
Page 1 of 26

F# Language Overview

Tomáš Petříček (tomas@tomasp.net)

http://tomasp.net/blog

1 Introduction
This text is based on a short overview of the F# language that was included in my bachelor

thesis, but I extended it to cover all the important F# aspects and topics. The goal of this article is

to introduce all the features in a single (relatively short) text, which means that understanding of

a few advanced topics discussed later in the text may require some additional knowledge or

previous experience with functional programming.

Anyway, the article still tries to introduce all the interesting views on programming that

the F# language provides and the goal is to show that these views are interesting, even though

not all of them are fully explained as they would deserve. Of course, this text won’t teach you

everything about F#, but it tries to cover the main F# design goals and (hopefully) presents all

the features that make F# interesting and worth learning. In this first part I will shortly

introduce F# and the supported paradigms that will be discussed further in the text.

1.1 Introducing F#
In one of the papers about F#, the F# designers gave the following description: "F# is a

multi-paradigm .NET language explicitly designed to be an ML suited to the .NET environment. It is

rooted in the Core ML design and in particular has a core language largely compatible with

OCaml". In other words this means that the syntax of the F# language is similar to ML or OCaml

(don’t worry if you don’t know these languages, we’ll look at some examples shortly), but the F#

language targets .NET Framework, which means that it can natively work with other .NET

components and also that it contains several language extensions to allow smooth integration

with the .NET object system.

Another important aspect mentioned in this description is that F# is multi-paradigm

language. This means that it tries to take the best from many programming languages from very

different worlds. The first paradigm is functional programming (the languages that largely

influenced the design of F# in this area are ML, OCaml and other), which has a very long

tradition and is becoming more important lately for some very appealing properties, including

the fact that functional code tends to be easier to test and parallelize and is also extensible in a

ways where object oriented code makes extending difficult.

The second paradigm is widely adopted object oriented programming, which enables

interoperability with other .NET languages. In F# it is often used for implementing elementary

data types (meaning that the operations on the type are well known and change very rarely), for

grouping a set of elementary functions that are together used to perform some complicated

operation (i.e. implementing an interface) and also when working with object oriented user

interface frameworks.

mailto:tomas@tomasp.net
http://tomasp.net/blog

Page 2 of 26

Finally, the third paradigm supported by F# is language oriented programming (the design

of F# in this area is largely influenced by ML, Haskell and also by LINQ). In general, language

oriented programming is focused on developing executors for some code which has a structure

of a language (be it a declarative language like XML, or a fully powerful language like some

subset of F#). In this overview, I will focus on two techniques provided by F# that allow you to

give a different meaning to blocks of F# code. In a programming language theory, this is often

called internal domain specific languages, because the code is written in the host language, but is

specifically designed as a way for solving problems from some specific domain. An example of

such language (and an associated executor) is a block of code that is written as a linear code, but

is executed asynchronously (in F# this can be implemented using computation expressions), or a

query that is written in F#, but is executed as a SQL code by some database server (this can be

implemented using F# quotations).

1.2 Organization of the Text
In the rest of this article series we will look at all these three paradigms supported by F#

starting with functional programming and basic F# types used when writing code in a functional

way, continuing with object oriented programming and the support for .NET interoperability

which is closely related to the OOP in F#. Lastly, we will look at the language oriented

programming paradigm including some of the most important .NET and F# library functions that

make it possible.

Page 3 of 26

2 Functional Programming

As already mentioned, F# is a typed functional language, by which I mean that types of all

values are determined during the compile-time. However, thanks to the use of a type inference,

the types are explicitly specified in the code very rarely as we will see in the following examples.

The type inference means that the compiler deduces the type from the code, so for example

when calling a function that takes int as an argument and returns string as a result, the compiler

can infer the type of the variable where the result is assigned (it has to be string) as well as the

type of the variable that is given as an argument (it has to be int). Basic data types (aside from a

standard set of primitive numeric and textual types that are present in any .NET language)

available in F# are tuple, discriminated union, record, array, list, function and object. In the

following quick overview, we will use the F# interactive, which is a tool that compiles and

executes the entered text on the fly.

The F# interactive can be either used from Visual Studio or by running the fsi.exe from the

F# installation directory. In the whole article series we will also use the F# lightweight syntax,

which makes the code white-space sensitive, but simplifies many of the syntactical rules. To

enable the lightweight syntax enter the following command in the FSI:

> #light;;

The double semicolon is used as the end of the FSI input and sends the entered text to the

compiler. This allows us to enter multiple lines of code in a single command. With a few

exceptions (mostly when showing a declaration of a complex type) all the code samples in this

article are written as commands for FSI including the double semicolon and the result printed by

the FSI. Longer code samples can be entered to FSI as well - just add the double semicolon to

terminate the input.

2.1 F# Data Types Overview

Tuples

The first example demonstrates constructing and deconstructing a tuple type. Tuple is

simple type that groups together two or more values of any (possibly different) types, for

example int and string:

> let tuple = (42, "Hello world!");;

val tuple : int * string

> let (num, str) = tuple;;

val num : int

val str : string

As you can see, the compiler deduced a type of the expression that is present on the right

side of the equals sign and the F# interactive printed the type, so we can review it. In this

example the type of a first element in a tuple is int and the type of the second element is string.

The asterisk denotes that the type is a tuple. Similarly, you can define a tuple with more than

three elements, but the type changes with the number of elements in a tuple, which means that

tuples can't be used for storing an unknown number of values. This can be done using lists or

arrays, which will be discussed later.

Page 4 of 26

The syntax used for deconstructing the value into variables num and str is in general called

pattern matching and it is used very often in the F# language – the aim of pattern matching is to

allow matching a value against a pattern that specifies different view of the data type – in case of

tuple, one view is a single value (of type tuple) and the second view is a pair of two values (of

different types). Pattern matching can be used with all standard F# types, most notably with

tuples, discriminated unions and record types. In addition, F# also supports generalized pattern

matching constructs called active patterns, which are discussed later in this overview.

Tuple types are very handy for returning multiple values from functions, because this

removes the need to declare a new class or use references when writing a function that performs

some simple operation resulting in more returned values (especially in places where C# uses ref

and out parameters). In general, I would recommend using tuples when the function is either

simple (like division with remainder), local (meaning that it will not be accessed from a different

module or file) or it is likely to be used with pattern matching. For returning more complicated

structures it is better to use record types which will be discussed shortly.

Discriminated Union

In the next sample we demonstrate working with the discriminated union type. This type is

used for representing a data type that store one of several possible options (where the options

are well known when writing the code). One common example of data type that can be

represented using discriminated unions is an abstract syntax tree (i.e. an expression in some

programming language):

> // Declaration of the 'Expr' type

 type Expr =

 | Binary of string * Expr * Expr

 | Variable of string

 | Constant of int;;

(...)

> // Create a value 'v' representing 'x + 10'

 let v = Binary("+", Variable "x", Constant 10);;

val v : Expr

To work with the values of a discriminated union type, we can again use pattern matching.

In this case we use the match language construct, which can be used for testing a value against

several possible patterns – in case of the Expr type, the possible options are determined by all

identifiers used when declaring the type (these are called constructors), namely Binary, Variable

and Constant. The following example declares a function eval, which evaluates the given

expression (assuming that getVariableValue is a function that returns a value of variable):

> let rec eval x =

 match x with

 | Binary(op, l, r) ->

 let (lv, rv) = (eval l, eval r)

 if (op = "+") then lv + rv

 elif (op = "-") then lv - rv

 else failwith "Unknonw operator!"

 | Variable(var) ->

 getVariableValue var

 | Constant(n) ->

 n;;

val eval : Expr -> int

Page 5 of 26

When declaring a function we can use the let keyword that is used for binding a value to a

name. I don’t use a term variable known from other programming languages for a reason that

will be explained shortly. When writing a recursive function, we have to explicitly state this

using the rec keyword as in the previous example.

Discriminated unions form a perfect complement to the typical object-oriented inheritance

structure. In an OO hierarchy the base class declares all methods that are overridden in derived

classes, meaning that it is easy to add new type of value (by adding a new inherited class), but

adding a new operation requires adding method to all the classes. On the other side, a

discriminated union defines all types of values in advance, which means that adding a new

function to work with the type is easy, but adding a new type of value (new constructor to the

discriminated union) requires modification of all existing functions. This suggests that

discriminated unions are usually a better way for implementing a Visitor design pattern in F#.

Records

The next data type that we will look at is a record type. It can be viewed as a tuple with

named members (in case of record these are called labels), which can be accessed using a dot-

notation and as mentioned earlier it is good to use this type when it would be difficult to

understand what the members in a tuple represent. One more difference between a record type

and a tuple is that records have to be declared in advance using a type construct:

> // Declaration of a record type

 type Product = { Name:string; Price:int };;

> // Constructing a value of the 'Product' type

 let p = { Name="Test"; Price=42; };;

val p : Product

> p.Name;;

val it : string = "Test"

> // Creating a copy with different 'Name'

 let p2 = { p with Name="Test2" };;

val p2 : Product

The last command uses an interesting construct - the with keyword. The record types are

by default immutable, meaning that the value of the member can’t be modified. Since the

members are immutable you will often need to create a copy of the record value with one (or

more) modified members. Doing this explicitly by listing all the members would be impractical,

because it would make adding a new members very difficult, so F# supports the with keyword to

do this.

F# records are in many ways similar to classes and they can be, indeed, viewed as

simplified classes. Record types are by default immutable, which also means that F# use a

structural comparison when comparing two values of a record type (instead of the default

reference comparison used when working with classes) and if you need this behavior (e.g. for

storing records as a keys in a dictionary) it is very practical to use them. Also, using a record

instead of a class is a good idea in a functional code where you can use the with construct.

Exposing a record type in a public interface of the module requires additional care and it is often

useful to make the labels available as members, which makes it easier to modify implementation

of the type later. This topic will be further discussed in the third part of this article series.

Page 6 of 26

Lists

The types used for storing collections of values are list and array. F# list is a typical linked-

list type known from many functional languages – it can be either an empty list (written as []) or

a cell containing a value and a reference to the tail, which is itself a list (written as value::tail).

It is also possible to write a list using a simplified syntax, which means that you can write [1; 2;

3] instead of 1::2::3::[] (which is exactly the same list written just using the two basic list

constructors). Array is a .NET compatible mutable array type, which is stored in a continuous

memory location and is therefore very efficient – being a mutable type, array is often used in

imperative programming style, which will be discussed later. The following example shows

declaration of a list value and an implementation of a recursive function that adds together all

elements in the list:

> let nums = [1; 2; 3; 4; 5];;

val nums : list<int>

> let rec sum list =

 match list with

 | h::tail -> (sum tail) + h

 | [] -> 0

val sum : list<int> -> int

Similarly as earlier we declared a recursive function using let rec and inside the body we

used pattern matching to test whether the list is an empty list or a list cell. Note that list is a

generic type, which means that it can store values of any F# type. The type in our example is

list<int>, which means that the declared instance of list contains integers. Functions working

with generic types can be restricted to some specific type - for example the sum function above

requires a list of integers that can be added (this is inferred by the type inference, because the

default type used with the + operator is int). Alternatively, the function can be generic as well,

which means that it works with any lists - for example a function that returns the last element in

the list doesn’t depend on the type and so it can be generic. The signature of a generic function to

return the last element would be last : list<'a> -> 'a.

An important feature when writing recursive functions in F# is the support for tail-calls.

This means that when the last operation performed by the function is a call to a function

(including a recursive call to itself), the runtime drops the current stack frame, because it isn’t

needed anymore - the value returned by the called function is a result of the caller. This

minimizes a chance for getting a stack overflow exception. The sum function from the previous

example can be written using an auxiliary function that uses a tail recursion as following:

> // 'acc' is usually called an 'accumulator' variable

 let rec sumAux acc list =

 match list with

 | h::tail -> sumAux (acc + h) tail

 | [] -> acc

val sum : int -> list<int> -> int

> let sum list = sumAux 0 list

val sum : list<int> -> int

Page 7 of 26

Functions

Finally, the type that gives name to the whole functional programming is a function. In F#,

similarly to other functional languages, functions are first-class values, meaning that they can be

used in a same way as any other types. They can be given as an argument to other functions or

returned from a function as a result (a function that takes function as an argument or returns

function as a result is called high-order function) and the function type can be used as a type

argument to generic types - you can for example create a list of functions. The important aspect

of working with functions in functional languages is the ability to create closures – creating a

function that captures some values available in the current stack frame. The following example

demonstrates a function that creates and returns a function for adding specified number to an

initial integer:

> let createAdder n = (fun arg -> n + arg);;

val createAdder : int -> int -> int

> let add10 = createAdder 10;;

val add10 : int -> int

> add10 32;;

val it : int = 42

In the body of the createAdder function we use a fun keyword to create a new unnamed

function (a function constructed in this way is called a lambda function). The type of createAdder

(int -> int -> int) denotes that when the function is called with int as an argument, it

produces a value of type function (which takes an integer as a parameter and produces an

integer as a result). In fact, the previous example could be simplified, because any function

taking more arguments is treated as a function that produces a function value when it is given

the first argument, which means that the following code snippet has the same behavior. Also

note that the types of the function createAdder declared earlier and the type of the function add

are the same):

> let add a b = a + b;;

val add : int -> int -> int

> let add10 = add 10;;

val add10 : int -> int

When declaring the function value add10 in this example, we used a function that expects

two arguments with just one argument. The result is a function with a fixed value of the first

argument which now expects only one (the second) argument. This aspect of working with

functions is known as currying.

Many functions in the F# library are implemented as high-order functions and functions as

an arguments are often used when writing a generic code, that is a code that can work with

generic types (like list<'a>, which we discussed earlier). For example standard set of functions

for manipulating with list values is demonstrated in the following example:

> let odds = List.filter (fun n -> n%2 <> 0) [1; 2; 3; 4; 5];;

val odds : list<int> = [1; 3; 5]

> let squares = List.map (fun n -> n * n) odds;;

val squares : list<int> = [1; 9; 25]

Page 8 of 26

It is interesting to note that the functions that we used for manipulating with lists are

generic (otherwise they wouldn’t be very useful!). The signature of the filter function is ('a ->

bool) -> list<'a> -> list<'a>, which means that the function takes list of some type as a second

argument and a function that returns a true or false for any value of that type, finally the result

type is same as the type of the second argument. In our example we instantiate the generic

function with a type argument int, because we’re filtering a list of integers. The signatures of

generic functions often tell a lot about the function behavior. When we look at the signature of

the map function (('a -> 'b) -> list<'a> -> list<'b>) we can deduce that map calls the function

given as a first argument on all the items in the list (given as a second argument) and returns a

list containing the results.

In the last example we will look at the pipelining operator (|>) and we will also look at one

example that demonstrates how currying makes writing the code easier - we will use the add

function declared earlier:

> let nums = [1; 2; 3; 4; 5];;

val nums : list<int>

> let odds_plus_ten =

 nums

 |> List.filter (fun n-> n%2 <> 0)

 |> List.map (add 10)

val odds_plus_ten : list<int> = [11; 13; 15];;

Sequences of filter and map function calls are very common and writing it as a single

expression would be quite difficult and not very readable. Luckily, the sequencing operator

allows us to write the code as a single expression in a more readable order - as you can see in the

previous example, the value on the left side of the |> operator is given as a last argument to the

function call on the right side, which allows us to write the expression as sequence of ordinary

calls, where the state (current list) is passed automatically to all functions. The line with List.map

also demonstrates a very common use of currying. We want to add 10 to all numbers in the list,

so we call the add function with a single argument, which produces a result of the type we

needed - a function that takes an integer as an argument and returns an integer (produced by

adding 10) as the result.

2.2 Function Composition
One of the most interesting aspects of working with functions in functional programming

languages is the possibility to use function composition operator. This means that you can very

simply build a function that takes an argument, invokes a first function with this argument and

passes the result to a second function. For example, you can compose a function fst, which takes

a tuple (containing two elements) and returns the first element in the tuple with a function

uppercase, which takes a string and returns it in an uppercase:

> (fst >> String.uppercase) ("Hello world", 123);;

val it : string = "HELLO WORLD"

> let data = [("Jim", 1); ("John", 2); ("Jane", 3)];;

val data : (string * int) list

> data |> List.map (fst >> String.uppercase);;

val it : string list = ["JIM"; "JOHN"; "JANE"]

Page 9 of 26

In the first command, we just compose the functions and call the returned function with a

tuple as an argument, however the real advantage of this trick becomes more obvious in the

third command, where we use the function composition operator (>>) to build a function that is

given as an argument to a map function that we used earlier. The function composition allows us

to build a function without explicitly using a lambda function (written using the fun keyword)

and when this features are used reasonably it makes the code more compact and keeps it very

readable.

2.3 Expressions and Variable Scoping
The F# language doesn’t have a different notion of a statement and an expression, which

means that every language construct is an expression with a known return type. If the construct

performs only a side effect (for example printing to a screen or modifying a global mutable

variable or a state of .NET object) and doesn’t return any value then the type of the construct is

unit, which is a type with only one possible value (written as “()”). The semicolon symbol (;) is

used for sequencing multiple expressions, but the first expression in the sequence should have a

unit as a result type. The following example demonstrates how the if construct can be used as

an expression in F# (though in the optional F# lightweight syntax, which makes whitespace

significant and which we used in the rest of this overview, the semicolon symbol can be

omitted):

> let n = 1

 let res =

 if n = 1 then

 printfn "..n is one..";

 "one"

 else

 "something else";;

..n is one..

val res : string = "one"

When this code executes it calls the true branch of the if expression, which first calls a

side-effecting function, which prints a string and then returns a string ("one") as the result. The

result is then assigned to the res value.

Unlike some languages that allow one variable name to appear only once in the entire

function body (e.g. C#) or even treat all variables declared inside the body of a function as a

variable with scope of the whole function (e.g. Visual Basic or JavaScript), the scope of F# values

is determined by the let binding and it is allowed to hide a value by declaring a value with the

same name. The following (slightly esoteric) example demonstrates this:

> let n = 21

 let f =

 if n < 10 then

 let n = n * 2

 (fun () -> print_int n)

 else

 let n = n / 2

 (fun () -> print_int n)

 let n = 0

 f ();;

42

val it : unit

Page 10 of 26

In this example, the value n declared inside a branch of the if expression is captured by a

function created using the fun keyword, which is returned from the if expression and bound to

the value named f. When the f is invoked it indeed uses the value from the scope where it was

created, which is 42. In languages, where the variable named n would refer to a value stored

globally, it would be rather problematic to write a code like this. Of course, writing a code similar

to what I demonstrated in this example isn't a good idea, because it makes the code very difficult

to read. There are however situations where hiding a value that is no longer needed in the code

is practical.

Page 11 of 26

3 Imperative and Object-Oriented Programming

In the third part of the F# Overview article series, we will look at language features that are

mostly well known, because they are present in most of the currently used programming

languages. Indeed, I'm talking about imperative programming, which is a common way for

storing and manipulating application data and about object oriented programming which is used

for structuring complex programs.

In general, F# tries to make using them together with the functional constructs described

in the previous section as natural as possible, which yields several very powerful language

constructs.

3.1 Imperative Programming and Mutable Values
Similarly as ML and OCaml, F# adopts an eager evaluation mechanism, which means that a

code written using sequencing operator is executed in the same order in which it is written and

expressions given as an arguments to a function are evaluated before calling the function (this

mechanism is used in most imperative languages including C#, Java or Python). This makes it

semantically reasonable to support imperative programming features in a functional language.

As already mentioned, the F# value bindings are by default immutable, so to make a variable

mutable the mutable keyword has to be used. Additionally F# supports a few imperative

language constructs (like for and while), which are expressions of type unit:

> // Imperative factorial calculation

 let n = 10

 let mutable res = 1

 for n = 2 to n do

 res <- res * n

 // Return the result

 res;;

val it : int = 3628800

The use of the eager evaluation and the ability to use mutable values makes it very easy to

interoperate with other .NET languages (that rely on the use of mutable state), which is an

important aspect of the F# language. In addition it is also possible to use the mutable keyword for

creating a record type with a mutable field.

Arrays

As mentioned earlier, another type of value that can be mutated is .NET array. Arrays can

be either created using [| .. |] expressions (in the following example we use it together with a

range expression, which initializes an array with a range) or using functions from the Array

module, for example Array.create. Similarly to the mutable variables introduced in the previous

section, the value of an array element can be modified using the <- operator:

> let arr = [| 1 .. 10 |]

val arr : array<int>

> for i = 0 to 9 do

 arr.[i] <- 11 - arr.[i]

(...)

> arr;;

val it : array<int> = [| 10; 9; 8; 7; 6; 5; 4; 3; 2; 1 |]

Page 12 of 26

3.2 .NET interoperability
The .NET BCL is built in an object oriented way, so the ability to work with existing classes

is essential for the interoperability. Many (in fact almost all) of the classes are also mutable, so

the eager evaluation and the support for side-effects are two key features when working with

any .NET library. The following example demonstrates working with the mutable generic

ResizeArray<T> type from the BCL (ResizeArray is an alias for a type System.Collections.

Generic.List to avoid a confusion with the F# list type):

> let list = new ResizeArray<_>()

 list.Add("hello")

 list.Add("world")

 Seq.to_list list;;

val it : string list = ["hello"; "world"]

As you can see, we used the underscore symbol when creating an instance of the generic

type, because the type inference algorithm in F# can deduce the type argument from the code (in

this example it infers that the type argument is string, because the Add method is called with a

string as an argument). After creating an instance we used Add method to modify the list and add

two new items. Finally, we used a Seq.to_list function to convert the collection to the F# list.

As a fully compatible .NET language, F# also provides a way for declaring its own classes

(called object types in F#), which are compiled into CLR classes or interfaces and therefore the

types can be accessed from any other .NET language as well as used to extend classes written in

other .NET languages. This is an important feature that allows accessing complex .NET libraries

like Windows Forms or ASP.NET from F#.

3.3 Object Oriented Programming

Object Types

Object oriented constructs in F# are compatible with the OO support in .NET CLR, which

implies that F# supports single implementation inheritance (a class can have one base class),

multiple interface inheritance (a class can implement several interfaces and an interface can

inherit from multiple interfaces), subtyping (an inherited class can be casted to the base class

type) and dynamic type tests (it is possible to test whether a value is a value of an inherited class

casted to a base type). Finally, all object types share a common base class which is called obj in

F# and is an alias to the CLR type System.Object.

F# object types can have fields, constructors, methods and properties (a property is just a

syntactic sugar for getter and setter methods). The following example introduces the F# syntax

for object types:

type MyCell(n:int) =

 let mutable data = n + 1

 do printf "Creating MyCell(%d)" n

 member x.Data

 with get() = data

 and set(v) = data <- v

 member x.Print() =

 printf "Data: %d" data

Page 13 of 26

 override x.ToString() =

 sprintf "(Data: %d)" data

 static member FromInt(n) =

 MyCell(n)

The object type MyCell has a mutable field called data, a property called Data, an instance

method Print, a static method FromInt and the type also contains one overridden method called

ToString, which is inherited from the obj type and returns a string representation of the object.

Finally, the type has an implicit constructor. Implicit constructors are syntactical feature which

allows us to place the constructor code directly inside the type declaration and to write the

constructor arguments as part of the type construct. In our example, the constructor initializes

the mutable field and prints a string as a side effect. F# also supports explicit constructors that

have similar syntax as other members, but these are needed rarely.

In the previous example we implemented a concrete object type (a class), which means that

it is possible to create an instance of the type and call its methods in the code. In the next

example we will look at declaration of an interface (called abstract object type in F#). As you can

see, it is similar to the declaration of a class:

type AnyCell =

 abstract Value : int with get, set

 abstract Print : unit -> unit

The interesting concept in the F# object oriented support is that it is not needed to

explicitly specify whether the object type is abstract (interface), concrete (class) or partially

implemented (class with abstract methods), because the F# complier infers this automatically

depending on the members of the type. Abstract object types (interfaces) can be implemented by

a concrete object type (class) or by an object expression, which will be discussed shortly. When

implementing an interface in an object type we use the interface .. with construct and define

the members required by the interface. Note that the indentation is significant in the lightweight

F# syntax, meaning that the members implementing the interface type have to be indented

further:

type ImplementCell(n:int) =

 let mutable data = n + 1

 interface AnyCell with

 member x.Print() = printf "Data: %d" data

 member x.Value

 with get() = data

 and set(v) = data <- v

The type casts supported by F# are upcast, used for casting an object to a base type or to an

implemented interface type (written as o :> TargetType), downcast, used for casting back from a

base type (written as o :?> TargetType), which throws an exception when the value isn’t a value

of the specified type and finally, a dynamic type test (written as o :? TargetType), which tests

whether a value can be casted to a specified type.

Object expressions

As already mentioned, abstract types can be also implemented by an object expression.

This allows us to implement an abstract type without creating a concrete type and it is

particularly useful when you need to return an implementation of a certain interface from a

Page 14 of 26

function or build an implementation on the fly using functions already defined somewhere else

in your program. The following example implements the AnyCell type:

> let newCell n =

 let data = ref n

 { new AnyCell with

 member x.Print() = printf "Data: %d" (!data)

 member x.Value

 with get() = !data

 and set(v) = data:=v };;

val newCell : int -> AnyCell

In this code we created a function that takes an initial value as an argument and returns a

cell holding this value. In this example we use one more type of mutable values available in F#,

called reference cell, which are similar to a mutable values, but more flexible (the F# compiler

doesn’t allow using an ordinary mutable value in this example). A mutable cell is created by a ref

function taking an initial value. The value is accessed using a prefix ! operator and can be

modified using := operator. When implementing the abstract type, we use a new ... with

construct with members implementing the functionality required by the abstract type (an object

expression can’t add any members). In this example we need a reference cell to hold the value,

so the cell is declared in a function and captured in a closure, which means that it will exist until

the returned object will be garbage collected.

3.4 Adding Members to F# Types
Probably the most important advantage of using object types is that they hide an

implementation of the type, which makes it possible to modify the implementation without

breaking the existing code that uses them. On the other side, basic F# types like discriminated

unions or records expose the implementation details, which can be problematic in some cases,

especially when developing a larger application. Also, the dot-notation used with object types

makes it very easy to discover operations supported by the type. To bridge this problem, F#

allows adding members to both discriminated unions and record types:

> type Variant =

 | Num of int

 | Str of string with

 member x.Print() =

 match x with

 | Num(n) -> printf "Num %d" n

 | Str(s) -> printf "Str %s" s;;

(...)

> let v = Num 42

 v.Print();;

Num 42

In this example we declared a type called Variant which can contain either a number or a

string value and added a member Print that can be invoked using dot-notation. Aside from

adding members (both methods an properties) it is also possible to implement an abstract

object type by a record or discriminated union using the interface ... with syntax mentioned

earlier.

Page 15 of 26

Rather than writing all code using member syntax, it is often more elegant to implement the

functionality associated with an F# type in a function and then use type augmentations to make

this functionality available as a member via dot-notation. This is a pattern used very often in the

F# library implementation and I personally believe that it makes the code more readable. The

following example re-implements the Variant type using this pattern:

type Variant =

 | Num of int

 | Str of string

let print x =

 match x with

 | Num(n) -> printf "Num %d" n

 | Str(s) -> printf "Str %s" s

type Variant with

 member x.Print() = print x

The construct type ... with is a type augmentation, which adds the member Print to a

type declared earlier in the code. The type augmentation has to be included in a same

compilation unit as the declared type - usually in a same file. It is also possible to attach

extension members to a type declared in a different compilation unit - the main difference is that

these members are just a syntactical sugar and are not a part of the original type, meaning that

they can't access any implementation details of the type. The only reason for using extension

members is that they make your function for working with the type available using the dot-

notation, which can simplify the code a lot and it will be easier to find the function (for example

it will be available in the Visual Studio IntelliSense). When declaring an extension member you

use the same syntax as for type augmentations with the difference that the name of the type has

to be fully qualified (e.g. System.Collections.Generic.List<'a>):

> type System.Collections.Generic.List<'a> with

 member x.ToList() = Seq.to_list x;

(...)

> let r = new ResizeArray<_>()

 r.Add(1)

 r.Add(2)

 r.ToList();;

val it : list<int> = [1; 2]

In this example we use extension members to add a ToList method to an existing .NET

generic type. Note that when declaring the extension members we have to use the original type

name and not the F# alias. You should also bear in mind that extension members are resolved by

the F# compiler and so calling them from C# will not be easily possible. In general, extension

members are not declared very often, but some parts of the F# library (for example the features

for asynchronous and parallel programming) use them.

Page 16 of 26

4 Language Oriented Programming

Defining precisely what the term language oriented programming means in context of the

F# language would be difficult, so I will instead explain a few examples that will demonstrate

how I understand it. In general, the goal of language oriented programming is to develop a

language that would be suitable for some (more specific) class of tasks and use this language for

solving these tasks. Of course, developing a real programming language is extremely complex

problem, so there are several ways for making it easier. As the most elementary example, you

can look at XML files (with certain schema) as language that are processed by your program and

solve some specific problem (for example configuring the application). As a side note, I should

mention that I'm not particularly happy with the term ‘language’ in this context, because the

term can be used for describing a wide range of techniques from very trivial constructs to a

complex object-oriented class libraries, but I have not seen any better term for the class of

techniques that I’m going to talk about.

What I will focus on in this article is using languages inside F# - this means that the custom

language will be always a subset of the F# language, but we will look at ways for giving it a

different meaning than the standard F# code would have. In some articles you can also see the

term domain specific language, which is quite close to what we're discussing here. The domain

specific language is a language suitable for solving some class of problems and in general it can

be either external, meaning that it is a separate language (e.g. a XML file) or an internal, meaning

that it is written using a subset of the host language. Using this terminology, we will focus on

writing internal DSLs in F#.

Since this term is not as widely used as functional or object oriented programming which

we discussed in earlier parts of this document, let me very quickly introduce why I believe that

this is an important topic. I think the main reason why language oriented development is

appealing paradigm is that it allows very smooth cooperation of people working on the project -

there are people who develop the language and those who use it. The language developers need

to have advanced knowledge of the technology (F#) and also of the problem that their language

is trying to solve (e.g. some mathematical processing), but they don't need to know about all the

problems that are being solved using the language. On the other side, the users of the language

need only basic F# knowledge and they can fully focus on solving the real problems.

4.1 Discriminated Union as Declarative Language
Probably the simplest example of domain-specific language that can be embedded in the F#

code is a discriminated union, which can be used for writing declarative specifications of

behavior or for example for representing and processing mathematical expressions:

> type Expr =

 | Binary of string * Expr * Expr

 | Var of string

 | Const of int;;

(...)

> let e = Binary("+", Const(2), Binary("*", Var("x"), Const(4)));;

val e : Expr

Page 17 of 26

In this example we created a discriminated union and used it for building a value

representing a mathematical expression. This is of course very primitive ‘language’, but when

you implement functions for working with these values (for example differentiation or

evaluation) you’ll get a simple language for processing mathematical expressions inside F#.

Another problem that could be solved using this technique includes for example configuration of

some graphical user interface or definition of template for some simple data manipulation.

4.2 Active Patterns
A language feature that is closely related to discriminated unions is called active patterns.

Active patterns can be used for providing different views on some data type, which allows us to

hide the internal representation of the type and publish only these views. Active patterns are

similar to discriminated unions, because they can provide several views on a single value (in the

previous example we had a value that we could view either as Binary, Var or Const) and similarly

as constructors of discriminated union, active patterns can be used in pattern matching

constructs.

A typical example, where a type can be viewed using different views is a complex number,

which can be either viewed in a Cartesian representation (real and imaginary part) or in a polar

form (absolute value and phase). Once the module provides these two views for a complex

number type, the internal representation of the type can be hidden, because all users of the type

will work with the number using active patterns, which also makes it easy to change the

implementation of the type as needed.

It is recommended to use active patterns in public library API instead of exposing the

names of discriminated union constructors, because this makes it possible to change the internal

representation without breaking the existing code. The second possible use of active patterns is

extending the ‘vocabulary’ of a language built using discriminated union. In the following

example we will implement an active pattern Commutative that allows us to decompose a value of

type Expr into a call to commutative binary operator:

> let (|Commutative|_|) x =

 match x with

 | Binary(s, e1, e2) when (s = "+") || (s = "*") -> Some(s, e1, e2)

 | _ -> None;;

val (|Commutative|_|) : Expr -> (string * Expr * Expr) option

As you can see, the declaration of active pattern looks like a function declaration, but uses a

strangely looking function name. In this case we use the (|PatternName|_|) syntax, which

declares a pattern that can return a successful match or can fail. The pattern has a single

argument (of type Expr) and returns an option type, which can be either Some(...) when the

value matches the pattern or None. As we will show later, the patterns that can fail can be used in

a match construct, where you can test a value against several different patterns.

As demonstrated in this example, active patterns can be used in a similar sense in which

you can use discriminated unions to define a language for constructing the values. The key

difference is that discriminated unions can be used for building the value (meaning that they will

be used by all users of the language) and active patterns are used for decomposing the values

and so they will be used in a code that interprets the language (written usually by the language

designer) or by some pre-processing or optimizing code (written by advanced users of the

language).

Page 18 of 26

In the next example we will look at one advanced example of using the numerical language

that we define earlier. We will implement a function that tests whether two expressions are

equal using the commutativity rule, meaning that for example 10*(a+5) will be considered as

equal to (5+a)*10:

> let rec equal e1 e2 =

 match e1, e2 with

 | Commutative(o1, l1, r1), Commutative(o2, l2, r2) ->

 (o1 = o2) && (equal l1 r2) && (equal r1 l2)

 | _ -> e1 = e2;;

val equal : Expr -> Expr -> bool

> let e1 = Binary("*", Binary("+", Const(10), Var("x")), Const(4));;

 let e2 = Binary("*", Const(4), Binary("+", Var("x"), Const(10)));;

 equal e1 e2;;

val it : bool = true

As you can see, implementing the equal function that uses the commutativity rule is much

easier using the Commutative active pattern than it would be explicitly by testing if the value is a

use of specific binary operator. Also, when we’ll introduce a new commutative operator, we’ll

only need to modify the active pattern and the equal function will work correctly.

4.3 Sequence comprehensions
Before digging deeper into advanced language-oriented features of F#, I'll need to do a

small digression and talk about sequence comprehensions. This is a language construct that

allows us to generate sequences, lists and arrays of data in F# and as we will see later it can be

generalized to allow solving several related problems. Anyway, let's first look at an example that

filters an F# list:

> let people = [("Joe", 55); ("John", 32); ("Jane", 24); ("Jimmy", 42)];;

val people : (string * int) list

> [for (name, age) in people

 when age < 30

 -> name];;

val it : string list = ["Jane"]

In this example we first declared a list with some data and then used a sequence

expression, wrapped between square brackets [and], to select only some elements from the

list. The use of square brackets indicate that the result should be an F# list (you can also use [|

.. |] to get an array or seq { .. } to get a sequence as I'll show later). The code inside the

comprehension can contain most of the ordinary F# expressions, but in this example I used one

extension, the when .. -> construct, which can be used for typical filtering and projection

operations. The same code can be written like this:

> [for (name, age) in people do

 if (age < 30) then

 yield name];;

val it : string list = ["Jane"]

In this example, we used an ordinary for .. do loop (in the previous example the do

keyword was missing and we used if .. then condition instead of when. Finally, returning a

value from a sequence comprehension can be done using the yield construct. The point of this

Page 19 of 26

example is to demonstrate that the code inside the comprehension is not limited to some specific

set of expressions and can, in fact, contain very complex F# code. I will demonstrate the

flexibility of sequence comprehensions in one more example - the code will generate all possible

words (of specified length) that can be generated using the given alphabet:

> let rec generateWords letters start len =

 seq { for l in letters do

 let word = (start ^ l)

 if len = 1 then

 yield word

 if len > 1 then

 yield! generateWords letters word (len-1) }

val generateWords : #seq<string> -> string -> int -> seq<string>

> generateWords ["a"; "b"; "c"] "" 4;;

val it : seq<string> = seq ["aaaa"; "aaab"; "aaac"; "aaba"; ...]

This example introduces two interesting constructs. First of all, we're using seq { .. }

expression to build the sequence, which is a lazy data structure, meaning that the code will be

evaluated on demand. When you ask for the next element, it will continue evaluating until it

reaches yield construct, which returns a word and then it will block again (until you ask for the

next element). The second interesting fact is that the code is recursive - the generateWord

function calls itself using yield! construct, which first computes the elements from the given

sequence and then continues with evaluation of the remaining elements in the current

comprehension.

4.4 F# Computation Expression
The next F# feature that we will look at can be viewed as a generalization of the sequence

comprehensions. In general, it allows you to declare blocks similar to the seq { .. } block that

execute the F# code in a slightly different way. In the case of seq this difference is that the code

can return multiple values using yield.

In the next example we will implement a similar block called maybe that performs some

computation and returns Some(res) when the computation succeeds, but it can also stop its

execution when some operation fails and return None immediately, without executing the rest of

the code inside the block. Let's first implement a simple function that can either return some

value or can fail and return None:

let readNum () =

 let s = Console.ReadLine()

 let succ,v = Int32.TryParse(s)

 if (succ) then Some(v) else None

Now, we can write a code that reads two numbers from the console and adds them

together, producing a value Some(a+b). However, when a call to readNum fails, we want to return

None immediately without executing the second call to readNum. This is exactly what the maybe

block will do (I'll show the implementation of the block shortly):

Page 20 of 26

let n =

 maybe { do printf "Enter a: "

 let! a = readNum()

 do printf "Enter b: "

 let! b = readNum()

 return a + b }

printf "Result is: %A" n

The code inside the block first calls printf and then uses a let! construct to call the readNum

function. This operation is called monadic bind and the implementation of maybe block specifies

the behavior of this operation. Similarly, it can also specify behavior of the do and return

operation, but in this example the let! is the most interesting, because it tests whether the

computed value is None and stops the execution in such case (otherwise it starts executing the

rest of the block).

Before looking at the implementation of the maybe block, let's look at the type of the

functions that we'll need to implement. Every block (usually called computation expression in

F#) is implemented by a monadic builder which has the following members that define

elementary operators:

// Signature of the builder for monad M

type MaybeBuilder with

 member Bind : M<'a> * ('a -> M<'b>) -> M<'b>

 member Return : 'a -> M<'a>

 member Delay : (unit -> M<'a>) -> M<'a>

We'll shortly discuss how the F# compiler uses these members to execute the computation

expression, but let me first add a few short comments for those who are familiar with Haskell

monads. The Bind and Return members specify the standard monadic operators (known from

Haskell), meaning that Bind is used when we use the let! operator in the code and Return is

called when the computation expression contains return and finally, the Delay member allows

building monads that are executed lazily.

The computation expression block is just a syntactic extension that makes it possible to

write a code that uses the monadic operations, but is similar to an ordinary F# code. This means

that the code inside the computation expression is simply translated to calls to the basic

monadic operation, which we looked at earlier. The following example should put some light on

the problem, because it shows how the F# compiler translates the code written using the maybe

block:

maybe.Delay(fun () ->

 printf "Enter a"

 maybe.Bind(readNum(), fun a ->

 printf "Enter b"

 maybe.Bind(readNum(), fun b ->

 maybe.Return(a + b))

As we can see, the original code is split into single expressions and these are evaluated

separately as arguments of the monadic operations. It is also important to note that the

expression may not be evaluated, because this depends on the behavior of the monadic

operation.

Page 21 of 26

For example, let's analyze the third line, where a first call to the Bind operation occurs. The

first argument will be evaluated asking for a user input and will produce either None or Some(n).

The second argument is a function that takes one argument (a) and executes the rest of the

computation expression. As you can see, the let binding in the original code was translated to a

call to the Bind operation which can perform some additional processing and change the

semantics and then assign a value to the variable by calling the given function. Also note that the

first argument of the Bind operation is a monadic type (in the signature presented above it was

M<'a>, while the argument of the function given as a second argument is ordinary type

(unwrapped 'a). This means that the monadic type can hold some additional information - in our

maybe monad, the additional information is a possibility of the failure of the operation.

Let's look at the implementation of the maybe monad now. The Bind operation will test if the

first argument is Some(n) and then it will call the function given as a second argument with n as

an argument. If the value of the first argument is None the Bind operation just returns None. The

second key operation is Result which simply wraps an ordinary value into a monadic type - in

our example it will take a value a (of type 'a) and turn it into a value Some(a) (of type M<'a>):

type M<'a> = option<'a>

let bind d f =

 match d with

 | None -> None

 | Some(v) -> f v

let result v = Some(v)

let delay f = f()

type MaybeBuilder() =

 member x.Bind(v, f) = bind v f

 member x.Return(v) = result v

 member x.Delay(f) = delay f

let maybe = MaybeBuilder()

In this example we looked at computation expressions and implemented a simple monadic

builder for representing computations that can fail. We implemented support only for basic

language constructs (like let and let!), but in general the computation expression can allow

using constructs like if, try .. when and other. For more information, please refer to [13].

Computation expressions are very powerful when you want to modify the behavior of the F#

code, without changing the semantics of elementary expressions, for example by adding a

possibility to fail (as we did in this example), or by executing the code asynchronously (as

asynchronous workflows [14], which are part of the F# library do).

4.5 F# Meta-Programming and Reflection
The last approach to language oriented programming that I’ll present in this overview is

using meta-programming capabilities of the F# language and .NET runtime. In general the term

‘meta-programming’ means writing a program that treats code as data and manipulates with it

in some way. In F# this technique can be used for translating a code written in F# to other

languages or formats that can be executed in some other execution environment or it can be

used for analysis of the F# code and for calculating some additional properties of this code.

Page 22 of 26

The meta-programming capabilities of F# and .NET runtime can be viewed as a two

separate and orthogonal parts. The .NET runtime provides a way for discovering all the types

and top-level method definitions in a running program: this API is called reflection. F# quotations

provide a second part of the full meta-programming support - they can be used for extracting an

abstract syntax trees of members discovered using the .NET reflection mechanism (note that the

F# quotations are a feature of the F# compiler and as such can’t be produced by C# or VB

compilers).

.NET and F# Reflection

The F# library also extends the .NET System.Reflection to give additional information

about F# data types – for example we can use the F# reflection library to examine possible

values of the Expr type (discriminated union) declared earlier:

> let exprTy = typeof<Expr>

 match Type.GetInfo(exprTy) with

 | SumType(opts) -> List.map fst opts

 | _ -> [];;

val it : string list = ["Binary"; "Var"; "Const"]

An important part of the .NET reflection mechanism is the use of custom attributes, which

can be used to annotate any program construct accessible via reflection with additional

metadata. The following example demonstrates the syntax for attributes in F# by declaring

Documentation attribute (simply by inheriting from the System.Attribute base class) and also

demonstrates how a static method in a class can be annotated with the attribute:

type DocumentationAttribute(doc:string) =

 inherit System.Attribute()

 member x.Documentation = doc

type Demo =

 [<Documentation("Adds one to a given number")>]

 static member AddOne x = x + 1

Using the .NET System.Reflection library it is possible to examine members of the Demo type

including reading of the associated attributes (which are stored in the compiled DLL and are

available at run-time):

> let ty = typeof<Demo>

 let mi = ty.GetMethod("AddOne")

 let at = mi.GetCustomAttributes(typeof<DocumentationAttribute>, false)

 (at.[0] :?> DocumentationAttribute).Doc;;

val it : string = "Adds one to a given number"

F# Quotations

F# quotations form the second part of the meta-programming mechanism, by allowing the

capture of type-checked F# expressions as structured terms. There are two ways for capturing

quotations – the first way is to use quotation literals and explicitly mark a piece of code as a

quotation and the second way is to use ReflectedDefinition attribute, which instructs the

compiler to store quotation data for a specified top-level member. The following example

demonstrates a few simple quoted F# expressions – the quoted expressions are ordinary type-

checked F# expressions wrapped between the Unicode symbols « and » (alternatively, it is also

possible to use <@ and @>):

Page 23 of 26

> « 1 + 1 »

val it : Expr<int>

> « (fun x -> x + 1) »

val it : Expr<int -> int>

Quotation processing is usually done on the raw representation of the quotations, which is

represented by the non-generic Expr type (however the type information about the quoted

expression is still available dynamically via the Type property). The following example

implements a trivial evaluator for quotations. GenericTopDefnApp is an active pattern that

matches with the use of a function given as a first argument (in this example a plus operator);

the Int32 pattern recognizes a constant of type int):

> let plusOp = « (+) »

 let rec eval x =

 match x with

 | GenericTopDefnApp plusOp.Raw (_, [l; r]) ->

 (eval l) + (eval r)

 | Int32(n) ->

 n

 | _ ->

 failwith "unknonw construct"

val eval : Expr -> int

> let tst = « (1+2) + (3+4) »

 eval tst.Raw

val it : int = 10

Quotation Templates and Splicing

When generating quotations programmatically, it is often useful to build a quotation by

combining several elementary quotations into a one, more complex quotation. This can be done

by creating a quotation template, which is a quotation that contains one or more holes. Holes are

written using the underscore symbol and define a place, where another quotation can be filled in

the template. In the following example, we will look at a template that contains two holes and

can be used for generating a quotation that represents addition of two values:

> open Microsoft.FSharp.Quotations.Typed;;

> let addTempl = « _ + _ »;;

val addTempl : (Expr<int> -> Expr<int> -> Expr<int>)

> addTempl « 1 » « 2*3 »;;

val it : Expr<int> = « op_Addition (Int32 1)

 (op_Multiply (Int32 2) (Int32 3)) »

In this example, we first open a module Typed where the quotation functionality is

implemented and on the second line, we create a quotation template addTempl. This template

contains two holes and represents an addition of values that will be later filled in these holes.

Note that the holes are typed, meaning that the values that can be filled in the template have to

be quotations representing an expression of type int.

The F# quotations also provide mechanism for splicing values into the quotation tree,

which is a useful mechanism for providing input data for programs that evaluate quotations. The

operator for splicing values is the Unicode symbol (§) as demonstrated in the following example,

Page 24 of 26

where we use it for embedding a value that represents a database table (the |> is a pipelining

operator, which applies the argument on the left hand side to the function on the right hand

side). This example is based on the FLINQ project, which allows writing database queries in F#

and executing them as SQL queries on a database engine:

> « §db.Customers

 |> filter (fun x -> x.City = "London")

 |> map (fun x -> x.Name) »

val it : Expr<Seq<string>>

In the raw representation, the spliced value can be recognized using the LiftedValue

pattern, which returns a value of type obj, which can contain any F# value. Spliced values can be

also created using a lift function, which has a signature 'a -> Expr<'a> and returns a quotation

containing a single LiftedValue node. Together with quotation templates, the lift function can

be used instead of the § operator mentioned earlier.

Quoting Top-Level Definitions

The second option for quoting F# code is by explicitly marking top-level definitions with an

attribute that instructs the F# compiler to capture the quotation of the entire definition body.

This option is sometimes called non-intrusive meta-programming, because it allows processing of

the member body (e.g. translating it to some other language and executing it heterogeneously),

but doesn’t require any deep understanding of meta-programming from the user of the library.

The following code gives a simple example:

[<ReflectedDefinition>]

let addOne x =

 x + 1

The quotation of a top-level definition (which can be either a function or a class member)

annotated using the ReflectedDefinition attribute is then made available through the F#

quotation library at runtime using the reflection mechanism described earlier, but the member

is still available as a compiled code and can be executed.

When a quotation represents a use of a top-level definition it is possible to check if this top-

level definition was annotated using the ReflectedDefinition attribute and so the quotation of

the definition is accessible. This can be done using the ResolveTopDefinition function as

demonstrated in the following example:

let expandedQuotation =

 match (« addOne »).Raw with

 | AnyTopDefnUse(td) ->

 match ResolveTopDefinition(td) with

 | Some(quot) -> quot

 | _ -> faliwith "Quotation not available!"

 | _ ->

 failwith "Not a top-level definition use!"

Page 25 of 26

Using Active Patterns with Quotations

As already mentioned, the programmatic access to F# quotation trees uses F# active

patterns, which allow the internal representation of quotation trees to be hidden while still

allowing the use of pattern matching as a convenient way to decompose and analyze F#

quotation terms. Active-patterns can be also used when implementing a quotation processor,

because they can be used to group similar cases together. In the following example we declare

an active pattern that recognizes two binary operations:

let plusOp = « (+) »

let minusOp = « (-) »

let (|BinaryOp|_|) x =

 match x with

 | GenericTopDefnApp plusOp.Raw (_, [l; r]) -> Some("+", l, r)

 | GenericTopDefnApp minusOp.Raw (_, [l; r]) -> Some("-", l, r)

 | _ -> None

let rec eval x =

 match x with

 | BinaryOp (op, l, r) ->

 if (op = "+") then (eval l) + (eval r)

 else (eval l) - (eval r)

 (* ... *)

In this example we declared BinaryOp active pattern, which can be used for matching a

quotation that represents either addition or subtraction. In a code that processes quotations,

grouping of related cases together by using active patterns is very useful, because you can define

active patterns for all quotation types that your translator or analyzer can process, factor out all

the code that recognizes all the supported cases and keep the translator or analyzer itself very

simple.

Page 26 of 26

5 References & Other F# Resources
There are many other places where you can find useful information about F#. First of all,

there is an official F# web site [1] where you can find the language specification, documentation

and other useful resources. There are also two books written about F# (one already published

[2], second will be available soon [3]). Lastly, there are also a lot of community resources

including an F# community web site with discussion board [4], wiki [5] and several blogs

[6,7,8,9,10]. Finally, there are also some projects developed by the F# community that are

available at CodePlex - the first one includes various F# code samples [11, 12] and the second is

based on my thesis and tries to solve several web development problems [12].

[1] Official F# homepage, http://research.microsoft.com/fsharp/fsharp.aspx

[2] Expert F#, Apress 2007, Don Syme, Adam Granicz and Antonio Cisternino

[3] Foundations of F#, Apress 2007, Robert Pickering

[4] hubFS: THE place for F#, http://cs.hubfs.net

The F# community web site with blogs, forums, etc..

[5] F# Wiki Homepage, http://www.strangelights.com/fsharp/wiki

F# Wiki started by Robert Pickering

[6] Don Syme’s WebLog on F# and Other Research Projects - Blog written by the F#

language designer Don Syme, http://blogs.msdn.com/dsyme

[7] Robert Pickering’s Strange Blog, http://strangelights.com/blog

Blog of the "Foundations of F#" book author

[8] Granville Barnett, http://weblogs.asp.net/gbarnett, Explorations in

programming

[9] Tomas Petricek, http://tomasp.net/blog, My blog on F# and various other topics

[10] F# News (http://fsharpnews.blogspot.com) and F#.NET Tutorials

(http://www.ffconsultancy.com/dotnet/fsharp) by Jon Harrop

[11] F# Samples, http://www.codeplex.com/fsharpsamples

 Contains code that demonstrate various F# language features

[12] F# WebTools, http://www.codeplex.com/fswebtools

Project that allows writing client/server Ajax web applications entirely in F#

[13] Some Details on F# Computation Expressions, Don Syme

http://blogs.msdn.com/dsyme/archive/2007/09/22/

some-details-on-f-computation-expressions-aka-monadic-or-workflow-

syntax.aspx

[14] Introducing F# Asynchronous Workflows, Don Syme

http://blogs.msdn.com/dsyme/archive/2007/10/11/

introducing-f-asynchronous-workflows.aspx

http://research.microsoft.com/fsharp/fsharp.aspx
http://cs.hubfs.net/
http://www.strangelights.com/fsharp/wiki
http://blogs.msdn.com/dsyme
http://strangelights.com/blog
http://weblogs.asp.net/gbarnett
http://tomasp.net/blog
http://fsharpnews.blogspot.com/
http://www.ffconsultancy.com/dotnet/fsharp
http://www.codeplex.com/fsharpsamples
http://www.codeplex.com/fswebtools
http://blogs.msdn.com/dsyme/archive/2007/09/22/some-details-on-f-computation-expressions-aka-monadic-or-workflow-syntax.aspx
http://blogs.msdn.com/dsyme/archive/2007/09/22/some-details-on-f-computation-expressions-aka-monadic-or-workflow-syntax.aspx
http://blogs.msdn.com/dsyme/archive/2007/09/22/some-details-on-f-computation-expressions-aka-monadic-or-workflow-syntax.aspx
http://blogs.msdn.com/dsyme/archive/2007/10/11/introducing-f-asynchronous-workflows.aspx
http://blogs.msdn.com/dsyme/archive/2007/10/11/introducing-f-asynchronous-workflows.aspx

