
Case study
Doing web-based data analytics with F#

Tomas Petricek Don Syme
University of Cambridge Microsoft Research, Cambridge

Get in touch: tomas@tomasp.net | @tomaspetricek | @dsyme

<rant>

According to [the] proponents [of
new experimentalism], experiment
can have a “life of its own” inde-
pendent of a large-scale theory.

Ian Hacking (1983)
Representing and Intervening

</rant>

<rant>

Relevant case study
Look at non-trivial real-world problem

Theory or language independent
Produce significant visible result

Combination of language features
Arising from the ML tradition

</rant>

DEMO
Doing web-based data analytics with F#

How does this work?

Type
providers

Meta-
programming

ML type
inference

Async
workflows

Meta-programming

Light-weight meta-programming

Pick one aspect and do it well
Heterogeneous execution (CUDA, SQL, JS, …)
Implicit and explicit quotations

D. Syme. Leveraging .NET meta-programming
components from F#, ML workshop 2006

Meta-
programming

[<ReflectedDefinition>]
module Program

JavaScript integration

F# to JavaScript translation

F# semantics or JavaScript semantics?
F# libraries or JavaScript libraries?

TypeScript type provider

T. Petricek. Client-side scripting using meta-
programming. BSc thesis. Charles University, 2007

Meta-
programming

type j = TypeScript.Api<"jquery.d.ts">
type h = TypeScript.Api<"highcharts.d.ts">

Asynchronous workflows

Single-threaded semantics
Close to F# GUI threading model

Syntax matters!

T. Petricek, D. Syme. The F# Computation
Expression Zoo, PADL 2014

Async
workflows

let render () = async {
let opts = h.HighchartsOptions()
for country, check in infos do
let! data = country.Indicators.

``School enrollment (% gross)`` (* ... *) }

D. Syme, T. Petricek, D. Lomov, The F# Asyn-
chronous Programming Model, PADL 2011

Type providers

Data access
Source-specific vs. general-purpose providers

Language and platform integration

Type
providers

type j = TypeScript.Api<"jquery.d.ts">

D. Syme et al. Themes in Information-Rich Functional
Programming for Internet-Scale Data Sources, DDFP 2013

type WorldBank = WorldBankProvider<Asynchronous = true>
let data = WorldBank.GetDataContext()
let countries = [data.Countries.Sweden; ...]

Not your grandma’s type safety

ML type system has its merits here…

…just different than you thought!
Invaluable when writing code
Safety guarantees still exist

Well-typed programs don’t go wrong?

Handling data-source changes (help?)
Importing unsound types (blame?)

Design considerations

Orthogonal design

Async workflows, type providers, meta-programming
Independent features, play well together

What can be in the library

All minimal syntactic extensions
Prefer library without making code ugly
Type providers, computation expressions, quotations

Conclusions

We need more case studies!

one + one ≥ two

Type safety is relative

ML-style languages are nice!

Get in touch: tomas@tomasp.net | @tomaspetricek | @dsyme
Read my rant: http://tomasp.net/academic/papers/philosophy-pl

