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Abstract
Some of the most remarkable results in mathematics reveal connections between different branches
of the discipline. The aim of this paper is to point out a modest, but still remarkable, similarity
between a range of different interactive programming systems. In many programming systems,
the user can interactively construct a program by repeatedly triggering some kind of completion
mechanism and choosing one of the offered options. This is the case with code editors for object-
oriented languages (choosing object members), data exploration environments (choosing an applicable
transformation), but also theorem provers (choosing an applicable tactic) and structure editors
(choosing a grammar rule).

In this paper, we formally capture the essence of this interaction pattern through a small formal
model called the choose-your-own-adventure calculus. We show how a wide range of different systems
fits the model. Looking at the examples through a common perspective reveals multiple subtle
differences. To formally capture those, we characterise basic properties of choose-your-own-adventure
systems, resembling those from other areas of programming language research, including correctness,
completeness and uniqueness. We further show how the choose-your-own-adventure calculus can be
used as the basis for formally studying more advanced interaction patterns including mixed-initiative
interaction, AI-based programming assistants and programming by demonstration.

We strongly believe that interaction with programming systems deserves as much attention as
the underlying programming languages. Our work is one step in this direction. It provides a way
of talking about commonalities and subtle differences between multiple interactive programming
systems and enables a transfer of ideas between interactive systems from very different domains.
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Figure 1 F# code editor showing completions offered by the World Bank type provider.

1 Introduction

Multiple interactive programming systems, ranging from code editors for object-oriented
programming languages to data exploration systems, interactive proof assistants and structure
editors, exhibit a remarkably similar pattern of interaction. They offer the user, who can
be a programmer, a data scientist or a proof writer, a range of choices that the user can
select from in order to complete their program, script or proof. The user can initiate the
interaction iteratively, using it to create and refine a larger part of their program.

There are subtle differences between different implementations of the general pattern.
In some systems, the resulting source code will contain a trace of the choices made by the
user. For example, when choosing an item from a list of class members, the code will contain
the member name. In some systems, the interaction results in a block of code that can be
included in the source file, but does not include a trace of the interaction. For example,
invoking a proof search or case split in Idris [9] constructs a well-typed program, but leaves
no trace of the command used to construct it. The nature of the generated options also
varies. The list of choices may include all possible options that are valid at a given location,
or it may list only a subset of the valid options. In some cases, it may even include incorrect
options as, for example, in auto-completion for dynamic languages [14].

The aim of this paper is to formally capture the recurring interaction pattern:

1. We motivate the formalism by reviewing five different systems that implement a variation
on the interaction pattern. These include type providers in F# [51], type providers for
data exploration in The Gamma [37, 34], AI assistants for semi-automated data wrangling
[40], tooling for interactive proof assistants [4, 9, 54] and structure editing [7] (Section 2).

2. We introduce the choose-your-own-adventure calculus, which is a small formal structure
that models an interactive system where a user constructs a program by repeatedly
choosing from a list of options offered by the system (Section 3).

3. The calculus allows us to make the aforementioned subtle differences precise. We define
the notions of correctness, completeness and uniqueness for the choose-your-own-adventure
calculus (Section 5). To understand the way in which the interaction is integrated in a
programming environment, we formally define the notion of expression completion and
capture a specfic kind of reconstructible completion (Section 3).

4. We show that multiple programmer assistance tools, such as mixed-initiative interaction,
AI-based assistants and programming by demonstration can be defined on top of the
primitives offered by the calculus (Section 6). This also illustrates how the choose-your-
own-adventure calculus supports transfer of ideas across different kinds of interactive
programming systems.
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Figure 2 Constructing a query in The Gamma. We count the number of gold and silver medals
for each athlete and sort the data by the number of gold medals.

The main contribution of this paper is conceptual rather than technical. We capture a
pattern that is perhaps not surprising in retrospect, but that is easy to overlook until it is
given a name. We use formal programming language theory methods to precisely describe
interesting aspects of the pattern. Moreover, our work also confirms that programming
language theory methods can be extremely effective for studying not just programming
languages, but also interactive programming systems [20].

2 Motivation

Computer scientists studying programming have long focused on programming languages
as syntactic entities, sometimes neglecting the interactive environments in which they are
inevitably embedded [15]. Notably, in many of the motivating examples that we draw from in
this section, the interactive aspect of the system is only described in supplementary materials
[9, 51, 4]. Only recently, programming language theory started to be used to study interactive
environments [1, 28]. Our work contributes to this research direction.

We start by reviewing five instances of the interaction pattern. In all of them, an editor
offers the user a completion list to choose from during working with the system.

Type providers. F# type providers [51] are a mechanism for integrating (primarily) external
data sources into the F# type system. A type provider is a compiler extension, loaded and
executed at compile-time and at edit-time. It can run arbitrary code to read the structure of
external data and use it to generate a suitable statically-typed representation of the data,
typically objects with members. Type providers can, for example, infer the type from a
sample JSON [39] or read a database schema.

The example in Figure 1 shows a simple type provider for accessing information from the
World Development Indicators database. The provided wb object allows the programmer to
access any indicator of any country in the database by choosing an appropriate [Country] and
an [Indicator] in a chain of members wb.Countries.[Country].Indicator.[Indicator]. The result is
a time series with values for the given indicator and a country. More generally, the example
can be seen as a special case of a type provider for slicing n-dimensional data cube [37]. We
choose a fixed value for two of the three dimensions (country, indicator, time) and obtain a
series indexed by the remaining dimension.

When using the type provider, the user types the first line of code to initialize the type
provider and triggers auto-completion by typing wb followed by the dot. The rest of the
code is constructed by choosing an option from a list and typing another dot (a pattern
light-heartedly called dot-driven development by Phil Trelford [43]).



4 The Choose-Your-Own-Adventure Calculus (Pearl/Brave New Idea)

Figure 3 Using the datadiff AI assistant to reconcile the structure of the two datasets. The user
is offered a list of constraints to prevent or force matching between specific columns.

Data exploration. The Gamma [37] is a programmatic data exploration environment for
non-programmers. In The Gamma, type providers are the primary programming mechanism.
They are used not just for data access, but also for constructing queries.

The type provider shown in Figure 2 lets the user construct an SQL-like query by
repeatedly choosing operations and their parameters [34]. It keeps track of the schema and
uses it to generate all possible valid parameters. For example, when sorting data, it generates
an object with two members for each columns – one for ascending and one for descending
order. Similarly, the grouping operation first offers all columns as possible grouping keys
and then lets the user choose from a range of pre-defined aggregations (sum, count, average,
concatenate). The system also evaluates the query on the fly, providing a live preview [36].

The interaction pattern is the same as before. After the user triggers auto-completion,
they repeatedly select an operation and its parameters to construct a query. One notable
difference is that the structure of the generated types is potentially infinite (the user can
keep adding further operations) and so the types are generated lazily.

AI assistants. The third instance of the choose-your-own-adventure interaction pattern
comes from the work on semi-automatic data wrangling tools known as AI assistants [40].
An AI assistant guides the analyst through a data wrangling problem such as reconciling
mismatched datasets, filling missing values or inferring data format and types. An AI
assistant solves the problem automatically and suggests an initial data transformation, but
it also generates a number of constraints that the user can choose from to refine the initial
solution. If the initial solution is not correct, the user chooses a constraint and the AI
assistant runs again, suggesting a new data transformation that respects the constraint.

Figure 3 shows an example. It uses the datadiff AI assistant [49], running in a Wrattler
notebook [38], to merge broadband quality data published by Ofcom for two subsequent
years. The format of the CSV files for the two years differs. Columns were added, removed,
renamed and their order has changed. In the example, we selected 6 columns from the year
2015 and want to find matching data from 2014.

When the AI assistants runs automatically, it correctly maps the numerical columns, but
it incorrectly maps the Urban.rural (2014) column to Nation (2015). This happens because
both columns are categorical and have three values with similar statistical distribution. A
data analyst can easily spot the mistake. They click the “+” button to add a constraint and
choose Don’t match ‘Urban.rural’ and ‘Nation’ to specify that the two columns should not be
matched. Datadiff then runs again and finds the correct matching.
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Figure 4 Constructing a proof of the transitivity of the ≤ relation in the Alf editor. The user is
offered a range of variables and constructors in scope at the current location. [4]

The interaction patter is the same as in the previous two cases. The analyst constructs the
correct data transformation by repeatedly choosing from a list of options, until they obtain
the desired result. However, the way the interaction pattern is implemented differs. First, in
the case of type providers, we are gradually constructing a program by adding operations to
a method chain. An AI assistant automatically synthesizes a data transformation (program)
and we are gradually adding constraints to control the synthesis. Second, in the case of type
providers, the completion list offered all possible members of the object. Now, the list offers
constraints recommended by the AI assistant which may not be complete.

Interactive theorem provers. A fourth example of the choose-your-own-adventure interact-
ive pattern can be found in interactive theorem provers. When writing programs in systems
like Idris [10], the user typically works by stating the desired conclusion and filling the
implementation with a hole. The system provides a range of interactive editing capabilities
to fill the holes [29]. It can, for example, generate a case split or search for a proof [9].

Systems like Idris provide key bindings to invoke the completions, but the functionality
could also be offered through a user interface. An example that illustrates this is the
interactive editor for the Alf theorem prover [25], which is based on a gradual refinement
of an incomplete proof object [4]. This is illustrated in Figure 4. The user is proving the
transitivity of the ≤ relation for Peano arithmetic natural numbers. They pattern match on
the proof argument p and complete the first branch. For the second branch, they need to fill
a hole ?p2 (called a wildcard in Alf). They trigger a completion and a pop-up menu shows
the available variables and constructors, including leq_trans that can be used to complete
the proof. After choosing leq_trans, two new holes are generated for its arguments. Those
can be, again, filled interactively, by choosing p1 and p from the completion.

The interaction pattern is again the same. The user repeatedly triggers a completion and
uses it to refine and complete a proof by filling holes. There are subtle differences too. Unlike
earlier, each completion directly refines the proof that the user is editing; a completion may
also generate multiple new holes, rather than just appending to a chain of operations.

The Alf editor is a historical example, but a similar user interface could be built for
systems like Idris or Coq. The two would work differently. As in Alf, Idris source code
represents the proof itself and a completion would replace a hole with a suggested term. In
Coq, the proof is a series of tactic invocations and so selected completions would be added
to this list and would form a trace of the interaction with the user.
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Figure 5 Constructing a program using the Sandblocks structure editor [7]. The user is typing
the start of an expression and context menu offers possible production rules according to a grammar.

Structure editors. Structure editors make it possible to construct programs by manipulating
the abstract syntax tree of a program rather than by working with text. The interaction
with a structure editor can be based on menus [52], key bindings [55], tiles [30] and a range
of other approaches. A number of those fit the choose-your-own-adventure pattern.

Sandblocks [7] is an example of a recent structure editor that is interesting for multiple
reasons. First, the editor is automatically generated from a grammar. Second, the editor
combines keyboard input with context menus (Figure 5). In the above example, the user
is typing code and needs to fill a placeholder for an expression. After they type the start
of the expression, the editor offers a completion list with possible production rules from
the grammar that are valid in the given context and are compatible with the text typed so
far. The user can continue typing (to further refine the recommendation), but they can also
select a rule from the menu. This completes the expression according to the production rule,
generating further empty holes that can, in turn, be interactively filled with code.

In Sandblocks, context menus serve mainly as hints and users of the editor often construct
programs through typing, but the system illustrates the fact that structure editors can also
be based on the interaction pattern captured in this paper. The editor can offer all possible
production rules based on the given grammar and the user could construct an entire program
by choosing one of the rules (and manually entering terminals such as strings and identifiers).

3 Formal model

A system that implements the choose-your-own-adventure interaction pattern repeatedly
offers the user a range of options to choose from. Each of the options is designated by an
identifier. The system also maintains a state during the process which determines subsequent
options. The state may not be visible to the user, but the user can always explicitly request
the program constructed so far.

We can think of the interaction with the system as navigating through a tree structure,
starting from a root and choosing one of the possible branches in each step. In the following
definition, the key choices operation can thus be seen as returning branches of a given node.

▶ Definition 1 (Choose-your-own-adventure system). Given expressions e ∈ E and states
σ ∈ Σ, a choose-your-own-adventure system is a pair of operations choices, choose such that:

choices(σ) = {ι1 7→ σ1, . . . , ιn 7→ σn} is an operation that takes a state and
generates options designated by an identifier ιi and represented by a state σi,
choose(σ) = e is an operation that returns generated program for a given state.
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The definition is not a programming language calculus in the usual sense in that it does
not define a concrete syntax with reduction rules. It is an abstract algebraic description of
the structure of a system that supports the choose-your-own-adventure interaction pattern.
The definition is close to that of an AI assistant [40], which is written using a language
specific for the data wrangling domain (such as cleaning scripts or input and output data)
but is structurally similar. It is also worth noting that the definition may describe not just
trees, but also graphs with cycles. A system where the user can return to a previously visited
state may not be practically useful, but it does not pose a theoretical problem.

Expression completion. One of the subtle questions about the choose-your-own-adventure
pattern raised in the introduction is whether a trace of the interaction can be reconstructed
from the source code of an interactively constructed program. That is, if we follow a sequence
of choices ι1, . . . , ιn to construct a program e, is it possible to recover the original sequene of
choices through which it was constructed just from the program e.

The choose-your-own-adventure interaction pattern is typically used to complete a partial
program. To model this, we assume that the host language has a notion of a hole, written
as ? and that a user can select a part of program to invoke the completion on. When invoked
on an expression containing multiple holes, the system can start by completing the first hole.

We write E[e] for a completion context, akin to evaluation contexts in operational
semantics. We assume that, for a program containing a hole in a completion context E[?], we
can construct an initial choose-your-own-adventure state using an operation init(E[?]) = σ0.

▶ Definition 2 (Expression completion). An expression E[?] is completed as E[e] through an
interaction with a choose-your-own-adventure system consisting of choices and choose if:
1. init(E[?]) = σ0 obtains the initial state of a choose-your-own-interaction system,
2. σn is a system state such that ∀i∈1 . . . n . (ιi 7→ σi) ∈ choices(σn−1), i.e., the user

makes a series of choices resulting in a final state of the system σn,
3. E[e] where e = choose(σn) is the final program constructed by replacing the hole in the

completion context with the expression e generated from σn.

As we will see when we revisit the earlier examples formally, this way of invoking a
choose-your-own-adventure system is used, for example, in the case of interactive theorem
provers. In those systems, the user triggers the completion on a proof (program) containing
a hole. They then fill the hole and, possibly iteratively, further holes in the generated proof.
The final expression is embedded in the source code, but it does not indicate what options,
identified by ι1, . . . , ιn, were selected in the process.

Reconstructible completion. In many choose-your-own-adventure systems, it is possible
to reconstruct a trace of the interaction through which a program was constructed. This is
the case with type providers, where the user chooses a sequence of object members to be
accessed and those members directly appear in the source code. The same would be the case
in a completion system for Coq that would offer tactics to apply, becuase the resulting proof
would consist of a sequence formed by the selected tactics.

For systems such as type providers, we say that that expression completion is reconstruct-
ible. To capture the notion formally, we again need the init operation, but also an operation
decode that extracts identifiers of invoked completions from an expression:

▶ Definition 3 (Reconstructible expression completion). An expression E[?] is reconstructibly
completed as E[e] through an interaction with a choose-your-own-adventure system consisting
of choices and choose if:
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1. E[?] is completed as E[e] using init, choices and choose
through a series of choices designated by identifiers ι1, . . . , ιn,

2. it also holds that decode(e) = (ι1, . . . , ιn).

If the integration of a choose-your-own-adventure system with a host programming
language uses reconstructible expression completion, we can recover the choices through
which the user constructed the expression e in a completion context E[e]. This also means
that we can reconstruct the final state σn of the system by starting from init(E[?]) and
following the choices specified by ι1, . . . , ιn.

4 Examples

We now revisit the five examples from Section 2 and show how they fit the above formal
model. All five examples rely on some domain-specific logic. We describe what information
the logic provides, but refer to full description elsewhere for details.

To show how the model lets us distinguish subtle details of interactive programming
systems, we start with a model of data exploration system that is inspired by The Gamma,
but differs in one notable way. We then discuss type providers more generally and show how
to model The Gamma more precisely. We then revisit the remaining three examples.

4.1 Data exploration
In The Gamma, the choose-your-own-adventure interaction pattern is used to construct a
query that transforms the given input data. The query is a sequence of operations with
parameters, op(p1, . . . , pn), loosely modelled after relational algebra [12].

In The Gamma, the query is hidden from the data analyst. Behind the scenes, the system
generates objects with members and the identifiers designating individual options are the
names of those members. The operation is encapsulated in the code of the accessor of the
member. In the simplified model developed in this section we ignore this fact. The model
presented here directly generates code that calls the underlying operations. For example,
assume that the user makes the following choices:

«group data» . «by Athlete» . «sum Gold» . «count all» . «then»

In The Gamma, the individual identifiers become object members and they are included as a
member chain in the generated code. In the simplified model presented here, the completion
instead fills the hole with an expression representing the operation:

group("Athlete", sum("Gold"), count())

The two approaches have different human-computer interaction trade-offs. In terms of
cognitive dimensions [16, 8], the latter has a greater closeness of mapping, while the former
is less cognitively demanding to read for a non-programmer. As we will see in Section 5, the
two implementations of the interaction pattern also differ in terms of their formal properties.

Formal model. The options generated by The Gamma let the user select both the next
operation and the parameters of the previously selected operation. The available operations
and parameters are generated based on a schema S that is transformed by the operations.
The state of the system σ contains the current schema S and the operations applied so far.
In the following, we write op(p) for an operation with a vector of parameters:

σ = S, [op1(p1), . . . , opn(pn)]
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The behaviour of the choices operation depends on whether the last operation in the sequence
expects further parameters or whether it is fully-specified. In the first case, the recommenda-
tion engine generates possible additional parameter values p′, p′′, . . . based on the schema
S, the operation opn and the already known parameters pn. The choices operation then
generates options that add the additional parameter. We generate the identifiers ι′, ι′′, . . .

based on the state and the parameter value, such as «by Gold descending». Note that adding
a parameter may also result in a new schema S′, S′′, . . . (which the recommendation engine
computes based on the previous schema and the new parameter):

choices(S, [op1(p1), . . . , opn(pn)]) =
{ ι′ 7→ (S′, [op1(p1), . . . , opn(pn, p′)]),
ι′′ 7→ (S′′, [op1(p1), . . . , opn(pn, p′′)]), . . . }

If the last operation takes no further parameters, the system produces a choice of possible
next operations op′, op′′, . . .. Again, we are also given new schemas S′, S′′, . . . and we generate
identifiers ι′, ι′′, . . . based on the operation name. The choices operation then returns options
that append the additional operation:

choices(S, (op1(p1), . . . , opn(pn))) =
{ ι′ 7→ (S′, [op1(p1), . . . , opn(pn), op′()]),
ι′′ 7→ (S′′, [op1(p1), . . . , opn(pn), op′′()]), . . . }

Finally, the choose operation takes the state σ and generates an expression that represents
the data transformation. This is only possible if all parameters are fully-specified. For
simplicity, assume that k is the index of the last fully-specified operation (either n or n − 1).
If the host language lets us compose functions using f ◦ g, we can write:

choose(S, (op1(p1), . . . , opn(pn))) = op1(p1) ◦ . . . ◦ opk(pk)

The recommendation engine behind The Gamma provides a domain-specific logic for gener-
ating possible operations and their parameters based on the current schema of the data. As
the above definition shows, this underlying engine can be wrapped and exposed through the
common choose-your-own-adventure interface.

4.2 Type providers
The type provider mechanism in F# operates at the level of the type system. It is not
merely an editor feature. A type provider for a data source, such as the World Development
Indicators database, generates a collection of types that model the external data source. In
F#, the types are classes with members that implement the logic to retrieve data at runtime.

The auto-completion mechanism in F# code editors, which implements the choose-your-
own-adventure interaction pattern, is not specific to type providers. It offers a list of members
of an object based on its type. We model the completion as an iterative process, repeatedly
adding further members to a chain. The state σ thus consists of an initial expression on which
the completion is invoked, a chain of selected members and the type of the last member.

To model the completion mechanism, we also need a representation of the type information.
We loosely follow the Foo calculus model [39] and write C for a set of class definitions, each
consisting of an implicit class constructor and a collection of members M :

σ = e.ι1.[. . .].ιn, C

C = {C 7→ type C(x : τ) = M, . . . }
M = member ι :C = e
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Each member in the Foo calculus consists of a of a name ι, return type C and implementation
e. For our purposes, we only need the type information and the operations that define the
choose-your-own-adventure are parameterized by the set of classes C.

The choicesC operation finds the class definition corresponding to the type of the last
member in the current chain. It generates choices appending each of the available members
to the current chain. The chooseC operation returns the constructed member chain:

choicesC(e.ι1.[. . .].ιn, C) =
{ ι′ 7→ (e.ι1.[. . .].ιn.ι′, C ′)
ι′′ 7→ (e.ι1.[. . .].ιn.ι′′, C ′′), . . . }

where C(C) = type C(x : τ) = M ′, M ′′, . . .

and M ′ = member ι′ :C ′ = e′

chooseC(e.ι1.[. . .].ιn, C) = e.ι1.[. . .].ιn

The model does not directly refer to type providers. Those are responsible solely for generating
the type definitions in C as documented in earlier work [39]. It is worth noting that the type
provider for data exploration, implemented by The Gamma, additionally needs to generate
classes lazily [34]. To model this aspect, the simple lookup C(C) needs to be replaced with
an operation that returns the type definition, alongside with a new context C′ that contains
additional generated type definitions (return types for all the members of the class C).

The model follows the reconstructible expression completion model. It is easy to define
the decode operation that takes the resulting generated expression and returns the sequence
of choices, because the choices are items of the member chain. A slight caveat is that the
completion is not invoked on an empty hole, but on a hole that contains the initial expression
on which the completion is applied. We can model this using filled holes [32] and write ?e

for a hole containing the initial expression e. The init(?e) operation then returns e alongside
with an empty chain and the type of e.

As noted earlier, The Gamma does not embed query expressions directly into the generated
code. It uses the model presented in this section and generates choices as members of types
behind the scenes. We return to the differences between the two models in Section 5.

4.3 AI assistants
AI assistants guide the analyst through a data wrangling task. They generate a data cleaning
script, taking into account constraints selected by the user. Most AI assistants obtain the
script by performing statistical optimization with respect to a set of constraints specified by
the user. That is, they look for an expression from the set of all possible expressions that
optimizes some objective function that assigns score to the expression with respect to the
given input data. Note that AI assistants do not iterate over all possible expressions. They
use a machine learning method to approximate a solution to the problem.

An optimization-based AI assistant [40] thus provides another, very different, way of
implementing the choose-your-own-adventure pattern. The assistant operates with respect
to some input data X that do not change during the interaction and so we parameterize the
choose-your-own-adventure calculus operations by the data. The input data X can be actual
input data or a representative sample and so the AI assistant can use past data to infer a
cleaning script that will be used on new inputs.

The state σ consists of a set of constraints specified by the user. We write c for individual
constraints and c for a set of constraints. The initial state is an empty set:

σ = {c1, . . . , cn}
σ0 = ∅
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Unlike in the previous examples, the crucial logic of an AI assistants is implemented in
the choose operation. The operation runs the optimization algorithm to choose the best
cleaning script for given constraints. Formally, this can be written using the arg max operator
which finds an argument (an expression) for which the given function (scoring function) is
maximized. The user-specified constraints can either restrict the set of possible expressions
or influence the scoring function. More formally, we assume that:

Ec ⊆ E is a set of expressions that respect constraints c,
Qc(X, e) is a scoring function with respect to the constraints c, which returns the score
of an expression e, i.e., how good e is at cleaning the data X.

For a given set of constraints c, the choose operation looks for e ∈ Ec with the largest score:

chooseX(c) = arg maxe∈Ec
Qc(X, e)

The actual implementation of the optimization uses various machine learning techniques
to find the optimal expression. In case of datadiff, X is a pair of datasets X1, X2 to be
reconciled. The AI assistant uses the Hungarian algorithm [49] to construct a matching of
columns from X1 and X2. The generated expression is a sequence of patches that can be
applied to X2 in order to reconcile its structure with the sturcture of X1. The constraints
specified by the user restrict the space of possible column matchings and so they affect Ec.
The scoring function Qc is independent of the constraints and computes a sum of distances
between the statistical distributions of the columns from X1 and the patched version of X2.

The choices operation is responsible for generating possible constraints that the user may
want to add to guide the inference. AI assistants typically offer the user options to prevent
or adapt some aspect of the cleaning logic inferred by the system. For example, if datadiff
matches two columns, it will offer a constraint to prevent the matching. It also generates
constraints that let the user force a specific matching.

To implement choicesX , optimization-based AI assistants first call chooseX(σ) to get the
best expression e. Based on this, they generate possible constraints c1, c2, . . . that the user
may want to choose from. The identifiers ι1, ι2, . . . provide a human-readable description of
the constraints. Note that this operation is specific to the particular AI assistant; choicesX

then offers a list of constraint sets with one of the additional constraints:

choicesX(c) = {ι1 7→ c ∪ {c1}, ι2 7→ c ∪ {c2}, . . .}

The expression completion for an AI assistant, as described here, is not reconstructible. The
interaction results in a cleaning script (expression), but there is no way of reconstructing
the constrains used to guide the optimization. To make the completion reconstructible, the
choose operation would need to explicitly include the constraints in the resulting expression.
However, rerunning the choose operation with the same constraints may result in a different
cleaning script if the machine learning algorithm is probabilistic.

4.4 Theorem proving
In the previous three sections, we showed how existing formally well-documented systems fit
the choose-your-own-adventure interaction pattern. Although interactive theorem provers
and editors for dependently typed languages implement similar kinds of interactions, there is
no well-documented system that fits the pattern exactly. The closest example is perhaps the
recently envisioned mixed-mode interaction theorem prover [54]. Rather than reframing the
implementation of an existing system, this section thus outlines a possible implementation.
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Γ, x : τ ⊢ τ ⇒ x
(syn-var) Γ ⊢ τ ⇒?τ

(syn-hole)

Γ, x : τ1 ⊢ τ2 ⇒ e

Γ ⊢ τ1 → τ2 ⇒ λx.e
(syn-lambda) Γ ⊢ τ1 → τ2 ⇒ e1 Γ ⊢ τ1 ⇒ e2

Γ ⊢ τ2 ⇒ e1 e2
(syn-app)

b ∈ {true, false}
Γ ⊢ bool ⇒ b

(syn-bool) Γ ⊢ τ ⇒ e1 Γ ⊢ τ ⇒ e2 Γ ⊢ bool ⇒ e

Γ ⊢ τ ⇒ if e then e1 else e2
(syn-cond)

Figure 6 Illustrative set of simple type-directed program synthesis rules

Theorem provers. There are two approaches to interacting with an interactive theorem
prover. In Coq, the user writes a sequence of tactics that transform proof goals. In Agda or
Idris, the user writes a term, or program, of a type that represents the theorem. Interactive
editors exist for both kinds of systems. For Coq, the Company-Coq [41, 5] extension offers
auto-completion, which recommends available tactics, hypotheses and local definitions, but
it does not filter them based on what is valid in a given context. For Idris, the interactive
editor [9] offers a range of commands that transform the selected term by adding a case split,
a missing case or by automatically searching for a proof. In Idris, the system produces valid
completions, but those cover only a small number of situations.

Despite the different ways of working, an implementation of the choose-your-own-adventure
pattern for both kinds of systems would be similar. Based on the current sub-goal, the
system would recommend a range of tactics that can be applied to the sub-goal. In the case
of Coq, the selected tactic would be added to the sequence. In Idris, the selected tactic would
be applied to transform the current term. The difference is in the expression completion.
A system for Coq would provide reconstructible completion in that the selected option is
added to the proof source code. (Much like selecting a completion when using type providers
appends a member access.) A system for Idris or Agda would use the tactic to transform the
term, making it impossible to reconstruct the sequence of applied tactics.

Type-directed synthesis. Thanks to the equivalence between programs and proofs, tech-
niques akin to tactic-based proof construction have also emerged in work on type-directed
program synthesis [22]. As illustrated in Figure 6, the synthesis process can be described as
a set of rules of the form Γ ⊢ τ ⇒ e that describe ways of synthesizing expressions e of a type
τ . Existing implementations of the mechanism typically aim to automate program synthesis
and use more precise type information, such as refinement types [42] and graded types [19],
or include examples [33]. However, the same rules could be used to guide an interactive
choose-your-own-adventure system. If the interaction was invoked to fill a typed hole ?τ

in a context Γ, the system could collect all expressions e such that Γ ⊢ τ ⇒ e and offer a
choice of those options. Note that the definition in Figure 6 synthesizes sub-expressions
recursively, but a choose-your-own-adventure system may proceed one step at a time, filling
sub-expressions with typed holes using (syn-hole).

Formal model. From the perspective of user interaction, a proof assistant where a user
interactively constructs a term of a given type is very similar to an interactive tool for
type-directed program synthesis. The key difference being that theorem provers like Idris
and Agda use rich dependent type theories.

For example, consider a system akin to Idris where the user aims to construct a term
e of type τ . The term may contain typed holes written as ?τ and a relation Γ ⊢ τ ⇒ e
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provides ways of synthesizing terms of type τ . We again write E[?τ ] for a completion context
containing a (typed) hole; we assume that the variables Γ available in the completion context
of the hole can be obtained using vars(E[?τ ]).

To model a choose-your-own-adventure interaction akin to Idris, the state of the system
would be the term e itself, initially a typed hole. The choices operation synthesizes possible
completions using ⇒ (restricted, e.g., to only generate terms of a certain maximum size) and
offers the resulting terms as possible completions. The identifiers ι could be based either on
the tactic name (rule name) or show a preview of the resulting term. The choices operation
suggests ways to fill a hole in the term:

choices(E[?τ ]) = { ι 7→ E[e] | ∀e . vars(E[?τ ]) ⊢ τ ⇒ ei}
choose(e) = e

The choices operation synthesizes possible terms of a type required by the hole. Since the
state σ is a term, the choose operation simply returns it. The expression completion mode
of the system behaves similarly to Idris. It constructs the term, but does not record the
completion choices. A system akin to Coq that constructs a sequence of tactics could be
modelled too if the state was a sequence of tactics and choices appended the available tactics
to the end of the current sequence.

4.5 Structure editors
Structure editors implement a broad range of patterns of interaction for program construction.
They allows us to demonstrate some of the design considerations for choose-your-own-
adventure systems. We contrast a simple choose-your-own-adventure system derived from
a context-free grammar, inspired by Sandblocks [7], with a system that extends the basic
grammar-directed program construction with supports refactorings, akin to Deuce [18].

Formal model. We model a system that, similarly to Sandblocks, generates choices auto-
matically based on a given context-free grammar. We assume the grammar (N , Σ, P, S)
consists of set of non-terminal symbols N , terminal symbols Σ, start symbol S ∈ N and
production rules P of the form n 7→ s where n ∈ N and s ∈ (N ∪ Σ)∗ (we write n for
non-terminals, t for terminals and s for all symbols; bold indicates a sequence of symbols).

When interacting with the choose-your-own-adventure system, the user is gradually
constructing a program (sentence) of a form s ∈ (N ∪ Σ)∗. The system state is the program
(sentence) constructed so far, i.e., σ = s. The process can continue as long as there are
non-terminal symbols in the sentence and production rules applicable to them.

In general, the choices operation could recommend applicable production rules for any
non-terminal in the sentence. The following always chooses the first non-terminal by assuming
a sentence tns consisting of zero or more terminals, followed by a single non-terminal and
a sequence of arbitrary symbols (the need to sequentialize the construction is a limitation
discussed in Section 7). The choices operation then finds all applicable production rules and
offers them as choices. In a real-world system, identifiers ιi are formed by the names of the
rules (omitted from our formalism).

choices(tns) = { ιi 7→ tsis | ∀(n 7→ si) ∈ P }
choose(s) = s

Unlike in the case of data exploration, the choose operation does not ensure that a program
is fully constructed and the returned sentence may contain further non-terminals.
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(a) Grammar of a minimal language with declarations and expressions

expr := literal | expr + expr | ident | expr(expr∗)
decl := function ident(ident∗){block} | let ident = expr
stmt := expr | decl
block := stmt∗

(b) Construction based on the grammar

1. Add decl as the first stmt and fill two
ident leafs (name and parameters)

function sayHello(who) {
stmt∗

}
stmt∗

2. Sequentiall fill holes with invocations
function sayHello(who) {

print(”Hello ” + who)
}
sayHello(”world”)

(c) Alternative sequence based on refactorings

1. Start with a small working program

print(”Hello world”)

2. Extract literal into a variable

let who = ”world”
print(”Hello ” + who)

3. Extract function with a parameter

function sayHello(who) {
print(”Hello ” + who)

}
sayHello(”world”)

Figure 7 Comparison of a naive grammar-based program construction (b) and more user-friendly
program construction through a sequence of refactorings (c).

Program refactorings. The formal model derived from a context-free grammar is an
adequate model for structure editors such as Sandblocks [7], but many structure editors
offer more advanced operations for program construction. For example Deuce [18], which
is a structure editor for a programming environment for creating Scalable Vector Graphics
(SVG) images, makes it possible to transform program through a range of refactorings such
as extract function, introduce a local variable, inline definition, reorder arguments and more.

Figure 7 illustrates program construction via refactoring using a simple example. It
defines a small language with a grammar. Figure 7 (b) shows some of the steps necessary to
construct a simple program via the grammar rules. Figure 7 (c) shows a more appealing
alternative where the programmer starts with a simple program and then gradually refines it
through a sequence of refactorings, making it more general.

Modelling refactorings formally requires a more expressive framework [48], so we omit the
details. The choices operation would need to identify applicable refactorings for the current
program and offer them to the user.

An important point illustrated by the two examples is whether the expression completion
implemented by the two sketched choose-your-own-adventure systems is reconstructible. For
a system based on non-ambiguous context-free grammar, this is the case. Although the
constructed expression does not directly contain an encoding of the sequence of operations, it
is possible to reconstruct which production rules have been applied (by parsing the expression
according to the grammar). A choose-your-own-adventure structure editor that supports
refactorings no longer has this property, because it always offers multiple ways of constructing
a given program (a program can be constructed with or without a refactoring, or by using
multiple refactorings in different orders).



Authors 15

5 Properties

The choose-your-own-adventure calculus lets us precisely compare how how different program-
ming systems interact with the user. We saw this in Section 3, which defines reconstructible
expression completion to distinguish between systems where the interaction leaves a recon-
structible trace in the constructed program and systems where it does not. In this section, we
make precise two properties that were introduced informally in the context of data exploration
in The Gamma [37] and an additional property related to reconstruction of interaction traces.

The choose-your-own-adventure system for data exploration in The Gamma is correct,
meaning that all programs that a user can construct using the system, by repeatedly choosing
from the auto-completion list, are well-typed. The system is also complete, meaning that
the user can use auto-completion to construct all possible programs. In other words, there
are no well-typed programs that cannot be constructed interactively, by repeatedly choosing
options from the offered list of choices.

Correctness. The notions of correctness and completeness can be defined for any choose-
your-own-adventure systems with respect to some system-specific distinction between correct
and incorrect expressions. We write E ⊆ E for the subset of correct expressions.

For systems based on statically-typed programming languages, a reasonable choice of
E is a set of all well-typed expressions. For some systems, we may additionally want the
set of correct expressions E to be hole-free, i.e., only programs that can run (or represent
complete proofs) are correct. For systems where the completion is based on a grammar, we
may require that correct programs do not contain non-terminals.

▶ Definition 4 (Correctness). Assume that E ⊆ E is a subset of correct expressions. A choose-
your-own-adventure system is correct with respect to E if and only if:

∀σ1, .., σn and ιi, .., ιn such that ιi 7→ σi ∈ choices(σi−1) it is the case that choose(σi) ∈ E.

The definition states that, if we make any sequence of choices that start from an initial
state σ0 and result in intermediate states σ1, . . . , σn then the programs we could generate
from any of the intermediate states are correct.

The property depends on what we choose as the subset of correct expressions E . Trivially,
all systems are correct with respect to E = E. However, the three of the five systems discussed
in Section 4 are also correct with respect to a non-trivial set of correct expressions:

For the data exploration system discussed in Section 4.1, we say that correct expressions
are those where the parameters of all operations are fully-specified. That is, no operation
requires further arguments. With respect to this definition, the system is correct. However,
this is the case only because the choose operation drops the last operation if it is not
fully-specified. If choose returned all operations, including the partially constructed (but
not yet completed) operation, the system would not be correct.

For type providers (Section 4.2), correct expressions are those that are well-typed. With
respect to this definition, the system is correct because the choices operation offers
available members based on the type information. This reasoning also applies to the type
provider behind The Gamma. In The Gamma, the generated members collect operation
parameters and only invoke the operation once all parameters are known.

In the case of AI assistants (Section 4.3) the correctness of the system depends on the
expressions returned by the optimization algorithm (arg max) from the set of all possible
cleaning scripts Ec. In general, the algorithm can return any e ∈ Ec and so system



16 The Choose-Your-Own-Adventure Calculus (Pearl/Brave New Idea)

correctness is a matter of definition. The system is correct if and only if Ec ⊆ E for
all possible sets of constraints c. In practice, it is more important that the constraints
generated by choices are well-formed.

For the interactive system based on type-directed synthesis (Section 4.4), correct ex-
pressions are those that are well-typed. The system is correct if the synthesis rules are
sound [33], that is if Γ ⊢ τ ⇒ e then also Γ ⊢ e : τ . Note that a valid choose-your-
own-adventure system can be defined even using unsound synthesis rules – it would be
sufficient to filter the recommended expressions in choices to the ones that are well-typed.

A structure editor based on context-free grammar (Section 4.5) is not correct if we define
E as the set of sentences that do not contain non-terminals. A correct structure editor
could be implemented if it was based solely on refactorings such as those in Figure 7 (c).

There may be other useful systems that violate the correctness property. A tool based on
a large language model (LLM) may generate code with errors that the programmer can later
correct. A more interesting case would be a data exploration system, like the one discussed
above, where programs only become correct after multiple subsequent choices are made, for
example to fully specify arguments of an operation.

Eventual correctness. The data exploration system discussed in Section 4.1 ensures cor-
rectness by dropping the last non-fully-specified operation in the choose operation. As a
result, it is correct, but it does not support reconstructible expression completion. If the
operation is dropped, we cannot reconstruct the sequence of interactions from the source code.
Generating code that includes the non-fully-specified operation allows reconstructibility, but
makes the system incorrect. It would still satisfy a weaker eventual correctness property:

▶ Definition 5 (Eventual correctness). Assume that E ⊆ E is a subset of correct expressions,
a choose-your-own-adventure system is eventually correct with respect to E if:

For any sequence σ1, . . . , σk and ι1, . . . , ιk such that ∀i∈1 . . . k . ιi 7→ σi ∈ choices(σi−1)
there exists an extension σk+1, . . . , σn and ιk+1, . . . , ιn such that choose(σn) ∈ E and
∀i∈k+1 . . . n . ιi 7→ σi ∈ choices(σi−1).

Eventual correctness models systems where some sequences of choices result in invalid
programs, but it is always possible to reach a valid program. This includes structure editors
based on context-free grammars, as well as the data exploration system. Interestingly, it is
always possible to turn an eventually correct system into a correct one:

1. As in the case of the data exploration, the system can remember the last state for which
the choose operation returned a correct program and use it in choose until the next
correct state is reached. This makes any eventually correct choose-your-own-adventure
system correct, but it breaks reconstructibility of expression completion.

2. Alternatively, we can construct a system that collapses all sequence of temporarilly
invalid states σ1, . . . , σn identified by ι1, . . . , σn where ∀i ∈ 1 . . . n−1 . choose(σi) /∈ E
and choose(σn) ∈ E into a single option ι′ 7→ σn where ι′ is produced by concatenating
identifiers ι1, . . . , ιn. This makes the system correct and also preserves reconstructibility,
but it potentially generates too many choices that are difficult to navigate.

There is more to be said about correctness of interactive programming systems. The
conceptual framework provided by the choose-your-own-adventure calculus makes it possible
to take the first step. Similarly, the model lets us formally define completeness.
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Completeness. The programming language used in The Gamma allows users to write
scripts that also use let bindings and method calls. However, for chains of member accesses
which the user can construct using a type provider, it is possible to construct any chain just
by repeatedly choosing options from the offered list. This is captured as the completeness
property of a choose-your-own-adventure system.

▶ Definition 6 (Completeness). Assume that E ⊆ E is a subset of correct expressions.
A choose-your-own-adventure system is complete with respect to E if and only if:

∀e∈E . ∃σ1, .., σn and ι1, .., ιn such that ιi 7→ σi ∈ choices(σi−1) and e = choose(σn).

A system is complete if, for any correct program, there is a sequence of choices that can
be used to construct the given program. This is a more subtle property than correctness. It
also does not hold for all the examples dicusssed in Section 4.

The data exploration system described in Section 4.1 would be complete only if the
underlying query language had a fixed set of operations, a fixed set of aggregation
operations (rather than letting users write their own) and a fixed set of values for each
parameter (sorting by a key, but not based on a custom expression). A completion system
for a more general-purpose query language, such as SQL, would be incomplete.

For type providers (Section 4.2), the completion mechanism is complete, because it offers
all available members of the type. Consequently, the type provider in The Gamma is also
complete. Even if the underlying query language is more expressive, it is hidden from the
user and the system offers all available members.

For AI assistants (Section 4.3), the system offers a set of constraints based on the current
inferred program. It does not let the user construct arbitrary constraints. Moreover,
because the arg max operation used in choose performs statistical optimization, there
is no guarantee that it can be used to generate a specific program. The system is only
complete if it is possible to choose a constraint set c that restrict the set of programs
Ec to a single given program. This is the case for some AI assistants, including datadiff,
which always offers constraints to map column to any chosen other column.

A type-directed synthesis system (Section 4.4), or an interactive theorem prover could
offer all possible ways of filling a hole with an expression containing further holes as
sub-expressions. This would make the system complete (up to renaming of variables
this may introduce), but the great number of generated options would be impractical.
A realistic system would only generate a subset of the most useful proof/program steps
and let the user write other steps manually (interactive proof construction in Idris can be
seen as operating in this way).

Completeness is easy to show for structure editors based on context-free grammars
(Section 4.5). For each sentence that can be produced by the rules of the grammar,
there is a sequence of choices that applies the necessary rules. However, editors based
on refactorings may not have the property as some programs may not be reachable just
through refactoring transformations.

Correctness and completeness are arguably both desirable properties of a choose-your-
own-adventure system. Unlike for example type soundess, they are not strictly necessary in
practice and are best seen as design trade-offs that designers should consider.
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Uniqueness. The grammar-based structure editor example raised an interesting question
about reconstructing interaction steps. Although the generated program does not directly
have a sequential structure, it was possible to reconstruct the interaction steps from the
expression (by parsing it and finding corresponding production rules). This is no longer
possible if the program can be transformed through richer set of refactorings. The difference
between the two examples is that the former has the uniqueness property:

▶ Definition 7 (Uniqueness). A choose-your-own-adventure system has the uniqueness
property if and only if, for all expressions e ∈ E it is the case that:

if there are σ1, .., σn and ιi, .., ιn such that ιi 7→ σi ∈ choices(σi−1) and e = choose(σn),
and there are σ′

1, .., σ′
n and ι′

i, .., ι′
n such that ι′

i 7→ σ′
i ∈ choices(σ′

i−1) and e = choose(σ′
n),

then ∀i∈ 1 . . . n . ιi = ι′
i ∧ σi = σ′

i.

The uniqueness property guarantees that, for any program, there is only one way of
constructing it. This is the case for the data exploration environment (Section ??) and type
providers (Section 4.2) where the program directly mirrors the interactive steps. It is not the
case for AI assistants (Section 4.3), where adding an irrelevant constraint may have no effect
on the resulting program.

A type-directed synthesis system or an interactive theorem prover (Section 4.4) would
have the property if no two tactics produce the same term. This is the case for our small
example, but it may not hold in general. Finally, a structure editor based on an unambiguous
context-free grammar (Section 4.5) satisfies uniqueness, but a structure editor that allows
further refactorings does not, in general, does not.

In theory, uniqueness guarantees that we can define the decode operation required by
reconstructible expression completion. However, uniqueness does not guarantee that there is
a computationally effective way. To decode an expression efficiently, we need to be able to
start from the initial state and identify the correct choice in each step. This is possible for a
structure editor based on a context-free grammar. As a counter-example, consider a system
that offers a large tree of choices and produces expression that is a hash of the choices made.
For such system, there is only one path to each hash, but reconstructing it requires searching
the entire tree. To guarantee a computationally effective reconstructibility, we thus need
more than uniqueness – in particular, it needs to be possible to uniquely determine what
part of the constructed program corresponds to which of the choices from the sequence.

6 Applications

The choose-your-own-adventure calculus lets us treat a wide range of interactive programming
systems as instances of the same general pattern. This makes it possible to discuss properties
of the systems, reuse components in system implementations, but also transfer ideas across
different domains. In this section, we discuss three ideas that emerged in the context of a
specific interactive system, but could be applied to other systems based on the pattern.

6.1 Mixed-initiative interaction
When using a conventional interactive theorem prover, one typically constructs the proof
manually until an automated strategy can fill in the remaining gaps. This is the case with
Idris proof search, as well as Coq auto tactics. Richer ways of interacting exist [24], but are
less common. We developed a prototype mixed-initiative theorem prover [report citation
omitted] that supports a more collaborative way of working where the system completes
some steps automatically, but defers back to the user when it gets stuck.
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theorem sum-z-rh : forall n exists n + (z) = n.

theorem sum-s-rh : forall d1 : n1 + n2 = n3 exists n1 + (s n2) = (s n3).

theorem sum-commutes : forall d1 : n1 + n2 = n3 exists n2 + n1 = n3

d2 : n2 + n1 = n3 by induction on d1 :
case rule

dzc : (z) + n = n
sum-z

is
dz1 : n + (z) = n by theorem sum-z-rh on n

end case
case rule

dsp : n′
1 + n2 = n′

3
dsc : (s n′

1) + n2 = (s n′
3) sum-s

is
ds1 : n2 + n′

1 = n′
3 by induction hypothesis on dsp

ds2 : n2 + (sn′
1) = (sn′

3) by theorem sum-s-rh on ds1

end case
end induction

end theorem

Figure 8 A proof of commutativity of + in Peano arithmetic constructed using mixed-initiative
interaction. Parts generated by the system are highlighted with gray background. After the user
writes a theorem and specifies induction, the system completes the first case. User then specifies
how to apply the induction hypothesis and the system completes the proof.

Mixed-initiative theorem proving. As an illustration of the mixed-initiative proving, con-
sider Figure 8 which shows a proof of commutativity of + in Peano arithmetic. The figure
shows a version of our example, adapted from SASyLF [3, 2] and simplified for brevity.
After writing proofs of sum-z-rh and sum-s-rh (not shown), the user states sum-commutes
and specifies the structure of the induction. They then invoke the automatic search, which
completes the first case, but gets stuck in the second case, because it fails to apply the
induction hypothesis (in our full example, the failure is more subtle). The user then specifies
how to apply the induction hypothesis and the system automatically completes the proof.

The interaction can be revisited from the perspective of the choose-your-own-adventure
system discussed in Section 4.4. An interactive theorem prover generates possible completions
using available tactics and offers them to the user, who chooses a tactic and applies it to
transform the proof. In the automatic mode, the interactive theorem prover recursively
searches through the available choices. If it finds one that results in a complete proof, it
stops. Otherwise, it completes a number of steps (determined by some heuristic) and defers
back to the user who chooses the next step and completes the proof manually or invokes the
automatic search again.

Generalised mixed-initiative interaction. The mixed-initiative mode of interaction combines
manual interaction with automatic search. In order to support automatic search, the system
needs a metric that determines whether a constructed program is correct (as when proving
a given theorem) or whether it is an improvement over another equivalent program (for
example when refactoring). This general way of working can be used in other interactive
programming systems:
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You are helping user to complete a task in an interactive programming environment.
The user’s query is: "Give me the athlete with the largest number of gold medals."

The query built so far is: "olympics"."group data"."by Athlete".

The environment offers the user possible options. Choose an option that the should
be applied to the current dataset:

1. count distinct Athlete
2. count distinct Discipline

[multiple options omitted ]
13. count all
14. concatenate Athlete
15. concatenate Discipline

[multiple options omitted ]
23. sum Gold
24. sum Silver
25. sum Year

You should answer with the number of the option and no further explanation.

Figure 9 A prompt to complete a data exploration query based on a natural language question,
which uses LLM to choose from the available completion options.

A system for type-directed program synthesis could automatically synthesize parts of a
program (e.g., pattern matching and implementation for some of the cases), but ask user
for input in order to complete branches where solution was not found automatically.

In data exploration, a system could perform automatic search through the available
operations in order to transform data into a more regular format, according to a suitability
metric as done, for example, in the Proactive Wrangling system [17].

We can understand how mixed-initiative interactive systems as extensions built on top of
the choose-your-own-adventure calculus. A mixed-initiative interactive system defines an
operation suggest that recommends a sequence of choices for a given state.

▶ Definition 8 (Mixed-initiative system). A choose-your-own-adventure system supports
mixed-initiative mode of interaction if it is equipped with an operation suggest such that:

suggest(σ0) = ι1, . . . , ιn such that ∀i∈1 . . . n . ιi 7→ σi ∈ choices(σi−1).

The definition only requires that the suggested sequence of choices is valid, but it does
not specify how exactly the system should make the recommendations. This is specific to a
particular system. An interactive theorem prover will try to find a proof or solve sub-goals,
whereas data wrangling system may try to improve the structure of data. In practice, the
suggestion should improve the quality of the program so that choose(σn) is better than
choose(σ0), but we leave the definition flexible to accommodate a broader range of uses.

6.2 Language model-based completion
Large language models can assist with data exploration by generating snippets of code based
on natural language description of the problem [56]. A recognized drawback of this approach
is that the user may gain only cursory understanding of the code and overlook errors. Various
systems address this by generating explanations alongside with code [31]. We developed
a system that provides LLM-based natural language assistance for The Gamma [report
citation omitted] based on a mechanism that assists the user and is also applicable to other
choose-your-own-adventure systems.
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Figure 10 A plot showing the average scores for four different large language models solving 10
challenge problems using five different prompting strategies.

LLM assistant for The Gamma. Our system [reprot citation omitted] integrates a type
provider like the one used in The Gamma with a large language model (GPT, Gemini,
DeepSeek). It lets user ask a natural language query and then recommends choices that the
user should make in order to answer the query. We do not use the LLM to generate code,
but to recommend an option offered by the type provider.

We construct a prompt as shown in Figure 9, which asks the LLM to recommend the
next choice. In this example, the LLM is able to reliably respond with “23”, which is the
correct choice. Our system then pre-selects it in the completion list offered to the user. In
contrast to one-shot generation of Python or SQL code snippets, our approach guides the
user through the program construction, providing them with an opportunity to review and
check if the program logic matches their expectations.

In addition to the basic prompting strategy, we evaluated a strategy where the LLM is
provided with lookahead information, i.e., for each of the choices, we also include a list of the
choices that will available subsequently (formatted as either inline information in parentheses
or as a nested bullet-point list). We evaluated the sytem using queries about the Eurostat
database with 10 queries for which we manually determine the correct choices. To compare
the results, we compute a score for each query by following the correct path, asking for an
LLM recommendation in each step and computing the ratio of correct choices. Figure 10
shows the average scores for five different strategies, using four different LLM engines.

The results suggest that, when using a more advanced LLM system, the ratio of correct
recommendations is high-enough to be practically useful. Interestingly, providing more
information to the LLM through the lookahead mechanism improves the quality for GPT-
based systems, but not for other evaluated LLMs. Arguably, the mode of interaction where
the user is offered a recommendation is preferrable over providing an opaque solution, because
it keeps the human in the loop [44] and avoids “ironies of automation” [6] including deskilling.

Generalised LLM assistant. The LLM-based recommendation engine developed for The
Gamma can be implemented for any choose-your-own-adventure system. As can be seen in
Figure 9, the information needed to construct an LLM prompt comprise only the natural
language query entered by the user, a sequence of previously made choices ι1, . . . , ιn−1 and
the identifiers ιn, ι′

n, ι′′
n, . . . of the choices offered by the choices operation. As the LLM-based

recommendations are based on natural language analysis of the prompt, the quality of the
recommendations depends on how semantically meaningful the generated identifiers are.
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Figure 11 Programming by demonstration in Histogram – (1) the user constructs program to load
data, (2) then they filter data using graphical interface, which (3) records an operation corresponding
to the interaction in code.

An LLM-based recommendation engine can be useful for a number of the choose-your-
own-adventure interactive systems discussed in this paper:

We demonstrated the usefulness of the system for data exploration in The Gamma. Type
providers for structured data [39] typically generate small number of choices that the user
can navigate without assistance, but navigating the schemas generated by type providers
for semantic knowledge bases [50] may be simplified through a natural language query.

The datadiff AI assistant discussed in Section 2 matches columns based on statistical
distribution and ignores column names. An LLM-based recommendation engine is useful
in this case, because it is able to recommend the option Don’t match ‘Urban.rural’ and
‘Nation’ based solely on its name. For other AI assistants, the LLM-based recommendation
engine would need access to the input data in order to be useful.

The problem of predicting steps in order to construct a proof is known as proofstep
generation in literature focused on deep learning for theorem proving [23]. Although
most systems use models trained specifically for the task, there is also interest in using
general-purpose LLMs [57]. Our approach suggests a potential prompting strategy.

It is interesting to note that the system sketched here combines a symbolic component
(used for generating possible choices and checking their correctness) with an AI-based
component (used for making choices). This is the same architecture that has been used by
the AlphaGeometry system [53] for solving geometry problems.

6.3 Direct manipulation
The Histogram programming environment [35] provides a code completion mechanism that
can be used both to choose operations (as with type providers) and to specify their parameters
(by offering available values in context as possible arguments). It makes it possible to evaluate
sub-expressions at a fine-grained level and also refines type information based on runtime
values. However, it also supports programming by demonstration [13, 21].

As illustrated in Figure 11, when the user loads data, they can manipulate it in a table
through a direct manipulation interface [45]. In Histogram, interacting with the table triggers
a sequence of operations that construct code. A similar functionality is available in The
Gamma, where operations for manipulating tabular data can be selected not only through
auto-completion, but also by interacting with the live preview.
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Figure 12 Specifying aggregation in The Gamma through a live preview. Grouping keys can be
selected from a drop-down, while aggregations have to be added through a menu.

The choose-your-own-adventure calculus enables a more general perspective on the
programming by demonstration interaction as implemented by Histogram. When interacting
with a live preview, the user is using a graphical interface to choose an option offered by
choices. The operation appends an item to the sequence of choices, updates the system state
and generates a new preview where the choice is reflected (e.g., by filtering the table).

An interesting question is whether a program can be constructed solely through direct
manipulation, by interacting with the live previews. For this to be possible, the live preview
needs to offer links to all the options offered by choices. This requires a careful design of live
previews. In Histogram (Figure 11), the live preview offers interactive elements for filtering
based on equality test (row of drop-downs), sorting (up/down arrows) and indexing (indices
in the “#” column), but some operations (such as aggregation) can only be constructed
through code. Previews in The Gamma provide interactive elements for all options, but those
cannot always be integrated with the data display. For example, after choosing a grouping
key (Figure 12), the preview shows the key column, but other columns are hidden. Specifying
an aggregation requires an additional “+” button that provides access to further choices.

We can use the choose-your-own-adventure calculus to make the question whether all
programs can be constructed through direct manipulation more precise. Assume preview(e) =
p is a preview constructed for an expression e and links(p) = ι1, . . . , ιn are identifiers that
can be invoked through the preview (akin to links in a hypertext document).

▶ Definition 9 (Direct manipulation). A choose-your-own-adventure system with previews
defined by preview and links supports full direct manipulation if:

∀σ, e such that choose(σ) = e it is the case that ∀ι′ 7→ σ′ ∈ choices(σ) . ι′ ∈ links(preview(e)).

A system supports full direct manipulation if any program can be constructed by in-
teracting with the live previews, created based on the gradually constructed programs. As
illustrated by The Gamma, this can always be achieved by listing the options in a menu, but
it is more interesting to see if the links can be directly embedded in the preview as in the
data table interface of Histogram.

The idea of directly mapping elements in a user interface to underlying structure of the
programming system has previously been implemented in pioneering user interface systems
including the Alternate Reality Kit [46] and the Morphic framework for Self and Squeak
[27, 26]. In those systems, user interface interactions directly map to messages sent to the
underlying object and the halo element in Morphic plays a similar role to the additional
menu in The Gamma. It remains to be seen if the choose-your-own-adventure calculus can
provide a new way of looking at those systems.



24 The Choose-Your-Own-Adventure Calculus (Pearl/Brave New Idea)

7 Limitations

Arguably, the study of interactive programming systems is less well-developed than the study
of programming languages. Our work is a step towards remedying of the situation, but it is
only one step. As all small formal models, our system ignores a number of practical concerns.

Revisiting earlier choices. Programmers often revise programs they wrote previously. For
example, a data scientist may want to add further aggregation to a grouping or change the
sorting key. The choose-your-own-adventure calculus does not model how such modifications
are done. Modifying an earlier choice thus poses an interesting problem – if an earlier choice
is changed, we may try to “replay” the remaining choices based on the identifiers ι, but there
is no guarantee that they will be offered again and that this will yield the desired result.

Sequentialization of completion. In a number of examples, an expression contained multiple
holes or non-terminals that can all be completed using the choose-your-own-adventure
interaction. We generally assume that they can be completed sequentially, but this may be
inconvenient limitation. It may be desirable to define a variant of expression completion
where multiple independent recommendations are available for different parts of the program.

Searching through options. In some systems, the number of options to choose from may
be large or infinite. This can be the case for complex systems, as well as for correct systems
generated from eventually correct systems. Similarly, systems may generate a very long
chain of small number of options. In those cases, choosing options from a menu may be
inconvenient – an alternative interface may lets the user search the tree of options.

Richer user interfaces. The choose-your-own-adventure calculus models a simple interaction
based on menus. Although we point out that it can be used as the basis for richer interfaces
(illustrated by the previews in programming by demonstration), it may be interesting to look
at richer interfaces. In particular, a number of systems are centred around entities that can
be selected and modified through commands or interactions. This includes Morphic’s halos
[27, 26], the classic Alternate Reality Kit [47], as well as text-based systems [11].

8 Conclusions

Working in many interactive programming environments has the same feel as following a
choose-your-own-adventure book. You start and repeatedly choose one of the offered options
to construct a program, proof or to explore data. The aim of this paper is to formally
capture this kind of interaction. As with formal models of programming languages, our model
focuses on the minimal essence of the interaction pattern. Yet, this is sufficient to recognize
similarities across a broad range of systems, talk about key properties that they may have,
transfer knowledge across multiple domains, as well as to suggest a more general way of
building richer programming experiences ranging from AI-assistants and mixed-initiative
interaction to programming by demonstration.
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