexpected.

• Stateful. The state of an event created by the combinator is shared between all

handlers. This approach is consistent with the imperative event handling. And

finally, as the previous example demonstrates, the two styles work very well

together in this setting.

The stateless approach has its benefits, especially for pure languages. It has been

used in Haskell [2] and is also being used by the Reactive Framework [5], which

builds on LINQ [7]. We’ll follow the pragmatic ML tradition and use the stateful

implementation. The next section shows an implementation inspired by the formal

algorithm that follows all the technical requirements.

4.3 Constructing event chains

We’ll discuss the implementation by looking at an example similar to the pro-

blematic case from section 1.2, but we’ll also analyze other important situations.

We start by constructing an event chain and a handler that we’ll later attach to the
composed event:

1: let clicks = src.MouseDown
2: |> Event.filter (fun m ->
3: m.Button = MouseButtons.Left)
4: |> Event.map (fun m -> (m.Y, m.X))
5:

6: let hndl = new Handler<_>(...)

Figure 9 (A) shows what happens after running this code. Our implementation

doesn’t attach any event handler to the original event source. Each event only

keeps a reference to the source, so that it can attach the handler later. We call this
lazy initialization. If we compare this diagram with the references in the naïve imp-

lementation (Figure 6, A), we can see that edges leading from events are reversed,
which corresponds to our construction in (9).

Chapter IV: Garbage collection for reactive programs

63

Figure 9. Implementation using reversed links. The state right after cre-
ating an event chain (A); after registering a handler, forward references

are created (B). Removing the handler also removes forward references. If
we also lose direct references from the program, the entire chain becomes

collectable (C).

Adding event handlers. Now that the chain is initialized, let’s look at what

happens when we register hndl as a handler for the event constructed by the map
function (displayed as »map« and aliased by the clicks value). This can be done by
calling clicks.AddHandler(hndl).

The state after adding the handler is displayed in Figure 9 (B). There is a new

link from the »map« event to the hndl value. This represents the fact that the event

keeps a reference to the handler, so that it can trigger the handler. More interes-

tingly, there are also new links from the event source along the entire event chain

up to the »map« value. This is a result of the lazy initialization.

When we register the handler, the event checks whether the number of
registered handlers was originally zero. If that’s the case, it means that it hasn’t yet

registered an event handler for its source, which is the »filter« event in the

diagram. The »filter« event performs the same check and possibly also registers

event handler with its source. This way, the registration is propagated up to the

primary source, which is an external event.

Thanks to the propagation, the call to AddHandler adds all the necessary for-

ward references, so when the primary source event (MouseDown) occurs, all the event
transformations will trigger and the provided handler will be called. Note that
before adding the event handler to the constructed clicks event, the transfor-
mations wouldn’t be called (and none of the functions we provided as an argument
to Event.map and other combinators would run).

4.4 Removing handlers and losing references

There are several situations that can arise after we add an event handler. In this

section, we’ll analyze interesting combinations of removing the event handler and

losing references to the chain.

Chapter IV: Garbage collection for reactive programs

64

Losing references. If the program returns from a routine that constructed the
chain, it loses references to both the handler and the chain. As follows from our
definition of garbage and the requirements (Section 4.1), we don’t want to dispose

the chain, because if the source event fires, it can trigger some useful handler.

We can see that our implementation behaves correctly in this case. Even if we
lose the direct references to »map« and hndl, there are still references from the

source to the handler. The links that keep the handler “alive” are forward refe-
rences, which were created by propagating the call to AddHandler.

Removing handler. If we unregister the handler, but keep a reference from the

program to the constructed event chain, the event checks whether the number of
handlers reached zero (after the removal). If yes, it propagates the removal and
removes its handler from its source event. Again, this may continue up to the
original source event. This is a valid approach, because if there are no event

handlers to trigger, we don’t need to listen to the source.

The state of the event chain after adding and removing a single handler is
exactly the same as the initial state after creation. In the diagram, we return back

to the state in Figure 9 (A). This means that the whole event chain is still in a

usable state. As long as we keep a reference to the object representing the chain

»map« we can again attach a handler and start listening to the event.

Removing handler and losing references. Now, let’s look at the situation that

motivated the work presented in this chapter. What if we remove the event han-

dler and then lose references to the object representing the event chain (or remove

handler after losing references)? In this case, the event chain becomes garbage. No

one is listening to it, so it doesn’t need to fire and we cannot attach an event han-

dler to the chain, because we don’t keep any reference to it. The original imple-

mentation of combinators is deficient in this case, because it keeps references from

the event source to the end of the event chain, even though there are no attached

handlers.

Our implementation using reversed links behaves differently. After removing
the last handler, the removal is propagated, so there are no forward references in

the chain. As shown in Figure 9 (C), the only remaining references are reverse

links from the end of the chain. We don’t keep any reference to the chain, so all

events that form the chain become garbage and can be collected.

The same situation occurs if the handler references the »map« value and
unregisters itself, which was our original motivation. Until it does so, there are for-
ward references, which keep the event chain alive, but once the last handler is

removed, the removal is propagated and the chain is garbage collected.

4.5 Implementing sample combinator

In this section, we demonstrate our implementation of event combinators, by exa-
mining the map combinator. We already explained several aspects:

• Due to lazy initialization of event chains, no handler is registered with the

source event when the combinator is called.

Chapter IV: Garbage collection for reactive programs

65

• When the first handler is added to an event constructed by the combinator, the
combinator adds a handler to its source event.

• Similarly, when the last handler is removed, the combinator also unregisters
itself from the source event.

The implementation directly follows these rules. It is more complicated than the
version in section 1.2, but it can be simplified by composing combinators using

primitive higher-order functions.

1: let map f (source:IEvent<_>) =
2: let list = new ResizeArray<Handler<_>>()
3: let this = new Handler(fun arg ->
4: for h in list do h.Invoke(f arg))
5: let add h =
7: list.Add(h)
8: if list.Count = 1 then
9: source.AddHandler(this))
A: let remove h =
B: list.Remove(h)
C: if list.Count = 0 then
D: source.RemoveHandler(this))
E: { AddHandler = add; RemoveHandler = remove }

The combinator first initializes a mutable list of registered handlers (line 2) and a
handler (line 3) that will be later attached to the source event. The handler imp-

lements the projection, so when it is called, it iterates over all currently registered

handlers and invokes them with the projected value as the argument (line 4).

On the next few lines, we define two local functions that will be called when

the user adds a handler to the returned event (line 5) and when a handler is remo-
ved (line A). Both of the functions have similar structure. They first add or remove

the handler given as an argument to or from the list attached handlers. Next, they

check whether the change should cause propagation and register with or unre-

gister from the source event (lines 9 and D).

4.6 Relations to standard GC techniques

At this point, it is worth discussing the relations between our implementation and
standard garbage collection techniques.

Reference counting. As noted in section 1.1, our algorithm bears similarity to
reference counting. A well-known problem of reference counting is that it fails to

reclaim objects with reference cycles. We rely on GC implemented by the runtime
when collecting objects or events that are not object-reachable and uses reference

counting to collect events that are not event-reachable. This means that only cyclic
references between events would be a problem. However, as noted in section 1.1,
the set of combinators provided by F# library doesn’t allow creating cyclic refe-

rences between events, so the problem is avoided in our setting.

Weak references. Many runtime environments support advanced features for

controlling the garbage collector, such as weak references and so it seems natural
to ask whether these could be used in our implementation. We consider using
weak references for forward or backward links, but as we’ll see both of these uses
would break the implementation.

Chapter IV: Garbage collection for reactive programs

66

If forward links were weak, the GC could collect events with attached handlers
that perform some useful work (e.g. if we registered a handler with the event
constructed in section 1.2 of Chapter III and then lost reference to the event chain).

On the other hand, if backward links were weak, the GC could collect parts of a
chain before registering the first handler (e.g. the »filter« event in Figure 9 (A)).
This discussion raises some interesting problems for future research.

5. Correspondence with the model
In the previous two sections, we’ve introduced a formal model and an implemen-
tation that is inspired by the model. In this section, we discuss the correspondence
between the algorithm from section 5 and the library implementation.

Figure 10. Formal algorithm and implementation. In the initial state, the

implementation and the formal model give the same result (A). After
registering a handler, the formal model (B) and the implementation (C)

differ, but are equivalent in terms of reachability.

5.1 Duality of event references

When we create an event using a combinator, it only keeps a reference to previous
event of the chain. This corresponds to the formal model, where we reverse all

links leading from an event (7). If we look at a simple case, where none of the pre-
processing steps take place, the formal model and implementation yield exactly the

same result. An example is shown in Figure 10 (A).

Once we attach an event handler to the constructed event, the situation be-
comes more complicated. We’ll discuss this case in 5.2. The other pre-processing
step is collecting unreferenced event values, which we’ll discuss in section 5.3.

Chapter IV: Garbage collection for reactive programs

67

5.2 Mock references

When an event references a handler (object) in the formal model, we add a mock

reference (6) from the event source (an object that references the first event of the

chain) to the event handler (an object referenced by the last event). On the other
hand, the implementation adds forward references by propagating the registration
of the handler back to the source.

The Figure 10 demonstrates what happens in the formal model (B) as well as
in the implementation (C). It shows the situation in which we’re not directly refe-
rencing the event chain and the handler from the program (other cases would be
similar). Even though the diagrams look different, it isn’t difficult to observe that

they are equivalent in terms of collectability of objects.

We argue that the events that are reachable in the formal model thanks to the
mock reference added in the formal model (6) are the same as the events that are

reachable in the implementation thanks to the forward references created thanks
to the propagation of handler registration. We won’t present a formal proof, but we
can demonstrate this informally:

• The formal algorithm, adds a mock reference if there is a path visiting only

events, from a source to a handler (both of them are objects). This mock refe-

rence corresponds to the fact that a handler was registered with the event. In

the implementation, this causes a propagation of handler registration.

(Note that when we reference an event from an object, the situation is different,

because there is a link from the object to the event, but no link in the other

direction.)

• As a result, we need to decide whether events, which become reachable thanks

to mock references in the formal algorithm, correspond to the events that

become reachable after registration propagation in the implementation.

• Let’s take any event chain (event source, one or more events created by combi-

nators and a handler). In the formal algorithm, all events and the handler are
reachable, assuming that the source is reachable. This is the case, because there
is a mock reference to the handler and reversed links from the handler up to the

first event. In the implementation, events are also reachable, because referen-

ces were added along the chain during registration propagation. The handler is
also reachable, because the last event keeps a reference to it.

5.3 Event collection

The first pre-processing step in the formal model guarantees that we will collect all
events that can’t be triggered. In the implementation, there is no feature corres-

ponding to this step. Let’s demonstrate this mismatch using an example:

1: let test() =
2: let form = new Form(Visible=true)
3: form.MouseDown
4: |> Event.filter (...)
5: |> Event.map (...)
6: let evt = test()
7: evt.AddHandler(Handler(fun e -> printf "!"))
8: eventsList.Add(evt)

Chapter IV: Garbage collection for reactive programs

68

When we invoke the function in the code snippet (line 6), it constructs a visible
form and returns an event. We add a handler to the event (line 7), and keep a
reference to it in some global list of events (line 8). When the form is later closed,

the runtime no longer keeps a reference to it, so the form as well as the
constructed event chain should be collected (with the exception of the last event,
which is directly referenced).

However, because of backward references, there is a link from the last event to
all preceding events in the chain, so the entire event chain is kept alive. We don’t
find this limitation a problem in practice. In order to keep the event chain alive, the
user needs to reference the constructed event value, but keeping a list of created

events is rarely done in practice.

Similar situation arises in .NET and can be solved using the “Weak Delegate”
pattern [21]. We provide combinator Event.weak [8] which allows the user to over-

come this problem. This issue is, however, orthogonal to the one that motivated
this chapter.

6. Chapter summary and related work
In this section, we review the related work in the area of garbage collection. We

already discussed related programming models in Chapter II, so we only focus on
the related work that is relevant only to this chapter.

6.1 Garbage collection research

When collecting events, we aim to collect objects and events that we consider as

garbage, but that wouldn’t be collected by the standard GC algorithm. This is
related to research that provides the algorithm with an additional liveness

property and collects not only objects that are unreachable, but also objects that

are not alive. (e.g. [22, 23]).

The question whether we could collect objects matching the definitions in

section 4 using similar techniques is an interesting future research problem that

complements our work. One notable difference is that an event can be considered
garbage even if it can still be triggered. As discussed in 3.3, this problem would
have to be handled carefully in a GC algorithm implementation. Liveness analysis

usually deals with objects that won’t be accessed by the program, but the GC

algorithm fails to recognize this.

6.2 Garbage collection of actors

The Actor model [16] describes concurrent programs in terms of active objects
that communicate using messages, which is in many ways similar to the popular
language Erlang [13]. Our imperative model is related to the actor model – waiting
for an event plays the role of receiving a message and triggering an event

corresponds to sending a message.

Actors face a similar problem, because garbage is defined in terms of the state
of the actor (however, it cannot be expressed using the duality principle as in our

work). Various specialized algorithms for collecting the garbage have been

developed for the actor model [14]. However, the most relevant work is [15],
which describes how to implement garbage collection for actors in terms of

Chapter IV: Garbage collection for reactive programs

69

standard garbage collection algorithm by translating the actor reference graph to a
passive object reference graph. The specific steps performed by the algorithm are
very different, but the general approach of manipulating the reference graph and

using a standard GC algorithm is shared with our work (Section 5).

6.3 Conclusion

In this chapter, we discussed a problem with garbage collection of events, which

emerges when we attempt to mix the declarative and imperative style and is also
present in the current implementation of F# event combinators.

We defined the problem formally by providing a simple definition of collect-

ability for reactive programming model. It combines both objects and events and
benefits from the duality principle. Using this definition, we presented a garbage
collection algorithm, which reclaims all collectable objects and events. The algo-
rithm is based on graph transformation. This technique could be used to reduce

the problem to well known GC algorithms.

However, our implementation aim wasn’t to actually replace a garbage collec-
tion algorithm. Instead, we have shown an alternative implementation of library of

F# event combinators, solely in terms of object references. Our implementation

closely corresponds to the formal model and doesn’t cause memory leaks when
used in an environment that combines both declarative and imperative approach

to reactive programming.

 70

Chapter V

Pattern matching for reactive and
concurrent programming

In this chapter, we show how to extend monadic computations to support pattern

matching on monadic values and we look at several applications of this feature.
The feature discussed in this chapter makes it possible to use pattern matching on
events in the reactive library that we’ll introduce later. However, the extension

presented in this chapter is a general purpose language feature, so we won’t focus
our discussion on reactive programming. The key contributions presented in this

chapter are the following:

• We show that a wide range of reactive and concurrent programming models

can be encoded using a simple reusable language extension for monads that is

based on pattern matching.

Section 2 supports this claim by example. We show a reactive programming

model (section 2.1) inspired by [17, 23]; a concurrent programming model

(section 2.3) based on join calculus [31] bearing similarities to [32, 33]; and a

parallel programming model (section 2.4) based on futures, which can express

some features of Manticore [38].

• Our solution extends monads with two simple operations that are sufficient for

encoding pattern matching on monadic values. We present a generalized

pattern matching construct and show how it can be encoded in terms of those
two operations (Section 3).

We define laws that should hold about the two operations (Sections 4 and 5)
and we observe interesting relationship with commutative monads and show

that our syntactic extension is useful when working with them (Section 4.2).

• An essential aspect of our monadic pattern matching construct is that it

preserves the usual intuition that users have about pattern matching in the ML-
family of languages. We use the basic laws required for the two operations to
prove numerous facts that are useful when reasoning about monadic pattern
matching (Section 6).

We conclude this chapter by discussing several design alternatives that may be

relevant for other languages or other computation types (Section 7). Our work is
built on top of F# computation expressions, but the presented ideas should be
applicable to any language with syntactic support for monads.

Chapter V: Pattern matching for reactive and concurrent programming

71

1. Motivation
We look at several examples that motivate the work presented in this chapter. We
start by looking at an example from reactive programming, which we already

briefly introduced in Chapter III. However, we’ll show the problem in a somewhat
different context. Then we’ll show that pattern matching on monadic computations
could also be useful when working with lists and finally, we’ll look at the concur-
rent programming scenario.

1.1 Reactive programming

In Chapter III, we introduced an imperative programming model based on asyn-
chronous workflows and we demonstrated the Async.AwaitEvent primitive, which
can be used to wait for an occurrence of an event inside asynchronous computa-
tion. In this section, we won’t use the overloaded version of Async.AwaitEvent for
waiting on the first of multiple events, but we’ll show how to encode similar thing
using combinator library more explicitly.

The following example is, once again, taken from an application for drawing
rectangles. After pushing the button, we enter a loop in which we need process two
mouse events - mouse move, to update the rectangle, and release of the button, to

finish drawing:

1: let rec drawing() = event {
2: let! e = Event.combine w.MouseMove w.MouseUp |> Async.AwaitEvent
3: match e with
4: | Choice1Of2(m) -> redraw (m.X, m.Y)
5: return! drawing()
6: | Choice2Of2(m) -> return m.X, m.Y }

The function drawing is called after the user presses the mouse button. It starts by

waiting for either MouseMove or MouseUp event (line 2). To do this, we use a combi-

nator Event.combine that creates an event which is triggered whenever any of the

argument triggers. The combined event is passed to the Async.AwaitEvent function,
which creates a workflow waiting for the first event occurrence. The combined

event carries a discriminated union, so we can use pattern matching to determine
which event happened. For MouseMove, we redraw the rectangle (line 4) and

continue drawing (line 5). For MouseUp event, we return the coordinates of the end

point (line 6).

The important point is that we need to leave the computation expression sub-

language when waiting for the first of two events. If we wrote two subsequent let!

bindings, the code would first wait for the first event and then wait for the second
one, so it would only continue after both of them would occur. Moreover, what if
we wanted to add a third case, where we’d wait for KeyDown event, but only when

the pressed key was Esc to cancel the drawing?

This seems like a perfect task for pattern matching, but it cannot be expressed
directly, because we need actual values before we can use pattern matching.

Currently, we’d have to use event combinators such as Event.combine.

Chapter V: Pattern matching for reactive and concurrent programming

72

1.2 Working with lists

Another frequently used type of computation is the well-known List monad. We
can use it to model non-deterministic computations or for writing general list

processing code. It isn’t surprising that for some operations, we again need to leave
the sub-language provided by computation expressions. To calculate non-zero
differences between elements of two lists occurring at the same position, we need
to use the List.zip function:

1: let calcDiffs xs ys = list {
2: let! x, y = List.zip xs ys
3: match x, y with
4: | x, y when x <> y -> return y - x
5: | _ -> return! [] }
6:
7: > calcDiffs [5; 5; 1] [5; 4; 8];;
8: val it : [-1; 7]

The function combines two input lists (line 2) and uses the combined list as an
argument for the bind operator. This means that the pattern matching (line 3) will
be executed for all pairs from the combined list. If the two values differ, we return
a single result containing the difference (line 4). If the values are equal, we don’t

return any value (line 5).

The List.zip function is in some sense similar to the previous Event.combine

combinator. It allows us to combine two monadic values (List<'a> or Event<'a>

respectively) into a single one. The difference is that Event.combine gives us only a

single unwrapped value at the time (either from the first or from the second

monadic value) and List.zip gives us both values as a tuple.

In a way, Event.combine corresponds to pattern matching with two clauses,

both of them with one value pattern and one underscore pattern (representing the

fact that we don’t need the value). On the other hand List.zip corresponds to

pattern matching with only a single clause with two value patterns (meaning that

we require both values). However, List.zip can’t express the fact that a value is
missing in one list, so it requires lists of equal lengths. If we for example want to

pad a shorter list with values from a second list starting at the index where the

shorter list ends, we have to write a recursive processing function:

let rec padWith vals defs =
 match vals, defs with
 | v::vs, _::ds -> v::(padWith vs ds)
 | _, ds -> ds

> padWith [11; 12; 13] [1 .. 5];;
val it : [11; 12; 13; 4; 5]

The underscore pattern provides a natural way for expressing that a value is not
available, however this cannot be written in the language provided by computation
expressions.

1.3 Concurrent programming

Our last motivation is based on Join calculus [31], which provides a declarative
way for expressing synchronization patterns. Joins have been used as a basis for

Chapter V: Pattern matching for reactive and concurrent programming

73

language features [32, 33], but it is also possible to implement them as a library
[34, 35]. Scala provides an elegant integration thanks to extensible pattern
matching [36]. The following example shows a simple unbounded FIFO buffer

implemented in Scala. It uses two channels and consists of a single join pattern:

1: val Put = new AsyncEvent[Int]
2: val Get = new SyncEvent[Int]
3:
4: join { case Get() & Put(num) =>
5: Get reply num }

The example first declares two channels (called events in Scala). The first one (line
1) is asynchronous, which means that it doesn’t block the caller when invoked.
When called, it stores an integer value in a buffer and returns immediately. The
second one (line 2) is blocking. When it is invoked, it blocks the caller until a value
(provided by a call to Put) is available. If there was a previous call to Put, it takes

the value from the buffer and returns immediately.

The join pattern that implements this behavior is encoded using pattern
matching (line 4). It specifies that the body (line 5) should be called when there is a

value in the Put buffer and when there is a pending call to Get. When that’s the case,

the body is called and it returns a value num to the caller of the Get channel.

In F#, we can embed join patterns into computations based on asynchronous

workflows. This has an important benefit. Asynchronous workflows don’t block

threads while waiting, so we can avoid creating an unnecessary number of

expensive threads. In the following snippet, the bind operation represents waiting

for a first value from the channel:

1: let put = new Channel<int>()
2: let get = new Channel<ReplyChannel<int>>()
3:

4: let rec buffer() = join {
5: let! x = put
6: let! chnl = get
7: chnl.Reply(value)
8: return! buffer() }

We start by defining two channels just like in the previous Scala version. Inside the

join computation, we first wait for a number from the put channel (line 5). Next, we
wait for a value from the get channel (line 6), which give us a reply channel, which

can be used for returning the result (line 7).

In this simple case, using let! to represent waiting for a value works, because
we need to wait for both of the values in every case. Also, the order of waiting

doesn’t matter, because values are buffered. However, in general, we need more
expressive power. The following Scala example allows us to put two different types
of values into the buffer:

1: join {
2: case Get() & PutInt(x) =>
3: Get reply ("Number: " ++ x.toString())
4: case Get() & PutString(x) =>
5: Get reply ("String: " ++ x) }

Chapter V: Pattern matching for reactive and concurrent programming

74

In this example, we have two different Put channels. The first one is used for
storing integer values in the buffer, while the second one stores string values.
When Get is called, it waits for the first value from any of the two channels. In the

implementation, we use two join patterns. The first one (line 2) is triggered when
there is a value in PutInt and a pending call to Get. The second one (line 4) is
similar, but takes a value from PutString.

Encoding this example using our previous join computation is tricky. We need
to wait for Get in any case (using let!), but we cannot express waiting for either

PutInt or PutString, without declaring some combinators. This would get even
complicated if we wanted to provide features such as pattern matching on values

inside the channel. Once again, it seems that pattern matching on monadic value
would solve the problem far more elegantly.

2. Monadic pattern matching
In this section, we present an overview of our pattern matching on monadic
computations. As we’ll see later, a fully general pattern matching requires provi-
ding two operations in addition to bind and return. We’ll introduce them gradually,
first looking at examples that require only one of them.

2.1 Merging computations

Pattern matching is very often used on tuples. If we want to use pattern matching

on monadic computations, we need some way for merging two computations into a

single one containing tuples. To enable this, we require the merge operation:

val ⦷ : M<'a> -> M<'b> -> M<'a * 'b>
Judging just from the type, it should be possible to implement merge in terms of

bind and return. For some monads, this may be the right choice, but not for all of

them. We’ll discuss the merge operation in details in section 4 and focus on an

example for now. When merging two lists in section 1.2, we used List.zip, which

has the same type signature as our merge. We can define list computation builder

that uses List.zip as merge. Using the operation explicitly we can write for
example the following code:

let numbers xs ys = list {
 let! xys = xs ⦷ ys
 match xys with
 | x, y -> return 10 * x + y }

> numbers [1; 2; 3] [6; 5; 4];;
val it : int list = [16; 25; 34]

This example is the same as the code we would write when using List.zip
explicitly. The reason why we’re showing it is that the same thing can be written
using our monadic pattern matching construct. The following function means
exactly the same thing:

1: let numbers xs ys = list {
2: match! xs, ys with
3: | !x, !y -> return 10 * x + y }

Chapter V: Pattern matching for reactive and concurrent programming

75

The match! construct takes one or more monadic values as arguments (line 2). In
our example, we provide two values of type list<int>. The patterns we specify on
line 3 are special syntactic construct that we call computation patterns. In the

example, we use two computation patterns of the form !pat, where pat is a usual
F# pattern (we call this form a binding pattern). It specifies that we need to get an
actual value from the monad and the value should match the pattern pat. We’ll
explore the second form of computation pattern in the next section.

The previous example can be defined in terms of the merge operator, because
it is relatively limited. It contains only a single clause and both patterns for values
are complete, meaning that they will match any given value. For any more com-

plicated use we’ll need our second operation.

2.2 Choosing a computation

Pattern matching with a single clause isn’t all that useful. To support multiple

clauses in pattern matching on monadic computations, we need an operation that
allows us to select among multiple clauses. This isn’t as straightforward, because
we need to do it “inside a monad”, which can behave in many diverse ways. The
operation that we use for encoding multiple clauses is called choose. The following

type signature is slightly simplified, because it ignores the possibility that a pattern

may fail, but we’ll get to the fully general case shortly:

val choose : list<M<M<'a>>> -> M<'a>

It takes a list of computations as an argument. Each of the computations in the list

carries a monadic computation as a value. This wrapped computation is a

computation that should be called when the clause is selected. Interestingly, the
choose operation looks quite similar to join, except it takes a list of M<M<'a> compu-
tations instead of just a single one and, indeed, it is a generalization of join. We’ll

talk about choose in details in section 4 after looking at several other examples.

In the section 1.1, we’ve seen an example where we wanted to wait for one of
several events depending on whichever occurred first. We can encode this

behavior using our new choose function. We need to provide a list of computations

of type Event<Event<int * int>>, which can be done using map. For each of the

events, we project the carried value into an event computation that should be

executed if it is chosen:

1: let rec drawing() =
2: choose [
3: map (fun m -> event {
4: redraw (m.X, m.Y)
5: return! drawing() }) (await w.MouseMove);
6: map (fun m -> event {
7: return m.X, m.Y }) (await w.MouseUp)]

Just like in section 1.1, the drawing function returns a single monadic computation
of type Event<int * int>. We construct it by creating two asynchronous workflows
that wait for MouseMove and MouseUp events respectively (lines 3, 6) and then
selecting the computation that first has a value using choose. Each of the two cases
returns another computation (written using the event builder), which specifies

Chapter V: Pattern matching for reactive and concurrent programming

76

code to run in case it is selected. This is either redrawing the window and looping
(lines 4, 5) or returning the last mouse position (line 7).

As already mentioned, the choose operation is used when we want to write
pattern matching on monadic computations with multiple clauses. Let’s rewrite the
previous example using our syntactic sugar. We’ll use the two asynchronous
workflows as arguments of match! and two clauses, each of them matching any

value carried by the first, respectively the second event:

1: let rec drawing() = async {
2: match! w.MouseMove |> Async.AwaitEvent,
3: w.MouseUp |> Async.AwaitEvent with
4: | !m, _ -> redraw (m.X, m.Y)
5: return! drawing()
6: | _, !m -> return m.X, m.Y }

As already explained in section 2.1, the clauses of match! are formed by compu-

tation patterns, which is a special syntactic category. The form !<pat> means that
we need to obtain a value from the monadic computation (in this case, wait until an

asynchronous workflow completes), while the ignore pattern (written as under-
score) means that we don’t need a value. Note that there is a difference between “_”

and “!_”. In the first case, we don’t need the value at all, while in the second case,

we need to obtain the value (i.e. wait for an event), but ignore it afterwards.

As we can see by analyzing the patterns, each of the clauses waits only for one

of the two events (monadic computations), which is why we didn’t need the merge

operation in this example.

2.3 Merging and choosing together

In a general case, we have multiple clauses, each of them having multiple binding

patterns. To demonstrate this, we get back to concurrent programming and our

example motivated by joins. In section 1.3, we’ve seen a Scala example with two

channels for putting values (integers or strings) into a buffer and a single get chan-
nel. The buffer was implemented using two joins that combined the get channel

with the first or the second put channel. We can encode the same idea using match!
like this:

1: let putInt = new Channel<int>()
2: let putString = new Channel<string>()
3: let get = new Channel<ReplyChannel<string>>()
4:
5: let rec buffer() = join {
6: match! get, putInt, putString with
7: | !chnl, !n, _ ->
8: chnl.Reply("Number: " + n.ToString())
9: | !chnl, _, !s ->
A: chnl.Reply("String:" + s) }
B: return! buffer() }

As we can see, each clause combines two channels (lines 7 and 9) and ignores the
third one. If we get an integer value and a reply channel chnl in the first join
pattern (line 7), we send a number converted to a string as the reply (line 8). The

second join pattern is quite similar. After we process one pair of messages, we
recursively wait for another join (line B). Unlike for example in Cω, this is written

Chapter V: Pattern matching for reactive and concurrent programming

77

explicitly, because we may want to continue by handling another combination of
join patterns (encoded as another match! computation).

Note that this example isn’t a standard monadic computation. The type of
values that we’re using as parameters to bind (or our more general choose opera-
tion) is Channel<'a>, while the type of the constructed computation is Async<unit>
(an asynchronous workflow, which was introduced in section 2.1). Since F# com-

putation expressions including our extension are handled as a simple syntactic
transformation, it is possible to use operations of atypical type signatures. Even
though this is a non-standard example, it is important because it shows the
relationship of our extension with previous related work. Moreover, it is also very

useful in practice.

2.4 Choosing a computation with failures

The last feature of our match! construct that we haven’t introduced yet is that we
can use more complicated F# patterns inside binding patterns of clauses, including
patterns that can fail. In that case, the behavior depends on the author of the
computation. Typically, it may try all clauses and then throw an exception if no
matching clause is found or wait if the computation can produce a different value

later and retry the patterns. However, using the choose operation as we introduced

it earlier, there is no way to represent match failure.

Let’s start by looking at an example. In this case, we’ll work with future buil-

der, which creates computations of type Future<'a> (inspired by Manticore). It

represents a computation that is (or may be) running in the background and

eventually produces a value of type 'a. We can use the match! construct inside this
computation to write a function that multiplies values of all leaves of a binary tree

in parallel:

1: let rec treeProd t = future {
2: match t with
3: | Node(lt, rt) ->
4: match! treeProd lt, treeProd rt with
5: | !0, _ -> return 0
6: | _, !0 -> return 0
7: | !a, !b -> return a * b
8: | Leaf n -> return n }

The function starts by standard pattern matching (line 2). If the tree is a node with
left and right branch, it recursively calls itself to creates two futures to process
both of the branches (line 4). Next, we need to wait for both of the futures to

produce a value, which is done using monadic pattern matching with two binding

patterns (line 7). In case that one future completes earlier and produces 0, we
know the overall result immediately, so we included two clauses to handle this
special case (lines 5 and 6).

When we use match! with futures, it waits for the first future to produce a

value and then checks whether it can run any of the clauses. If yes, it follows the
selected clause and cancels other futures. In the other case, it waits for more

futures to complete.

Chapter V: Pattern matching for reactive and concurrent programming

78

Earlier we said that choose takes a list of computations that contain
computations to be used if the clause is selected. This wasn’t exactly correct. The
outer computation may report that the pattern matching failed or that it succeeded

and produced an (inner) computation that can be used to continue with. The actual
type signature of choose is following:

type MaybeDelayed<'a> =
 | Success of (unit -> 'a)
 | Failure

val choose : list<M<MaybeDelayed<M<'a>>>> -> M<'a>

When compared with the signature shown earlier, the only change is that the inner
M<'a> computation is now wrapped inside MaybeDelayed<'a>, which allows us to
represent pattern matching failure. In F#, we can write monadic computations that
are not lazy and contain side-effects, so the wrapping also guarantees that we

won’t evaluate the body of clause before it is actually selected.

We look at the details of the syntactic transformation that the F# compiler
performs in section 3. However, let’s at least briefly look at the code produced for

the two clauses on lines 6 and 7. In the following listing, the values f1 and f2 store

the result of calling treeProd on lt and rt respectively:

1: choose [
2: ...
3: map (function
4: | 0 -> Success(fun () -> future { return 0 })
5: | _ -> Failure) f2;
6: map (function
7: | a, b -> Success(fun () -> future {
8: return a * b })) (merge f1 f2)]

The first clause is translated into a computation that applies the map operation to

the f2 value (lines 3-5). The function given as an argument to map gets a value of the

future, which is an integer. If the value is 0, it returns Success with a future com-

putation to run (line 4) otherwise it returns Failure (line 5). The second clause is
similar, with the exception that it first combines two futures using merge and the

pattern matching always succeeds.

The interesting case is when f2 produces a value. As a result, the first
computation of the list we gave to choose also finishes. If it produces Success, the

choose operation cancels all other futures in the list (which in turn cancels the f1

future), evaluates the function stored inside Success and runs the provided body.
In case of non-zero result, it continues waiting until some other clause produces
Success. If all clauses produce Failure, then the choose operation throws a match
failure exception.

Our implementation of match! for futures is similar to the pcase (parallel case)
construct known from Manticore [38]. The parallelism in Manticore is implicit.

However, we achieve similar syntactic simplicity and expressive power just by

using a generally useful language feature.

Chapter V: Pattern matching for reactive and concurrent programming

79

cpat = __ Computation ignore pattern
 | !pat Computation binding pattern

ccl = cpat1, …, cpatk -> cexpr Computation match clause
 | cpat1, …, cpatk Computation match clause
 when expr -> cexpr with guard condition

cexpr = match! expr1, …, exprk with Pattern matching computation

 ccl1 | … ccll (sequence of computation clauses)
 | … Other computation expression

Figure 11. Syntax of monadic pattern matching

3. Semantics
In this section, we discuss the semantics of our extension. We present syntax and a

translation to the core language. We follow the design of computation expressions
[28] and active patterns [39] and do not give typing rules explicitly. The types are
checked after the translation using standard F# type-checking rules. The second
important part of the semantics is the laws that we require to hold about merge and
choose operation. These will be discussed later in sections 5 and 6.

3.1 Syntax

The syntax of our extension is shown in Figure 11. In addition the standard con-

structs described in section 3.3 of Chapter II, we add a single new case to the cexpr
category. The match! construct takes one or more expressions as arguments and
has one or more clauses.

Clauses do not consist of standard patterns, but are formed by computation

patterns, so we need to introduce a new syntactic category for clauses (ccl) and a

new category for computation patterns (cpat). A computation clause looks like an

ordinary clause with the exception that it consists of computation patterns (instead

of usual patterns) and the body is computation expression (instead of standard

expression).

Finally, a computation pattern can be either an ignore pattern (written as “_”)

or a binding pattern, which is a standard F# pattern [30] prefixed with “!”. We’ve
already seen several computation patterns when discussing the examples. For
example we can write !0, which is a binding pattern constructed from a constant
pattern that matches an integer against a zero. Notably, we also support active

patterns [39] in computation patterns. In the reactive programming example, we
could define a pattern LeftClick, which succeeds only when an event is a left
button click. Then we could use the computation pattern !LeftClick.

3.2 Translation

We describe a translation that transforms pattern matching computation into an
ordinary expression that doesn’t contain computation expressions. We extend the
translation described in Figure 5 by adding the case for the match! construct and
we also define rules for translating computation clauses. The Figure 12 shows a
rule (1) which translates a computation expression into an ordinary expression.
The rest of the rules define the following two translation functions:

Chapter V: Pattern matching for reactive and concurrent programming

80

⟦ – ⟧cexpr : cexpr ⨯ ident → expr

⟦ – ⟧ccl : ccl ⨯ ident ⨯ [ident] → expr
The first function takes a computation expression and an identifier representing the
computation builder of the monad. The second function also takes a list of
identifiers, which we use to pass arguments of match! to the function for trans-
lating clauses.

⟦ expr { cexpr } ⟧ = let m = expr in ⟦ cexpr ⟧cexpr m (1)
 ⟦ cpat1, …, cpatk -> cexpr ⟧ccl m, (v1, …, vk) = (2)

 mapm (function
 | (pat1, …), patn -> Success(fun () -> ⟦ cexpr ⟧cexpr m)
 | _ -> Failure) cargs
 where { (pat1, v1), … , (patn, vn) } = { (pat, vi) | cpati = !pat; 1 ≤ i ≤ k} (3)
 and cargs = v1 ⦷m … ⦷m vn-1 ⦷m vn for n ≥ 1 (4)
 ⟦ match! expr1, …, exprk with ccl1 | … ccll ⟧cexpr m = (5)
 let v1 = expr1 in … let vk = exprk in
 choosem [⟦ ccl1 ⟧ccl m, (v1, …, vk); … ; ⟦ ccll ⟧ccl m, (v1, …, vk)]

Figure 12. Translation of monadic match

In the translation rules, bindm denotes the bind operation implemented by a
computation builder instance, which is stored in the value named m. In reality, the

F# compiler expects that operations are provided as members and accesses them

using the dot-notation (for example m.Bind). When translating match! (5), we first

construct a new value for each of the arguments. This guarantees that any side-

effects of the expressions used as arguments will be executed only once. The rest of

the rule translates all clauses of the pattern matching and creates an expression

that chooses one clause using the choosem operation.

Translation of a clause is slightly more complicated (2). It needs to identify
which of the match! arguments are matched against the binding pattern. This is
done in (3) where we construct a list containing an ordinary pattern (extracted

from the binding pattern) and a monadic value, which should be matched against

it. Next we combine all monadic values that are needed in the clause into a single
value using the merge operator ⦷m (4). The operator is left-associative, so when
combining for example three values of types 'a, 'b, and 'c, the resulting value will
be of type M<('a * 'b) * 'c>.

Finally, we pass the combined monadic value as an argument to a mapm
operation. It “extracts” the actual value of the monadic computation, runs the

provided projection and then again “wraps” the value. In the projection function,
we match the actual value against the patterns extracted earlier. If the matching
succeeds we return Success containing a delayed and translated body of the clause.
The result of translating a computation clause will be of type M<MaybeDelayed<'a>>.

The translation imposes one restriction that isn’t reflected in the syntax. In
particular, when translating a clause, we require that the clause contains at least
one binding pattern (4), which ensures that cargs will be initialized to some mona-

Chapter V: Pattern matching for reactive and concurrent programming

81

dic value. Allowing this case would require a special handling and it is not clear
what the semantics of this clause should be in general. We discuss this problem
further in section 7.

4. Merging computations

We’ve seen numerous examples of using the monadic pattern matching in practice
and we’ve introduced the two operations that are used to encode the match!
construct. In the next two sections, we’ll focus on these two operations in details,
starting with merge.

4.1 Merge operation laws

As already discussed, merge generalizes the zip function for lists and similar opera-
tions that appear in reactive and concurrent programming. The operation should

have the following type:

val ⦷ : M<'a> -> M<'b> -> M<'a * 'b>
We also require several laws to hold about it. The laws ensure that the operation
behaves intuitively and allow us to guarantee some properties of our match! cons-
truct, which will be discussed later:

 let assoc ((a, b), c) = (a, (b, c))
 let swap (a, b) = (a, b)

 return (a, b) ≡ (return a) ⦷ (return b) (C1)

 u ⦷ (v ⦷ w) ≡ map assoc ((u ⦷ v) ⦷ w) (C2)

 u ⦷ v ≡ map swap (v ⦷ u) (C3)

We formulate the laws using map (instead of bind) to make them more intuitive.

The first law (C1) specifies how the merge operation should behave with respect to

return. It may be of interest that this law is very similar to the product law of causal
commutative arrows [49], which relates parallel composition operator (***) in

place of our ⦷ with an init function (in place of return).

The next two laws resemble associativity (C2) and commutativity (C3). The
law (C3) is particularly interesting. It for example forbids using Cartesian product
of two lists as the merge operation of a list monad. Even though the elements of the

two returned lists would be the same, their order in the lists would be different!
However, the rule is important because it guarantees that rearranging the order of
match! arguments (together with rearrangements of clause patterns) does not
change the meaning of program. We discuss the possibility of using Cartesian pro-
duct semantics when working with lists in details in section 4.3.

4.2 Merging in commutative monads

The law resembling commutativity also reveals interesting relations between our
merge operation and the bind operation in commutative monads. When introdu-
cing merge in section 2.1, we noted that by looking at the type signature, it seems

possible to implement it in terms of bind and return. Now that we’ve also specified
what laws should hold about merge, we can finally complete this idea.

Chapter V: Pattern matching for reactive and concurrent programming

82

Implementing merge. It appears that we can implement merge by applying the
bind operation on both of the merge arguments (in a sequence) and then combi-
ning the obtained value into a tuple. Using the computation expression syntax:

let ⦷ (ma:M<'a>) (mb:M<'b>) : M<'a * 'b> =
 m { let! a = ma
 let! b = mb
 return a, b }

This operator has the right type, but if we analyze whether it obeys all laws, we
find a problem. The law (C3) says that changing the order of merge arguments

should only change the order of elements stored in the returned tuple. But that’s
not necessarily the case here.

For lists, the previous implementation behaves as Cartesian product. As dis-

cussed earlier, cross-product breaks the (C3) law, because changing the order of
arguments changes the order of generated elements. To give a second example, in
our earlier reactive programming monad, binding means waiting for the first
occurrence of an event. When waiting in sequence, mb can occur several times
before the ma occurs for the first time, so we would get 1st value of ma and for

example 3rd value of mb. Waiting in the reversed order can give completely different

results. We cannot use this straightforward implementation blindly. However,
we’ll see that it obeys the merge laws in one important special case.

Commutative monads. In the Chapter II, we discussed the three monad laws that

should hold about any monadic computation. Additionally, a monad is commutative

if it obeys one more law. It specifies that the order of binding doesn’t matter (spe-

cifically, when using monads to control effects, it means that the order of effects

makes no difference). For a commutative monad, the following two expressions

are equivalent8:

m { let! a = <expr>1 m { let! b = <expr>2
 let! b = <expr>2 ≡ let! a = <expr>1
 <cexpr> } <cexpr> }

(Assuming that a and b do not appear in <expr>1 and <expr>2)

Examples of commutative monads that are often used in practice include Reader

(used for reading values from an environment), Maybe (representing computations

that may fail) or RandomMonad (computations that use random numbers). In his
Haskell retrospective [41], Simon Peyton Jones included commutative monads as

one of open challenges. Even though the order of bindings doesn’t matter, we can
work with them only using the usual, overly sequential, notation.

Implementing merge (again!) For us, commutative monads are important,
because the above implementation of merge in terms of bind and return is correct
for any commutative monad. Using the commutative law, we can easily verify that
the following two declarations are equivalent:

8 F# doesn’t use monads to control side-effects, so the expressions <expr>1 and <expr>2 may contain
side-effects, which would be indeed reversed. The equivalence focuses only on effects that are
controlled by the monad.

Chapter V: Pattern matching for reactive and concurrent programming

83

let ⦷ ma mb = m { let ⦷ ma mb = m {
 let! a = ma let! b = mb
 let! b = mb ≡ let! a = ma
 return a, b } return a, b }

For commutative monads, the above code gives a correct definition of the merge
operation (a proof is presented in Appendix C). To verify the (C1) law, we can
substitute the above implementation of merge operation for the ⦷ operator.
Applying the left identity law to the right hand side twice gives us the left hand
side. Verifying (C2) requires more steps. We use associativity and left identity to
move the application of assoc to the inner-most expression, expand it and then
reduce it to the expression on the left-hand side.

The most interesting law is (C3). To prove that it holds for the above defi-
nition, we use associativity and left identity as in the previous case to move the
application of swap to the inner-most part of the expression (similarly as in the

previous case). However, then we need to use the additional law of commutative
monads to prove the two expressions equivalent. For monads that are not commu-
tative, this wouldn’t be possible.

Pattern matching syntax. When working with commutative monads just using

bind and return, we’re forced to use a sequential notation (as noted in [41]). Our
generalized pattern matching offers a simpler alternative. For example, suppose

that we’re working with computations that can fail. We can use the commutative

Maybe monad to write such code. Let’s say that we have four values that represent a
rectangle location (mleft, mtop and mwid, mhgt). We want to calculate the center of
the rectangle. If the computations couldn’t fail, we could simply write:

(mleft + mwid/2, mtop + mhgt/2)

Unfortunately, inside monadic computation, we first need to extract the actual

values using four bindings (using let!) that are written in a sequence:

maybe { let! l = mleft
 let! w = mwid
 let! t = mtop
 let! h = mhgt
 return (l + w/2, t + h/2) }

The merge operation for Maybe can be defined in terms of bind. Then we can use
match! to write the code as follows:

maybe { match! mleft, mtop, mwid, mhgt with
 | !l, !t, !w, !h ->
 return (l + w/2), (t + h/2) }

The code is still more complicated than the non-monadic version. However, we can
obtain values of all parameters using syntax that doesn’t unnecessarily sequen-
tialize the code. Even though providing an elegant syntax for working with commu-
tative monads isn’t the goal of this paper, we can see that our generalized pattern
matching construct is certainly interesting from this point of view as well.

Chapter V: Pattern matching for reactive and concurrent programming

84

4.3 Cartesian product and Zip semantics

When designing syntax for working with lists, it is often a question whether a
combination of multiple lists should behave as the zip operation or as a Cartesian

product. For example, Haskell list comprehensions [43] use Cartesian product
semantics, but Data Parallel Haskell [44] uses zip semantics.

As discussed in section 4.1, we need to use the zip semantics for our merge

operation on lists. Cartesian product doesn’t obey the commutativity law (C3),
which means that we can’t reorder the parameters of the match! construct. The fol-
lowing example demonstrates a simple list processing function that is imple-
mented using match! with the zip semantics.

let numbers xs ys = list {
 match! xs, ys with
 | !x, !y -> return 10 * x + y }

> numbers [1; 2] [5; 6]
val it : list<int> = [15; 26]

Clearly, the Cartesian product semantics is also very useful, so we can ask whether
there is any way to define a merge operation with Cartesian product semantics that

would obey the laws from Section 5.1. Originally, the commutativity law (C3) didn’t
hold, because changing order of arguments reorders the elements of the generated

list. We can overcome this problem by working with a data structure that isn’t

ordered, such a bag (also called multiset). The following example demonstrates

working with a bag:

let numbers xs ys = bag {
 match! xs, ys with
 | !x, !y -> return 10 * x + y }

> numbers (bag [1; 2]) (bag [5; 6])
val it : bag<int> = bag [15; 16; 25; 26]

Note that in this example, the commutativity law (C3) holds because the following

equation is true:

bag [15; 16; 25; 26] ≡ bag [15; 25; 16; 26]

Both of the options are useful in practice and the distinction between ordered lists
and unordered bags makes it possible to choose between them depending on the

user’s current needs.

4.4 Merging and applicative functors

Applicative functors (also called idioms) [42] are another form of computations
related to monads. Applicative functors are weaker than monads. This means that
every monad defines an applicative functor, but not all applicative functors are

also monads. An applicative functor is defined in terms of two operations:

pure : 'a -> F<'a> ⊛ : F<'a -> 'b> -> F<'a> -> F<'b>

However, there is an alternative (but equivalent) way to define applicative func-
tors using the following three operations:

Chapter V: Pattern matching for reactive and concurrent programming

85

unit : F<unit>
map : ('a -> 'b) -> F<'a> -> F<'b> ⋆ : F<'a> -> F<'b> -> F<'a * 'b>

The signature of the ⋆ operation should look very familiar. In fact, it has exactly the

same type as our merge. Even though the types are the same, the operations are
different, because the set of laws that must hold about them differs. The following
laws should hold about any applicative functor:

 map assoc (u ⋆ (v ⋆ w)) ≡ (u ⋆ v) ⋆ w (Associativity)
 map (f × g) (u ⋆ v) ≡ map f u ⋆ map g v (Naturality)
 map snd (unit ⋆ v) ≡ v (Left identity)
 map fst (u ⋆ unit) ≡ u (Right identity)

The ⋆ operation must obey the associativity law, which we also required for ⦷. The
other laws are different and are not equivalent. As discussed in [42], any monad is
also an applicative functor (meaning that it defines ⋆), but as we said in Section 5.2,

not all monads can automatically provide ⦷. This is because we also require
commutativity law (C3), which follows neither from the monad laws, nor from the
applicative functor laws.

let ⊛ fs xs = m {
 let! f = fs
 let! x = xs
 return f x }

let ⊛ fs xs = m {
 match! fs, xs with
 | !f, !x -> return f x }

Figure 13. Defining applicative functors

Defining application. For any monad, we can implement the ⊛ operation using
bind. This is always a valid definition and it is shown in Figure 13 (left). If we have

a monad with the merge operation, we can implement the ⊛ operation in terms of
merge. Figure 13 (right) shows how to do this using the match! construct. If we

translate the function to underlying function calls and simplify it (by removing

choose operation, which doesn’t have any effect in this case) we get the following:

let ⊛ fs xs = map (fun (f, x) -> f x) (fs ⦷ xs)

Unsurprisingly, this declaration is the same as the one used in [42] to define ⊛ in
terms of ⋆ when showing that the two formulations of applicative functors are
equivalent. This way of defining ⊛ yields a function with a correct type, but it
doesn’t guarantee that the laws of applicative functors will hold. It may give a valid
(and useful) version of applicative functor, but we need to check the laws when

using it.

Choosing application. The question we now face is which of the two implemen-
tations should we use? For commutative monads that use the default definition of

merge (from Section 5.2), the answer is simple – the two definitions are equivalent.

For other monads, the situation is more complicated. In our example with lists
from Section 3.1, we started with a list monad. Its return operation returns a

singleton list and bind performs projection followed by concatenation. Our merge
operation was implemented as zip. In this case we cannot define ⊛ using merge,
because we wouldn’t get a correct applicative functor. In the last law, the left-hand

Chapter V: Pattern matching for reactive and concurrent programming

86

side zips some list with a singleton list, which always produces a singleton list.
However, the right hand side could be a list of arbitrary length.

Applicative functor based on zip is a classic example, but the problem is that it
needs a different return. The return operation should produce an infinite list
containing the specified value repeatedly. This doesn’t mean that we cannot use

match! to solve problems that can be solved by applicative functors. As we’ll see

shortly, it just cannot do done fully automatically. For some other monads, the
definition of ⊛ in terms of merge gives an alternative applicative functor that can
be also useful.

We’ll look at Imperative streams [3], which motivated our reactive prog-
ramming examples, but are defined as a pure monad. A stream has discrete time.
The bind operation extracts a value at the current time. As a result, when using
bind to write ⊛, we get an operation with zip-semantics. However, we can provide
merge operation which behaves as a cross-product (with a well-defined ordering,
so that the laws from Section 5.1 hold). Then we can use it to define an alternative
useful instance of applicative functor.

Encoding applicative examples. Even though we cannot always use the merge
operation to define an applicative functor, we can still use it to implement some
problems that are nicely solved using applicative functors. One useful applicative
functor for lists has zip as the ⊛ operation and a function that generates an infinite
list containing the specified value as pure. It can be, for example, used to define a

transposition of matrix represented as a list of lists. The Haskell implementation

looks as follows:

1: trans :: [[a]] -> [[a]]
2: trans [] = pure []
3: trans (xs:xss) = pure (:) ⊛ xs ⊛ trans xss

When the input is an empty list (line 2) we return a lazily generated infinite list

containing empty lists. For a non-empty list (line 3) we get a list xs containing the

first row and a list xss containing the remaining rows. Using applicative

operations, we apply the cons operation to all elements of the first row and rows of

the transposed remainder. We can write the code using our match! extension
(behaving as zip) by following a similar pattern:

1: let rec trans m = lazyList {
2: match m with
3: | LazyNil -> return! repeat LazyNil
4: | LazyCons(xs, xss) -> match! xs, trans xss with
5: | !y, !ys -> return LazyCons(y, ys)

When the matrix is an empty list (line 3), we need to generate a possibly infinite
list of empty lists. This cannot be done using return primitive, because that is the
monadic return (yielding a singleton list). Instead we generate the result using the
repeat function. Note that return! in a computation expression returns the given
list as it is. In the second case (line 4), we recursively transpose the remainder of

the matrix and “zip” the result with elements of the first row (line 4). Then we

apply the cons operator to all of the pairs and return the composed list as the next
row of the transposed matrix (line 5).

Chapter V: Pattern matching for reactive and concurrent programming

87

Even though the structure of the two examples isn’t exactly the same, there
are similarities. If we expanded the use of ⊛ in the first version to the definition
using match! shown in Figure 13 (right) the code would start looking alike. In

general, this example shows that we can often use the match! syntax to solve
problems that would be otherwise solved by applicative functors that are not
monads (such as list with zipping semantics of the ⊛ operation). This gives F#
computation expressions with our extension an additional and very useful
expressive power.

5. Choosing
We’ve introduced the choose operation gradually in sections 3.2 (where patterns

always succeeded) and 3.4 (where we added support for failures). The fully
general version of the function takes a list of monadic computations that yield the
results of pattern matching. A result may be Failure if the pattern matching fails or

Success, which carries delayed body of the selected clause (see also Section 3.4):

val choose : list<M<MaybeDelayed<M<'a>> -> M<'a>

The signature resembles the type of monadic join. It is extended to support failures
and choose one of multiple computations. This is not accidental and as we’ll

discuss in section 6.2, the choose operation should be a generalization of join.

The explicit representation of failures makes the type signature more

complicated. However, as we’ll see in section 8.1, the additional complexity is

needed if we want to follow the usual behavior of ML-style of pattern matching.

5.1 Choose operation details

To guarantee that pattern matching for monadic computations will behave

analogously to the standard pattern matching, the implementation of the choose

operation needs to follow some basic principles. Due to the complexity of the

operation, we formulate the rules only informally:

• Generalized join. When we apply the operation to a single element list

containing computation that yields Success, it should behave as monadic join.

• First match. When there are multiple clauses that are matching on the same
monadic value, then the choose operation should always choose the first
succeeding value in the list. This for example means that the following simple
equation should hold:

 choose [map (\x -> Success(_ -> expr1) m);
 map (\x -> Success(_ -> expr2) m)]
 ≡ map (\x -> Success(_ -> expr1) m)

• One clause. In the same scenario (multiple clauses matching on the same

monadic value), the choose operation should not execute multiple clauses. For
an impure language, this means that only side-effects of one clause will be

executed.

The last two rules are closely related, but we formulated them separately, which

makes the discussion in section 8.2 more apparent. The next section discusses the

first rule in detail.

Chapter V: Pattern matching for reactive and concurrent programming

88

 join (return m) ≡ m
 join (map return m) ≡ m

 join (map (\x → join x) m) ≡ join (join m)

 choose [return m] ≡ m
 choose [map return m] ≡ m

 choose [map (\x → choose [x]) m] ≡ choose [choose [m]]

Figure 14. Monad laws formulated using join and choose

5.2 Generalization of join

We already stated that the choose operation should be a generalization of join and
that it should behave as join in the basic case. The following code shows how to

implement join if we already have choose:

let join m =
 choose [map (fun c -> Success(fun () -> c)) m]

val choose : list<M<MaybeDelayed<M<'a>>>> -> M<'a>

val join : M<M<'a>> -> M<'a>

As a result, we can define a monad that supports pattern matching in terms of

choose, map, return and merge (for non-commutative monads). We no longer need

join, because it is just a special case of choose.

The new set of operations should still follow standard monad laws, so we need

to specify what laws should hold for the choose operation. We’ll start with a

version of monad laws for the monad definition that uses join, map and return from

[45]. The laws are shown in Figure 14 (top).

To get a new set of laws, we could simply replace join with choose ∙ L ∙ (map D),
where L is a function that creates a singleton list and D is a function that wraps an

argument into a delayed Success value. This corresponds to the implementation of
join given above. However, this simple syntactic transformation doesn’t convey any

useful intuition. We can show a simpler and more intuitive version of laws if we

work with a choose function, which assumes that all pattern matching succeeds:

val choose : list<M<M<'a>>> -> M<'a>

Monad laws for join don’t take Failure cases into account, so we don’t lose any
information. The laws that should hold for this simplified choose operation are
shown in Figure 14 (bottom).

6. Reasoning about monadic matching
We can use the laws for merge and choose operations and the translation described
in the Section 4.2 to show many useful facts about the match! construct. In this
section, we look at several that are important for building the intuition about

match! construct and at some showing that match! shares important properties

with the usual ML pattern matching.

Chapter V: Pattern matching for reactive and concurrent programming

89

Generalized binding. When using pattern matching on a single monadic value
with a single clause that consists of a variable binding pattern, the match! construct
behaves like bind:

match! m with
| !var -> expr

≡
let! var = m
expr

From the translation, we can see that the m value is passed as an argument to map,
which produces Success (variable pattern never fails). The result is wrapped into a
singleton list. In that case, choose behaves as join (Section 6.2) so the left-hand side
becomes a definition of bind in terms of join and map.

Reordering. The result of match! will be the same if we reorder its arguments and
patterns. The following expression will give the same result for any permutation p
of n elements:

match! m1, … , mn with
| cpat1,1, … , cpat1,n -> cexpr1

| …
| cpatk,1, … , cpatk, n -> cexprk

≡

match! mp(1), … , mp(n) with
| cpat1, p(1), … , cpat1, p(n) -> cexpr1

| …
| cpatk, p(1), … , cpatk, p(n) -> cexprk

By analyzing the translation, we can see that the permutation only changes the

order of merge operation applications. However, associativity (C2) and commu-

tativity (C3) laws of merge allow us to reorder arguments in any way, so this

change does not change the meaning of the expression.

Matching on returns. Next we look at a special case when the arguments of match!
are constructed using return. We can translate the code into a usual match (inside a
computation expression):

match! m { return e1 }, m { return e2 } with
| !var1, !var2 -> cexpr

≡
match e1, e2 with
| var1, var2 -> cexpr

The two computation expressions are passed as arguments to the merge operation.
Using the (C1) law, we get a single computation expression that returns a tuple. In

case with single clause and patterns that can’t fail, choose behaves as join, so we
can rewrite the expression as follows:

join (map (\(var1, var2) → cexpr) (return (e1, e2)))

Using the monad laws, we can further simplify this expression. As a result, we get

cexpr with e1 and e2 substituted for var1 and var2, respectively, which is equivalent
to the match expression on the right-hand side.

Unused arguments. Another fact is that we can add an additional argument to
match! and add an ignore pattern to a pattern list of each clause without changing
the meaning of the expression:

match! m1, …, mn with
| c1, 1, …, c1, n -> cexpr1

| …

| ck, 1, …, ck, n -> cexprk

≡

match! m1, … , mn, m with
| c1, 1, … , c1, n, _ -> cexpr1

| …

| ck, 1, … , ck, n, _ -> cexprk

Chapter V: Pattern matching for reactive and concurrent programming

90

In this rule, ci, j represents any computation pattern. On the right-hand side, we
added a new monadic value m and a computation pattern “_” to each clause. We
can easily see that this rule holds simply from the translation. There is no binding

pattern for the argument m, so it will not appear anywhere in the translated code.

Identity. We can also write a match! expression that transforms any monadic value
into an equivalent value. Thanks to the previous rule, this is true even if we add
additional arguments and ignore patterns to appropriate locations.

match! m with !v -> return v ≡ m

Since the pattern matching never fails in this expression, we can rewrite the code
using a variant of choose from Section 6.2 which assumes that all pattern matching
succeeds. Then we get choose [map return m]. The second law in Figure 14 states
that this is equivalent to m.

First match. In the usual ML pattern matching, the compiler can identify clauses
that will never be matched. This is also an important aspect of intuition about the
match construct. For match! the following two expressions are equivalent:

match! m with
| !var1 -> <cexpr>1
| !var2 -> <cexpr>2

≡
match! m with
| !var1 -> <cexpr>1

This guarantees that the intuition about unreachable clauses is, to some extent,
also valid for the match! construct. The equivalence is a consequence of the second
requirement for the choose operation from Section 6.1 and of the translation.

We’ve looked at several facts that hold about the match! construct. As we can

see, many of the facts directly correspond to the usual intuition about standard

ML-style pattern matching, which is the key goal of our design.

7. Design alternatives and future work
In this section we look at various design alternatives of monadic pattern matching

that may be relevant for other types of computations or other programming lang-
uages. We’ll also discuss some problems that we don’t tackle in our current design
and may be interesting in the future.

7.1 Representing failure inside monad

Our design represents pattern matching failure explicitly outside of the monadic
type using the MaybeDelayed<'a> type. This type also delays the computation, which
allows us to evaluate pattern matching of the clause without evaluating side-effects
of the body. An alternative option would be to represent the failure inside the
monad using an additional zero operation provided by some monads (also called
fail in Haskell). For example, a reasonable representation of failure in the List
monad is an empty list [] and the Maybe monad uses the None case (named Nothing
in Haskell).

One problem with this approach is that we would be able to use match! only
with monads that can represent failure. We can’t use any default implementation
(such as throwing an exception) in this case as the failure is a legitimate result. It
simply informs the choose operation that it needs to select another clause. How-

Chapter V: Pattern matching for reactive and concurrent programming

91

ever, a more important problem is that we need to decide how exactly to represent
the failure. A clause takes an input of type M<'a> into a result of type M<M<'b>>, so
we could represent the failure either in the inner or in the outer monadic value.

However, our goal is to keep the semantics close to the ML pattern matching so
none of the two options is works well for us.

Inner value. When using the inner value, the body of a clause would evaluate to a
failure value inside the monad. In this case, we could still use the map operation in
the translation (Section 3.2). The following example shows how the match! Con-
struct would behave if we used this approach:

maybe { match! Some(1) with
 | !1 -> printf "one"; return! None
 | !_ -> return 42 }

We’re using None to represent the pattern matching failure. In case of success, we
return the computation representing the body of the clause. The translation looks
like this:

choose [
 map (function 1 -> printf "one"; None })
 | _ -> None) (Some(1));
 map (function _ -> Some(42)) (Some(1))]

When executing this example, the choose function starts evaluating the clauses to

find the first one that succeeds. The pattern of the first one matches, so it doesn’t

return None immediately. It returns some computation, but the computation may

still return None. In our case it does that after running some side-effect. As a result,

the choose function needs to continue searching and it finds the second clause

which returns 42 as the result.

As we can see, this approach doesn’t fit well with the usual ML pattern match-

ing, which selects the first succeeding clause. In this example, a clause starts

evaluating and then fails at some later time, which resumes the pattern matching.

Outer monad. In this case, we’d modify the translation to use bind instead of map
in Figure 12 (2). This, however, changes the structure of the outer monad, which

makes it impossible to implement the choose operation for some monads. The

reason is that the choose operation may rely on the structure in some way (and in

particular, the structure should be the same for clauses that pattern match on the
same monadic value).

However, when using this alternative, we would use bind instead of map in the

translation (see rule (2) in Figure 12) and we would use additional return instead
of Success and monadic failure in place of Failure. This would break the behavior
of List that uses the zip function as merge operation:

> list { match! [Left 1; Right 2; Left 3] with
 | !Left n -> return n
 | !_ -> return 0 };;
val it : list<int> = [1; 3; 0]

The computation replaces all values tagged with the Right case with a default value
0 and the expected result would be [1; 0; 3], however, due to the encoding of

Chapter V: Pattern matching for reactive and concurrent programming

92

failure in the outer monad, we get an unexpected result. The reason is that the first
clause produces a list [1; 3] which has a different structure (length) than the input.
The second clause produces a list [0; 0; 0] and the choose operation combines

them into the unexpected result [1; 3; 0].

We believe that our approach is the only viable choice for a language from the
ML-family. However, for a pure language without side-effects (most importantly

Haskell), the representation of failure in the inner value may be very well reason-
able. The representation using the outer value would restrict the number of mo-
nads that can provide a reasonable implementation of the match! feature.

7.2 Monadic Active Patterns

Active patterns [39] were introduced as a mechanism for creating abstractions
over algebraic data types. This has been a well-understood problem since [40]. Our
generalization is orthogonal these proposals, because it focuses on the pattern

matching process as a whole rather than on the individual patterns. We can use
active patterns in the usual way as part of our binding patterns:

match! mv with | !Polar(m, p) -> ...

This code matches on the monadic value mv representing a complex number and
views it in a polar form using total pattern from [39]. However, [39] and [65] also
propose a possible generalization for monadic pattern matching. It uses active pat-

terns that take a value and return a monadic type M<'a>. The following example

uses active pattern named Id which simply returns its argument:

matchm<List> [0; 1], [2; 3] with
| Id 0, Id y -> y
| Id x, _ -> x

The proposed desugaring uses the Haskell’s MonadPuls type class. This is appealing,

because MonadPlus is well-known and widely used type. The previous example

would be translated as follows:

mplus
 (m { let! x = Id [0; 1] in let! y = Id [2; 3] in
 if x = 0 then return y else return! mzero })
 (m { let! x = Id [0; 1] in return x })

If we executed the example, the result would be [2; 3; 0; 1]. This is quite different

to the behavior of our examples presented earlier. The reason is that encoding
using MonadPlus executes all clauses for which the pattern matching succeeds. This

may be the desired behavior for Haskell, but not if we want to follow the usual
intuition about the ML pattern matching. In particular, this example doesn’t follow

the First match rule and would also break the Reordering rule for monads that are
not commutative.

Our encoding gives the author of monad more freedom and guarantees the
usual ML intuition, provided that the author obeys several simple laws. It is also

possible to use pattern matching to express operations that are not monadic (such
as zipping of lists), but are complementary.

Chapter V: Pattern matching for reactive and concurrent programming

93

7.3 Executing Active Patterns once

Our extension can be used together with active patterns. Since active patterns may
contain side-effects, it is important to analyze how many times the pattern will be

run. Using the rules from Figure 12, each clause is translated into a separate
monadic value containing independent match expression. As a result an active
pattern will be evaluated separately for every clause. As stated in [46], a more
reasonable semantics is to execute each active pattern at most once. We can
achieve that by lifting all patterns that match on one argument of match! into single

pattern matching. We can evaluate all patterns once at the beginning of match! by
mapping each argument of match! into results of all patterns using the monadic
map function:

let f1' = map (function
 | p1 & … & pn -> Some(vs1), …, Some(vsn)
 | p1 & … & pn-1 -> Some(vs1), …, Some(vsn-1), None
 | p1 & … & pn-2 & pn -> Some(vs1), …, None, Some(vsn)
 | …) f1

In this pre-processing rule, p1 … pn are patterns that the f1 value is matched
against; vs1 … vsn are tuples (possibly of different lengths) of free variables of the
corresponding patterns. We need to create a single clause for each subset of the set
of all patterns, because we need to identify all patterns that the value matches, so
the number of clauses is n2. The need to identify free variables makes the
compilation more difficult.

On the other hand, this compilation may execute patterns that are not needed
later (if the pattern occurs in a clause, but an earlier clause succeeds). This appears
to be unavoidable, because a monadic value may utilize parallelism.

7.4 Compile-time pattern checking

Our compiler prototype doesn’t implement compile-time analysis of pattern
matching redundancy and incompleteness. However, to discuss this problem, we
need to distinguish between two kinds of monads. Some monads will immediately
or eventually have an actual value for each monadic value used as an argument
(for example Future or RandomMonad). Other monads may never produce an actual
value from certain monadic values (for example Maybe or List). To provide
maximal guarantees, we’d need to handle these two options slightly differently:

• Values eventually available. In this case we need to check whether the

patterns enclosed inside our binding patterns are exhaustive. An ignore pattern
handles all cases, so it can be treated as a usual underscore pattern.

• Value possibly missing. When a value may be missing, we need to cover a case
when only a single value becomes available, so we need a clause with only a

single binding pattern for every monadic argument.

The possibility of adding compile-time checking is in more details discussed in
section 2 of Chapter VII. It also clarifies why we cannot handle a case when no
value is available (in the second type of monad).

Chapter V: Pattern matching for reactive and concurrent programming

94

8. Chapter summary and related work
We demonstrated how to enrich monadic computations (especially in the F#
language) with the support for pattern matching on monadic values. In this section,

we discuss related types of computations, related work that generalizes pattern
matching and work that inspired the applications of our extension.

8.1 Computation types

Apart from monads [29], there are several other types of computation models.
Applicative functors [42] provide an abstraction that is more common than mo-
nads, but less powerful. As far as we know, applicative functors haven’t yet been
used in the area of reactive and parallel programming. Co-monads (a categorical

dual of monads) [52] have shown useful for data-flow programming [53].

Arrows [47, 48] are used mainly in functional reactive programming research,
which is based on working with time-varying values and discrete events. Our

examples of reactive programming mostly focused on discrete events. Arrow com-
putations can be written using the arrow notation [48] and we believe it may be
interesting to consider whether generalized pattern matching could be provided in
the notation as well.

8.2 Pattern matching

The work on pattern matching mainly focused on providing better abstraction

when pattern matching on normal values [40, 46]. However, some authors

proposed a possible extension, which is to generalize the return type of a pattern

from Maybe to any instance of Haskell’s MonadPlus type class [39, 65] as discussed in
section 7.2. Although this may be a possible approach, we choose to define a new
set of primitives. This gives us more freedom when defining monadic pattern

matching and it also allows us to preserve the intuition about pattern matching in

ML-family of languages.

Extensible pattern matching in Scala [50] is more powerful, because patterns

are represented as objects that can be combined using user-defined operators.

This way Scala also provides a very elegant syntax. In F#, we could achieve similar

effect by allowing definitions of active patterns as members of an object type. This
would be a desirable extension that could be nicely integrated with the work pre-

sented in this chapter.

8.3 Applications

We have demonstrated that our monadic pattern matching can be used for

encoding a wide range of programming models. Join patterns can be also imple-
mented using extensible pattern matching in Scala [36]. A notable difference is that
our implementation is based on asynchronous workflows [4], which is a monadic

computation. This allows us to avoid blocking threads when waiting, which is a

very important property on platforms where creating threads is expensive (such
as .NET and JVM). Our encoding supports nested patterns as described in [51].
However, as noted in [33], it is difficult to efficiently implement pattern matching
on general patterns in joins (especially in the presence of guards). Our prototype

implementation assumes that guards are not used, although the compiler cannot

Chapter V: Pattern matching for reactive and concurrent programming

95

forbid their use. Allowing the author of the monad to disallow the use of guards
seems like a useful extension.

Other applications that we demonstrated in this paper is the reactive
programming library, which is based on discrete events (as introduced in [2]) and
uses imperative programming encoded using monads (similarly to [3]). We also
presented parallel programming model based on futures [37]. Pattern matching in

this model is very similar to the pcase (parallel case) introduced in Manticore [38].

8.4 Conclusion

The key claim of this paper is that a wide range of reactive and concurrent

programming models can be encoded using a simple reusable language extension,
without the need to design a specialized language for each programming model.
We presented a language feature that extends F# computation expressions with
monadic pattern matching and we sketched numerous applications ranging from

lists processing to concurrent programming.

Our language extension is based on pattern matching construct known from
many functional programming languages. We integrated it in the F# language,

which is based on ML, so we made a special effort to preserve the user’s existing

intuition about pattern matching. By requiring several simple laws about basic
combinators, we can guarantee numerous results that are helpful for reasoning

about our monadic pattern matching. Aside from practical applications, our work

is also shows an interesting relation between monadic pattern matching and com-

mutative monads. In particular, our construct can be used for binding on multiple

monadic values in parallel using a syntax that is less sequential than the one used
by standard monads.

 96

Chapter VI

Reactive event-driven computations

In this chapter, we introduce our imperative programming model that comple-
ments the declarative programming model presented in Chapter II. Thanks to the

improved implementation of F# event combinators (described in Chapter IV) and
to the generalized pattern matching extension (Chapter V), we get a universal and
very powerful way for programming reactive applications.

Programs encoded using our programming model are structured as a set of

concurrently executing processes that may wait for events and perform some re-
action in response to an event. Each computation constructs an event that can be

triggered only from within the computation. The program is then composed by

connecting these events. Although the processes can be viewed as concurrent, the

actual implementation is single-threaded, which makes it possible to reason about

the programming model. We argue that simple user interface interactions do not
need actual parallelism, because CPU intensive computations should not be perfor-

med on the user interface thread at all.

More specifically, this chapter presents the reactive programming model using

a series of examples and makes several other contributions to the theory and prac-

tice of reactive programming:

• We demonstrate our programming model using a series of examples that

introduce individual features (Section 1) and use it to develop a simple reactive

game to demonstrate the practical benefits of the model (Section 2). We show

that the programming model makes it easy to encode state machines and that it

provides an elegant abstraction for structuring applications.

• We develop a notion of semi-discrete time, which is particularly suitable for

modeling reactive event-driven applications that are not based on the synchro-
nous programming model. We use it to present a formal semantics of the prog-

ramming model (Section 3) and we use it to formally show several useful
properties about the programming model (Section 4).

• We analyze the event builder computation from an abstract point of view. As

noted earlier, it doesn’t form a monad, because of its imperative natures. This

type of computations is, however, useful in practice. We present a computation
for working with mutable sequences of values (Section 5.1) and describe the

type of computations abstractly using algebraic laws (Section 5.3).

Chapter VI: Reactive event-driven computations

97

1. Reactive library by example
In this section, we will gradually introduce our reactive programming library using
a series of examples that demonstrate the key features. Our library works with an

improved representation of events called EndigEvent<'a>, which is very similar to

IEvent<'a> from F# core libraries with the addition that it can notify the listeners
that it finished producing values. We’ll discuss the type in section 1.5.

1.1 Limiting mouse clicks

In our first example, we will take an existing event win.MouseDown of the type

EndingEvent<MouseEventArgs>. The event is triggered each time the user clicks on
the window. We’ll create a derived event of the same type, which will be also trig-

gered on click, but at most once a second:

1: let limitedClicks =
2: let rec loop () = event {
3: let! arg = win.MouseDown
4: yield arg
5: do! Event.after 1000
6: yield! loop () }
7: loop ()

The example uses the event computation builder and presents four constructs of
computation expressions. On the line 3, we use the bind operation. It waits for the

first occurrence of the MouseDown event and then resumes the computation,

assigning the argument carried by the event to the arg value. The operation ignores

any subsequent occurrences, so the rest of the computation will be executed (at

most) once.

The line 4 uses the yield operation. It triggers the returned event with the

value of arg as the carried argument. Next, we want to wait one second before

handling any further events. This is done on the line 5, by calling the after

function. It returns an event that will occur after the specified time. The event

carries unit value as the argument, so we can use the do! syntax, which is similar to

let!, but ignores the result. The line 6 recursively invokes the loop function, which

starts waiting for the next occurrence of the MouseDown event. Finally, we invoke the
loop function to create a single value of the constructed event with limited click

frequency (line 7).

Figure 15. Circles represent mouse click events; triangles represent
events triggered by the after function; squares depict the occurrences of

the resulting event.

The behavior of the event is depicted in the

Figure 15. The upper horizontal line with circles shows the occurrences of the
MouseDown event and the lower line with rectangles shows the constructed event.
The lines in the middle correspond to the events created by the Event.after

Chapter VI: Reactive event-driven computations

98

function. This simple example demonstrates two important aspects of our reactive
library:

• Missing events. The occurrences of events are not cached in any way and so it
is possible to miss a value if the event occurs while all computations (con-

structed using the event builder) are waiting for another event.

• Active events. To construct an active event, we just need to create a value of

the event. The computation is executed automatically when the application
starts. Our example demonstrates a common pattern where we create a pro-
cessing loop as a recursive function and then run the function to create an
active event value.

1.2 Waiting for multiple events

Our second example demonstrates the match! keyword, which allows us to wait for
a combination of events. For example, let’s say that we want to implement an

application for drawing shapes. The user can create a rectangle by pressing the
button, moving the mouse and then releasing the button again.

We can safely assume that no button is pressed when the application starts

and that MouseDown and MouseUp occur in an interleaving order. Then we can imple-

ment drawing using just a single match! construct as follows:

1: let rectangles =
2: let rec loop () = event {
3: match! f.MouseDown, f.MouseUp with
4: | !down, !up ->
5: yield (down.X, down.Y), (up.X, up.Y)
6: yield! loop () }
7: loop ()

The match! construct on line 3 takes two input events. The pattern matching has
only one clause (line 4), which consists of two binding patterns (the “!” symbol
followed by a standard F# pattern). This specifies that we need to wait for an
occurrence of both of the events before executing the body.

Similarly to the bind operation, pattern matching waits for the first suitable
combination of event occurrences and then executes the first matching clause (at
most) once. When this happens, we yield the coordinates of the newly created
rectangle (line 5) and recursively call the loop function to wait for the next
rectangle (line 6). This example demonstrates:

• Joining events. In reactive applications, we often need to wait for a combi-

nation of events. The generalized pattern matching construct isn’t fully univer-

sal, but allows us to express many frequently used patterns. We will discuss the
semantics of match! in more details in section 3.5.

1.3 Creating stateful events

The event created in the previous section is triggered each time the user enters a
new rectangle. However, in reality we will need to collect all the created shapes, so
that we can draw them when the window is invalidated. When creating events, we
can store the state as a parameter of the loop function:

Chapter VI: Reactive event-driven computations

99

1: let rectangleList =
2: let rec loop rects = event {
3: let! rc = rectangles
4: yield rc::rects
5: yield! loop (rc::rects) }
6: loop []

The parameter rects stores the list of rectangles drawn so far. When a new
rectangle is drawn (line 3), we first trigger the created event with the new list as
an argument (line 4), and then we continue looping with the new state as the
parameter. Note that when starting the loop (line 6), we need can provide an initial
value of the state. This example again demonstrates a couple of interesting aspects
of our library:

• Composability. In this example, we’re using an event value created earlier

(namely rectangles) to build a more complicated event. Although our library
has in many ways imperative nature, it is highly composable. We discuss laws

that are useful for reasoning about the composition in section 5.

• Guarantees. Our library provides certain guarantees (section 4) that specify

when an event value may be missed. For example in the code above, we will

never miss a value produced by the rectangles event.

• Stateful events. As shown by the example, we can write events that keep an

internal state. The state exists exactly once, which means that all computations

that will be waiting for an occurrence of the rectangleList event will always

receive the same value.

1.4 Transitioning between modes

So far, our sample application doesn’t give any visual feedback when drawing the

rectangle. In this section, we’ll create an event that fires repeatedly when drawing

the rectangle. The event has two different modes of operation. In the first one, it

waits for the MouseDown event. In the second state it fires each time the mouse

pointer moves.

1: let selection =
2: let rec drawing down = event {
3: match! f.MouseMove, f.MouseUp with
4: | !move, _ ->
5: yield down, (move.X, move.Y)
6: yield! drawing down
7: | _, !up ->
8: yield! waiting() }
9:
A: and waiting () = event {
B: let! down = f.MouseDown
C: yield! drawing (down.X, down.Y) }
D: waiting()

The two different modes of the event are implemented as two mutually recursive
functions. The function drawing (line 2) corresponds to the mode in which the
computation yields the coordinates each time the mouse moves (line 5) and the
function waiting (line A) represent a mode in which the computation awaits the
MouseDown event (line B). The transition between different modes is implemented

as a recursive call (using the yield! primitive) in the tail-call positions of the two

Chapter VI: Reactive event

functions (lines 6, 8 and
starting the computation (line

In the drawing mode, we use

different to the one in section 2.3. We need to wait either for
event, whichever occurs first. This is done using two clauses. The first one (line 4)
uses binding pattern to obtain a value from

while the second clause
summarize the most interesting aspects of our last example:

• Choosing events. This example demonstrates that
for joining multiple events, but also for choosing between them. W
combine these two uses, which makes

• State machines. In the code above, we wrote a computa

using a technique that can be, in general, used for encoding arbitrary finite state

machines. We can use mutual
state machines in ordinary functional programs.

Figure

The last three code snippets form a significant part of a wor

for drawing rectangles. The full source code available
a simple addition that allows the user to select the rectangle color, which is de

strated in Figure 169.

1.5 Ending event

When writing code using the event

computation builder with the

Combine member that first runs one computation and when it completes, starts the
second computation. In order to implement this memb
the event produced the last value (indicating that we can start running the second

one). For this reason, the

As already mentioned, our computation builder constructs values of a type
EndingEvent<'a> which extends event with the ability to notify the listeners when

the event has completed. Additionally, we also add notification about an exception:

9 We are grateful to Josef Albers for ma

reproduction without adding support for other shapes.

Reactive event-driven computations

100

functions (lines 6, 8 and C). Note that we need to specify the initial mode when
starting the computation (line D).

mode, we use match! to encode another frequently used pattern,

section 2.3. We need to wait either for MouseMove
ever occurs first. This is done using two clauses. The first one (line 4)

uses binding pattern to obtain a value from MouseMove and ignores the other event,

while the second clause (line 7) obtains a value from MouseUp
summarize the most interesting aspects of our last example:

This example demonstrates that match! can be used not only

for joining multiple events, but also for choosing between them. W
bine these two uses, which makes match! very useful.

In the code above, we wrote a computation with two modes

using a technique that can be, in general, used for encoding arbitrary finite state

We can use mutually recursive functions just like when encoding
state machines in ordinary functional programs.

Figure 16. Drawing rectangles in action

The last three code snippets form a significant part of a working demo application

g rectangles. The full source code available on the attached CD
a simple addition that allows the user to select the rectangle color, which is de

When writing code using the event builder computation, we need to equip the

putation builder with the Yield member to trigger an event, but also with the

member that first runs one computation and when it completes, starts the
second computation. In order to implement this member, we need to know when
the event produced the last value (indicating that we can start running the second

one). For this reason, the IEvent<'a> type isn’t sufficient.

As already mentioned, our computation builder constructs values of a type
which extends event with the ability to notify the listeners when

the event has completed. Additionally, we also add notification about an exception:

We are grateful to Josef Albers for making it possible to demonstrate the application using an art

tion without adding support for other shapes.

). Note that we need to specify the initial mode when

to encode another frequently used pattern,

MouseMove or MouseUp
ever occurs first. This is done using two clauses. The first one (line 4)

and ignores the other event,

MouseUp. Let’s briefly

can be used not only

for joining multiple events, but also for choosing between them. We can freely

tion with two modes

using a technique that can be, in general, used for encoding arbitrary finite state

ly recursive functions just like when encoding

king demo application

on the attached CD contains
a simple addition that allows the user to select the rectangle color, which is demon-

builder computation, we need to equip the

member to trigger an event, but also with the

member that first runs one computation and when it completes, starts the
er, we need to know when

the event produced the last value (indicating that we can start running the second

As already mentioned, our computation builder constructs values of a type
which extends event with the ability to notify the listeners when

the event has completed. Additionally, we also add notification about an exception:

king it possible to demonstrate the application using an art

Chapter VI: Reactive event-driven computations

101

1: type EventStatus<'a> =
2: | Completed
3: | Value of 'a
4: | Exception of exn
5:
6: type EndingEvent<'a> =
7: | Ending of IEvent<EventStatus<'a>>

The declaration uses the standard F# event type as a basis. The EndingEvent<'a>
type is a simple wrapper that encapsulates a standard event (line 7) that produces
values of the EventStatus<'a> type. This type represents various messages that the
event may produce. It includes a case when the event produces a standard value
(line 3) and two special cases representing the end of the event computation (line
2) and an exception (line 4).

A valid event computation should follow a simple contract. It should produce
zero or more notification carrying the Value status and then it may eventually pro-
duce either Completed notification (when it finished successfully) or the Exception

notification (when some error occurs). After that, no further notification should be
produced.

2. Case Study: Simple reactive game
In this section, we will demonstrate our reactive library using a more complex

example. This will demonstrate several interesting aspects, such as modelling of

data flow in reactive programs (Section 2.1) and the ability to hierarchically

compose finite state machines.

Figure 17. Simple reactive game in the playing mode

We will implement a game where the user has to click on a moving smiley face
as many times as possible within 20 seconds. The smiley moves repeatedly after
some short time or immediately after it is clicked. In addition, when a smiley is
clicked, it changes color for a short period of time. As demonstrated in Figure 17,
the game also shows the remaining time and the current score (number of clicks).

After 20 seconds, the game asks whether the user wants to play again.

2.1 Gameplay data flow

We start by implementing parts of the game that are active while the user is

playing. This phase can be decomposed into three individual components. Each
component can be encoded as an event. The components can communicate by

Chapter VI: Reactive event-driven computations

102

waiting on values produced by other components (events). This is possible thanks
to the composability discussed in section 2.4. As we’ll see later, the gameplay will
be started repeatedly, so we need to make sure that all the involved components

end running when the remaining time reaches zero. This can be done using an
aspect that we haven’t discussed yet.

In section 3, we model events as a sequence of time/value pairs associated

with a time range when the event runs. This means that an event can end and stop
producing values. All examples in the section 1 were recursively implemented infi-
nite events. However it is possible to remove the recursive call and create event
that ends. In the implementation of the library, we can also wait for a special

notification that is triggered when an event ends.

Figure 18. Data flow of game components; the output drawn as a box on

the left side represents a produced value; the right output is triggered at

most once when the component completes.

Figure 18 shows individual events of the Gameplay. It demonstrates how values

flow between the events. The arrows in the diagram have the following meaning:

• An arrow from the left output of an event A to an event B corresponds to the

fact that the event B waits for occurrences of the event A.

• An arrow from the right output means that the event B waits for a notification

triggered when the event A ends

Now that we have an overall picture of the Gameplay architecture, we can discuss

individual components in more details:

• CountDown event produces a value storing the number of remaining seconds

(an integer) each time the number changes. The event ends after 20 seconds.

• SmileyClicks reacts to the MouseDown event from the user interface and fires

each time the user clicks on the smiley. The carried value is the number of clicks
so far. This event keeps running until the countDown event ends.

• SmileyMoves yields a location of the smiley and its state (normal or red face). A

new value is produced when the user clicks on the smiley or when the smiley
changes state or moves after a specified time. The runs until it receives

notification that countDown event ended.

From these three events, only the third one implements some complicated
behavior that we’ll need to express using a state machine. The first two events are
very simple.

Chapter VI: Reactive event-driven computations

103

2.2 Counting time and clicks

We first look at the countDown and the smileyClicks events. As you can see from the
Figure 18 the countDown event doesn’t have any input links and so it is the best one

to start with. The smileyClicks event waits until the countDown event ends, so we’ll
implement it as the second one:

1: let countDown =
2: let start = DateTime.Now
3: let rec loop(n) = event {
4: yield n
5: if n > 0 then
6: do! Event.after 1000
7: yield! loop(n - 1) }
8: loop(20)

The code follows the pattern discussed in section 2. We create a recursive loop that

keeps the number of remaining seconds as the parameter. Inside the loop we
trigger the event with the current number (line 4), wait one second (line 6) and
then loop recursively (line 7). When the number of seconds reaches zero, the event
ends (the implicitly added else clause contains an empty event that immediately
ends). The smileyClicks event will be slightly more complicated as it needs to

handle two cases. When the countDown event ends, it also needs to end. When the
user clicks on the smiley it produces a new score value:

1: let smileyClicks =
2: let rec loop(n) = event {
3: match! smiley.MouseDown,
4: countDown.Completed with
5: | !md, _ when hitTest md ->
6: yield n + 1
7: yield! loop(n + 1)
8: | _, !_ -> () }
9: loop(0)

The event is again implemented as a loop function. We start the function with an
initial score set to zero (line 9). The event uses match! to wait for the first of two
events. When the user clicks on the smiley control, we need to check whether the
mouse cursor was actually inside the smiley circle. This can be done in the when
clause (line 5) using the hitTest function (not shown in the code). Occurrences of
the MouseDown event that don’t match this condition are ignored. When the location
of the cursor is correct, we produce a new score value (line 6) and then continue
looping (line 7).

The second event that we’re waiting for is the notification that the countDown
event ended. This notification is exposed as the Completed member. The member is
a standard event and fires exactly once when the source event ends. The branch
that handles this case contains a unit value (line 8), which means that it doesn’t do
anything and so the smileyClicks event also ends.

The above code is correct only if we can guarantee that the Completed event
will not occur unnoticed, for example when handling a click on the smiley. Our
library guarantees that if code doesn’t perform any waiting (using match! or let!),

Chapter VI: Reactive event-driven computations

104

no values will be missed while running, which makes the above implementation
correct. This guarantee is in more details discussed in section 4.

2.3 Calculating smiley state and location

Next, we implement the event that represents the state of the smiley face. The
event will trigger when the smiley moves or when it changes color. These changes
can be caused by either a click on the smiley or by a timeout. The control flow is

slightly more complicated, so we will implement it as a state machine. The diagram
in Figure 19 shows the state machine.

Figure 19. State machine representing the smileyMoves event that

controls location and state of the smiley

The event starts in the normal state. There are three different transitions from this
state. After some time, the smiley moves automatically. This triggers some action

and changes the state back to normal. If the user clicks on the smiley, it moves

immediately and transitions to the clicked state, which changes the color of the
smiley to red. In this state, the user can either click on the smiley again. After 200

milliseconds, the color of the smiley changes back to normal (without moving the

smiley again). In both of the states, we also handle the case when countDown event

ends and in response we terminate the smileyMoves event.

We’ll implement the state machine using mutually recursive functions. As we
can see in the previous diagram, the two states share similar structure and so the

two functions also look similar (we could refactor the code using higher-order

functions, but we show the straightforward solution to keep the code simple and
readable):

A: let smileyMoves =
B: // Moves smiley to 'pos' and changes color to
C: // normal, then waits for the specified time
D: let rec normal(pos, time) = event {
E: yield normalSmileyImage, pos
F: match! countDown.Completed, smileyClicks,
G: Event.after time with
H: | !_, _, _ -> ()
I: | _, _, !_ -> yield! normal(newPoint(), 800)
J: | _, !_, _ -> yield! clicked() }
K:
L: // Moves smiley to a random location and
M: // changes color to red, then waits 200 ms
N: and clicked() = event {
O: let pos = newPoint()
P: yield redSmileyImage, pos

Chapter VI: Reactive event-driven computations

105

Q: match! countDown.Completed, smileyClicks,
R: Event.after 200 with
S: | !_, _, _ -> ()
T: | _, _, !_ -> yield! normal(pos, 600)
U: | _, !_, _ -> yield! clicked() }
V:
W: // Start with a new random location
X: normal(newPoint(), 800)

The function representing the normal state takes a position and a remaining time
until the next movement as arguments (line D). This allows us to call the function
recursively from the normal state where we want to move smiley to a new location
and wait 800ms before moving again (line I), as well as from the clicked state

where we want to keep the same location and wait only the remaining 600ms after
already waiting for 200ms (line T).

In both of the functions, we use match! to wait for the first of three events
(lines F, Q). This is perhaps the most common pattern when programming simple
reactive user interfaces. One notable aspect of the implementation is that it
repeatedly creates a new event using the Event.after function (lines G, R). This
differs from the usual use when we wait for existing events. However the

Event.after function serves more as a primitive of the library and it will by, indeed,

defined as one of the primitives in the formal semantics (Section 5).

Also note that we use the “!_” pattern in all the clauses, which means that we’re

waiting for the event, but we’re discarding the carried value. For example, the
smileyClicks event carries the current score, but we don’t need this value in the

smileyMoves event. We only need to know that the user clicked on the smiley (and
so the score has changed).

The event produces tuples of type Bitmap * Point (lines E, P). Inside normal,

the bitmap is normalSmileyImage and the position is the one given as the parameter.

Inside the clicked function, we always yield redSmileyImage together with a newly

generated random location (the function newPoint is not shown in the listing).

2.4 Hierarchical structure of the game

In the previous sections, we implemented the events that run during the Gameplay.

In this section, we’ll look how to embed them in the rest of the application which

provides user interface for starting the game and displaying the score when the
game ends. The overall structure of the application is very simple and is displayed

as a state machine in Figure 20.

Figure 20. The game loop visualized as a state machine

Chapter VI: Reactive event-driven computations

106

The game runs a very simple loop. When it starts, it enters the restarting state in
which it displays some information and waits unit the user clicks button to start
playing. Then it transitions to the running state in which it repeatedly updates the

user interface based on the instructions from the game. When the game ends, the
total score is displayed and we transition to the restarting state where the user can
start a new game. As already mentioned, we construct a new instance of the events

countDown, smileyClicks and smileyMoves each time the user starts a new game. This
solution is correct because we also make sure that all of these events stop running
at the end of the game. To start a new instance of the events, we wrap the code that
we wrote so far in a function that returns the constructed event values:

let startGame() =
 // (definitions from sections 4.2 and 4.3)

 smileyMoves, smileyClicks, countDown

We will invoke this function when transitioning from the restarting state to the
running state to create a new instance of the Gameplay. Once we create the events,
we will keep looping until the countDown event ends.

To avoid the need to pass all there events as parameters while looping, we
declare a nested function loop which implements the running state. The function
remembers the current score, which is needed when the game ends:

A: let userInterface =
B: let rec restarting() = event {
C: displayGameInfo(true)
D: let! _ = start.Click
E: displayGameInfo(false)
F: yield! running(startGame()) }
G: and running(e) =
H: let smileyMoves, smileyClicks, countDown = e
I: let rec loop(score) = event {
J: match! smileyMoves, smileyClicks,
K: countDown, countDown.Completed with
L: | !(pos, img), _, _, _ ->
M: smiley.Image <- img
N: smiley.Location <- pos
O: yield! loop(score)
P: | _, !score, _, _ ->
Q: score.Text <- sprintf "Score: %d" score
R: yield! loop(score)
S: | _, _, !time, _ ->
T: time.Text <- sprintf "Time %d" time
U: yield! loop(score)
V: | _, _, _, !_ ->
W: displayScore(score)
X: yield! restarting() }
Y: loop(0)
Z: restarting()

The restarting function is simple. It displays the start button and other controls
that show the game info (line C) and waits for a click on the button (line D). To
start a new game, we call startGame to create a triple of events that is passed to the

recursively called running function.

Chapter VI: Reactive event-driven computations

107

The running function decomposes the tripe into individual events (line H) and
starts looping. The first three branches handle events that provide updates for the
user interface, namely changing smiley location and picture (line L), updating the

current score (line P) and changing the remaining time (line S). The last branch
(line V) waits on the Completed notification exposed by the countDown event. We
display the user’s score and start waiting for another game.

2.5 Practical lessons learned

Before we move on to discussing the semantics of our reactive programming
model, we discuss several properties that were demonstrated by the previous case
study and that are important for using the library in practice.

Modularity. The first practical benefit of our library is that we can develop and
test individual components (implemented as events) largely independently. The
Gameplay part of our application was structured into three largely independent

events dealing with time counting, click counting and moving the smiley. In the
usual program that suffers from the inversion of control, all these three aspects
would be mixed together.

This separation simplifies the development of the components as well as their

testing and is also essential for reusability. Note that an event may consume values
from another event (for example, smileyMoves receives notifications from

smileyClicks when the user clicks on the smiley). However, we can easily replace

the referenced event with a mock implementation that does nothing (when we

want to develop a component without other interactions) or simulates behavior of

the user (which is invaluable for unit testing).

User interface separation. As the sample game shows, the library allows us to

separate the game control logic (implemented in sections 4.2 and 4.3) from the

code that manipulates the user interface (in section 4.4). This means that if we

wanted to change the presentation layer, we would only have to change the

userInterface function.

Indeed, we could take this idea even further and hide the entire application
behind a façade event that would yield values of some algebraic data type

representing instructions to the user interface.

Visualizing the structure. The structure of a program implemented using our
library is very easy to visualize graphically. We presented two kinds of diagrams in

this paper. The data-flow diagram (Figure 18) visualizes how components of the

application communicate and the control-flow diagram (a state machine)
visualizes the behavior of a component in detail.

The key benefit is that the code we write directly corresponds to the diagrams.

This makes it easy to draw diagram for existing code as well as implement a
program based on a diagram. As the case study demonstrated, we can also com-
pose the components (and diagrams) hierarchically, which is very useful for

applications of larger scale.

Chapter VI: Reactive event-driven computations

108

3. Formal semantics
In this section, we present formal semantics of our reactive library. The library has
many imperative properties (such as waiting for events without caching), so the

code that uses it may seem difficult to reason about. Here we clarify what ex-
pectations we can have when using the library.

We model an event as a list of time-value pairs. An event (such as countDown,

smileyClicks and smileyMoves from the previous section) is constructed using an
event-builder computation (consisting of constructs such as let! and yield). We
present a big-step operational semantics of event-builder computations and use it
to show when an imperative loop can miss an event occurrence, which was our

main concern with respect to semantics in the previous sections.

3.1 Motivating examples

We start by discussing three examples where the expected meaning is intuitively

clear and where a naïve semantics (and implementation) may easily go wrong.

Determinism. The first example shows what should happen when we have an
event-builder computation with several consecutive yield constructs. For example

the following computation (which starts immediately when the application runs)

yields three multiples of 10:

let nums = event {
 yield 10; yield 100; yield 1000; }

If another computation waits for the nums event, we should guarantee that the

numbers will be received in the order in which they were generated. This means
that the semantics cannot use the same time value for all three produced values.

The following interpretation would be clearly wrong:

val nums : (time * int) list = [(0, 10); (0, 100); (0, 1000)]

When waiting for the first value from nums, we would pick a value with a minimal
time, which can be any of the three produced values. This shows that the
computations needs to track the current time and increment it each time it yields a
value. A valid interpretation of the above code would be for example a list [(0, 10);

(1, 100); (2, 1000)]. Here, the time component is incremented by one after each
yield construct.

Nested yielding. An event-builder computation typically waits for an occurrence

of some event and then performs several actions in response. These actions may
include waiting for another event or triggering the event (using the yield
construct). If we write a computation that recursively waits for the same event,

then we would like to know what we can do in response if we don’t want to miss
any event occurrence.

If we wait for another event before waiting again (as for example in section

2.2) then we cannot make any guarantees in general. However, if the reaction
consists only of triggering the event, than we would expect the computation to

handle all values generated from the source event. Let’s demonstrate this using an
example (which uses the nums value declared above):

Chapter VI: Reactive event-driven computations

109

1: let twice =
2: let rec loop() = event {
3: let! n = nums
4: yield n; yield n * 2
5: yield! loop() }
6: loop()

The event-builder computation waits for an occurrence of the nums event (line 3)
and then triggers the twice event two times with two different values (line 4). As
discussed in the previous example, these two values need to be produced with a
different time, so that we can distinguish the first one.

If we simply used one global time for timing occurrences of the nums event as
well as the twice event, the semantics could yield unexpected results. In particular,
if processing of the loop body (line 4) takes two time units, the meaning of the

twice event could be following:

val twice : (time * int) list = [(0, 10); (1, 20); (2, 1000); (3, 2000)]

As we can see, the list contains only values 10, 20, 1000 and 2000, which shows
that the value 100 produced by the nums event was missed. The problem is that

while producing the two values (on the line 4), we incremented the global time

after each yield. When waiting for the second value from the nums event (after the

recursive call), the current time of the event-builder computation was 2 time units.

Waiting using the let! construct then picks an occurrence with the time greater or

equal to 2, which carries 1000 as the value.

One way to solve this problem is to use a different time in the computation
that performs the reaction. We call this the local time. The timing of the event that

we’re waiting for (in the example above nums) is called an external time. The idea is

that all operations performed in the local time must fit into a single unit of the

external time. This guarantees that the entire reaction will only take less than one

unit of the external time and so we won’t miss any occurrences of the external
event. Using this interpretation, the meaning of the twice event would be the
following:

val twice : (time * int) list = [(0.0, 10); (0.1, 20);

 (1.0, 100); (1.1, 200) (2.0, 1000); (2.1, 2000)]

As we can see, when running the computation in response to the event nums (which
occurred at time 0), we increment the local time only by 0.1 for each yield. When
we start waiting for the next occurrence of nums, the local time is 0.2, so we won’t

miss the value 100, which occurs at the time 1.

Note that the local time isn’t a decimal number, as the computation may need
to yield more than 10 values. The dot in the notation only separates two

components, so the syntax is <ext>.<loc> where <ext> is an integer representing
the external time and <loc> is also an integer denoting the local time (so for
example 1.0 < 1.5 < 1.10 < 1.15).

Chapter VI: Reactive event-driven computations

110

It is also worth mentioning that we can have deeper nesting of times than just
two. If we wrote an event that waits for values from the twice event and produces
two values in response, then the times of the produced values in reaction to the

value 2000 would be something like 2.1.0 and 2.1.1.

Parallel merging. In the previous two examples, we used only let! (waiting for an
event), yield (triggering an event) and yield! (to implement recursive loops). In

this example, we look at an example that waits on multiple events using the match!
construct. This feature can be used in two different ways. We can use match! to
wait for the first of several events (as in section 2.5), which has a relatively clear
semantics.

However, we can also use match! to wait for an occurrence of multiple events
at once. This operation is similar to join patterns [31]. The main difference is that
invocations on channels involved in a join pattern are buffered and join patterns

can be used as synchronization primitive. In our library, match! joins first possible
combination of event values starting from the time when it was called by the
event-builder computation. We will define this meaning formally in section 5.2.
The following example shows one case where the users would probably have a

clear expectation about the result:

let oneTwoThree = event {
 let! _ = btn.MouseClick
 yield 1; yield 2; yield 3 }

let ticTacToe = event {
 let! _ = btn.MouseClick
 yield "tic"; yield "tac"; yield "toe" }

let merged =
 let rec loop() = event {
 match! oneTwoThree, ticTacToe with
 | !n, !s -> yield n, s; yield! loop() }
 loop()

The example defines two events that produce three constant values. Both of the

event-builder computations that define them first wait on the same event
(btn.MouseClick), which serves as a synchronization point to make sure that they

will start producing values at the same time. If we use the nesting of times as

discussed in the previous example and the first mouse click occurs at time 4, then
the three values will be yielded with times 4.0, 4.1 and 4.2.

The merged event is constructed using a recursive loop that repeatedly waits

for a value from the oneTwoThree and ticTacToe events and produces a single value
(containing a tuple) in response. It seems reasonable to expect that when
oneTwoThree and ticTacToe start producing values at the same time, the merged

event will trigger three times carrying tuples with corresponding values from the
source event. In our example, the synchronization is achieved by waiting for the
same event before yielding, so the expected meaning of the merged event is the
following:

val merged : (time * (int * string)) list =

 [4.0.0, (1, “tic”); 4.1.0, (2, “tac”); 4.2.0, (3, “toe”)]

Chapter VI: Reactive event-driven computations

111

The time in our library isn’t discrete and based on steps as for example in [3], but
isn’t fully continuous as in [1]. This makes it possible to work with events that
occur in parallel without committing to completely synchronized solution.

3.2 The structure of semi-discrete time

The time in our application has a very interesting structure. We can take any time
value, turn it into a local time value (by adding “.0” to the end) and then increment

the value arbitrarily many times without reaching a value that would be larger
than the successor of the original value.

Technically speaking, the structure corresponds to a list of integers, so it is

probably intuitively easy to understand. However, we can define the structure of
the time more formally and use the following algebraic definition:

Time (l, 0, G�QQ, /pQ./, ≤) is a structure where:
- T is a set and 0 ∈ l is a selected element of the set
- G�QQ and /pQ./ are unary functions l → l
- ≤ is a binary relation on l (≤ ⊆ l × l)

The following axioms hold about time:

- ∄, such that G�QQ(,) = 0 or /pQ./(,) = 0 (Zero)
- , ≤ , and , ≤ G�QQ(,) (Comparison)

- /pQ./(,) ≤ , and , ≤ /pQ./(,) (Weak equivalence)

- G�QQes/pQ./(,)u ≤ G�QQ(,) for any $ ∈ � (Local time)

When working with time, we construct the time values from the initial time 0 (at
the start of a reactive program) using the two provided functions. One important
observation about the declaration is that the given axioms relate any two values
(constructed from 0 by applying the functions succ and local) using the ≤ relation,
which means that the set is fully ordered. Also note that 0 is not only the smallest

element (as it is not a successor of any other time), but also a value of the most

global time (as it is not a local time of any other value).

We will use the structure when calculating with time in the operational

semantics. In the upcoming text, we’ll use the following convenient notation

instead of calling the local and succ functions explicitly:

, + 1 = G�QQ(,) ,. 0 = /pQ./(,)

Now that we have a precise definition of the structure of time, we can look at the
formal semantics, starting with the syntax.

3.3 Syntax of reactive applications

Our reactive extension is implemented as an ordinary library, so we can use the
full syntax provided by F#. The event-builder computation is a case of F#
computation expression [28]. However we will define the semantics only for
programs written using the pattern that we used in all the examples in this paper

so far. The allowed subset of the F# syntax is shown in Figure 21.

Chapter VI: Reactive event-driven computations

112

prog = let idei = eventi in prog Program declaration
 | ide Start the main event
event = [idsi = λ idi . eexpri] Event consisting of a list of

 in ids expr …states and an initial state
epat = !id Wait for event pattern

 | __ Ignore event pattern

eexpr = let id = expr in eexpr Value binding
 | let! id = ide in eexp Waiting for an event

 | yield expr Triggering an event
 | yield! ids expr State transition
 | eexpr ; eexpr Composing computation
 | if expr then eexpr1 Conditional choice between

 else eexpr2 …event-comptuations
 | match! ide-list with Waiting for a combination
 [epat-listi -> eexpri] …of events (join pattern)
 | () Empty computation

Figure 21. Simplified syntax of reactive programs

We define a program (prog) as a series of event declarations (an event decla-

ration is for example countDown, smileyMoves and smileyClicks from section 4) fol-
lowed by one identifier that specifies the main event of the program. This is
slightly different to our implementation above, where we didn’t have any main
event and instead, the last event of the program performed some imperative side-
effects. In the formal semantics, we can imagine that the main event yields in-

structions to the GUI as suggested in section 4.5. An event declaration (event)
consists of an identifier, a series of functions that encode a state machine and a call

to the function representing initial state of the state machine.

The most interesting part of the syntax is the event-builder expression, which

specifies what constructs can be used to create events (in the F# implementation,

this corresponds to the code inside the event { … } block).

Note that we use a different syntactic category for different kinds of identi-
fiers. The category id is used for names of standard F# values and parameters.
Functions that encode states of a state machine are from the category ids and

finally, the names of events are from the ide category. This makes it possible to
easily restrict what uses of let! and yield! are allowed. In F#, we can, of course,
use any expressions, but in the semantics we add a few restrictions.

When performing a recursive call (or a state transition) using yield!, the para-
meter has to be an application of some state function that is declared as part of the
event. In the syntax, the parameter is ids expr, which is an application of a function

from the special category of state functions. Similarly, when waiting for an

occurrence of an event using let!, we specify that the source should be an
identifier from the category ide, instead of an expression. This restriction means

that we can consume values only from previously declared events that are already
running and that we cannot construct new events on the fly. The category ide also

includes all external system events such as btn.MouseDown and others.

Chapter VI: Reactive event-driven computations

113

In the syntax definition, we use the expr category without defining it. This is
the category of usual ML-like expressions as defined for example in [54]. We will
also assume that we have the usual operational interpretation for ML expressions.

3.4 Semantics of event builder computations

We will not discuss static semantics of the described reactive language, because it
is a subset of the full F# language and we use the typing rules of the host language.
Events are standard F# values and have a type Event<'a> where 'a is a type para-
meter specifying the type of values produced by the event when it is triggered.

Types and arrows. The dynamic semantics of our library is far more interesting.
As already mentioned, our goal is to model events as a list of time/value pairs. The
structure of the time was formally defined in section 5.2 and value denotes a set of
values that can be evaluated as the result of standard ML (or F#) expression as
defined in [54].

When specifying the meaning of an event-builder expression from the
syntactic category eexpr (for example yield 1), we need a context that defines the
time when the operation is executed and an environment that defines the meaning

of identifiers that can appear in the expression. The environment is a disjoint

union of three functions that provide the meaning of three types of identifiers:

env = (id → value) +

 (ids → id ⨯ eexpr) +

 (ide → time ⨯ [time ⨯ value])

We write env(id), env(ids) and env(ide) to get values associated with individual

identifiers. This is not ambiguous in any way as we always know the syntactic

category of the identifier and these categories are disjoint.

The environment consists of three types of associations. Identifiers that

represent values and parameters (id) are mapped to standard ML values. This
models eager evaluation usual in the ML-family of languages. Identifiers represent-
ing state machine functions (ids) return the syntactic definition of the function,

which gives us an easy way to deal with recursively defined functions. Note that

the state machine function is always unary (which is not a limitation in practice as
we can use tuples). Finally, the last function assigns meanings to identifiers
representing events (ide). The meaning is the result of evaluating an event-builder

computation. This is a pair that consists of a time specifying when the event-

builder computation finished and a list of time/value pairs produced by running
the computation.

Our operational semantics uses the following three types of reductions to

specify the interpretation:

→e : expr → (env → value)

→p : prog → (env → [time ⨯ value])

→v : event → (env → time ⨯ [time ⨯ value])
→ : eexpr → (time ⨯ env → time ⨯ [time ⨯ value])

Chapter VI: Reactive event-driven computations

114

The function →e interprets a standard ML expression and gives a function that
returns a value when provided with an environment that assigns values to free
variables (identifiers) occurring in the expression. We do not present the definition

of this function as it is already provided in The Definition of Standard ML [54]. The
rest of the functions will be defined in the next section.

The function →p gives a meaning of the entire program. It takes an

environment that consists of events defined externally (e.g. btn.MouseDown) and
produces a list of time/value pairs that is generated by the main event of the
program.

The function →v defines a meaning of the event category, which is a definition
of an event consisting of several mutually recursive function declarations. The
result is a function that returns a completion time of the event together with a list
of produced time/value pairs when given an environment. The environment is

needed as it may contain definitions of other events used in the declaration (for
example using the let! construct).

Finally, the most interesting function that our semantics defines is →. It gives

an interpretation of event-builder expressions such as let! and yield. The function

takes a context consisting of a time when the expression starts evaluating and an

environment that defines identifiers. As a result, it gives a time when the operation
completes and a list of produced time/value pairs.

The rules that define operational semantics are shown in Figure 22. Rules

Program and Main define the meaning of reactive program (syntactic category

prog), the rule Event specifies the meaning of an individual event, which forms a

part of the program. The rest of the rules specify meaning of the constructs that

can be used in the event-builder expressions (category eexpr), with the exception

of match! which will be discussed in section 3.5.

"$% ⊦ "%"$, →� ,, "
"2e� = [(,2e�, ())] ,2e� = ,� such that ,� ≥ , & ,� = 0 + 1 + ⋯ + 1("$%[&'" ⟼ (,, "), &'". Completed ⟼ (,2e� + 1, "2e�)]) ⊦ 0-pU →y -

"$% ⊦ ;68 &'" = "%"$, :7 0-pU →y - (-pU-.¡)

"$%¢ = "$% ∪ =&'GJ ⟼ (&'J, ""+0-J), … , &'Ge ⟼ (&'e, ""+0-e) }&'1e1£, ""+0-1e1£ = "$%¢(&'G)
"$% ⊦ "+0- →2 % (0, "$%¢[&'1e1£ ⟼ %]) ⊦ ""+0-1e1£ → "

"$% ⊦ [&'G1 = λ&'1. ""+0-1] :7 &'G "+0- →� " (*%"$,)

"$% ⊦ "+0- →2 8<@6 (,H, "$%) ⊦ ""+0-J → "
(,H, "$%) ⊦ :9 "+0- 8¤67 ""+0-16;N6 ""+0-2 → " (¥¦l-�")

"$% ⊦ "+0- →2 9D;N6 (,H, "$%) ⊦ ""+0-R → "

(,H, "$%) ⊦ :9 "+0- 8¤67 ""+0-16;N6 ""+0-2 → " (¥¦B./G")

Chapter VI: Reactive event-driven computations

115

(,H, "$%) ⊦ "+0-J → ,J, %GJ (,J, "$%) ⊦ "+0-R → ,R, %GR(,H, "$%) ⊦ ""+0-J; ""+0-R → ,R, %GJ@%GR (P"©)

G = "$%(&'")(,, %) ∈ G such that , = min =,′| (,′, %′) ∈ G; ,′ ≥ ,H}
 (,. 0, "$%[&' ⟼ %]) ⊦ ""+0 → "

(,H, "$%) ⊦ ;68! &' = &'" :7 ""+0 → " («.&,&$U)

∄(,, %) ∈ "$%(&'") such that , ≥ ,H(,H, "$%) ⊦ ;68! &' = &'" :7 ""+0 →⊥, [] (P,�Q)

(,, /) = "$%(&'")
"$% ⊦ &'" →y / (F.&$)

"$% ⊦ "+0- → % (,H, "$%[&' ⟼ %]) ⊦ ""+0- → "
(,H, "$%) ⊦ ;68 &' = "+0- :7 ""+0- → " (®&$')

(,H, "$%) ⊦ () → ,H, [] (*¡0,¯)
 "$% ⊦ "+0- →2 %

(,H, "$%) ⊦ °:6;± "+0- → ,H + 1, [,H, %] (l-&UU"-)

&', ""+0- = "$%(&'G) "$% ⊦ "+0- →2 %(,H, "$%[&' ⟼ %]) ⊦ ""+0- → "
(,H, "$%) ⊦ °:6;±! &'G "+0- → " (l-.$G&,&p$)

Figure 22. Formal semantics of reactive applications

Semantics of program and events. The meaning of a reactive program is defined
by two rules. The Program rule processes individual events that form the program
and add two events to the environment before evaluating the rest of the program.
The semantics defines the event “ide.Completed” which fires exactly once after the
event named ide completes. This corresponds to the implementation of the

Completed property discussed in section 2. The time of the Completed event occur-
rence is the most global time, so for example if the last value is produced at time

4.2.0, the Completed event will fire at time 5. The event produces a unit value, which

is written as (). The Main rule simply gives the meaning of the specified main
program event and discards the ending time, which isn’t relevant for the semantics

of the program as a whole.

It is worth mentioning that the semantics of prog doesn’t allow recursively

defined events. The rule Program adds the meanings of events to the environment
in the order in which they are defined. If we attempted to recursively refer to some

Chapter VI: Reactive event-driven computations

116

future event, it wouldn’t be defined in the environment. This is an intentional
restriction of the library and it means that data-flow diagrams (such as the one
presented in section 4.1) can’t contain cycles.

When defining the meaning of an event in the Event rule, we construct an
environment envs, which extends the original environment with definitions of
individual state functions. Then the rule evaluates the meaning of the initial state

function starting at the time 0. The resulting completion time and a list of values is
the meaning of the event.

Semantics of event-builder. First of all, the rules IfTrue, IfFalse and Bind do not
specify any special behavior with respect to time or events. They define the
meaning simply in terms of another event-builder expression, possibly with an
extended environment, so we won’t discuss them in details.

From the remaining rules, Empty is the simplest one. It specifies that an empty
event doesn’t produce any values and completes running at the same time at which
it was started. In practice, an empty event is used implicitly in an if expression
that doesn’t contain the else clause. In the Seq rule, we simply evaluate both of the

event-builder computations in a sequence and concatenate the produced values

using the @ operator.

The Waiting rule is more interesting. It obtains the meaning of the event that it

is supposed to wait for from the environment and then selects the first event that

occurs after or at the time t0 (the time when the computation was started). This is

done using the min function which selects the minimal time from a given set and

could be defined as follows:

min(G) = , ∈ G such that ∀t� ∈ G ∶ ,� ≥ ,

The definition is valid, because (as noted in section 5.2) it is possible to compare

any two time values. The event-builder expression that follows let! is started with

the initial time set to t.0, which means that the execution will use a local time rela-
tively to the time of the handled event occurrence. This guarantees that all events

that are produced in reaction to the event will occur before another the source

event (ide) occurs again and so the user will be able to handle all occurrences using
a recursive loop. Note that the Waiting rule cannot be used if the event we’re
waiting for never occurs in the future. This case is handled by the Stuck rule, which

returns an empty list and an undefined ending time.

The Trigger rule specifies that when yield runs at some specified time, it

produces a single value at that specified time. It is worth noting that the returned
time of completion is incremented by one. Together with waiting, this is the only

operation that takes some time and as discussed in section 5.1, this is needed in

order to distinguish values produced by subsequent yields. Finally, the Transition
rule obtains a value that should be passed as an argument to the state function

from the environment and evaluates the body of the state function.

3.5 Semantics of the match! construct

Specifying the meaning of the match! construct is slightly more complicated. It

needs to wait for several combinations (or joins) of events that are created by

Chapter VI: Reactive event-driven computations

117

individual clauses and select the first clause for which the values become available.
Moreover, one event of the join may occur multiple times while waiting for another
event of the join, so we need to specify which of the values should be selected.

In the implementation, the clauses of match! can also contain nested patterns
(which specify that only some of the produced values are accepted) and the when
clause which allows us to specify arbitrary conditions on the values. In the formal

semantics, we don’t describe these two features, because that would increase
complexity and make the key idea less visible.

Waiting for events. Each clause of the match! construct constitutes a single join

that waits for several events in parallel. We start by discussing how this waiting
works. The behavior can be best demonstrated graphically and you can see it in
Figure 23. The top three horizontal lines represent source events and circles,
squares and triangles represent values produced by the events. The dashed

horizontal line represents the result and finally, the line marked t0 denotes a
starting time of the waiting.

Figure 23. Waiting for multiple events

Note that the result isn’t actually an event as we need only a single

combination of values (so that we can resume the computation by running the

body of the clause). This is quite different to operations that combine events

occurring possibly multiple times into a new event that also occurs possibly re-
peatedly (such as the SelectMany, CombineLatest and Zip operations in [9]).

As the diagram demonstrates, we ignore values that may have been produced
before the starting time and we wait until all of the events produce at least one
value. The time we return as part of the result is the time of the last event that we

were waiting for. Now, there are several ways to choose the values to be returned:

• First values. In this approach, we could select the first value that was triggered

by each of the events.

• Last values. This way we select the last value that was triggered by an event

before the last event that we were waiting for finally fires.

In our reactive library, we use the second technique for two reasons. We find it
more practically useful – for example when waiting for values from all available
sensory inputs in a robot (such as temperature sensor, gyroscope and GPS locator),

we are more likely interested in the most recent value. The second reason is that
the first-value semantics can be easily simulated, while simulating the last-value
semantics using first-value implementation isn’t easily possible. The function to do
this can be written as follows:

Chapter VI: Reactive event-driven computations

118

let first(evt) = event {
 let! val = evt in yield val }

match! first e1, first e2 with
| !v1, !v2 -> // computation body

When the function first runs (immediately before match! is processed) it waits for
the first event and triggers the returned event with this value as an argument. All

subsequent occurrences of the event are ignored. Although the formal semantics
doesn’t allow writing functions that take events as parameters, this is perfectly
possible in the actual implementation.

Formal definition. The formal definition of the match! construct is expressed
using two rules defined in Figure 24. We define an auxiliary function that specifies
waiting for multiple events as discussed in the previous operation:

→w : [id ⨯ ide] → (time ⨯ env → time ⨯ env)

The first argument of the function is a list of tuples consisting of two identifiers.
The second identifier (ide) is a name of an event that we want to wait for and the
first identifier specifies the name of a variable where we want to store the result of
waiting. The context (specified as an argument of the returned function) consists of
a time where we want to start waiting and an environment, which contains (among
other things) definitions of events that we want to wait for. As a result, the function

gives us a time when the last of the awaited events occurred and an environment

that assigns values carried by the events to the identifiers specified in the first

parameter.

The function is defined by Join and JoinStuck rules. The context of the rules

provides an environment and the starting time. We first define tmin, which is the

smallest time when a value becomes available for all events. Then we collect last

produced values (as described in the previous section) and constitute a new

environment to be returned as the result. Similarly to Stuck, the JoinStuck rule

provides a case returning an undefined time and an empty list of time/value pairs
when there are no further occurrences of the join.

The Match rule defines the meaning of the → function for the match! construct

which was missing in Figure 24. For each clause, we first select all patterns (the

epat syntactic category) specifying that we want to wait for an event together with
the associated event. Next we use →w to obtain the time when the clause could run

and the environment with values carried by the events. Finally, we select the first
clause and interpret the body of the clause under a context consisting of a time and
an environment constructed as a union of the original environment with an
environment assigning values to the variables occuring in the clause patterns.

Again, we also provide a rule for the case when there are no furhter occurrences

(named MatchStuck).

(tH, "$%) ⊦ �(&', &'") | ("0.,, &'") ∈ �s"0.,1,J, &'"Ju, … , ("0.,1,e, &'"eu� such that "0., = ! &' } →´ ,1 , "$%1(,, "$%�µz¢, ""+0-) ∈ =(,J, "$%J, ""+0-J), … , (,¶, "$%¶, ""+0-¶)}such that , ≠⊥ & , = min =,J, … , ,¶}
 (,. 0, "$% ∪ "$%�µz¢) ⊦ ""+0 → "

(,H, "$%) ⊦
CD8O¤! &'"J, … , &'"e ¸:8¤ | "0.,J,J, … , "0.,J,¹ → ""+0-J| "0.,º,J, … , "0.,º,¹ → ""+0-º

 → "
 (F.,Qℎ)

(tH, "$%) ⊦ �(&', &'") | ("0.,, &'") ∈ �s"0.,1,J, &'"Ju, … , ("0.,1,e, &'"eu� such that "0., = ! &' } →´ ,1 , "$%1∀& ∈ =1 … }: ,1 =⊥
(,H, "$%) ⊦

CD8O¤! &'"J, … , &'"e ¸:8¤ | "0.,J,J, … , "0.,J,¹ → ""+0-J| "0.,º,J, … , "0.,º,¹ → ""+0-º
 →⊥, []

 (F.,QℎP,�Q)

G1 = "$%(&'"1) ,»1e = min = , | (,, %) ∈ ⋃ s½ & ∀& ∈ =1 … n} ∶ ∃(,�, %�) ∈ s½ ∶ ,� ≤ ,»1e & ,′ ≥ ,H}
(,1, %1) ∈ G1 such that ,1 = max =,′| (,′, %′) ∈ G1; ,′ ≤ ,»1e}

(tH, "$%) ⊦ =(&'J, &'"J), … , (&'e, &'"e)} →´ ,»1e, [&'J ⟼ %J, … , &'e ⟼ %e] (¾p&$)

G1 = "$%(&'"1) ∃& ∈ =1 … $}: ∄(,, %) ∈ G1 such that , ≥ ,H(tH, "$%) ⊦ =(&'J, &'"J), … , (&'e, &'"e)} →´⊥, [] (¾p&$P,�Q)

Figure 24. Formal semantics of the match! construct

Chapter VI: Reactive event-driven computations

120

4. Guarantees
The main purpose of the formal semantics presented in the previous section is to
provide a framework for reasoning about reactive applications written using our

library. In this section, we show several properties about frequent usage patterns.

4.1 Simple recursive loops

In the section 1.4, we created an event that collects all drawn rectangles into a list

and fires each time a new rectangle is created, carrying a list of all rectangles
drawn so far. We implemented the functionality as a recursive loop that repeatedly
waits for an event (using let!) and then reacts (using yield).

To show that the implementation is correct, we need to guarantee that the
computation will handle all values produced by the source event. The following
example implements an event that reproduces behavior of another event:

1: let e' =
2: let rec loop () = event {
3: let! v = e
4: yield v
5: yield! loop () }
6: loop ()

Whenever the event e triggers a value (line 3), the event we create fires with the
same value as an argument (line 4) and then recursively loops to wait for the next
occurrence (line 5). The event e' should not only handle all occurrences of e, but it
should also produce the same values. Since triggering the event using yield is the
first reaction in the computation, we can also shows interesting fact about the time
of the produced events. Let’s now look at the formal semantics of a program that
defines an arbitrary event e and the event e' shown above. The meanings of the
two events are two ending times and two lists of time/value pairs:

"$%(") = ,, [(,J, %J), … , (,e, %e)] "$%("�) = ,�, [(,J� , %J�), … , (,»� , %»�)]

We start by analyzing the two produced lists and we’ll discuss the ending times
later. First of all, we want to show that the number of produced elements is the
same and that the values are the same and are produced in the same order. We can
also reason about the time. If the time of the original event occurrence is for

example 4.2, then the time of the reaction will be 4.2.0.

We say that two events are weakly equivalent if: ($ = ¡) & ∀&: (%1 = %1� & ,1� ≥ ,1 & ,1� ≤ ,1)

Now, we can show that the events e and e' are weakly equivalent.

Proof. We say that an event is sequential if for each two consecutive occurrences
(,&, %&) and (,&+1, %&+1), it is true that the time ,1¿J ≥ ,1 + 1. We shall require that all
external events (such as btn.MouseDown) are sequential and as a consequence we
can show that all user-defined events are sequential too:

In the rule Trigger, the time of the occurrence is ,H and the ending time of the
constructed event is ,H + 1 where ,H is the starting time. From the rule Seq, we

Chapter VI: Reactive event-driven computations

121

can see that if there is any subsequent computation, it will not run before the
time ,H + 1. As there is no rule that would allow running computation at an
earlier time than at the starting time, we can see that all events are sequential.

Now that we know that the event e must be sequential, we can show that the
equation above holds:

Let’s say that the event e occurs at time ,. From the rule Waiting, we know that
the line 4 will be executed at time ,. 0. The value v will be triggered at time ,. 0
(Trigger) and the line 5 will run at time ,. 0 + 1 (Seq). After the recursive call,
the line 3 will run at time ,. 0 + 1. Thanks to sequentiality, e will not occur again
before , + 1 and from the time axioms, we know that ,. 0 + 1 ≤ , + 1.

The times of values produced by the event e' are not exactly the same (since ,. 0 is
a different time value than ,), but they are equivalent for many practical purposes.
Next, we’ll analyze the ending times of the two events (, and ,′), No matter what
the value of , is, the value of ,’ will always be ⊥, because the event e' never stops
running (after processing all values of e, the rule Stuck will be used).

4.2 Reasoning about pattern matching

In the previous section we looked at recursive processing of single source event
using the let! construct. Now, we’ll look at a more complicated scenario when we

need to handle multiple source events and we need to use the match! construct

(discussed in section 5.5). The following example event uses match! to wait for the

occurrences of events a and b. When one of them occurs, it produces a value of type

Choice<'a, 'b>, which contains the value with a tag that specifies which of the

events generated the value:

1: let c =
2: let rec loop () = event {
3: match! a, b with
4: | !v, _ -> yield Choice1Of2(v)
5: yield! loop ()
6: | _, !v -> yield Choice2Of2(v)
6: yield! loop () }
7: loop ()

The example is very similar to the one presented in section 6.1. The difference is
that we now have two branches for handling two different events. Ideally, we’d like

to show that if we take the meaning of c and take only occurrences tagged with

Choice1Of2, we’ll get an event that is weakly equivalent to the event a (in terms of
the definition from section 6.1) and similarly for the event b. Unfortunatelly, this is
not always the case.

Definition. To reason about the previous example, we need to define a rank of
time value ,. Rank is defined recursively by the construction of the time value:

-.$(0) = 0 -.$s/pQ./($)u = -.$($) + 1

-.$sG�QQ($)u = -.$($)

Chapter VI: Reactive event-driven computations

122

Intuitively, rank specifies the number of dots in the notation we use through this
chapter. For example -.$(4.2) = 1 and -.$(4.2.0) = 2. In addition to rank of
time, we also define a rank of an event. An event e has rank $ if the times of all
occurrences of the event have rank $.

Events of equal rank. A useful special case is when the two (or more) events that
are being processed using match! have the same rank. This is the case for example

in section 4.2 since all external events have rank 0 and the Completed event (trig-
gered when an event stops producing values) also has rank 0.

If the two source events never occur at the same time, we get a result that is

similar to the one from section 6.1. We will not show a full formal proof as it is very
similar to the one presented earlier. When one of the events occurs at time ,, we
know that the time of the next occurrence of any of the two events will be at least , + 1 (the other event didn’t occur at time , and since they have the same rank, it
cannot occur between , and , + 1). Just like in the earlier proof, the reaction ends in
time ,. 0 + 1, so the match! is called recursively before any of the events occurs.

General case. In the general case, we cannot guarantee that the recursive loop will

handle both of the events. If the event a triggers at time ,, then the processing will
complete in time ,. 0 + 1, however the event b may be triggered during the pro-
cessing (for example at time ,. 0.0 + 1). If both of the events have a rank (meaning
that they trigger values at times with the same rank) then we can at least

guarantee that no value of the event with the lower rank will be missed. Let’s

assume that the -.$(.) = $ and -.$(3) = ¡ such that $ ≤ ¡.

• Informally, if the event a fires, then the reasoning is the same as in section 6.1. If

the event b fires at time ,, then we need to show that it will finish processing
before the other event can fire.

• Let ,‘ be the maximal time of rank $ smaller than , (that is, the last time at
which a may have occured before b occured). Now, the event a can‘t trigger
before time ,′ + 1.

• The time , has a higher rank than ,‘, meaning that:

,‘ + 1 ≥ ,. 0 + 1

As a result the next possible occurrence of the event a would be handled.

As we can see, the reasoning about match! is more complicated, but is certainly
possible and may give useful results. As discussed in the future work, it should be

possible to implement a compiler extension that would warn users about possible
unhandled events in recursive processing loops.

4.3 Handling completion of events

In our last example of formal reasoning, we’ll get back to the event that reproduces

the behavior of another event. The implementation from section 6.1 was faithful in
terms of generated values, but didn’t correctly handle the completion of the event.
To implement an event that ends in the same time as the source event, we need to

handle the Completed notification:

Chapter VI: Reactive event-driven computations

123

1: let e' =
2: let rec loop () = event {
3: match! e, e.Completed with
4: | _, !() -> ()
5: | !v, _ -> yield v
6: yield! loop () }
7: loop ()

In this case we’re matching on two events. The Completed event has rank 0 (as we
can see from the Program rule) and the event e may not have a rank at all. This

means that we cannot effectively use any of the conclusions from section 6.2.

However, the Completed event is very special. The Program rule essentially
defines that it will occur once at a time, which is a least time of rank 0 after the last

occurrence of e. Using similar reasoning as in the previous examples, we can show
that the events e and e' are weakly equivalent. We cannot miss a value triggered
by e, because e.Completed will not occur before all values are handled. However,
we’d also like to show some relation between , (the ending time of e) and ,’ (the
ending time of e'). The times are not equivalent, but if we follow the rules that
define the ending time of an event, we obtain the following equation:

,� = (min=,e | -.$(,e) = 0 & ,e ≤ ,} + 1).0

Intuitively, this means that the event e' will end “reasonably soon” after the

event e. Note that if we modified the rule Program to trigger the Completed event

immediately after an event ends, it would be difficult to prove that the event is not

lost in any case. We explicitly made sure that Completed is an event of rank 0, which

means that it will always be handled correctly by a recursive loop that uses match!
(which follows from the discussion in section 4.2). This is very important in

practice, especially when implementing hierarchical state machines.

5. Abstract imperative computations
When introducing F# computation expressions in section 1, we demonstrated how

to use them for encoding standard types of computations such as monads and
computations that correspond to the Haskell’s MonadPlus type class. However, we

also noted that our use of computation expressions doesn’t strictly follow any of

these two patterns. Although we use the same operations as MonadPlus type, our

implementation does not obey the usual laws of the type.

In this section, we look at our event computation from the abstract point of
view and we’ll describe an alternative set of laws that our computation obeys. We

show that this is a common pattern of inherently imperative computations that
may be applicable to numerous other scenarios. We start by looking at another
example of imperative computation that shares the same abstract properties as
our event type, but is simpler.

5.1 Processing sequences in F#

When programming with collections or sequences of values in F#, we can use the
seq computation which is similar to the List monad in Haskell. The bind operation
of this type runs the rest of the computation for all elements of the sequence given
as an argument and collects the results. For example a simple combination of
filtering an projection may be implement like this:

Chapter VI: Reactive event-driven computations

124

> seq { let! num = [0 .. 9]
 if num%3 = 0 then
 return num*num }
val it : seq<int> = [9; 36; 81]

The computation gradually assigns a number from the input list to the symbol num
and runs the rest of the computation, which may produce a singleton list (using
return) or an empty list (implicitly in the else branch). In reality, F# uses slightly
different notation (for instead of let! and yield instead of return), but the
meaning is the same. This computation would be a valid instance of MonadPlus and

obeys all the usual laws.

This syntax is somewhat limited. For example, if we use multiple subsequent

let! constructs, the computation will behave as Cartesian product, which makes it

difficult to implement for example the zip function. The type that represents seq-
uences in F# is imperative (as it is a standard type used by the .NET Framework)
and is defined as follows:

type IEnumerable<'a> =
 abstract GetEnumerator : unit -> IEnumerator<'a>

The IEnumerator<'a> type is an implementation of the Iterator pattern [55] and

allows sequential iteration over the collection. When implementing operations

where we need to take elements from multiple sources in parallel (such as zip or
merge), we need to use the IEnumerator<'a> type and resort to the C#-like

imperative style.

Computation for iterators. However, it is also possible to use computation ex-
pressions for providing an elegant syntax for imperative processing of the
IEnumerator<'a> type. A slightly simplified definition of the type looks as follows:

type IEnumerator<'a> =
 abstract Current : 'a
 abstract MoveNext : unit -> bool

When working with the type, we use the Current property to read the current
element and the MoveNext method to navigate to the next element (until the method
returns false).

Now, we can define an imperative computation for working with enumerators.
It constructs a new IEnumerator<'b> value and we can use yield to produce next
element to be returned. More interestingly, we provide a let! operation that takes

a single element from the IEnumerator<'a> given as an argument and runs the rest

of the computation with this value as an argument. If a value is not available, the
computation ends. Let’s look at a simple demonstration:

1: let nums = iter {
2: yield 1; yield 2 }
3: let rest = iter {
4: let! n = nums
5: yield "first: " + n.ToString()
6: let! m = nums
7: yield "second: " + m.ToString()
8: let! k = nums
9: yield "second: " + k.ToString() }

Chapter VI: Reactive event-driven computations

125

If we iterate over all the elements available in the rest value, we get elements
“first: 1” and “second: 2”. Then will the iterator end (returning false from Move-
Next). Even though we’re working with ordinary iterators, the example shares

many properties with our reactive library for working with events.

The most important similarity is that the let! operation has some side-effect
and we need to apply it repeatedly on a value representing some computation to

get all values produced by the computation. If we want to process all elements, we
need to do that using a recursive loop. The similarity will be even more obvious if
we look at the following implementation of the zip function for IEnumerator<'a>
values:

let rec zip xs ys = iter {
 match! xs, ys with
 | x, y -> yield x, y
 yield! zip xs ys }

The recursive processing pattern is similar to the one we would write when

implementing zip for immutable functional lists. The key difference is that binding
on IEnumerator<'a> is an operation that modifies the object, so we pass the same
object as an argument to the recursive call. In the functional implementation,

binding gives us a new object representing the rest of the list.

As already mentioned, the iter computation introduced in this section shares

many properties with our reactive library and we tend to use similar patterns such

as processing using recursive loops. In the next section, we describe this type of

computations abstractly and relate it to the monad and MonadPlus types.

5.2 Monad laws

As discussed in the introduction, F# allows us to use either the return/return!

notation (usually preferred for standard monads) or yield/yield! notation (used

especially by various forms of sequences or MonadPlus computations). Our reactive

library as well as the previous toy example used the second notation, so we’ll
continue using it, even though it may feel unfamiliar when discussing monads. The

Figure 25 uses the F# notation to present the usual laws that are supposed to hold

about monads.

m { let! x' = m { yield x }
 yield! f x }

≡ f x (Left identity)

m { let! y = m { let! x = m
 yield! f x }
 yield! g y }

≡
m { let! x = m
 let! y = f x
 yield! g y }

(Associativity)

m { let! x = m
 yield x }

≡ m (Right identity)

Figure 25. Monad laws written using the computation expression syntax

If we analyze the laws, we can see that the first two laws hold for our two

examples of imperative computations as well. For events, we can prove this

formally using the weak equivalence defined in section 4. For iterators, this would
require defining a formal semantics, but it isn’t difficult to verify the laws in-
formally.

Chapter VI: Reactive event-driven computations

126

The Right identity law however fails to hold for both of our computations. The
reason is that in both of the cases, let! runs the rest of the computation only once
even though the monadic value m may (eventually) produce multiple values. To
implement a computation that behaves identically to the source computation, we
need to implement a recursive processing loop. We will look at alternative
formulation of the law for our imperative computations in the next section.

There are also some laws that should hold for computations represented as
the MonadPlus type. These are less widely accepted. However, from the laws defined
in [56], our computations obey both of the more generally accepted laws – namely
the Monoid law and the Left zero law.

5.3 Imperative computation laws

Our imperative computations do not obey the Right identity law, but they have a
property that is very similar to this law. We can construct an equivalent compu-
tation by writing a recursive loop that processes values one by one. To describe
this property formally using an equation, we need to use a fixed point combinator,
which makes it possible to declare a recursive function without naming it using the
let rec keyword. In F#, a fixed point operator can be defined as follows:

> let rec fix f x = f (fix f) x;;
val fix : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b

The fix function can be used for defining recursive functions that take some
argument of type 'a and produce result of type 'b. The function given as the first
argument will be called with two parameters – the second one is the input and the
first one is a function that can be used to make the recursive call. The following
example shows how to use the fix function to encode a simple recursive function
such as factorial:

> let fact = fix (fun f x ->
 if x <= 1 then 1 else x * (f (x - 1)));;
val fact : int -> int

The first parameter of the lambda function is a function that can be used for the
recursive call and we use it in the else branch to calculate factorial of x - 1.

Recursive identity. Now, we’ll look how to encode the usual recursive loop used
for processing imperative computations. We want to use the fix combinator to
encode a loop like the one presented in section 6.1. This construction should create
a computation that is equivalent to the one we’re getting values from (using let!),
so we can use it as an alternative to the usual Right identity law.

Let’s say that comp is some computation of type M<'a> for which we have a
computation builder m that supports let!, yield and yield! operations. We can
encode a recursive function that uses let! once and then calls itself recursively
using yield! as follows:

fix (fun loop () -> m {
 let! x = comp
 yield x
 yield! loop () }) ()

Chapter VI: Reactive event-driven computations

127

The loop value that we get as a parameter from fix is a function that takes unit
value as an argument and runs the computation once to read and yield the next
element. In the example for working with IEnumerator<’a>, the constructed enu-

merator will be exactly the same as comp. In our reactive library the computations
will be weakly equivalent (Section 4.1). We could also define the event computation
in a way such that it would automatically end when the event (or events) that
we’re waiting for (using let! or using match!) ends. This way the computations
would be equivalent in terms of the definition from section 4.3. However, for
practical reasons, we prefer the first option and we find that weak equivalence is
powerful enough.

Simplified recursive identity law. We will make one more simplification to
present the law in a more accessible form. We will declare the computation as a
recursive value rather than a recursive function that calls itself. This definition can
be implemented only in a language with lazy evaluation, but we use it mainly for a
formal presentation.

We assume that the computation M<'a> provides following functions, which
correspond to let!, composition of computation expressions and the yield
keyword. Note that there is no special operation for encoding the yield! construct.
This is because this construct translates (essentially) to an identity function. The
types of the operations are follows:

≫= : M<'a> -> ('a -> M<'b>) -> M<'b> ⊕ : M<'a> -> M<'a> -> M<'a>
return : 'a -> M<'a>

These are 3 of 4 standard operations required by the MonadPlus type class. In addi-
tion, we also need a fixed-point operator, this time for encoding value recursion:

fix : ('a -> 'a) -> 'a

The operator takes a function that declares a value of type 'a in terms of itself

(given as an argument). In a lazy language, this can give a perfectly valid definition.

Now, we can encode the loop for processing computations as a recursive computa-

tion of type M<'a> that composes code for handling a single value with the
computation itself. The following equation describes Recursive identity law, which

is our alternative to the monadic Right identity:

¡ = ¦&+ (\- → ¡ ≫= (\+ → (-",�-$ +) ⊕ -))

The law describes essentially the same construction as the previous code, but is
written explicitly using the operations provided by the MonadPlus type class. Our
imperative computations cam be now abstractly described as computations that
support operations provided by the MonadPlus type class and obey the Left identity
and Associativity laws (inspired by monads), the Monoid and Left zero laws
(inspired by MonadPlus) and the Recursive identity law. To support the match!
construct, we also need to provide the two operations described in Chapter V.

Chapter VII

Ideas for future work

The work presented in this thesis spans several interesting areas ranging from
garbage collection to programming models and reasoning about programs. In this

chapter we present several ideas that are motivated by our work and that would
extend the work in directions that we consider as very interesting.

The reactive programming model has been an active research topic in the aca-

demic community for a long time, however it is still used in relatively specific areas

such as embedded systems. We believe that there is a great potential for this prog-
ramming model nowadays. The user interfaces are becoming more interactive and

a modern application needs to communicate with numerous data sources, which is

best done asynchronously. This raises the question whether we could provide a

direct support for reactive scenario in garbage collectors as well, not directly for

our programming model, but in general.

Another present trend in the theory of programming languages is automatic

verification of systems and the aim to provide stronger guarantees about prog-

rams. We can follow this direction in several places of our work. Firstly, we’ll dis-

cuss whether the compiler could check some basic properties of the match! con-
struct. Secondly, we demonstrated how to formally reason about reactive appli-
cations implemented using our programming model, but we could ask if some of
the reasoning could be done automatically?

1. Garbage collection in reactive scenario

In the Chapter IV, we have focused on the definition of garbage and finding an

implementation that doesn’t cause memory leaks in the situations when we com-
bine declarative and imperative style of reactive programming as introduced in the
introduction in Chapter II.

However, similar problems have been observed for other programming
models such as the actor model [15]. This suggests that we may need more
powerful GC algorithms for reactive programming in general. It is not yet clear to
us whether the work on liveness analysis [22, 23] can provide a more general

solution. The algorithm we proposed serves mainly as a useful formal model for
the design of reactive library, but it would be interesting to see if it can be
generalized to cover all known reactive scenarios and implemented in practice.

Chapter VII: Ideas for future work

129

Another problem is to show that garbage collection in the reactive (or more
generally, in any non-standard) memory model in fact needs a specialized GC
algorithm. In section 4.6 of Chapter IV, we discussed why we cannot use weak

references in our model, but there are other advanced features such as
ephemerons [26] that may provide the necessary expressive power. In general,
this demonstrates the need for a solid framework for formal reasoning about the
expressivity of garbage collection techniques.

2. Compile time checking for match!

In section 7.4 of Chapter V we draw a distinction between two types of monads –

those that always eventually produce a value and those that may (in some cases)
never produce value. In this section, we briefly discuss the compile-time checking
that could be provided for these two types.

2.1 Values available

For the first type of monad (e.g. RandomMonad or Future), we know that there will
eventually be a value available for every binding pattern. The ignore pattern may
make it possible to run the clause earlier (e.g. before a future finishes), but other-

wise behaves similarly to standard underscore pattern. As a result, we can

transform our computation patterns into usual patterns and then run the standard
incompleteness check. The transformation follows two simple rules:

!<pat> → <pat> (binding pat.) _ → _ (ignore pat.)

The first rule extracts the underlying pattern of a binding pattern. The second rule
transforms an ignore pattern written as “_” into a standard underscore pattern
(which is incidentally also written as “_”). It is worth noting that the choose

operation which selects clauses may have some reasonable notion of default

behavior for a case when values don’t match any clause (such as returning None in

the Maybe monad). Ideally, the author of choose should be able to specify the

required behavior of incompleteness checking.

2.2 Missing values

When using pattern matching with monadic values that may never produce an
actual value, we need to consider if the matching can succeed when some values
are not available. Firstly, there may not be any value available at all. In this case,
the choose operation should behave the same way as bind when matching on a

single monadic value, which doesn’t contain an actual value. We will discuss this

problem in more details shortly.

To cover all other cases, it is necessary and sufficient to provide a set of

clauses that (together) form a complete pattern for each of the arguments and

don’t contain any other binding pattern. The following example shows a complete
pattern matching in the Maybe monad:

match! opt1, opt2 with
| _, !_ -> "second"
| !(x::xs), _ -> "first - cons"
| ![], _ -> "first - nil"

Chapter VII: Ideas for future work

130

The first clause contains a complete pattern for all possible values of the second
argument. The first argument is a list, so the last two clauses form a complete
pattern for the first value. In case when all values may be missing, the choose
operation should have some default behavior. Depending on the monad, it may or
may not be desirable to warn the user about incomplete patterns.

2.3 Ignore all pattern

The translation semantics from Figure 12 does not allow the case when a clause
consists solely of ignore patterns. In practice, this doesn’t appear to be a limitation
for monads that always produce a value. When the time is involved (e.g. Future),
the “ignore all” clause could be always invoked (although this would be non-
deterministic). When time is not involved (e.g. RandomMonad), the ignore all clause is
equivalent to a clause consisting of binding patterns “!_”.

However, the “ignore all” clause seems to be useful for monads that may not
produce a value. For example, in the Maybe monad, we would expect that the “_, _”
clause matches None, None case. Even though this may sound intuitive, there isn’t
any reasonable way to express it. The problem is that checking for absence of value
is an operation that can be done only outside of the monad. A binding pattern

specifies binding inside the monad, but an ignore pattern gives only a negative

statement – we don’t need to bind on a particular value. All other clauses are
constructed from positive statements (bind on some value). We believe that the

default behavior of choose is the right one in most of the cases, however finding a

way to encode the “ignore all” patterns is an interesting future problem.

3. Committing monadic computations

Most of the monadic values can be accessed via multiple references from the

program without any need for synchronization. This is obviously true for all

immutable values, but it is also true for some mutable monadic value (e.g. futures).

However, we also want to work with monadic values that require some syn-
chronization when a clause is selected by the choose operation. A typical example
is the join builder that we use for encoding join calculus. The computation is based

on channels. Outside of the monad, we can send messages to channels and the

monad allows us to read them. However, each message can be received only by one
computation.

This behavior can be implemented using the combinators we presented.

Roughly, the channels composed using merge need to reference the original source
channels and the choose operation needs to perform a commit operation when it
selects a clause. At this point it takes the value out of the channel (a channel
constructed using merge removes values from their original source channels at this

point) and cancels all other clauses.

Note that the computation runs in two different modes. In one mode, channels

are protected and we can only send or receive a single message. In the second

mode, the pattern matching is in progress and we needs to access messages in the
channel directly. When implementing this kind of monad, we need to encapsulate
both computation modes inside a single type, which makes the code more com-

plicated.

Chapter VII: Ideas for future work

131

If we wanted to support the “two mode” style of computations more directly,
we could generalize the type of our combinators to work with two types. The type

M<'a> represents standard monadic value; the type MA<'a> represents a value when

pattern matching is in progress (alternative mode):

val ⦷ : MA<'a> -> M<'b> -> MA<'a * 'b>
val map : ('a -> 'b) -> MA<'a> -> MA<'b>
val maunit : MA<unit>

The modified version of the merge operation together with the maunit value
allows us to combine multiple (standard) monadic values into a single value in the
alternative mode. We can for example write (((maunit ⦷ a) ⦷ b) ⦷ c) to com-
bine three monadic values (the additional unit value can be automatically dropped
later). We also need the map function for computations in the alternative mode.

Now, the choose operation needs to be modified to take a list of computations
that represent pattern matching in progress. It selects a clause, performs the

commit operation and then returns the body of the clause:

val choose : list<MA<MaybeDelayed<M<'a>> -> M<'a>

In this thesis we used the simpler version, because we believe that it is sufficient in

most of the common situations and it is also clearer when studied formally. How-

ever, we consider “two mode” style of computations an interesting and potentially

useful generalization of our work.

4. Automatic verification of reactive programs

Automatic program verification has recently some very promising results. In this

thesis we presented a formal model for reasoning about reactive programs deve-

loped using our reactive programming model. We used this formalism to show

that, under some conditions, an occurrence of an event will not be missed during

imperative processing. This kind of property is very important for reactive prog-
rams, so it would be desirable to automate this verification.

This is a very challenging area, but the recent results are encouraging. More
specifically, automated program verification could be used to verify the following

properties of reactive programs.

Missing events. A property that we need to verify the most frequently is that a
certain computation will not miss any occurrence of an event (assuming that code
executed in response to some event terminates). This can be relatively easily ve-

rified for recursive loops constructed using the let! construct. Implementing an
extension for the F# compiler that would automatically verify this property would
not require sophisticated program verification techniques.

When implementing a recursive loop using the match! construct, the task is
somewhat more complicated. As demonstrated in section 4.2 of Chapter VI, we

need to analyze the rank of an event. This analysis is also relatively straight-
forward. However, it would be beneficial to provide the user with some way for

specifying which events should not be missed, so that the compiler doesn’t show
warnings in cases where the missing of an event is intentional (or doesn’t matter).

Chapter VII: Ideas for future work

132

Liveness in general. A recent work by Cook et al. [66] shows that it is possible to
“prove that programs eventually do something good”, meaning that we can use au-
tomated tools to prove a liveness property of a program. In our scenario, the

liveness property means that, when an event occurs, the event builder computa-
tion reacts to the event and eventually reaches another waiting point.

We believe that the structuring of reactive programs presented in this thesis

would make the automatic verification easier compared to, for example, standard
programming model that builds heavily on mutable state. In our programming
model, more information about the program is encoded directly in the structure of
the code and the tools for automated verification of program could likely benefit

from this information. Evolving our programming model is an interesting direction
as it would enable using it in mission critical scenarios.

5. Real-world reactive scenarios

Another future direction for the work presented in this thesis is to evaluate our
reactive programming library in several real-world scenarios. So far, we mainly
focused on programming of reactive user-interfaces of windows applications,

which is a very frequent problem. However, there are several other, very interes-

ting, areas for evaluating reactive programming models.

Programming robots. The Functional reactive framework Yampa [63] has been

used for programming robots and uses many appealing examples from this field.

Robots are, indeed, a very reactive system – most of the sensors provide the input

in form of events and the robot needs to (quickly) respond to these events. More-

over, we often need to react to various combinations of events and our program-

ming model appears to be very suitable in this case.

Technically speaking, using our F# library for programming robots may be

very well possible using the Microsoft Robotics Studio10 tools. The programming

model in Robotics Studio is extremely complex compared to our approach, so the
use of a lightweight model presented in this thesis would be a large simplification.
However, a question is how difficult would it be to build our library on top of the

programming model available in Robotics Studio.

Client-side web programming. Another problem domain where most of the

applications are extremely reactive is the client-side of a web application. A
modern web application needs to react to events caused by the user (similarly to a

desktop application), but in addition, it also needs to communicate with the server,
which is done via asynchronous invocations. The client receives a response from
the server using an event that it needs to handle.

Technically, there are three ways for using our programming model on the
client-side of a web application. A somewhat limited approach is to implement the
programming model as a JavaScript library. The viability of this approach has been

demonstrated in Chapter III, however the JavaScript language doesn’t support any

equivalent to F# asynchronous workflows, so the encoding would be cumbersome.

10 More information about MS Robotics Studio is available at: http://msdn.microsoft.com/robotics

Chapter VII: Ideas for future work

133

Another option is to use the Silverlight platform, which allows us to run .NET
applications on the client-side using a web browser extension. This approach is
appealing as we could write application using the F# language and use the library

“as it is”. Although the Silverlight platform isn’t as wide-spread as JavaScript, there
is a relatively large number of applications developed using Silverlight, so it would
not be difficult to find users for our reactive library.

Finally, the last option is to use the F# language together with a translator (or
a compiler) that produces JavaScript code. We demonstrated that this approach is
perfectly possible in the Bachelor thesis of the author [67]. This would give us all
the benefits of the F# language, but we would not rely on any specific program-

ming environment. The developed reactive programs would only require support
for JavaScript, which is assumed when creating rich web applications.

134

Chapter VIII

Overview of contributions and conclusion

The main goal of this thesis was the development of a reactive library that is based
on the imperative programming model and can be integrated with the existing, de-
clarative combinators for working with events. Our aim was to develop a library
that is clearly specified, so that it is possible to formally reason about the programs
written using the library.

Aside from the reactive library itself (presented in Chapter VI), we presented

several results that are interesting on their own and could be used and further de-
veloped separately from our reactive programming model. In this chapter, we first

review the results presented in this thesis that we find the most interesting and

then we briefly conclude the thesis.

1. Overview of contributions

1.1 Garbage collection

Our first contribution is in the field of garbage collection. We formally described

the problem of garbage collection in the reactive programming scenario based on
events. We provided a simple and arguably elegant definition of collectability for
events based on the duality principle. To our knowledge, we are the first to use the

duality principle for discussing the memory model of reactive applications.

Next, we combined the collectability of events with the usual collectability of

objects to provide a definition that is suitable for the usual mixed scenario. Using

this definition, we presented a garbage collection algorithm, which reclaims all
collectable objects and events. The algorithm is based on graph transformation,
which allows us to reduce the problem to well-known GC algorithms. We also pre-
sented a proof of the algorithm correcntess.

However, our implementation aim wasn’t to actually replace a garbage col-
lection algorithm. Instead, we have shown an alternative implementation of library
of F# event combinators, solely in terms of object references. Our implementation

closely corresponds to the formal model and doesn’t cause memory leaks when
used in an environment that combines both declarative and imperative approach
to reactive programming.

Chapter VIII: Overview of contributions and conclusion

135

1.2 Pattern matching for monads

The key result presented in Chapter V is that a wide range of reactive and concur-

rent programming models can be encoded using a simple and reusable language
extension, without the need to design a specialized language for each program-
ming model. We presented a language feature that extends F# computation expres-
sions with monadic pattern matching and we sketched numerous applications

ranging from lists processing to concurrent programming.

Our language extension is based on pattern matching construct known from
many functional programming languages. We integrated it in the F# language,

which is based on ML, so we made a special effort to preserve the user’s existing
intuition about pattern matching. By requiring several simple laws about basic
combinators, we can guarantee numerous results that are helpful for reasoning
about our monadic pattern matching.

Aside from practical applications, our work is also shows an interesting rela-
tion between monadic pattern matching and commutative monads. In particular,
our construct can be used for binding on multiple monadic values in parallel using

a syntax that is less sequential than the one used by standard monads.

1.3 Semi-discrete time in reactive applications

The widely used approaches for reasoning about reactive applications use either

discrete time or continuous time. In the first case, a program consists of a series of

steps. An event occurs repeatedly at certain steps and a reaction to an event is per-

formed in a single step. In the second case, an event is associated with a precise

time value (modelled for example as a floating point number). In principle, this

means that another event may occur between each two event occurrences.

We develop a novel way of modelling time in reactive applications. It allows us

to represent the fact that a reaction to an event may trigger multiple events (that

occur at distinguishable times) in response, but that all occur before the original

event may be triggered again. This makes it possible to reason about our impera-
tive programming model formally.

1.4 Imperative monad-like computation

Finally, our last contribution is an abstract algebraic description of imperative
computations that are based on the same primitives as monads, but obey a diffe-

rent set of laws. When we compose the bind operation with the return operation of
a standard monad, we get an identity function. However, our implementation of
bind is imperative and waits only for the first occurrence of an event and as a result
it doesn’t obey this law. However, it is still possible to implement an identity fun-
ction using recursion.

We believe that these types of computations may appear more often in impure
functional languages that support monads and we demonstrate this claim by pre-
senting a computation for working with an imperative representation of a sequen-
ce (in addition to our computation for working with events). We also formulate an
alternative algebraic law that describes the implementation of identity function on
our imperative computations using recursion.

Chapter VIII: Overview of contributions and conclusion

136

2. Conclusion

We believe that reactive applications will become the most important type of prog-
rams over the next few years. The need for richer and more interactive user

interfaces, larger emphasis on distributed systems as well as modern trends like
programming for the cloud all contribute to this direction.

Even though there are several approaches known to the research community,

the solutions usually used in practice are surprisingly hard to use and, more impo-
rtantly are very difficult to use correctly. The reactive programming scenario
brings many challenges that complicate the life of programmers. We need to
ensure that programs correctly respond to all situations, that they don’t get stuck

on some rare occasions and that concurrent events are handled carefully.

The approach presented in this thesis is both theoretically well founded and
practical and easy to use. The way our programs are structured makes it easy to

encode many frequent programming patterns that appear in reactive program-
ming. It makes it possible to test programs using unit-testing techniques and it
provides better abstractions for developing reusable components. Moreover, our
programming model is easier to reason about, both formally and informally.

This thesis presents several novel ideas that contribute to the development of
better reactive programming models. Our work already contributed to both acade-

mic and programming community. Some of the work presented in this thesis has

been published in refereed literature and some of the techniques that we develop

are now being actively used for real-world F# projects.

137

References

[1] C. Elliott and P. Hudak, Functional reactive animation. In Proceedings of ICFP

1997, pp. 263-273

[2] C. Elliott. Declarative event-oriented programming.
In Proceedings of PPDP 2000

[3] E. Scholz. Imperative streams - a monadic combinator library for synchronous
programming. In Proceedings of ICFP 1998

[4] D. Syme, A. Granicz, and A. Cisternino. Expert F#, Reactive, Asynchronous and
Concurrent Programming. Apress, 2007.

[5] E. Meijer. LiveLabs Reactive Framework. Lang.NET Symposium 2009, Available

at: http://tinyurl.com/llreactive

[6] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, R. De Simone.

The Synchronous Languages Twelve Years Later. In Proceedings of the IEEE, vol.

91, pp. 64-83, 2003

[7] E. Meijer, B. Beckman, G. Bierman. LINQ: reconciling object, relations and XML

in the .NET framework.
In Proceedings of COMAD 2006

[8] T. Petricek, D. Syme. Collectable event chains in F#.
To appear as MSR Technical Report.

[9] Microsoft. Reactive Extensions for .NET. Retrieved from:

http://msdn.microsoft.com/en-us/devlabs/ee794896.aspx,2010

[10] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, LUSTRE: A declarative

language for programming
synchronous systems. In Proceedings of POPL 1987.

[11] F. Boussinot and R. de Simone, The Esterel language. In proceedings of the

IEEE, vol. 79, pp. 1293–1304, 1991.

[12] G. Berry and G. Gonthier, The Esterel Synchronous Programming Language:
Design, Semantics, Implementation. In Science of Computer Programming vol. 19,

n°2, pp 87-152, 1992.

[13] J. Armstrong, R. Virding, C. Wikström and M. Williams, Concurrent

Programming in ERLANG, 2nd ed. Prentice Hall International Ltd., 1996.

[14] D. Kafura, D. Washabaugh, and J. Nelson, Garbage collection of actors. In

OOPSLA’90, vol. 25(10), pp. 126–134

References

138

[15] A. Vardhan and G. Agha, Using Passive Object Garbage Collection Algorithms
for Garbage Collection of Active Objects. In Proceedings of ISMM’02

[16] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, Mass., 1986.

[17] Z. Wan and P. Hudak. Functional Reactive Programming from First
Principles. In Proceedings of PLDI, 2000

[18] T. Petricek and J. Skeet. Real-World Functional Programming, Chapter 16,
Manning, 2010.

[19] D. Syme. Simplicity and Compositionality in Asynchronous Programming
through First Class Events. Online at: http://tinyurl.com/composingevents,

Retrieved: Jan 2010

[20] D. Syme. Initializing Mutually Referential Abstract Objects. In Proceedings of

ML Workshop, 2005

[21] G. Schechter. Simulating “Weak Delegates” in the CLR. Online at:

http://tinyurl.com/weakdelegates, Retrieved: Feb 2010

[22] O. Agesen, D. Detlefs and J. Eliot B. Moss. Garbage Collection and Local

Variable Type-Precision and Liveness in Java Virtual Machines. In Proceedings of
PLDI 1998.

[23] R. Shaham, E. K. Kolodner and M. Sagiv. Estimating the Impact of Heap

Liveness Information on Space Consumption in Java. In Proceedings of ISMM
2002.

[24] L. Meyerovich, A. Guha, J. Baskin, G. Cooper, M. Greenberg, A. Bromfield, S.

Krishnamurthi. Flapjax: A Programming Language for Ajax Applications. In

OOPSLA 2009.

[25] The JQuery Project. jQuery. Available at http://jquery.com

[26] B. Hayes. Ephemerons: a new finalization mechanism.
In Proceedings of OOPSLA 1997.

[27] T. Petricek, D.Syme. Collecting Hollywood’s Garbage: Avoiding Space-Leaks

in Composite Events (Extended version). Available at:
http://tomasp.net/academic/event-chains.aspx

[28] D. Syme, A. Granicz, and A. Cisternino. Expert F#, Introducing Language-
oriented Programming. Apress, 2007.

[29] P. Wadler. Monads for functional programming. In Advanced Functional
Programming, LNCS 925, 1995.

[30] Microsoft. F# Language Specification. Available online at:
http://tinyurl.com/fsspec, Retrieved February 2010

[31] C. Fournet, G. Gonthier. The reflexive chemical abstract machine and the join-

calculus. In Proc. POPL 1996.

References

139

[32] C. Fournet,, F. Le Fessant, L. Maranget, A Schmitt. JoCaml: A language for
concurrent distributed and mobile programming. In Advanced Functional
Programming, vol. 2638 of LNCS, pp 129–158. Springer, 2002.

[33] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for
C#. ACM Trans. Program. Lang. Syst, 26(5):769–804, 2004.

[34] C. Russo. The Joins concurrency library. In PADL 2007.

[35] S. Singh. Higher-order combinators for join patterns using STM. In Proc.
TRANSACT Workshop, OOPSLA, 2006.

[36] P. Haller, T. Van Cutsem. Implementing Joins using Extensible Pattern
Matching. In Proc. COORDINATION 2008.

[37] H. Baker, C. Hewitt. "The Incremental Garbage Collection of Processes". In
Proc. Symposium on Artificial Intelligence Programming Languages, SIGPLAN
Notices 12.

[38] M. Fluet, M. Rainey, J. Reppy and A. Shaw. Implicitly-threaded parallelism in
Manticore. In Proc. ICFP 2008

[39] Syme, D., G. Neverov, J. Margetson. Extensible Pattern Matching via a

Lightweight Language Extension. ICFP, 2007.

[40] P. Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In Proc. POPL, 1987

[41] S. P. Jones. Wearing the hair shirt - A retrospective on Haskell. Invited talk,
POPL 2003. Slides available online at: http://tinyurl.com/haskellretro

[42] McBride, C. and R. Paterson, Applicative programming with effects, Journal
of Functional Programming 18 (2008)

[43] S. P. Jones (ed.) Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

[44] M. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller. Data Parallel Haskell: a

status report. In Proc. Workshop on Declarative Aspects of Multicore
Programming, 2007.

[45] D. King, P. Wadler. Combining Monads. In Proc. of Glasgow Workshop on
Functional Programming, 1992.

[46] C. Okasaki. Views for Standard ML. In Proc. Workshop on ML, Baltimore,
Maryland, USA, pp. 14–23, 1998.

[47] J. Hughes, Generalising Monads to Arrows, in Science of Computer
Programming 37, pp67-111, May 2000.

[48] R. Paterson. A new notation for arrows. In ICFP 2001

[49] Hai Liu. E. Cheng. P. Hudak. Causal Commutative Arrows and Their
Optimization. In Proc. ICFP 2009

[50] B. Emir, Odersky, M., Williams, J. Matching Objects with Patterns.
In Proceedings of ECOOP 2007.

References

140

[51] Ma Qin, L. Maranget. Compiling Pattern-Matching in Join-Patterns, In Proc.
CONCUR 2004

[52] R. Kieburtz. Codata and Comonads in Haskell. Unpublished draft, 1999.
http://tinyurl.com/comonads

[53] T. Uustalu, V. Vene. The essence of dataflow programming. In Proceedings of
APLAS 2005

[54] R. Milner, M. Tofte, R. Harper, D. MacQueen. The Definition of Standard ML –
Revised, ISBN: 978-0262631815, The MIT Press, 1997

[55] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software (Iterator pattern, Chapter 5), ISBN: 978-
0201633610, Addison-Wesley Professional, 1994

[56] P. Hudak. The Haskell School of Expression: Learning functional
programming through multimedia. ISBN: 978-0521644082, Cambridge
University Press, 2000

[57] J. H. Reppy. Concurrent Programming in ML. ISBN: 978-0521714723,
Cambridge University Press, 2007

[58] D. Syme. Leveraging .NET meta-programming components from F#: Integ-
rated queries and interoperable heterogeneous execution. In Proceedings of

Workshop on ML and its Applications, 2006.

[59] E. Moggi. Notions of computation and monads.
In Information and Computation, 93:55-92, 1991.

[60] P. Wadler. Comprehending monads.
In Mathematical Structures in Computer Science, 1992, pp. 61-78.

[61] J. C. Mitchell. Concepts in programming languages. ISBN: 978-0521780988,

Cambridge University Press, 2001

[62] T. Petricek with J. Skeet. Real-World Functional Programming With examples

in F# and C#. ISBN: 978-1933988924. Manning, 2009.

[63] P. Hudak, A. Courtney, H. Nilsson, J. Peterson. Arrows, robots, and functional
reactive programming. In Advanced Functional Programming, 4th International
School 2002, LNCS vol. 2638, pp. 159–187. Springer-Verlag, 2003.

[64] M. Jauernig. Rx: Event composition – multi-valued. Unpublished, Available at:
http://www.minddriven.de/?p=563

[65] M. Tullsen. First class patterns. In Proceedings of PADL, 2000

[66] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Y. Vardi. Proving
that programs eventually do something good. In Proceedings of POPL, 2007

[67] T. Petricek. Client side scripting using meta-programming. Bachelor thesis,
Charles University in Prague, 2007. Available at: http://tinyurl.com/fswebtools

141

Appendix A

Imperative and object-oriented F#

The authors of the F# language give the following description in [58]: “F# is a
multi-paradigm .NET language explicitly designed to be an ML suited to the .NET

environment. It is rooted in the core ML design and in particular has a core lang-
uage largely compatible with OCaml.” A more formal specification of the language
is available in [30].

In the above description, the term multi-paradigm refers to the fact that F# is

primarily a functional programming language; however, it is not a pure language
and provides numerous imperative features that make the language easily inter-

operable. F# also provides a full support for the .NET object model and can be used

for developing object-oriented as well as functional (compositional) libraries. We

already demonstrate some of the functional features of F# in Chapter II, so this ap-

pendix focuses only on imperative and object-oriented aspects.

3. Imperative programming

By default, all types and values declared in F# are immutable, which means that

they cannot be modified once they are created. However, as F# is a .NET language,
we sometimes need to use mutation in order to integrate F# code with existing
.NET libraries that rely on mutation. For this reason, F# provides many imperative

constructs. However, their use is generally discouraged.

Using mutable values. At the basic level, we can specify that a value of a variable

declared using let binding can be changed by adding the mutable modifier. This
may break the referential transparency of the program, but it is sometimes needed.

The following example shows an imperative implementation of the well known
factorial function:

1: let factorial x =
2: let mutable res = 1
3: for i in 1 .. x do
4: res <- res * i
5: res

The code first declares a mutable variable (line 2) and then uses a standard impe-
rative looping construct and assignment (line 4) which is written as <- in F#. Note
that the factorial function is still purely functional if we look at its behavior and

Appendix A: Imperative and object-oriented F#

142

not at its implementation. The function always returns the same result for a given
argument, which is a defining property of pure functions.

Working with mutable types. More frequent case where we use mutation in F# is
when writing code that uses some .NET libraries as most of the standard .NET
types are designed as mutable. The following example demonstrates working with
the ResizeArray<'a> type, which implements a mutable collection. After creating an

instance of the collection, we use the Add for adding new elements:

1: let list = new ResizeArray<_>()
2: list.Add("Ahoj")
3: list.Add("Bonjour")
4: list.Add("Hello")
5:
6: for s in list do
7: Console.WriteLine(s)

The snippet starts by creating an instance of the mutable collection (line 1). Then
we add three elements to the collection using the Add method (lines 2, 3 and 4) and
finally, we print all the elements using a for loop (lines 6, 7). It is also worth men-
tioning that we didn’t specify the type of the elements stored in the collection

when creating it (line 1) and we simply used the underscore symbol. This instructs

the compiler to infer the type automatically. In our example, the compiler sees that
we’re adding elements of type string, so it deduces that the type of the created col-

lection has to be ResizeArray<string>. The F# language is a statically typed lang-

uage equipped with type inference, which means that if we attempted to add an

element of another type (e.g. a number) we would get a compile-time error.

4. Object-oriented programming

In this section we’ll review object-oriented features of F# that we’ll use in some of

the examples presented later in this thesis. The F# language uses the .NET object

model, which means that it supports a combination of single class inheritance with

a multiple interface inheritance. The use of class inheritance in F# is relatively
rare, so we discuss only working with interfaces and declaration of simple classes.

Declaring interfaces. The F# language attempts to unify functional and object-

oriented type declarations, so the syntax for declaring an interface is similar to

other type declarations. Moreover, when declaring object-oriented types, F# auto-
matically infers what kind of type we are declaring. When the type doesn’t contain
a constructor and consist only of abstract members, then it is considered as an in-

terface, when the type contains a constructor or an instance method, it is consi-
dered as an abstract class and so on (however, it is possible to specify the kind of
type explicitly if we need to). The following declaration creates a simple interface
with a single method that takes string as an argument and returns an integer:

type FeatureExtractor =
 abstract Extract : string -> int

The type represents an abstract feature extractor that returns some information
about the given string (and could be for example used to test whether a password
is safe or in some machine learning scenario).

Appendix A: Imperative and object-oriented F#

143

Using object expressions. The easiest way to obtain an implementation of inter-
face is to use object expression. Object expressions correspond to anonymous clas-
ses in Java and allow us to construct an implementation of an interface “on the fly”

without declaring a new type. The following example creates an implementation of

FeatureExtractor that counts the number of non-letter characters in the string:

1: let letters =
2: { new FeatureExtractor with
3: member x.Extract(s) =
4: s |> Seq.filter (not << Char.IsLetter) |> Seq.length }
5:
6: > letters.Extract("hello world!!!");;
7: val it : int = 4

The code declares a value named letters and initializes it with an implementation
of the FeatureExtractor interface created using object expression (lines 2-4). The
object expression contains methods required by the interface that are written
using the member keyword. The implementation of the Extract method (line 4) uses

higher-order functions (we’re working with general sequences from the Seq modu-
le rather than functions for working with functional lists from List module). We
first filter all characters from the string that are not a letter. To do this, we compo-

se the Char.IsLetter function with a function not using the function composition

operator written as <<. Next, we count the number of characters in the resulting

sequence. The example on the last two lines of the listing shows that a sample

string contains 4 non-letter symbols.

Declaring classes. In our last example, we’ll create a simple class type with a con-

structor and several public members. Just like in the interface declaration, we’ll use
the type keyword to do this. The difference is that we’ll use implicit constructor
declaration (by providing an argument list immediately after the name of the type)
and we’ll add several properties and a method to the type using the member key-
word. The class provides simple functionality for working with passwords:

1: type Password(str:string) =
2: let count f =
3: str |> Seq.filter f |> Seq.length
4: member x.Digits = count Char.IsDigit
5: member x.NonLetter = count (not << Char.IsLetterOrDigit)
6: member x.Contains(sub) = str.Contains(sub)

The implicit constructor (line 1) takes a single parameter named str. We need to
explicitly specify the type of the parameter in this case as we later invoke methods
on the str value and the F# compiler doesn’t have any cues on what the type of the
value is. The parameters of the constructor are automatically accessible in all the
members of the type (under the cover, they are stored in a field if they are used
from any of the members).

Next, we declare a local helper function count, which is private to the type and
counts the number of characters matching the specified predicate. The function is
used by the first two members (lines 4 and 5) that return the number of characters
that are digits and the number of non-alphanumerical characters, respectively.
Finally, the last member of the type is a method named Contains which tests whe-
ther the string contains some specified substring.

144

Appendix B

Counting clicks using combinators

In section 2.3, we used imperative reactive programming techniques to implement
a click counter which limits the rate of clicks to at most once click per second. This

means that when the user clicks on a button, all clicks will be ignored for the next
one second. We used the Async.Sleep function to pause the asynchronous
workflow, which implemented the behavior. We claimed that the when
implementing the same behavior using F# event combinators, the code becomes

less readable. To illustrate the point we will now show one possible declarative
implementation. Note that the following example isn’t purely functional, because it

uses global mutable value DateTime.Now11:

1: let clickCounter =
2: btn.MouseDown
3: |> Event.map (fun _ -> DateTime.Now)
4: |> Event.scan (fun (_, dt:DateTime) ndt ->
5: if ((ndt - dt).TotalSeconds > 1.0) then
6: (1, ndt) else (0, dt))
7: (0, DateTime.Now)
8: |> Event.map fst
9: |> Event.scan (+) 0

Whenever the source event occurs, we take the current time (line 3). The stateful
scan combinator (line 4) remembers the last time event has occurred. It checks

whether the delay was long enough (line 5). If yes, it yields 1 and remembers the

current time otherwise it yields 0 without updating the last occurrence time.

Next, the processing pipeline drops the time from the tuple yielded by

Event.scan (line 8). The result carries 0 each time the button click was ignored or 1

when the interval between clicks is long enough. Finally, we use Event.scan again
to count the total number of clicks (line 9).

11 To make the code pure, we’d have to represent the current time as an event. However, this isn’t
possible in F# and it would require more sophisticated declarative reactive programming model

(e.g. as in [17]).

145

Appendix C

Merge for commutative monads

In section 4.2 of Chapter V, we discussed an interesting relation between monads
that provide the merge operation (obeying the laws discussed in section 3.1 of
Chapter II) and commutative monads (obeying the usual monad laws and an addi-
tional commutativity law). In particular, we stated that, for commutative monads,
it is possible to implement ⦷ in terms of bind and return.

In this appendix, we present a proof that the implementation (shown in Chap-

ter V) obeys the required laws. The proof is relatively straightforward, but is
shown here for completeness. We use the following specialization of the associ-

ativity law (. may appear as a free variable in "+0-):

(¡ ≫= (\. → "+0-)) ≫= U
= (.GGpQ&.,&%&,¯) ¡ ≫= (\. → ((\. → "+0-) .) ≫= U)
= (Â -"'�Q,&p$) ¡ ≫= (\. → "+0- ≫= U)

4.1 (C1) Merging two returns produces a tuple

(-",�-$.) ⦷ (-",�-$ 3)
= ('"¦&$&,&p$ p¦ ⦷) (-",�-$.) ≫= (\. → -",�-$ 3 ≫= (\3 → -",�-$ (., 3)))
= (/"¦, &'"$,&,¯) (-",�-$.) ≫= (\. → -",�-$ (., 3))
= (/"¦, &'"$,&,¯) -",�-$ (., 3)

4.2 (C2) Associativity

¡.0 .GGpQ ((. ⦷ 3) ⦷ Q)
= ('"¦&$&,&p$ p¦ ¡.0) ((. ⦷ 3) ⦷ Q) ≫= (-",�-$ ∙ .GGpQ)
= ('"¦&$&,&p$ p¦ ⦷) ((. ⦷ 3) ≫= (\+ → Q ≫= (\Q → -",�-$ (+, Q)))) ≫= (-",�-$ ∙ .GGpQ)
= ('"¦&$&,&p$ p¦ ⦷)

Appendix C: Merge for commutative monads

146

(. ≫= (\. → 3 ≫= (\3 → -",�-$ (., 3)))) ≫= (\+ → Q ≫= (\Q→ -",�-$ (+, Q))) ≫= (-",�-$ ∙ .GGpQ)
= (.GGpQ&.,&%&,¯, 3+) (. ≫= (\. → 3 ≫= (\3 → -",�-$ (., 3) ≫= (\+ → Q ≫= (\Q→ -",�-$ (+, Q)))))) ≫= (-",�-$ ∙ .GGpQ)
= (/"¦, &'"$,&,¯) (. ≫= (\. → 3 ≫= (\3 → Q ≫= (\Q → -",�-$ ((., 3), Q))))) ≫= (-",�-$ ∙ .GGpQ)
= (.GGpQ&.,&%&,¯, 4+) . ≫= (\. → 3 ≫= (\3 → Q ≫= (\Q → -",�-$ ((., 3), Q) ≫= (-",�-$ ∙ .GGpQ))))
= (/"¦, &'"$,&,¯) . ≫= (\. → 3 ≫= (\3 → Q ≫= (\Q → -",�-$ (.GGpQ ((., 3), Q)))))
= ('"¦&$&,&p$ p¦ .GGpQ) . ≫= (\. → 3 ≫= (\3 → Q ≫= (\Q → -",�-$ (., (3, Q)))))
= (/"¦, &'"$,&,¯; 3.Q�.-'G) . ≫= (\. → 3 ≫= (\3 → Q ≫= (\Q → -",�-$ (3, Q) ≫= (\+→ -",�-$ (., +)))))
= (.GGpQ&.,&%&,¯; 2+; 3.Q�.-'G) . ≫= (\. → 3 ≫= (\3 → Q ≫= (\Q → -",�-$ (3, Q))) ≫= (\+→ -",�-$ (., +)))
= ('"¦&$&,&p$ p¦ ⦷; 3.Q�.-'G) . ⦷ (3 ≫= (\3 → Q ≫= (\Q → -",�-$ (3, Q))))
= ('"¦&$&,&p$ p¦ ⦷; 3.Q�.-'G) . ⦷ (3 ⦷ Q)

4.3 (C3) Commutativity using laws of commutative monads

¡.0 G�.0 (3 ⦷ .)
= ('"¦&$&,&p$ p¦ ¡.0) (3 ⦷ .) ≫= (-",�-$ ∙ G�.0)
= ('"¦&$&,&p$ p¦ ⦷) (3 ≫= (\3 → . ≫= (\. → -",�-$ (3, .)))) ≫= (-",�-$ ∙ G�.0)
= (.GGpQ&.,&%&,¯) 3 ≫= (\3 → (. ≫= (\.. -",�-$ (3, .))) ≫= (-",�-$ ∙ G�.0))
= (.GGpQ&.,&%&,¯) 3 ≫= (\3 → . ≫= (\. → -",�-$ (3, .) ≫= (-",�-$ ∙ G�.0)))
= (/"¦, &'"$,&,¯) 3 ≫= (\3 → . ≫= (\. → -",�-$ (G�.0 (3, .))))
= ('"¦&$&,&p$ p¦ G�.0) 3 ≫= (\3 → . ≫= (\. → -",�-$ (., 3)))
= (Qp¡¡�,.,&%&,¯) . ≫= (\. → 3 ≫= (\3 → -",�-$ (., 3)))
= ('"¦&$&,&p$ p¦ ⦷; 3.Q�.-'G) . ⦷ 3

