
Reactive pattern matching for F#
Part of “Variations in F#” research project

Tomáš Petříček, Charles University in Prague

http://tomasp.net/blog
tomas@tomasp.net

Don Syme, Microsoft Research Cambridge

The key theme of the talk

Languages support (overly) rich libraries for
encoding concurrent and reactive programs

In practice, used in modes or design patterns
such as tasks, threads, active objects, etc.

Languages can provide better support for
concurrent and reactive programming

We don’t have to commit the language
to one specific mode or design pattern

Agenda

Background
Asynchronous programming in F#

Reactive programming
Writing user interface control logic
Pattern matching on events
Programming with event streams

Concurrency
Pattern matching and concurrency

Computation expressions

Compose expressions in a customized way

Meaning is defined by the <builder> object

» For example, we could propagate “null” values
(aka the “maybe” monad in Haskell)

<builder> { let! arg = function1()
let! res = function2(arg)
return res }

let LoadFirstOrder(customerId) =
nullable { let! customer = LoadCustomer(customerId)

let! order = customer.Orders.FirstOrDefault()
return order }

Asynchronous workflows

Writing code that doesn’t block threads

We can use it for various design patterns

» Fork/Join parallelism involving I/O operations

» Active objects communicating via messages

let http(url:string) =
async { let req = HttpWebRequest.Create(url)

let! rsp = req.AsyncGetResponse()
let reader = new StreamReader(rsp.GetResponseStream())
return! reader.AsyncReadToEnd() }

let pages = Async.Parallel [http(url1); http(url2)]

Agenda

Background
Asynchronous programming in F#

Reactive programming
Writing user interface control logic
Pattern matching on events
Programming with event streams

Concurrency
Pattern matching and concurrency

Reactive programming with async

Concurrent design patterns using async

» Concurrently executing, communicating agents

» Using thread pool threads to run computations

Reactive programming design pattern

» Uses the same language and additional libraries

» Multiple agents running on a single thread

» Agents mostly wait for events, then react quickly

Example: counting clicks

Show the number of left button mouse clicks

This looks like an “aggregation” of events

» Can we make it simpler? Yes, in this particular case…

let rec loop(count) =
async {

let! me = Reactive.AwaitEvent(lbl.MouseDown)
let add = if me.Button = MouseButtons.Left then 1 else 0
lbl.Text <- sprintf "Clicks: %d" (count + add)
return! loop(count + add)

}

loop(0) |> Async.Start

Continue running using ‘loop’

Resumes the agent
when the event fires

Takes ‘int’ as an argument
and returns ‘Async<unit>’

Example: counting clicks

Modification - let’s limit the “clicking rate”

How can we describe agents in general?

» Agent is often just a simple state machine!

let rec loop(count) =
async {

let! me = Reactive.AwaitEvent(lbl.MouseDown)
let add = if me.Button = MouseButtons.Left then 1 else 0
lbl.Text <- sprintf "Clicks: %d" (count + add)
let! _ = Reactive.Sleep(1000)
return! loop(count + add)

}

loop(0) |> Async.Start

Resumes the agent after
1000 milliseconds

Agents as state machines

The elements of a state machine

» States and transitions

» In each state, some events
can trigger transitions

» We can ignore all other events

We need one more thing…

» Selecting between several
possible transitions

AwaitEvent(…)

MouseDown

occurred

Sleep(1000)

after 1000

milliseconds

start

inactive

MouseDown

occurred

KeyPress

active(count)

KeyPress

start

Selecting between transitions

Single-parameter AwaitEvent isn’t sufficient

» Select cannot be encoded in our base language

let rec active(count) = async {
let! ev = Async.AwaitEvent(frm.KeyPress, frm.MouseDown)
match ev with
| KeyPress(_) ->

return! inactive()
| MouseDown(_) ->

printfn "count = %d" (count + 1)
return! active(count + 1) }

and inactive() = async {
let! me = Async.AwaitEvent(frm.MouseDown)
return! active(0) }

Async.Start(inactive())

let rec active(count) = async {
let! ev = Async.AwaitEvent(frm.KeyPress, frm.MouseDown)
match ev with
| Choice1Of2(_) ->

return! inactive()
| Choice2Of2(_) ->

printfn "count = %d" (count + 1)
return! active(count + 1) }

and inactive() = async {
let! me = Async.AwaitEvent(frm.MouseDown)
return! active(0) }

Async.Start(inactive())

Resume when the first of the events occurs
IEvent<‘A> * IEvent<‘B> -> Async<Choice<‘A * ‘B>>

inactive

MouseDown

occurred

KeyPress

active(count)

KeyPress

start

Agenda

Background
Asynchronous programming in F#

Reactive programming
Writing user interface control logic
Pattern matching on events
Programming with event streams

Concurrency
Pattern matching and concurrency

Adding language support for joining

Let’s start with the previous version

Computation expression specifies the semantics

» Here: Wait for the first occurrence of an event

» Pattern matching is more expressive than ‘select’

Reactive pattern matching for F#

let rec active(count) = async {

let! ev = Async.AwaitEvent(frm.KeyPress, frm.MouseDown)

match ev with

| Choice1Of2(_) ->

return! inactive()

| Choice2Of2(_) ->

printfn "count = %d" (count + 1)

return! active(count + 1) }

let rec active(count) = async {

match! frm.KeyPress, frm.MouseDown with

| !ke, _ ->

return! inactive()

| _, !me ->

printfn "count = %d" (count + 1)

return! active(count + 1) }

Expressive power of joins

Matching events against commit patterns

» Either commit (“!<pattern>”) or ignore (“_”)

» Important difference between “!_” and “_”

Filtering – we can specify some pattern

Joining – wait for the first occurrence of each
match! frm.MouseDown, frm.MouseUp with
| !md, !mu ->

printfn "Draw: %A-%A" (md.X, md.Y) (mu.X, mu.Y)

match! agent.StateChanged, frm.MouseDown with
| !(Completed res), _ -> printfn "Result: %A" res
| _, !me -> // Process click & continue looping

Agenda

Background
Asynchronous programming in F#

Reactive programming
Writing user interface control logic
Pattern matching on events
Programming with event streams

Concurrency
Pattern matching and concurrency

Turning agents into event streams

Agents often perform only event transformations

» Repeatedly yield values and may eventually end

» “Event streams” can be elegantly composed

Async<unit>

EventStream<T>

T T T T T

Turning agents into event streams

Agents often perform only event transformations

» Repeatedly yield values and may eventually end

» “Event streams” can be elegantly composed

Library support using computation expressions

let rec active(count) = eventStream {

match! frm.Click, frm.KeyPress with

| !ca, _ -> return! inactive()

| _, !ka ->

yield (count + 1)

return! active(count + 1) }

inactive().Add(fun n -> printfn "count=%d" n)

let rec active(count) = eventStream {

match! frm.Click, frm.KeyPress with

| !ca, _ -> return! inactive()

| _, !ka ->

printfn "count = %d" (count + 1)

return! active(count + 1) }

Agenda

Background
Asynchronous programming in F#

Reactive programming
Writing user interface control logic
Pattern matching on events
Programming with event streams

Concurrency
Pattern matching and concurrency

Concurrency using Futures

Computation that eventually completes

» Used for encoding task-based parallelism

» Similar to async, but used for CPU-bound concurrency

var f1 = Future.Create(() => {

/* first computation */

return result1;

});

var f2 = Future.Create(() => {

/* second computation */

return result2;

});

UseResults(f1.Value, f2.Value); Synchronization (join) point -
blocks until both complete

What does “match!” mean for Futures?

“!” pattern: Wait for the computation to complete

“_” pattern: We don’t need the result to continue

Example: Multiplying all leafs of a binary tree

» Joining of futures is a very common task

» Patterns give us additional expressivity

Pattern matching on Futures

let rec treeProduct(tree) = future {
match tree with
| Leaf(num) -> return num
| Node(l, r) -> match! treeProduct(l), treeProduct(r) with

| !0, _ | _, !0 -> return 0
| !pl, !pr -> return pl * pr }

let rec treeProduct(tree) =
match tree with
| Leaf(num) -> num
| Node(l, r) -> let pl = treeProduct(l)

let pr = treeProduct(r)
pl * pr

let rec treeProduct(tree) = future {
match tree with
| Leaf(num) -> return num
| Node(l, r) -> match! treeProduct(l), treeProduct(r) with

| !pl, !pr -> return pl * pr }

Concurrency using Cω joins

Simple unbounded buffer in Cω

» Single synchronous method in join pattern

» The caller blocks until the method returns

Joins on channels encoded using “!” patterns:

public class Buffer {
public async Put(string s);
public string Get() & Put(string s) { return s; }

}

let put = new Channel<_>()
let get = new Channel<ReplyChannel<_>>()

joinActor { while true do

match! put, get with

| !v, !chnl -> chnl.Reply(v) } |> Async.Spawn

Time for questions & suggestions!

» Many components could be single threaded

» Direct way for encoding state machine is essential

» Language features can/should be generally useful

Thanks to:

» Don Syme, Claudio Russo, Simon Peyton Jones,
James Margetson, Wes Dyer, Erik Meijer

For more information:

» Everything is work in progress

» Feel free to ask: tomas@tomasp.net

