

 Concepts behind the C# 3 language

Tomáš Petříček (tomas@tomasp.net)

Faculty of Mathematics and Physics,
Charles University in Prague

mailto:tomas@tomasp.net

1 Introduction

The C# 3 (currently available in preliminary version) is part of the
LINQ project [1]. The aim of this project is to integrate better support for
working with data into main stream general purpose programming
languages developed at Microsoft targeting the .NET platform* (C# and
VB.Net).

Most of the ideas that are implemented in C# 3 are already available
in (mostly) research and experimental languages that were previously
developed at Microsoft Research†. Two most interesting and influential
languages developed at Microsoft Research are Cω [2] and F# [3].

1.1 Contribution of F#

F# is language based on ML, which is an impure functional language
(in fact, it is based on language called OCaml that adds several features to
the standard ML). Functional languages are very different from imperative
languages (most of the widely used languages like C++, Java and C# are
imperative). The biggest contribution of F# is that it shows how functional
languages can be compiled for the .NET runtime (CLR), because .NET CLR
was initially designed for executing code written in imperative languages.
Another aim of F# is the interoperability with other languages targeting the
.NET platform. Part of the F# related research is also the ILX [6] project that
shows how .NET runtime could be extended to provide better support for
functional languages (like first-class functions).

Functional programming in general were big inspiration for some of
the C# 3 features and the F# research language already showed how these
features can be implemented for the .NET platform. C# 3 includes constructs
that were inspired by type inference (ability to deduce the type of
expression), tuples (data types that represent pair of values), first class
functions (ability to take function as a parameter and return it as a result),
lazy evaluation (ability to evaluate expression only when it is later needed)
and meta-programming (ability to manipulate with program source code).

Most of these features that were added to C# 3 are very limited when
compared with their implementation in F# and other functional languages,
but it is very interesting to see how functional concepts are becoming more
and more important and can benefit to the non-functional languages.

1.2 Contribution of Cω

Cω is a language based on C# and it extends it in two most important
areas. First area is better support for working with structured data (XML)

*
 .NET is a platform for developing applications developed by Microsoft. It consists of

Common Language Runtime (CLR) that provides managed execution environment and Base
Class Library (BCL) which is a class library providing implementation of large range of
programming tasks.

†
 Microsoft Research is independent computer science research group inside Microsoft

Corporation. Microsoft Research is academic organization, which means that it focuses
primary on research activities.

and relational data (databases). The language extends type system of C# to
include support for several data types that are common in relational and
structured data and it provides querying capabilities for working with these
data structures.

The second area is support for concurrency constructs as a part of the
language. In most of the widely used programming languages, support for
concurrency is provided as a class library. By including these constructs in
language, the program becomes more readable (intentions of programmer
can be expressed better) and more work can be done automatically by the
compiler.

C# 3 and LINQ project in general is inspired by the first area of
extensions in Cω and the syntax extensions in C# 3 are very similar to the
concepts developed in Cω. The biggest difference (aside from the fact that
Cω is experimental language) is that C# 3 provides better extensibility
allowing developers to provide mechanism for working with different data
sources. This extensibility is provided as a language feature and not as a
compiler feature in case of Cω. On the other side, some extensions in Cω
were simplified in C# 3 (for example anonymous types that will be
mentioned later), so where appropriate I will include examples where
something possible in Cω can’t be done in C# 3.

1.3 Overview of C# 3

The main goal of C# 3 is to simplify working with data and make it
possible to access relational data sources (database) in much simpler way. In
C# 3 this is implemented in extensible way, not by simply adding several
special purpose constructs. Thanks to the new language constructs it is
possible to write statements like following:

var query = from c in db.Customers
 where City == "London"
 orderby c.ContactName;
 select new { CustomerID, ContactName };

This statement looks like a SQL query. This is achieved thanks to
query operators (from, where, select, orderby and some other) that were
added to the language. These operators are syntactic sugar that simplify
writing of queries, but are mapped to underlying functions that perform
projection, filtering or sorting (these functions are called Select, Where,
OrderBy).

To perform for example filtering, the Where function needs to take
another function as a parameter. Passing functions as a parameter to other
functions is simply possible using new language feature called lambda
expressions (this is similar to the lambda functions known from many
functional languages).

You can also see, that the query returns only CustomerID and
ContacctName from the more complex Customer structure. It is not
required to explicitly declare new class with only these two members,
because C# 3 allows developers to use anonymous types. It is also not
required to declare type of query variable, because type inference
automatically deduces the type when var keyword is used.

1.4 Cω and integration of data access

The original idea of integrating data access into the general purpose
programming language first appeared in the Cω research project at Microsoft
Research. The data access possibilities integrated in Cω includes working
with databases and structured XML data. The LINQ project is mostly based
on Cω, however there are some differences.

The features that can be found in both C# 3 and Cω include
anonymous types (these are not limited to local scope in Cω), local type
inference and query operators. One concept that wasn’t available in Cω is
extensibility through expression trees. In Cω you couldn’t write your own
implementation of data source that would execute queries over other than
in-memory data. The following demonstration shows how working with
database in Cω looks (it is very similar to the previous example written in C#
3):

query = select CustomerID, ContactName
 from db.Customers
 where City == "London"
 order by ContactName;

The Cω project will be mentioned later in other sections, because
some of the features that are available in C# and were originally
implemented in Cω are more powerful in Cω and it is interesting to see this
generalization.

2 First class functions

A programming language is said to support first class
functions if functions can be created during the execution of a
program, stored in data structures, passed as arguments to other
functions, and returned as the values of other functions.

(Source: Wikipedia.org)

Support for first class functions is necessary for functional style of
programming. For example functions that operate on lists in Haskell (map,
foldl, etc…) are all higher order functions, which mean that they take
function as a parameter.

The previous quotation summarizes what first class functions are and
what are advantages of languages supporting this feature. More exact
definition of what language has to support to treat functions as first class
objects can be found in [5]. According to this book, language has first class
functions if functions can be

1. declared within any scope
2. passed as arguments to other functions, and
3. returned as results of functions

The point 2 and 3 can be accomplished in many languages including
C/C++ that allows passing pointer to function as argument. In first version of
C#, it was possible to use delegates, which can be simply described as type-
safe function pointers; however neither C/C++, nor first version of C#
allowed declaration of function in any scope, particularly inside body of
other function (or method).

http://www.wikipedia.org/

2.1 First class functions in F#

I will first mention how first class functions are supported by F #,
which is mixed imperative and functional language for .NET platform. I
choose the F# language, because it shows that implementing functional
language features under the .NET platform is possible. I will first show some
features that are unique in F# (when compared with other .NET languages):

// Declaration of binding 'add' that is initialized
// to function using lambda expression
let add = (fun x y -> x + y);;

// Standard function declaration (shorter version,
// but the result is same as in previous example)
let add x y = x + y;;

// Currying – creates function that adds 10 to parameter
let add10 = add 10;;

The first what this example shows, is that in F#, functions are type
like any other. This means that unlike in most of the languages where
functions are something else than global variables, functions in F# are just
ordinary global variables (or bindings, to be more precise, because by default
all data in F# are immutable). This is demonstrated by the first example of
add function, which is just a global variable whose value is function created
using lambda expression. The second example shows simplified syntax for
declaring global functions (but the only difference when compared with first
version of add function is syntax!).

The next example shows currying, which is an operation that takes
function and binds its first parameter with specified value. In this case, the
parameters are function add (with type int -> int -> int) and constant 10. The
result is function (assigned to add10) of type int -> int that adds 10 to
specified parameter. The currying operation can be used in any language that
has first class functions, but the syntax in F# makes it extremely easy to use.
The following examples show some common usages of first class functions,
that I will later write in C# as well:

// passing function to higher order functions
let words = ["Hello"; "world"] in
iter (fun str -> Console.WriteLine(str);) words;

// Returning nested function
let compose f g =
 (fun x -> f (g x));;

The first example first declares list containing strings, and than uses
function iter that calls function passed as first parameter for every element in
the list (note that, F# is not purely functional language, which means that
passed function can have side effects, like printing string on the console).

The second example is function that returns composition of two
functions passed as arguments. This is a good example of returning function
declared in local scope. The second interesting point in this example, are
types of the functions. No types are declared explicitly so type inference
algorithm infers that type of first parameter is ‘b -> ‘c, type of second
parameter is ‘a -> ‘b and return value has type ‘a -> ‘c (where ‘a, ‘b and ‘c are

type parameters). This means that compose function can be used for any two
functions, where return type of the second function is the same as the type of
the parameter of first function.

2.2 First class functions in C# 2 and C# 3

Since first version of .NET Framework and C#, it provides mechanism
called delegates. Delegates are type-safe function pointers that can be passed
as a parameter or return value from a function. As mentioned earlier, first
version of C# didn’t support declaration of functions inside function body
(nested functions), so it was only possible to initialize delegate to globally
declared method.

The following example shows how anonymous delegates in C# 2 can
be used for creating method that returns “counter” delegate. The counter
delegate is a function that adds numbers to specified init value and returns
total:

CounterDelegate CreateCounter(int init) {
 int x = init;
 return new delegate(int n) {
 x += n;
 return x;
 }
}

CounterDelegate ct = CreateCounter(10);
ct(2); // Returns 12
ct(5); // Returns 17

This example shows one interesting problem that appears with the
ability to declare functions inside body and the ability to return this function
as a return value. You can see that the anonymous delegate uses local
variable called x for storing total value, so there must be some mechanism
for creating reference to local variables inside a method body. Another
problem in this example is that when function CreateCounter returns, the
activation record for the function (with the local variable x) would be
destroyed. These issues are solved in functional languages using closures
and the similar mechanism was added to C# 2 (closure captures the value of
local variable and it preserves when the activation record is destroyed).

While anonymous delegates provide everything that is needed for
first class functions, the syntax is quite verbose and inconvenient for use
known from functional languages. The C# 3 comes with new language
feature called lambda expressions, which provides more functional syntax,
and the .NET base class library is extended to include some of more
important functions known from functional languages (like map, filter,
etc…). Use of these functions is illustrated in the following example:

IEnumerable<int> nums = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
IEnumerable<int> odd = nums.Where((n) => (n%2) == 1);
IEnumerable<int> oddSquares = odd.Select((n) => n*n);

The first line of the example declares variable nums, which is array
containing numbers from 1 to 10. In the second line the numbers are filtered
and returned list odd contains only odd numbers. The Where function takes
delegate as a parameter and the delegate is created using lambda expression

syntax. In this syntax (n) specifies parameters of the delegate and the
expression on the right side of “=>” token is the body of delegate. The Select
function is later used to calculate squares of all odd numbers in the list. One
more interesting point in this example is that you don’t have to explicitly
declare type of lambda expression parameter when the type can be deduced
from the context (this will be discussed in following section).

Lambda expressions can be also used for accessing the data
representation of expressions, but this will be described in more detail alter
in the section about meta-programming.

3 Type inference

Type inference is the feature of strongly typed programming
languages that refers to the ability to deduce the data type of an expression.
This feature is currently available in many (mostly functional) programming
languages including Haskell and ML (and it is also available in F#).

In languages that support type inference, most of the identifiers (like
variables and functions) can be declared without explicit type declaration;
however the language is still type-safe because the type is inferred
automatically during the compilation.

3.1 Type inference in F#

F# type system (which is based on the ML type system) depends
heavily on type inference. In fact, no declaration in F# expects name of the
type unless some conflict or ambiguity occurs, in this case programmer can
use type annotations to provide hints for the compiler. Let’s start with simple
example that demonstrates how F# type inference works:

// Some value bindings
let num = 42;;
let msg = "Hello world!";;

// Function that adds 42 to the parameter
let addNum x = x + num;;

// Identity function
let id x = x;;
let idInt (x:int) = x;;

In this example, no type is explicitly declared, but type of all
identifiers is known at compile time. The type of value bindings (num and
msg) can be inferred because the type of expression on the right side of
binding is known (42 is integer and "Hello world!" is string). In the last
example, type of num is known (it is integer) and the “+” operator takes two
integer parameters; therefore the type of x parameter must be integer too.
Because “+” applied to two integral parameters returns integer, the return
type of the function is also integer.

The last two examples show how to declare identity function in F#
(the function that returns passed parameter). The type inference algorithm
figures out that the type of returned value is exactly the same as the type of
parameter, but it doesn’t know what type exactly it is. In this case, F# type

system can use type parameters‡, so the inferred type is ‘a -> ‘a (where ‘a is
type parameter).

If I want to define identity function only for integral values, I need to
use type annotations, to provide hints for the compiler. This is shown in the
last example where it is explicitly declared that the type of parameter x will
be integer. Using this information, type inference algorithm can deduce that
the return value of the function will be integer too.

3.2 Type inference in C# 3

The support for type inference in C# 3 is very limited when compared
with type inference in F#, but it is very interesting, because it makes C# first
main stream language that supports it (for no obvious reason, type inference
was implemented only in functional languages so far).

In C# 3, type inference can be used only with lambda expressions or
to infer type of the local variable that is initialized to some value with
initialization expression. It is not possible to use type inference for neither
method return value nor any class members. First, let’s look at the type
inference that can be used with lambda expressions:

IEnumerable<int> nums = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
IEnumerable<int> odd = nums.Where((n) => (n%2) == 1);

In this example the lambda expression (n) => (n%2) == 1 is used, but
the type of parameter n is not explicitly declared. In this case, the compiler
knows that the type of parameter expected by the Where function is delegate
that takes int as a parameter and returns bool. Based on this information,
compiler deduces that the type of n must be an int. It also checks whether
the return type of lambda expression matches with the expected return value
of the delegate.

The second case where type inference is used in the C# 3 is the ability
to deduce type of local variable using the var keyword:

// Some simple examples
var str = "Hello world!";
var num = 42;

// Declaration without using type inference
TypeWithLongName<AndWithTypeParameter> v =
 new TypeWithLongName<AndWithTypeParameter>();

// Same declaration with type inference
var v = new TypeWithLongName<AndWithTypeParameter>();

The first two examples shows how type inference can be used to infer
type of primitive variables (first one is string and the second is integer). The
next example shows that type inference can significantly simplify the source
code, because it is not needed to repeat same type twice in variable
declaration. There is however still intensive discussion, in which situations

‡
 The use of type parameters is concept similar to the templates known from C++ or to the

generics implemented in .NET languages (like C#). In F# compilation it is implemented using
.NET generics.

the var keyword should be used and when not, because when used
improperly, the code becomes less readable.

There is one very important reason for including type inference in C#.
This reason is anonymous types. Anonymous types will be discussed in more
detail later, so I will show only a simple example:

var anon = new { Name = "Hello" };
Console.WriteLine(anon.Name);

In this example, the anon variable is initialized to instance of
anonymous type, which has one member called Name with value "Hello".
The compiler knows exactly the structure of the type, but there is no name
that could be used for declaring variable of this type. In this situation the
type inference and the var keyword becomes extremely useful.

4 Lazy evaluation

Lazy evaluation is one of the basic concepts in the Haskell
programming language and thanks to lazy evaluation it is for example
possible to declare infinite lists using list comprehensions. I will discuss two
different uses for lazy evaluation in the C# language, first I will show how to
emulate lazy evaluation for parameter passing in C# which is possible thanks
to better support of first-class functions and in the second section I will show
that writing infinite (lazy) lists in C# is almost as easy as in Haskell.

4.1 Lazy parameter passing

When calling function using lazy evaluation strategy, the value of
parameter is evaluated only when needed. This is default behavior of Haskell
and it can be also simulated in Scheme using delay/force. In C# similar
behavior can be achieved using high-order functions (either anonymous
delegates or better using lambda expressions). Typical example of lazy
evaluation is function with two parameters that uses second parameter only
when first matches some criteria:

// Function that may not need second parameter
int func(int first, int second)
{
 if ((first%2) == 0) return 0; else return second;
}

// Call to the ‘func’
func(n, expensiveCalculation());

In this example, lazy evaluation may be very useful, because it can
prevent expensiveCalculation() from being called when it is not needed. In
the following code, I will use the Func<T> type (where T is type parameter).
This type represents delegate (.NET type used for passing functions) with no
parameters and with return value of type T.

// Now, the parameters are functions that
// can be used for calculating values
int func(Func<int> first, Func<int> second)
{
 if ((first()%2) == 0) return 0; else return second();
}

// Parameters are passed using lambda expressions
func(() => n, () => expensiveCalculation());

This function now behaves similarly to its equivalent written in
Haskell, because when the second parameter is not needed, the
expensiveCalculation function is never invoked. There is only one important
difference – when value is needed twice, the function would be evaluated
also twice, however this can be simply solved by passing wrapper class that
contains delegate for calculating value and stores result of the call locally
when it is evaluated.

4.2 Infinite lists in C# 3

The closest equivalent to infinite lists that are possible in Haskell
thanks to lazy evaluation is concept of iterators known from object oriented
programming. Iterators are used for traversing through elements of
collection, usually using method that moves to next element in collection
and method that returns current element. However writing iterators for
creating number sequences is much more complicated than using of list
comprehensions in Haskell.

Already mentioned language Cω introduced new data type called
stream. Streams in Cω are collections homogenous collections of particular
type like arrays, but unlike arrays, streams are lazy. The syntax for stream
declaration is asterisk (*) appended to the name of element type. This
language also introduced interesting syntax for generating streams that
makes it possible to generate streams much easily than using iterators§:

// COmega – stream with fibonacci numbers
public static int* Fibs() {
 int tmp, v1=0, v2=1;
 while (true) {
 yield return v1;
 tmp = v1; v1 = v2; v2 = tmp + v2;
 }
}

The key concept here is the yield return statement that returns next
element of the stream. The stream is lazy, so when reading elements from
the stream, only the required number of iterations is done and the execution
is stopped when no more elements are needed. The Cω language also
provides in-line syntax for declaration of streams:

int* nums = { for(int i=0; ; i++) yield return i; };

When working with lists in Haskell, the most useful functions are
map (that provides projections) and filter (that provides filtering). These
functions are available in Cω in two (syntactically different) ways. First way
makes it possible to use XPath-like operators and the second way enables
SQL-like querying (the functionality is of course same). In the following

§
 Note that Cω was developed on .NET 1.0 and was introduced before C# 2, so the yield return
statement known from C# 2 was first introduced in Cω.

example, I will show how to get squares of all even numbers from previously
defined sequence of numbers (in both XPath-like and SQL-like ways):

// XPath-like filter and projection operators
int* squaresOfEven = nums[(it%2)==0].{ it*it };

// SQL-like projection (select) and filter (where) operators
int* squaresOfEven = select it*it from nums where (it%2)==0;

This yield return statement was considered as very successful, so it
was introduced in the next version of mainstream C# language (version 2.0).
The main difference in C# is, that the returned data type is not a stream
(int*), but an iterator object (IEnumerable<int>). This introduces simple
method for writing infinite lists in C#, however other features for working
with streams (like apply-to-all statement) are not available in C# 2.

The main reason why C# 2 didn’t contain functions known from
functional programming (projection and filtering) was, that C# 2 contained
only poor support for first passing functions as arguments. This is improved
in C# 3, so thanks to lambda expressions, it is possible to declare methods
that provide filtering and projection operations for sequences
(IEnumerable<T>). The following example shows how to work with
sequences in C# 3 in way that is similar to the Cω examples:

// Function GetNums returns all numbers using yield return
IEnumerable<int> nums = GetNums();

// Manipulation using Where and Select
IEnumerable<int> squaresOfEven =
 nums.Where((it) => (it%2)==0).Select((it) => it*it);

// Same operation written using query operators
IEnumerable<int> squaresOfEven =
 from it in nums where (it%2)==0 select it*it;

In the first example manipulation is done using Where and Select
methods that take lambda expression to use for filtering, respectively
projection. Exactly the same result can be achieved using special operators
(select, from, where and some other) that are available in C# 3.

I still didn’t show how to declare infinite lists in C# 3 in a way similar
to the list comprehensions known from Haskell. Declaration of list in Haskell
can consist of four parts. First (initialization) section declares initial values
that can be later used for calculating the rest of the list. Second (generator)
section declares list from which values in the newly created list can be
calculated (this list can use the newly created list recursively). The last two
sections are filtering and projection for manipulating elements from the
generator list. Let’s see how this can be written in Haskell and in C# 3
(following example defines infinite list of Fibonacci numbers):

-- Haskell
fibs = 0 : 1 : [a + b | (a, b) <- zip fibs (tail fibs)]

// C# 3
var fibs = new InfiniteList<int>((t) =>
 t.ZipWith(t.Tail()).Select((v) => v.First + v.Second),
 0, 1);

Semantics of both examples are same. The list of Fibonacci numbers
is declared recursively using already known elements in the list. The
generator section in C# - t.ZipWith(t.Tail()) is equivalent to zip fibs (tail fibs)
written in Haskell. In the C# version, it is not possible to reference fibs
variable while it is being initialized, so the t is instance of the list passed to
the generator to allow recursive declarations. The projection secion in C# -
Select((v) => v.First + v.Second) is equivalent to a + b | (a, b) from Haskell, the
difference here is that C# doesn’t directly support tuples, so tuple is
represented as structure with members First and Second. The filtering
section is not used in this example and finally, the last two parameters (0, 1)
define initial values in the list which is equal to declaration of first two values
in Haskell (0 : 1 : …).

4.3 Lazy evaluation summary

The lazy evaluation strategy can be simulated in many non-functional
languages, because it is general concept, however in most of these languages
this simulation would be difficult and inconvenient to use. Thanks to new
features available in latest version of C# 3, some of concepts known from
functional programming (including lazy evaluation and list comprehensions)
can be naturally used in C#.

5 Anonymous types

Anonymous types are another example of useful feature known from
functional programming that appeared in C# 3. Anonymous types are based
on tuples known from Haskell (or any other functional programming
language including F# developed at Microsoft Research). First object
oriented language that implemented concept of tuples was already
mentioned Cω.

Tuples (also called anonymous structs) in Cω can contain either
named or anonymous fields. The type of tuple containing anonymous string
and integer field called N is struct{string; int N;}. Anonymous fields of the
tuple can be accessed using index expression. For example to get the string
field from the previous tupe, you can use t[0]. The named fields can be either
accessed using the same way as anonymous fields or using the name. In Cω
tuple is regular type so it can be used in any variable or method declaration.
The following example shows how the tuples in Cω can be used.

// Method that returns tuple type
public struct{string;int Year;} GetPerson() {
 return new { ‚Tomas‛, Year=1985 };
}

// Call to the GetPerson method
struct{string;int Year;} p = GetPerson();
Console.WriteLine(‚Name={0}, Year={1}‛, p[0], p.Year);

One of the situations where tuples are extremely useful is when using
projection operation (map function in Haskell, projection operator or select
operator in Cω, Select method in C# 3). The following example first creates
stream with numbers and than uses projection operator to create stream of
tuples where every element contain original number and its square.

// Get stream with numbers
int* nums = GetNumbersStream();
// Projection returns stream of tuples with number and its square
struct{int;int;} tuples = nums.{ new { it, it*it } };

The projection operation was also probably the main reason for
including anonymous types in C# 3, because the C# 3 and the LINQ project
focuses primary on simplifying data access and while writing database
queries, projection is very important. The following example shows using of
anonymous types in C# 3:

// Creating anonymous type
var anon = new { Name=‛Tomas Petricek‛, Year=1985 };

// Creating anonymous type in projection operator
from db.People select new { Name=p.FirstName+p.FamilyName, p.Year };

It is obvious that anonymous types in C# 3 are based on idea
presented in Cω, however there are several differences. First difference is
that in C# all fields of anonymous type are named. In the previous example,
name of first field is specified explicitly (Name) and name of second field is
inferred automatically (the name Year will be used). The second and
probably most important difference is that in C# 3 it is possible to create
instance of anonymous type, but the only way to declare variable of this type
is to use the var keyword. This keyword infers type of the variable from
expression, so type information isn’t lost. This means, that there is no way to
reference anonymous type in C# 3 which makes it impossible to use
anonymous types as parameters of methods and anonymous types can
therefore be used only in limited scope.

This limitation of scope in C# 3 is intentional, because misusing of
anonymous types in object oriented programming could lead to less readable
and less maintainable code, however there are some situations when passing
anonymous types as return value from methods would be very useful. The
Cω language shows that this limitation can be resolved and that tuples
known from functional programming can be used without limitations in
object oriented languages as well.

6 Meta-programming

6.1 Language oriented development

“Language oriented programming is a style of
programming in which, the programmer creates domain-specific
languages for the problem first and solves the problem in this
language.”

(Source: Wikipedia.org)

Mainstream languages like C++, C#, Java or functional Haskell are
languages that belong to the category called general purpose languages
(GPL). This category contains languages that are not intended for some
specific use, but can be used for developing wide range of applications.

Opposite to these languages are so-called domain specific languages
(DSL) that can be used only for one specific purpose. These languages are
usually designed and optimized for their purpose, so they serve better than

http://en.wikipedia.org/wiki/Language_oriented_programming

GPL. These languages are in some sense similar to class libraries (in object
oriented world) because class libraries are also designed for solving one
specific purpose.

Good example of DSL is the SQL language, whose purpose is database
querying. This language is demonstrates all characteristics of DSL – it has
very limited domain of use, but in this domain it serves better than any
general purpose languages.

In his article [4], Martin Fowler divides DSLs into external and
internal. Internal (also called embedded) DSL are languages that extend and
modify the host (general purpose) language, in which they are used. The
example of language that allows developers to modify it (and it is necessary
for bigger projects) is LISP that is itself very simple, but it provides ways for
extending it, so in more complex projects, the language is first extended
using macros and the problem can be than solved easily using the created
LISP dialect. On the other side, external DSL are languages independent to
the language in which they are used (for example SQL).

6.2 Meta-programming

“Meta-programming is the writing of programs that write
or manipulate other programs (or themselves) as their data.”

(Source: Wikipedia.org)

As described in this quotation, the principle of meta-programming is
that code written by the developer works with some representation of
program code (either in same or in different language). This code can be
analyzed, interpreted or translated to some other language.

It is obvious, that meta-programming is used for creating domain
specific languages; however creating of DSLs is not the only possible use of
meta-programming. In the case of external DSL developer has to write
compiler or some translator to other (usually general purpose) language.
This option isn’t used very often, because writing of compiler is not a trivial
task.

The case of internal DSL is much more interesting, because the
program manipulates with its own code at run-time. To enable this, the
language must provide some way for accessing to data representation of its
own code as well as some extensibility that would allows users to define their
own sub-languages.

From what I already mentioned, you can see that in language that
supports advanced form of meta-programming, it is possible to develop
domain specific language similar to SQL. Using the meta-programming, it
would be later possible to get representation of code written in this SQL-like
sub-language, translate it to SQL command text and execute it!

In the rest of the text I will use the term meta-programming for
manipulating with programs own code using the features provided by the
programming language, because manipulation with external code can be
written almost in any GPL language (only the support for reading and
manipulation with text files is needed for this).

http://en.wikipedia.org/wiki/Metaprogramming_(programming)

6.3 Meta-programming in C# 3

Support for meta-programming (however only very limited form) is
one of the key features that enables the LINQ project and especially its
implementation for working with databases called “LINQ to SQL”
(previously DLINQ). When writing LINQ code that will be used for accessing
to database, the expressions used for filtering and projection (as well as for
other operators like joins) must be translated to SQL command and this
couldn’t be done without the possibility to get the data representation of
those expressions (therefore without some form of meta-programming).

In C# 3, it is possible to get the data representation (called expression
tree) only from lambda expression whose body is expression. I see the
biggest limitation of C# 3 here, because it is not possible to get data
representation of neither statement nor statement block. The lambda
expression can be compiled in one of two ways. It can be either compiled to
delegate (object that can be used to execute the function), or to the code that
returns expression tree (the data representation) of lambda expression. The
decision between these two options is based on the l-value of the code in
which lambda expression appears. When it is assigned to the variable of type
Func, it is compiled as delegate and when the type of variable is Expression,
it is compiled as data.

The following example shows how the same lambda expression can
be compiled to delegate as well as data representation. For demonstration
purposes we’ll use a function that takes integer as parameter, performs some
calculations with it and returns true when the value is less than ten.

// Lambda expression as executable code
Func<int, bool> =
 x => DoSomeMath(x) < 10;

// Lambda expression as data representation
Expression<Func<int, bool>> =
 x => DoSomeMath(x) < 10;

This is exactly the principle that is used in the LINQ project in case
when application works with database and so the query is translated to the
SQL language. The following example demonstrates how two lambda
expressions (one for filtering and second for projection) can be used when
accessing database:

// Database query written using Where
// and Select extension methods
var q =
 db.Customers.
 Where(c => c.City == "London").
 Select(c => c.CompanyName);

From this example, you can see that expressions used for filtering and
projection of data from Customers table are passed to methods Where and
Select using lambda expressions. It depends on the concrete LINQ
implementation whether type of the parameter passed to these methods will
be Func or Expression and so it is possible to write implementations that
accept delegate types and execute them (for example for filtering data that
are stored in memory) as well as implementations that accept data

representation of the code and translates it to different language (in case of
LINQ to SQL implementation) or use some other way to execute the code.

This work well, however to make the data access even more intuitive,
the C# 3 provides operators (from, select, where and some other) for this
purpose. These operators are only syntactic sugar and code written using
these operators is translated to the code shown in previous example. Using
the LINQ operators you can write following:

// Database query that uses "syntactic sugar"
var q =
 from c in db.Customers
 where c.City == "London"
 select c.CompanyName;

If you think of these examples in terms of DSL and meta-
programming, you can see that domain specific language used to represent
database queries in C# 3 is composed from expressions that can be compiled
to expression trees and from the query operators (that are built in the
language) or to be more precise from the query methods (Select, Where,
etc). The target language of translation (SQL in the case of LINQ to SQL)
doesn’t usually support all the expressions that can be written in C#, so the
translator must check whether all constructs written by the programmer can
be translated.

In general, any DSL language that can be created in C# 3 can use only
expressions (or limited subset of C# expressions) and some way for
composing these expressions together (for example using sequence of
method invocations or using overloaded operators).

6.4 Meta-programming in F#

In the F# language, the support for meta-programming goes even
further by making it possible to access (almost) any code written in F# by
using special operators. This includes expressions (as in C# 3) but also
statements and more complex structures. The following example illustrates
how to get data representation of infinite loop writing the text “Hello” (The
type of returned value is expr which represents F# code):

let e = <@
 while true do
 print_string "hello"
 done @>;;

As I already said, it is possible to write lambda expressions in F#,
because lambda expressions are one of the basic features in any functional
language. It is also possible to get expr representation of those lambda
expressions, so F# quotations can be used in same way as lambda expressions
in C# 3:

let e = <@
 fun x -> doSomeMath(x) > 10
 @>;;

Recently released version of F# contains example that shows how to
extend this language with support for data querying constructions similar to

the operators in the LINQ project. This shows the flexibility of F# language,
because it was not needed to extend the language itself, because the key
feature (meta-programming) was already supported and it is possible to
define custom operators, so no syntactic sugar has to be added.

The implementation of data querying in F# internally transforms data
representation of expression written in F# to the C# 3 expression tree and
this expression tree is passed to the “LINQ to SQL” converter. In the
following example, you can see how to write database query similar to the
previously shown C# 3 example:

 let query =
 db.active.Customers
 |> where <@ fun c -> c.City = "London" @>
 |> select <@ fun c -> c.ContactName @>;;

There is one more very interesting feature in F# that I didn’t mention
so far. I will demonstrate this on the example with lambda expression that
calls doSomeMath function. F# allows you to expand all top-level definitions
in the code representation with its actual value. This means that the call to
doSomeMath function can be replaced with its actual implementation. This
can be for example used, to allow the developer to use custom functions in
data query expressions**.

6.5 Meta-programming summary

From these examples, you can see that F# meta-programming is more
flexible than lambda expressions available in C# 3. The data representation of
code may look more complex than the representation used in LINQ, however
it is easy to use thanks to its functional design and thanks to functional
features in F#.

The most important features that aren’t available in C# 3 are that in
C# you can get data representation only for expression, while in F# it is
possible to get code of statements (including loops and statement blocks) as
well as function declarations. The second feature (that is not turned on in
the compiler by default) is that in F# you can get data representation of any
top-level definition (all declared functions) which makes it possible to
expand function calls in expressions.

**

 This is very important feature that makes it possible to reuse part of the query across whole
data-access layer. It is possible to achieve something similar in C# 3 as described here:
http://tomasp.net/blog/linq-expand.aspx

http://tomasp.net/blog/linq-expand.aspx

References

[1] The LINQ Project. D. Box and A. Hejlsberg.
See http://msdn.microsoft.com/data/ref/linq/

[2] Cω language. E. Meijer, W. Schulte, G. Bierman, and others.
See http://research.microsoft.com/Comega/

[3] F# language. D. Syme.
See http://research.microsoft.com/fsharp/

[4] Language Workbenches: The Killer-App for Domain Specific Languages?
Marin Fowler.
See http://martinfowler.com/articles/languageWorkbench.html

[5] Concepts in Programming Languages. John C. Mitchell.
Cambridge University Press, Cambridge UK, 2003

[6] ILX project. D. Syme.
See http://research.microsoft.com/projects/ilx/ilx.aspx

http://msdn.microsoft.com/data/ref/linq/
http://research.microsoft.com/Comega/
http://research.microsoft.com/fsharp/
http://martinfowler.com/articles/languageWorkbench.html
http://research.microsoft.com/projects/ilx/ilx.aspx

