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Chapter 1

Introduction

In functional languages, especially in the ML-family, types have been tra-
ditionally used to track information about data structures. Types classify
expressions based on what values they compute. However, types can be also
used to classify expressions based on how they compute values.

We argue that the use of types for the tracking how programs compute
values is becoming increasingly important. In concurrent programming, an
expression may be evaluated on different threads and each thread may have
different properties (i.e. allow accessing user-interface or be able to run in
the background for a long time), thus it is important to track on which
thread can an expression evaluate. In distributed programming (or cloud
computing), different parts of a program may evaluate on different nodes
(i.e. server, phone or browser), which provide different resources. Code
running on an end-user device may execute in a sandbox that provides capa-
bilities to perform only certain operations (i.e. limit access to local storage).

The tracking of how programs compute was pioneered by the effect sys-
tems introduced by Gifford [12]. Such systems annotate function type with
additional information about the operations (such as memory accesses) per-
formed while evaluating the function. Although many effect systems have
been designed, their definitions are generally single-purpose, which makes
it difficult to support them in a general purpose language.

This report outlines one possible approach to creating a unified frame-
work that could be used to track various kinds of properties of a computa-
tion in an ML-style programming language. Chapter 2 describes the work
done so far. Aside from reviewing relevant literature, it also introduces coef-
fects, which is a concept dual to effects and can be used to describe context-
dependent properties of a computation. The Chapter 3 contains a thesis
proposal that sketches the future work towards our goal. It describes how a
general-purpose framework for tracking of effects and coeffects might look
and it also relates the work to the trend of dependently-typed functional
programming.
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Chapter 2

First year report

This chapter describes the problem and the work done some far. It gives a
detailed example of properties that we might want to track in a type system
(Section 2.1). Then it reviews relevant literature (Section 2.2) and briefly
introduces two ideas that were developed by the author. Section 2.3 intro-
duces the concept of coeffects and Section 2.4 introduces joinads, an abstract
notion of computation that extends monads1. Although originally designed
for a different purpose, joinads may be also relevant from the type-system
point of view (Section 3.3.3).

2.1 Motivation

In the introduction, we argue that tracking how expressions evaluate is be-
coming increasingly important in modern programming languages. For ex-
ample, consider the sample program in Figure 2.1. The code is simplified,
but realistic example of a client/server program consisting of two functions
(see [33] for a more realistic example in F#).

The dictionaryLookup function finds a specified word in a dictionary. It
uses access construct to access a resource representing a database that is
only available on the server. The updateGui function represents client-side
code that reads input entered by the user (by accessing the getInput re-
source). Then it uses switchTo keyword to transfer the control flow to a
background thread (to avoid blocking the user-interface while waiting for a
reply from the server). Next, the function uses remote construct to perform
a remote procedure call and it switches back to the user-interface thread
returns the result.

1The work on joinads was started during an internship at Microsoft Research, but has
been substantially extended during the PhD. It was published and presented at Haskell Sym-
posium 2011 [34]. The work on coeffects has been done during the first year, in collaboration
with Dominic Orchard and has been submitted to ESOP 2012 [35].
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let dictionaryLookup = λword→
let lookupFunc = access dictionaryDatabase
lookupFunc word

let updateGui = λ()→
let word = access getInput
switchTo backgroundThread
let word = remote dictionaryLookup word
switchTo guiThread
translation

Figure 2.1: Sample program consisting of a server-side function for dictio-
nary lookup and client-side function for updating the user-interface.

The sample program could be wrong in a number of ways:

• The resource dictionaryDatabase is defined only on the server-side and
so the function dictionaryLookup can be only called on the server. Call-
ing it directly from the client-side code (updateGui) would result in an
error.

• The remote procedure call using remote can take a long time as it
involves communication with the server. If the operation is executed
on the main user-interface thread, then the end-user application may
become unresponsive.

• However, user-interface elements may only be accessed on the main
user-interface thread, so the updateGui function can only be executed
from such thread. The result should also be returned on the GUI
thread (if the caller displays it in the user-interface immediately).

• Finally, the remote construct involves communication over the net-
work and so the application would fail if it was executed in a sandbox
that does not allow network communication (i.e. in a restricted mode
on a phone).

When using types just to capture the data that functions take as argu-
ments or return as the result, the type of the dictionaryLookup function is
string→ string (taking a word and returning its translation) and the type of
updateGui is unit → string (taking no input, because the value is obtained
via a resource, and returning a new text to display).

2.1.1 Problem statement

Using types to capture how expressions evaluate, we would like to express
and statically check additional properties of computations. Thus the prob-
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lem that we attempt to tackle is: How can we use types to rule out runtime
errors, such as the ones discussed in the previous section?

To achieve that goal, we imagine that the type of functions could be
annotated with additional information that specify in what context can a
function be evaluated and what effects does a function have on the environ-
ment. The two functions from the previous section might be assigned the
following types:

dictionaryLookup : Env{server} string→ string
updateGui : Env{client} Cap{network} unit→ Atgui string

In this example, the type constructor PropM τ is used to annotate a func-
tion type with additional information. When added to the input of a func-
tion, it specifies the context in which the function can run (for example,
Env{server} means that the function can only be executed on the server).
When added to the result of a function, it specifies the effect that the evalu-
ation has (for example, Atgui means that the result is returned on the main
user-interface thread).

The tracking of effects using a type attached to the result of a function
(using monads) is well known in the academic literature. We give more
details about effects, monads and other related work in Section 2.2. The
tracking of context-dependence is a new concept that has been developed
by the author and is further discussed in Section 2.3.

There is a number of problems that remain unsolved. For example, dif-
ferent properties that may be attached to the type of computation propagate
in different ways. It is also interesting to consider those from a logical per-
spective (via the Curry-Howard correspondence). The above example also
used multiple different types (of form PropM τ), but that assumes that the
properties are composable, which is not, in general, the case for monads. Fi-
nally, effect (and coeffect) systems track just an approximation of the actual
effects. Making the annotations more precise,. possibly using dependent
typing, is another interesting future work.

2.2 Literature review

This section presents some of the existing work that is related to the aims
described in the previous section. It starts by introducing effect systems
and monads. Effect systems track one kind of properties of computations
and monads provide, to some extent, unified framework for tracking effects
(Section 2.2.1).
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2.2.1 Effects and monads

Effect systems. Introduced by Gifford and Lucassen [12], effect systems
have been designed to track effectful operations performed by a computa-
tion. Examples include tracking of operations on memory locations, com-
munication in message-passing systems [16] and atomicity in concurrent
applications [11]. Effect systems are usually described as typing judgements
of the form Γ ` e : τ !σ, associating effects σ with the result. Effect systems
are added to a language that already supports effectful operations, which is
called descriptive approach by Filinski [9].

Monads. Purely functional languages use monads, introduced by Moggi
and Wadler [27, 45], for a similar purpose. Monads provide an abstraction
that allows embedding of imperative constructs in a pure setting. A defi-
nition of monad represents impure computation as some (pure) data type
and defines composition of such computations. A computation producing a
value of type τ in a monad M has a type Mτ . Filinski calls the approach
where effects need to be implemented prescriptive. Note that the monadic
type, in this case, does not specify what particular effects have been per-
formed, which is usually the case with effect systems. The type Mτ just
specifies that the computation may perform any effect represented by the
monad M .

Marriage of effects and monads. Wadler and Thiemann [47] showed
that an effect system can be transposed to a corresponding monad system.
This means that the two typing schemes are equivalent. The monadic type
M needs to be parameterized with the particular effects σ, so a judgement
Γ ` e : τ !σ corresponds to a typing judgement Γ ` e : Mστ .

2.2.2 Types for tracking contexts

Aside from the tracking of computational effects, we may also want to track
in what context (or environment) may a computation execute. A context
may be a specific node in a distributed application (i.e. server, phone or
browser) or a security level associated with the caller (high or low).

Conversely to effect systems, typing judgements of type systems that
track the dependence on a context are usually of the form Γ@C ` e : τ , asso-
ciating the context-dependent properties of e, specified by C, with the typing
assumptions or input. Unlike for effects, there is no common terminology
for such systems, so we introduce the term coeffect system (Section 2.3).

Coeffect systems. There is a handful of type systems that could be classi-
fied as coeffect systems using the definition from the previous section. Many
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of such systems track properties of a computation and it is an intriguing
problem whether we can devise a common framework that would be pow-
erful enough to capture some of them.

In the calculus of capabilities [7], the context carries capabilities that
allow access to memory regions. The context is modified by memory alloca-
tion and deallocation. In a system for safe locking [10], the context carries
a set of acquired locks (enabling access to a reference) and synchronize con-
struct modifies the context.

Type systems that guarantee secure information flow [38, 44] can also
be viewed as coeffect systems. The context specifies the secrecy of the infor-
mation (high or low). Certain operations are only allowed when the context
represents specific secrecy.

Our motivating example included distributed programming features akin
to ML5 [29] or QWeSST [39]. Both of these languages mark code with a
single environment where it is executed. The Links language [6] supports
different execution environments (client, server, database) and uses a sim-
ple effect system to track whether database was accessed or not. Although
this is written in the effect-style, the same property could be also tracked in
the coeffect-style, which suggests that the two approaches may be dual.

Finally, implicit parameters by Lewis et al. [19] is an example that does
not track properties of a computation, but instead tracks dynamically scoped
parameters as part of the context.

2.2.3 Towards unified theory

Composing effect and coeffect systems. As mentioned earlier, effects can
be tracked using monads. However, composing monads does not, in general,
give a monad, so composing different monads that track different effects is
an open problem. Solutions exist for certain kinds of monads [15, 20], but
not for the fully general case.

One possible alternative is to use a weaker form of abstraction such as
applicative functors [25]. As far as we are aware, the relation between ef-
fect systems and applicative functors has not been explored yet. Another
approach to composing (or layering) of monads has been developed by Fil-
inski [8] and can be efficiently implemented in a language that supports
continuations.

Swamy et al. [40] present a lightweight approach that allows program-
ming with multiple different monads related by morphisms that are auto-
matically inserted. This approach can be used for working with monads
that represent effects. A monad allowing read access to a memory location
could be automatically lifted to a monad allowing read and write access (a
computation that only reads memory can surely be executed in a monad that
allows both reads and writes). When using the prescriptive approach, mor-
phisms have to be implemented for every pair of monads. However, when
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using the descriptive approach, morphisms become just identity functions.
So far, the work discussed in this section considers effects and monads.

We demonstrate [35] that dependence on a context (or coeffects) can be
tracked using comonads, a categorical dual of monads. A type system that
tracks both effects and coeffects may need to compose computations based
on monads and comonads, which is also an interesting topic for future work.

Parameterized monads and Hoare types As mentioned earlier, to track
effects using a monadic type system, the monad needs to be parameterized
with the performed effects σ, so we use types of form Mστ . The tag can be
formed by various algebraic structures.

Practical systems [1, 18] often use sets, typically with union to combine
effects of sub-expressions. A simple alternative is to use a fixed set of values
(i.e. to represent different threads [33]).

Parameterised monads of Atkey [1] use tags that comprise pre- and post-
conditions of a computation. This presents a more general reasoning frame-
work that could be used to reason about any kinds of effects. This may be
especially useful in a dependently-typed functional language as the speci-
fications could capture the effects precisely (possibly expressed as a pred-
icate) as opposed to overapproximating the effects. As demonstrated by
McBride [23], parameterized monads are also related to specifications in
Hoare type theory [30], which is a general (dependently-typed) framework
for static tracking of side-effects.

2.2.4 Modal and linear logics

Types in programming languages are related to proofs via the Curry-Howard
correspondence. In particular, linear logic [14] gives rise to linear types
that can be used to guarantee that resources are used exactly once [46].
Resource usage is an important property of a computation, so it is desirable
to allow embedding of linear logic into a general framework for tracking the
properties of a computation.

Type systems based on modal logics have been used in distributed pro-
gramming [28, 29, 31] and their use has been also suggested for multi-stage
computations [37]. In general, modal logics allow reasoning about possible
worlds – in programming language terms, we can view possible worlds as
different contexts of a computation.

The categorical model of intuitionistic modal logic developed by Bier-
man and De Paiva [3] is based on comonads. As mentioned earlier, a
type system that we developed for tracking of coeffects is also based on
comonadic calculus, which suggests that modal logics may be very useful
for reasoning about coeffects.
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(let)

Γ ` e1 : τ1, σ1
Γ, x : τ1 ` e2 : τ2, σ2

Γ ` let x = e1 in e2 : τ, σ1 ∪ σ2

(colet)

Γ@r1 ` e1 : τ1
Γ, x : τ1@r2 ` e2 : τ2

Γ@r1 ∩ r2 ` let x = e1 in e2 : τ

(fun)
(Γ, x : τ1) ` e : τ2, σ

Γ ` λx.e : τ1
σ−→ τ2, ∅

(cofun)
(Γ, x : τ1)@r ` e : τ2

Γ@R ` λx.e : τ1
r−→ τ2

Figure 2.2: Example rules of effect and coeffect system side-by-side

2.3 Coeffects

This section briefly presents the work on coeffect type systems that was done
by the author during the first year. The motivation for this work has been
already outlined in Section 2.2.2. There is a range of various type systems
that track how computations depend on the context. Typing judgements of
such type systems are usually written in a form Γ@C ` e : τ , meaning that
an expression e can be assigned a type τ when provided with free variables
Γ and a context C.

In this report, we briefly describe an example of a language that uses co-
effect typing, relate it to effect typing, and then present core typing rules of
our general type system for tracking context-dependence using comonads.
More details can be found in a draft paper on this topic [35].

2.3.1 Effect and coeffect systems

When using effect system to track memory accesses, the effects are pre-
formed by some primitive operations. To track effects precisely, reference
cells are annotated with a tag specifying the memory region where the ef-
fect is performed. For example, a reference cell r of type refρτ stores a value
of type τ in a memory region ρ. An expression r := v that assigns a value
v of type τ to the reference cell has an effect {w(ρ)} specifying that the
operation writes to the location ρ.

Effect system ensures that the information is correctly propagated through
the program. For example, the rule (let) in Figure 2.2 shows that effects per-
formed by two sub-expressions are combined using union of sets. A rule for
lambda abstraction (fun) shows another interesting aspect of effect systems
– the effects of function body are associated with the function type, so a
function τ1

σ−→ τ2 represents a function that will perform effects σ when
executed.

8



Coeffect system When using coeffect system to track possible execution
environments in a distributed programming language, the context speci-
fies the environments where an expression can evaluate. For example, an
expression access gui (representing access to the user-interface) may be ty-
peable only in context {browser, phone}, but not in the server environment.

When composing expressions that can be executed in two different ex-
ecution environments (colet), the contexts (representing sets of environ-
ments) are combined using intersection, because the resulting expression
can only be evaluated in the environments where all sub-expressions can
be evaluated. Similarly to effect systems, the (cofun) rule also associates
the required context with the type of function, so for example, a func-
tion that reads user interface would have a type unit r−→ string where r =
{browser, phone}.

Although intuitively quite different, the systems for tracking effects and
coeffects have striking similarities and appear dual. There is one notable
difference. The (cofun) rule from Figure 2.2 is just a special case and the
comonadic type system uses a more general and more expressible variant.

2.3.2 Comonadic type system

When modelling a language using categorical semantics, an expression e of
type τ in a context x1 : τ1, . . . , xn : τn can be modelled as a function τ → τ
where τ = τ1 × . . .× τn.

As shown by Moggi [27], many types of effects can be modelled using a
monadic structure over the type of the result. This means that the semantics
uses functions of type τ → Mτ . Our comonadic type system is based on
a categorical semantics of context-dependent computations of Uustalu and
Vene [43]. Contrary to effects, a model of a context-dependent computation
has an additional structure on the input parameter. The structure specifies
the additional context that is needed to evaluate the expression. Thus a
comonadic semantics uses functions of type Cτ → τ where C is a comonad.

To track the specific information about context at the type-level, we an-
notate the comonad with a tag that describes the context (just like monads
are annotated with a tag that describes effects). The semantics then oper-
ates on functions Crτ1 → τ2. To make the framework more general, we use
tags r ∈ R that form a monoid (R, 1,⊗). This way, the tags can be formed
by a set with union, or an intersection, but also other simple structures.

Typing rules. In the categorical semantics, the comonadic structure pro-
vides mechanism for composing context-dependent computations. We do
not use the structure to give model to our language – instead, we use it to
derive the judgements of a type system. For example, a composing a func-
tion Crτ1 → τ2 with a function Csτ2 → τ3 gives a function Cr⊗sτ1 → τ3,
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(cobind)

Cr∆ ` e1 : τ1
Cs(∆, a : τ1) ` e2 : τ2

Cr⊗s∆ ` let a⇐ e1 in e2 : τ2

(counit)
a : τ ∈ ∆

C1∆ ` a : τ

(coapp)

Cr∆ ` e1 : Ctτ1 → τ2
Cs∆ ` e2 : τ1

Cr⊗s⊗t∆ ` e1 e2 : τ2

(cofun)
Cr⊗s(∆, a : τ1) ` e : τ2
Cr∆ ` λ◦a.e : Csτ1 → τ2

Figure 2.3: Comonadic typing rules.

which corresponds to the let construct. The key rules of our comonadic type
system are shown in Figure 2.3.

The (cobind) rule is similar to the rule for let construct that we discussed
when introducing coeffects. The only difference is that the contexts r and
s are combined using the ⊗ operation of a monoid, instead of specific set
operation. The (counit) specifies that a variable access is performed in a unit
context. This is a context with no restrictions or requirements (i.e. a set of
all possible environments in a distributed programming language).

The (coapp) rule defines application of a comonadic (context-dependent)
function Ctτ1 → τ2. In order to apply the function, the context must be a
combination of contexts required to evaluate the two expressions e1 and e2
and also the context in which the function can be executed.

Finally, the (cofun) rule in Figure 2.3 differs from an earlier (cofun) rule
for distributed languages. In general, the function can be created in a con-
text r and can take a parameter that carries context s (this is the context
where the function is called). The body of the function is evaluated in a
context r ⊗ s that is obtained as a combination of the two contexts.

Merging of contexts. The merging of contexts in the (cofun) rule is an in-
teresting feature that does not directly correspond to any aspect of monadic
effect systems. This suggests that the comonadic coeffect system is not en-
tirely dual to monadic effect systems. For distributed programming lan-
guage, the restricted (cofun) rule shown earlier is more appropriate, but
there are other applications. For example, the generalized version is suit-
able model for implicit (dynamically scoped) parameters [19].

Formally, the merging of contexts is specified by an additional operation
of a monoidal comonad. In addition to cobind (representing composition)
and counit (representing a pure computation), a monoidal comonad also
defines an operation that we call combine:

combine : Crτ1 × Csτ2 → Cr⊗s(τ1 × τ2)
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The operation takes two values that carry different contexts and pro-
duces a single value, containing a tuple, associated with just a single con-
text. In our categorical semantics, the operation is used to combine outer
context (where a function is defined) with an inner context (carried by the
parameter).

The tags in the above type signature allow both of the contexts to be ar-
bitrary, which gives the general (cofun) rule from Figure 2.3. By specializing
the tag of one of the two contexts to 1 (specifying unit context) we get two
useful variants of the system – one where functions can not capture context
in which they are defined (dual to monadic typing) and one that only allows
declaration of pure functions.

We find it intriguing that formally dual concepts such as monad and
comonad give rise to two type systems that are not dual in practice. The
comonadic type system requires the use of monoidal comonad, which adds
flexibility in how contexts are composed. This flexibility makes the system
quite useful in practice – we do not have space to give more examples, but
an interested reader is referred to our draft paper [35] for more details.

2.4 Joinads

Another work that was completed by the author during the first year in-
troduces joinads [34]. The original motivation for joinads is quite different
than the motivation of this report, but Section 3.3.3 shows that joinads may
be relevant for the tracking of effects.

2.4.1 Introducing joinads

Monads can be used for sequencing of effectful computations and languages
like Haskell and F# introduce notations (do notation [36] or computation
expressions [41]) for writing sequential code with effects.

However, many concrete types that implement the monad structure also
provide additional operations for composing computations in different ways.
For example, the Par monad [22] adds operations that can be used to im-
plement parallel composition of type Par a → Par b → Par (a, b). Similar
operation can be defined for other monads for concurrent or parallel pro-
gramming, such as Communicating Haskell Processes [5]. The Par monad
can be also extended [32] to support non-deterministic choice, which makes
it possible to implement speculative parallelism pattern. The choice operator
has a type Par a→ Par a→ Par a.

Many monads, even outside of the concurrent and parallel program-
ming field, implement operations like the ones above. For example, monadic
parsers [13] usually provide choice and parallel composition can be defined
as the intersection of languages recognized by the parsers.
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When monadic libraries provide additional ways of composing compu-
tations, they do so in an ad-hoc fashion, because there is no standard set
of additional operations. Each monadic library adds slightly different set of
operations. We introduce joinad, which is a monad that implements three
additional operations (choice, parallel composition and aliasing). We also
extended Haskell with a docase notation that bears similarity to case and
can be used for programming with computations that implement the joinad
structure.

2.4.2 Programming with joinads

The paper [34] provides numerous example computations that can imple-
ment the joinad pattern. In this report, we demonstrate joinads and the
docase notation using a monad for parallel programming. First, consider
the following function (written in Haskell) that tests whether a predicate
holds for all leaves of a tree:

all :: (a→ Bool)→ Tree a→ Bool

all p (Leaf a) = p v
all p (Node left right) = all p left ∧ all p right

The execution of the two recursive calls in the Node case could proceed
in parallel. Moreover, when one of the branches completes returning False,
it is not necessary to wait for the completion of the other branch as the
overall result must be False.

Running two branches in parallel can be specified using strategies [21],
but adding short-circuiting behaviour is challenging. Using docase and a
monad for parallel programming, the problem can be solved as follows:

all :: (a→ Bool)→ Tree a→ Par Bool

all p (Leaf a) = return $ p v
all p (Node left right) =

docase all p left, all p right of
False, ? → return False
?, False → return False
allL, allR → return $ allL ∧ allR

The function builds a computation annotated with hints that specify how
to evaluate it in parallel using the Par monad [22] extended with the support
for non-deterministic choice operator [32].

To process sub-trees in parallel, the snippet constructs two computations
(of type Par Bool) and uses them as arguments of docase. Patterns in the
alternatives correspond to individual computations. A special pattern ? de-
notes that a value of the monadic computation does not have to be available

12



for the alternative to be selected. When the processing of the left subtree
completes and returns False, the first alternative can be selected immedi-
ately, because the result of the second computation is not required.

If the result of the left subtree is True and the right one has not com-
pleted, none of the alternatives are immediately enabled. After the right
subtree is processed, one of the last two alternatives can be selected. The
choice added to the Par monad is non-deterministic, so the programmer
needs to provide clauses that produce the same result in case of race.

2.4.3 Joinad operations

As already mentioned, a joinad is a monad with three additional operations
that represent parallel composition, choice and aliasing. The types of joinad
operations are shown below:

unit :: τ →Mτ
bind :: (τ1 →Mτ2)→Mτ1 →Mτ2

mzip :: Mτ1 →Mτ2 →M (τ1 × τ2)
morelse :: Mτ →Mτ →Mτ
malias :: Mτ →M (Mτ)

When desugaring the previous example, the selection between alterna-
tive clauses is done using the morelse operator. Note that the result of each
input computation is used in two independent alternatives. Evaluating the
recursive computation repeatedly would defeat the purpose of docase, so
the translation uses the malias operator to avoid this. For the Par monad,
the malias operation starts the given computation in background and returns
(inside a monad) a new monadic computation that blocks until the back-
ground computation completes (without consuming any CPU resources).
Finally, the third alternative combines two computations, which is achieved
using the mzip operator2.

Effect interpretation. The use of joinads presented above is to imple-
ment non-standard notion of computation, such as parallel computations
or parsers. This corresponds to the prescriptive style as described by Filinski
[9]. As shown by the marriage between effects and monads [47], struc-
tures that implement computation can be also used to track properties of
computations that already exhibit the effects (descriptive style).

The additional operations supported by joinads could be used to track
effects in a language with additional expressive power. The mzip corre-
sponds to running two effectful operations in parallel (a tagged version may
restrict the arguments to guarantee that the effects do not operate on a

2For detailed description of the translation see [34]
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shared state). The morelse corresponds to a choice between two alternative
computations (for example, branches of the if construct). The meaning of
the malias operator is less clear to us, but it might represent evaluating a
part of effects (for example, in a language that supports partial evaluation).
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Chapter 3

Thesis proposal

As discussed in Section 2.1, the aim of the thesis is to develop a comprehen-
sive framework for statically checking various properties of computations
using types. This is becoming an important topic as computations move to a
distributed setting (running in the cloud) and applications needs to run on
different kinds of devices (browser, phone, . . . ) or with different security
permissions.

The pioneering work on effect systems and encoding of effects using
monads (discussed in Section 2.2) provide a good starting point. However,
we believe that there is a lot of work to be done in order to make tracking
of effects (and similar properties such as coeffects) a prevalent feature of
main-stream (statically typed) programming languages.

In this chapter, we give a brief overview of the open problems (Sec-
tion 3.1). Then we outline a timeplan for the rest of the PhD (Section 3.2)
and discuss some of the planned projects in greater detail (Section 3.3).

3.1 Towards practical computation types

Effect systems can be used to track properties of computations that prop-
agate in the forwards direction. A computation that invokes another com-
putation will inherit the effects of the invoked computation. In the work
completed during the first year (Section 2.3), we introduced coeffects to
track properties that propagate backwards (such as dependence on a con-
text). To track properties of computations, we need to be able to combine
these two approaches. Moreover, it is an open question whether effects and
coeffects suffice to capture all kinds of properties or whether there is some
other way in which properties propagate (i.e. based on other abstract com-
putation types such as applicative functors [24]).

Effect and coeffect systems generally over-approximate the effects that a
computation may perform. Traditional effect systems [12, 47] used sets of
effects together with union to combine effects of sub-expressions. However,
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in case of if, we might want to capture the fact that only one of the branches
will be executed. Using more complex structure would make the approxi-
mation more precise at the cost of making the analysis more difficult. Taking
the extreme approach, we might even want to track the exact effects that a
computation might perform. This would lead to a dependently-typed system
related to Hoare Type Theory [30]. For practical purposes, we believe that
over-approximation of effects is the best approach, but we intend to explore
other directions as well.

One of the aims of this thesis is to design a practically useful type sys-
tem that might be non-intrusively integrated in a programming language
such as F#. We intend to support defining of effects in a library – in par-
ticular, the developer should be able to define a simple algebraic structure
used to track the effects (i.e. a monoid) and algebraic equations that can be
used by type inference to derive effects and coeffect annotations. Adding
type inference and polymorphism is important future work for our coeffect
system described earlier. Ideally, we would like to design a language mech-
anism that allows us to define various effect and coeffect annotations, but is
also capable of expression F# units of measure, preserving the non-intrusive
style that is used in the current design.

3.2 Timeplan

During the next 2 years of my PhD, I intend to focus on three major projects.
The first project is the integration of systems for tracking coeffects and ef-
fects of computations and extension that allows non-intrusive type-inference
and polymorphism. The second project is to implement the system that al-
lows developers to specify tracking of various kinds of effects and coeffects
and perform evaluation using a wide range real-world application. Finally,
the last project (to some extent independent) is to design the tracking of
precise effects and coeffects in a dependently-typed language.

The major milestones that need to be completed in order to finish the
PhD thesis are the following:

• January 2012 – April 2012: Study the relation between comonadic
type system for tracking of coeffects (described earlier) and non-classical
logics. The system has sub-structural rules, which suggests that it may
be used to track the use of resources (based on linear logics). More-
over, type checking in different contexts is also closely related to pos-
sible worlds from modal logics.

• April 2012 – September 2012: Work on effect (and coeffect) sys-
tems that give more precise approximations of the performed effects
or required context. Doing the work in a dependently-typed language
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(such as F∗ [4]) would allow capturing precise specification of the
effects. To our knowledge, this is an interesting and unexplored area.

• September 2012 – February 2013: After receiving feedback on the
initial draft of the paper that introduces coeffects [35], I would like
to expand this work in two ways. One is to make the system more
realistic (by adding type inference and polymorphism) and the other
is to develop a system that allows combining effects and coeffects in
a single program. This may also give a compositional way of writing
denotational or operational semantics of such programs.

• February 2013 – July 2013: As the last part of my research, I intend
to implement a type system for tracking user-specified effects and co-
effects as an extension of an ML-style functional language, such as F#.
The resulting design should be evaluated by developing (or modifying
an existing) system that could benefit from tracking of computation
types. The application may use features outlined in Section 2.1, such
as distributed programming, security sandbox and complex threading.

• August 2013: I intend to start writing up my thesis in August 2013 in
order to submit it at the end of the third year of my PhD.

Aside from the key milestones outlined in the timeplan, I also intend
to explore various additional side-problems that arise from the work. For
example, the malias operation may be relevant to defining a call-by-need
or call-by-future version of lambda calculus translation [45]. Another side-
problem is whether the monad-based version of joinads can be used to en-
code join calculus (and how to combine such language with type-checking
of distributed programming languages using coeffects).

3.3 Proposed thesis outline

This section discusses a possible thesis outline. It expands on some of the
ideas for future work proposed in Section 3.1 and planned in Section 3.2.
The following listing gives more details on individual chapters. It lists four
chapters that present main novel research contributions, although the final
thesis will likely contain only the three most interesting ones:

1. Introduction – describes the motivation and introduces the problem

2. Background – expands the discussion presented here, in Section 2.2

3. Effect and coeffect types – the chapter is based on a submitted work
on coeffects [35] and discusses extensions, such as combining of mul-
tiple properties (Section 3.3.1) and type inference
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4. Coeffect logic – discusses logical interpretation of coeffect type system
(Section 3.3.2) and relation to modal and linear logics

5. Precise effects and coeffects – describes approaches to tracking more
precise information about effects, using a more detailed algebraic struc-
tures or using propositions in a dependently-typed programming lan-
guage (Section 3.3.3)

6. Implementation and evaluation – describes an implementation of a
language extension for tracking of user-defined effects and coeffects
and evaluates the extension using a non-trivial system.

7. Conclusions

3.3.1 Combining effects and coeffects

A well-known limitation of monadic types is that they do not (easily) com-
pose. When encoding effects using monads, we may use two different mon-
ads to represent two different kinds of effects. A computation that performs
both effects should have a type in some combined monad. For example, say
we have monads M1τ and M2τ with the following operations:

bind1 : (τ1 →M1 τ2)→M1 τ1 →M1 τ2
bind2 : (τ1 →M2 τ2)→M2 τ1 →M2 τ2
unit1 : τ →M1 τ
unit2 : τ →M2 τ

To represent computations that perform both effects in M1 and M2, we
need to construct a composed type M1(M2 τ). In general, this composed
type is not a monad, because it is not possible to define a bind operation for
this type just using the operations above. As discussed for example in [15],
we need an additional operation such as:

join : M1(M2(M1(M2 τ)))→M1(M2 τ)

Using the operations of M1 and M2 together with the additional join op-
eration, it is now possible to define a combined monad M1(M2τ) as follows:

return = return1 ◦ return2

bind = join ◦ bind1 (return1 ◦ (bind2 (return2 ◦ f)))

When combining monadic effect systems and comonadic effect systems,
we need to compose functions of type Cτ1 → Mτ2. Finding the additional
operations that are needed to compose multiple monads and comonads in a
single computation is one of the problems that we intend to study.
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Descriptive (co)effects. When using effect and coeffect types in the de-
scriptive style, the types only annotate existing language that already imple-
ments accessing of context or performing of effects. In this mode, monadic
(or comonadic) type can be viewed as just an identity monad (comonad),
meaning that Mτ = τ and Cτ = τ .

In this case, defining operations such as join is trivial. A model like this
may be suitable for type systems that track properties of user-defined effects
that can be already implemented in the underlying language. For ML-style
languages such as F#, this includes threading, shared memory access as well
as distributed programming.

Operational semantics. Numerous existing type systems can be described
as a combination of coeffect and effect systems. For example, type system
for safe locking [10] uses a context that carries a set of acquired locks. A
reference cell protected by a lock l can be only accessed if the lock is in
the context. This part of the system can be viewed as a coeffect. To take
or release locks, the system provides an operation synchronize that modifies
the context, which can be viewed as an effect. Additionally, accessing of
reference cells can be viewed as another kind of effect.

The separation of the two aspects may be used to simplify the oper-
ational semantics of such system and make type soundness proof easier.
In particular, the semantics [10] uses small-step reduction π, σe 7→ π, σ, e
where π represents the state of locks, σ stores values assigned to reference
cells and e is the reduced expression. Our hypothesis is that the system
could be more easily modelled using the following reductions:

e 7→ e (pure reduction)
e 7→ π, e (lock-update reduction)
e 7→ σ, e (memory-update reduction)
π, e 7→ e (lock-protected reduction)
σ, e 7→ e (memory-read reduction)

The main simplification comes from the fact that each of the reductions
has a pure expression e either as the input or as the result. The semantics
might be constructed by composing these reductions (using a rule that cor-
responds to the join operation above). This would make it easier to prove
safety of systems that compose multiple effectful or coeffectful aspects at
the same time.

3.3.2 Logical interpretation

Our comonadic coeffect type system bears similarities to variants of lambda
calculus that were designed for modal and linear logics [37, 3]. To study

19



the similarities, consider the following rule (adapted from [35]) that is used
to type-check a context-dependent lambda function:

(cofun)
Cr⊗s(∆, a : τ1) ` e : τ2
Cr∆ ` λ◦a.e : Csτ1 → τ2

The rule specifies that, in a context Cr∆ the term λ◦a.e can be assigned
a type Csτ1 → τ2. The body of the lambda function is type-checked in a
context r ⊗ s that combines the context of the outer scope r, where the
function is defined, and a context s that is passed to the function later as
part of the argument. Using the Curry-Howard correspondence, the typing
rule corresponds to the following logical judgement:

Cr⊗s(∆, A) ` B
Cr∆ ` CsA→ B

In the premise, the left-hand side of a judgement consists of assumptions
∆ and A and a context specified by r ⊗ s. The context captures some addi-
tional property that specifies the particular information tracked by the type
system. The (cofun) rule above was designed to give terms that correspond
to a functional programming language. However, an interesting alternative
direction is to separate the function abstraction (implication) and splitting
of the context.

Instead of a single inference rule, we could use two inference rules that
would allow writing the following derivation:

Cr⊗s(∆, A) ` B
Cr∆, CsA ` B
Cr∆ ` CsA→ B

Separating the implication and splitting of context may give an alterna-
tive formulation of the comonadic coeffect system that is more closely re-
lated to systems such as the λS4 calculus [3]. The main difference is that in
our original system, the context was associated with the entire free-variable
context. Making splitting of context explicit means that a separate context
may be associated with individual variables.

Multi-context formulation. When introducing comonadic coeffect system
[35], we presented a version that combines two sub-languages. A plain
lambda calculus can be used to write pure computations and a comonadic
lambda calculus is used for writing context-dependent computations. The
motivation for this design is practical – we might want to take a program
in a pure language and gradually introduce coeffect types to track context-
dependence as needed.

The typing judgement is written as Cr∆; Γ ` e : τ and it uses two distinct
free varibale contexts. The context Γ contains pure variables and Γ contains
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context-dependent variables. The additional context is associated with the
free-variable context ∆ using a comonadic type.

The formulation using two distinct variable contexts has been used in
other logics. In particular, Bierman and de Paiva [3] present a multi-context
formulation of an intuitionistic modal logic. One context carries only modal
assumptions of the form 2A. Benton uses similar approach to combine
linear and non-linear logic in [2].

3.3.3 Precise effects

As discussed earlier, common (co)effect systems give just an approximation
of the effects that will be actually performed by the program at runtime. For
example, the typing rule for if might take the union of effects of the two
branches, although they cannot be both executed at the same time. In the
following, we write ⊗ for a union of sets forming a simple monoid (F ,∪, ∅):

Γ ` e1 : bool@σ1 Γ ` e2 : τ@σ2 Γ ` e3 : τ@σ3
Γ ` if e1 then e2 else e3 : τ@σ1 ⊗ σ2 ⊗ σ3

The tracking of effects could be more precise if we used a more com-
plex algebraic structure than a monoid. For example, a semiring adds an
additional operation ⊕ that could be used to represent a choice. A modified
typing rule for if is:

Γ ` e1 : bool@σ1 Γ ` e2 : τ@σ2 Γ ` e3 : τ@σ3
Γ ` if e1 then e2 else e3 : τ@σ1 ⊗ (σ2 ⊕ σ3)

Note that a semiring specifies that ⊗ distributes over ⊕. For if, this
means that σ1⊗ (σ2⊕σ3) = (σ1⊗σ2)⊕ (σ1⊗σ3). This is the case for effects
as ⊕ represents a choice and ⊗ represents sequencing of effects. Extending
the framework to use semirings instead of simple monoids seems desirable.

Dependently-typed effects. In a dependently-typed language, such as F∗,
we could make one more step and track the effects precisely instead of cal-
culating just an approximation. The standard rule for composing effects in
a let expression is the following:

Γ ` e1 : τ1@σ1 Γ, x : τ1 ` e2 : τ2@σ2
Γ ` let x = e1 in e2 : τ2@σ1 ⊗ σ2

Again, this is just an approximation, because the actual effects that will
be performed when evaluating the expression e2 depend on the value of x.
In a dependently-typed language, the effect (which is a part of type) may
depend on a value. If we write Πx : τ.σ for an effect that depends on value
x of type τ , we could write a precise rule for let as follows:
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Γ ` e1 : τ1@σ1 Γ, x : τ1 ` e2 : τ2@σ2
Γ ` let x = e1 in e2 : τ2@σ1 ⊗ (Πx : τ1.σ2)

Interestingly, the algebraic structure that might be used to represent ef-
fects in this scenario seems very related to joiands from Section 2.4. A value
dependent effect corresponds to the bind operation (that takes a function
and returns an effect specification depending on a value). The operations ⊗
and ⊕ that were also defined for joinads (forming a near-semiring) can still
be used to represent sequencing of effects and possibly a (non-deterministic)
choice between effects, respectively.

3.3.4 Practical (co)effect systems

The aim of this thesis is to design a practically useful, extensible type system
for tracking of properties of computations. The research described so far
should provide a solid basis for developing such system, but there are several
practical concerns.

In order to be useful, the system must not require developers to write
type annotations for computation types explicitly. This can be achieved us-
ing an extended Hindley-Milner type inference algorithm. Similar extension
has been already developed for lightweight monadic programming [40].

More importantly, the system must also infer and type-check the tags
used to specify (co)effects. These may be sets of labels, more generally a
monoid, or another more complex algebraic structure. Ideally, the developer
of a library that provides some effect or coeffect should be able to specify
the structure. This might be achieved using a mechanism based on F# type
providers [26].

Units of Measure. An example of algebraic structure that has been suc-
cessfully integrated in an ML-style functional language are units of measure
in F# [17]. Numeric types in F# can carry an annotation that specifies their
units. For example, the type float〈m/s〉 represents a floating-point number
in meters per second.

Using algebraic rules, the compiler can determine that the above type
is the same as, for instance, float〈m2s/s2m〉. Similarly, if we represented
(co)effects using an idempotent monoid, the compiler should deduce that
Cs⊗s⊗1⊗rτ is the same type as Cs⊗rτ .

The type system also needs to provide polymorphism over (co)effect tags
with a generalization that infers the most general type (if it exists). This can
be, again, inspired by F# units of measure. For example, consider a function
that takes a parameter a and returns a ∗ a ∗ 1.0〈m〉. The type inferred by the
compiler is float〈u〉 → float〈u2m〉 where u is a type-variable representing
any unit. A similar result would be desirable for other algebraic structures
that might be defined to track computational properties.
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Applications. There is a wide range of potential applications that could
be used to assess the design. Classical effect systems [42] have been used
to track operations on shared memory locations, which is still an impor-
tant problem (i.e. when working with mutable arrays). A type system that
would be also able to capture sub-structural rules could guarantee that such
mutable state is accessed in a referentially transparent way.

The type system for safe locking [10] and safe asynchronous workflows
in F# [33] are two examples of applications from the very important domain
of concurrent programming, however we believe that there is a potential for
numerous other applications.

Another possible application area is security – the system might be used
to statically determine what capabilities does an application require when
executed in a sandbox (i.e. access to local computer resources). Coeffect
typing can be also used to track the secrecy of information [44, 38], which
would be especially valuable when combined with distributed programming
(where data is transferred over an unsecured network connection).
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Chapter 4

Conclusions

The PhD thesis proposed in this report is centred around the idea of tracking
of computation properties using types in an ML-style functional program-
ming language. We argued that this is an important topic – modern appli-
cations run in various environments (different nodes of a distributed system
or protected in a sandbox) and perform various effects (including memory
access, communication and other concurrency-related actions). The overall
aim of the thesis is to develop a unified framework that can be used to eas-
ily extend type-system to allow tracking of such properties (preferably via a
user-defined library).

We describe work done during the first-year. Most notably, we briefly
introduced a comonadic type system for tracking of coeffects, the dual notion
to effects, that specify how computations depend on the context.

We also outlined some of the work that remains to be done. Two of
the projects are closely related to coeffects. We intend to study the type
system from a logical perspective and relate it to modal and linear logic.
Next, we plan to develop ways for combining multiple effect and coeffect
systems in a single language, allowing us to track multiple properties of a
single program.

Two other projects are more implementation-focused. One aims to make
the tracking of effects more precise by refining the algebraic structure that
represents them. Using a dependently-typed language, we might be able to
express and track the exact (co)effects of a computation. Finally, the last
task is to integrate the research in a real-world functional language such as
F# and evaluate it using a realistic application.
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