
Reactive Programming with F#

Tomáš Petříček

Microsoft C# MVP
http://tomasp.net/blog

http://tomasp.net/blog

A little bit about me…

> Real-World Functional Programming
> with Jon Skeet

> Today’s talk based on some
ideas from Chapter 16

> Worked on F# at MSR
> Internships with Don Syme

> Web programming and
reactive programming in F#

> Some Visual Studio 2010 IntelliSense

What is this talk about?

> It is not about concurrent programming
> Multiple threads, various programming models

> Immutable data using Tasks or Parallel LINQ
> We have full control over the control flow

> Message passing using F# MailboxProcessor
> Processors react to received messages

> It is about reactive programming
> Components that react to events in general

> MailboxProcessor is one possible implementation

> Can be single-threaded – running on GUI thread

Single-threaded reactive programming

> Single-threading makes GUI simple (possible!)
> Reactive part of the application reacts quickly

> Expensive work should be done in background

> Declarative – what to do with received data
> Define data-flow using event combinators

⊕ Simple & elegant ⊝ Limited expressivity

> Imperative – how to react to received data

> Define control-flow using asynchronous workflows

> ⊝Write more code ⊕ Easy for difficult tasks

Talk outline

> Writing reactive GUIs declaratively
> Declarative GUI programming in WPF

> Using F# event combinators

> Writing reactive GUIs imperatively
> Using the AwaitObservable primitive

> Understanding threading

> Asynchronous programming with events
> Asynchronous HTTP web requests

Everybody loves declarative style!

> Used by numerous .NET libraries
> LINQ for specifying queries in C#

> Specifying layout of user interface in WPF/Silverlight

> Can be used for specifying reactive aspects too!

<Button Content="Click me!">
<i:Interaction.Triggers>
<i:EventTrigger EventName="Click">
<ei:CallMethodAction MethodName="Process" (...) />

</i:EventTrigger>
</i:Interaction.Triggers>

</Button>

Everybody loves declarative style! (2.)

> Specifying more complex behaviors
> We can write new Triggers and Actions…

> For example Silverlight Experimental Hacks Library
> We can specify conditions for triggers

<Button Content="Click me!"><i:Interaction.Triggers>
<ex:EventTrigger EventName="Click">
<ex:EventTrigger.Conditions><ex:InvokingConditions>

<ex:InvokingCondition ElementName="chkAllow"
Property="Enabled" Value="True" />

</ex:InvokingConditions></ex:EventTrigger.Conditions>
<ex:PropertyAction PropertyName="Visible" Value="True" />

</ex:EventTrigger>
</i:Interaction.Triggers></Button>

DEMO

Introducing F# event combinators

Digression: Dynamic invoke in F#

> Access members not known at compile-time
> Simple version of dynamic keyword in C#

> We can easily define behavior of the operator

> How does it work?
> When we write…

> …the compiler treats it as:

let (?) (this : Control) (prop : string) : 'T =
this.FindName(prop) :?> 'T

let ball : Ellipse = this?Ball

let ball : Ellipse = (?) this "Ball"

More about F# events

> Events in F# are first-class values
> Implement interface type IEvent<'T>

> Events carry values 'T such as MouseEventArgs

> Can be passed as arguments, returned as results

> We use functions for working with event values

> Create new event that carries different type of
value and is triggered only in some cases

> Event.add registers handler to the final event

Event.map : ('T -> 'R) -> IEvent<'T> -> IEvent<'R>
Event.filter : ('T -> bool) -> IEvent<'T> -> IEvent<'T>

Two interesting event combinators

> Merging events with Event.merge

> Triggered whenever first or second event occurs

> Note that the carried values must have same type

> Creating stateful events with Event.scan

> State is recalculated each time event occurs

> Triggered with new state after recalculation

IEvent<'T> -> IEvent<'T> -> IEvent<'T>

('St -> 'T -> 'St) -> 'St -> IEvent<'T> -> IEvent<'St>

Creating ColorSelector control

> Three sliders for changing
color components

> Box shows current color

> Data-flow diagram describes the activity

map updateGreen

map updateBlue

map updateRed

merge

merge scan applyUpdate initial

green.Changed

blue.Changed

red.Changed

DEMO

Writing ColorSelector control with F# events

Accessing F# events from C#

> Events in F# are values of type IEvent<'T>
> Enables F# way of working with events

> Attribute instructs F# to generate .NET event

> IEvent<'T> vs. IObservable<'T> in .NET 4.0
> You can work with both of them from F#

> Using combinators such as Observable.map etc.

> Observable keeps separate state for each handler

> Can be confusing if you add/remove handlers

[<CLIEvent>]
member x.ColorChanged = colorChanged

Talk outline

> Writing reactive GUIs declaratively
> Declarative GUI programming in WPF

> Using F# event combinators

> Writing reactive GUIs imperatively
> Using the AwaitObservable primitive

> Understanding threading

> Asynchronous programming with events
> Asynchronous HTTP web requests

Creating SemaphoreLight control

> Typical approach – store state as int or enum
> Imperative code uses mutable fields

> With event combinators, we use Event.scan

> Difficult to read – what does state represent?

> It is hard to see what the transitions are!

> Better approach – write workflow that
loops between states (points in code)
> Asynchronous waiting on events causes transitions

green orange red

DEMO

Writing SemaphoreLight with workflows

Workflows for GUI programming

> Async.AwaitObservable operation

> Creates workflow that waits for the first occurrence
> Currently not part of F# libraries / PowerPack

> Sometimes, using IObservable<'T> is better

> Works because IEvent<'T> : IObservable<'T>

> Async.StartImmediate operation
> Starts the workflow on the current (e.g. GUI) thread

> Callbacks always return to original kind of thread
> All code in the demo runs on GUI thread as required!

AwaitObservable : IObservable<'T> -> Async<'T>

Writing loops using workflows

> Using looping constructs like while and for

> Functional style – using recursion

let semaphoreStates2() = async {
while true do
for current in [green; orange; red] do
let! md = Async.AwaitObservable(this.MouseLeftButtonDown)
display(current) }

let rec semaphoreStates() = async {
for current in [green; orange; red] do
let! md = Async.AwaitObservable(this.MouseLeftButtonDown)
display(current)

return! semaphoreStates() }

Break: Time for a bit of Art…

Application for drawing rectangles

> Choosing between multiple transitions?
> AwaitObservable taking two events

> Resume when the first event fires

waiting

drawing

(start)
MouseDown

MouseMove

MouseUp

DEMO

Drawing rectangles in Silverlight

Waiting for multiple events

> Choosing between two (or more) events

> Specify two different transitions from single state

> Overloads for more events available too

AwaitObservable : IObservable<'T> * IObservable<'U>
-> Async<Choice<'T, 'U>>

let! evt = Async.AwaitObservable
(main.MouseLeftButtonDown, main.MouseMove)

match evt with
| Choice1Of2(up) ->

// Left button was clicked
| Choice2Of2(move) ->

// Mouse cursor moved }

Talk outline

> Writing reactive GUIs declaratively
> Declarative GUI programming in WPF

> Using F# event combinators

> Writing reactive GUIs imperatively
> Using the AwaitObservable primitive

> Understanding threading

> Asynchronous programming with events
> Asynchronous HTTP web requests

Patterns for asynchronous programming

> Begin/End pattern used by standard libraries

> Event-based pattern used more recently

> Can we write this using AwaitObservable?
> Little tricky – need to attach handler first!

let hr = HttpWebRequest.Create("http://...")
let! resp = hr.AsyncGetResponse()
let sr = resp.GetResponseStream()

let wc = new WebClient()
wc.DownloadStringCompleted.Add(fun res ->
let string = res.Result)

wc.DownloadStringAsync("http://...")

Performing asynchronous calls correctly

> Introducing GuardedAwaitObservable primitive

> Calls a function after attaching event handler

> We cannot accidentally lose event occurrence

> Mixing asynchronous I/O and GUI code
> If started from GUI thread, will return to GUI thread

> We can safely access controls after HTTP request

async {
let wc = new WebClient()
let! res =
Async.GuardedAwaitObservable wc.DownloadStringCompleted

(fun () -> wc.DownloadStringAsync(new Uri(uri)))
// (...) }

DEMO

Social rectangle drawing application

Brief summary of the talk

> Reactive code can run on the GUI thread!

> Two programming styles in F#
> Declarative or data-flow style

> Using Event.scan combinators

> Imperative or control-flow style
> Using AwaitEvent primitive

> In both cases, we can use diagrams

> Web requests from workflows
> Both common patterns work

Thanks!

Questions?

References & Links

> What do you need to run samples?
> Samples will be on my blog (below)

> Get F# and F# PowerPack (http://www.fsharp.net)

> Get Silverlight Developer tools (F# included!)
> http://www.silverlight.net/getstarted

> Blog & contacts
> “Real-World Functional Programming”

> http://functional-programming.net

> My blog: http://tomasp.net/blog

> Contact: tomas@tomasp.net

http://www.fsharp.net/
http://www.silverlight.net/getstarted
http://functional-programming.net/
http://tomasp.net/blog
mailto:tomas@tomasp.net

