
Language support for context-aware computations

Tomas Petricek1, supervisor: Alan Mycroft1

1 University of Cambridge, 15 JJ Thomson Avenue, CB3 0FD, UK

tomas.petricek@cl.cam.ac.uk, alan.mycroft@cl.cam.ac.uk

1. Motivation

Modern software applications behave differently depending on the environment or context in which they

execute. They often run in increasingly rich environments that provide resources (e.g. database or GPS sensor)

and are gradually more diverse (e.g. multiple versions of different mobile platforms). Web applications are split

between client, server and mobile components; mobile applications must be aware of the context and of the

platform while the “internet of things” makes the environments even more heterogeneous; applications that

access rich data sources need to propagate security policies and provenance information about the data.

Writing such context-aware applications is a fundamental problem of modern software engineering. The

state of the art relies on ad-hoc approaches – using hand-written conditions or pre-processors for conditional

compilation. Common problems that developers face include:

 System capabilities. When writing code that is cross-compiled to multiple targets (e.g. SQL, CUDA

or JavaScript) the compilation often occurs at runtime and developers have no guarantee that it will

succeed until the program is executed1.

 Platform versioning. When developing application for multiple versions of a system (e.g. Android),

developers rely on lazy loading at runtime or use conditional compilation using #if. The former delays

errors to runtime, while the latter requires building all possible configurations to discover simple

compile-time errors.

 Resources & data availability. When programming applications that access resources or data provided

by the environment (e.g. specific database table, GPS sensor), the program typically performs dynamic

check for the resource availability. However, this is not checked in any way – we have no easy way

to tell what happens when the resource is not available (e.g. is there a fallback strategy or not?)

 Data provenance & security. Different kinds of data come with different policies – sensitive data (e.g.

credit card number) should never be exposed; data from certain sources may have limited validity.

Such policies are difficult to guarantee without extensive (and expensive) testing.

The presented research aims to solve such problems by integrating contextual information directly into the

programming languages and, in particular, into the type system. This approach can guarantee correctness

properties of programs and also allows development of additional tools – such as development editors with

immediate feedback. To make the resulting language practical, we adopt two basic principles: first, the system

must be unified, but expressive enough to capture a wide range of applications (highlighted above) and second,

the system must be extensible – developers need to be able to specify properties they need to track for their

specific application.

1 For example, LINQ compiles a subset of C# to SQL at runtime, but may fail with “Method X has no supported translation

to SQL”. This is an important issue –Google search for the term reports 31400 results e.g. StackOverflow (2011).

2. Background

The work on context-aware programming languages connects two directions in existing research on the theory

of programming languages. On one side, effect systems (Gifford and Lucasen (1986)) and monadic computations

(Moggi (1991), Wadler and Thiemann (2013)) provide a detailed and established method for tracking what

effects programs have – that is, how they affect the environment where they execute. On the other side, the

work on comonadic notions of computations (Uustalu and Vene (2008)) shows how to use the mathematical

dual of monads – comonads – to give categorical semantics of context-dependent computations.

Effect systems introduced track actions such as memory operations or communication. They are described

by typing judgments of a form Γ ⊢ 𝑒: 𝜏, 𝜎 where Γ is the context of a program (typically available variables), 𝑒

is the expression (program) itself, 𝜏 is the type of values returned by the program (e.g. integer or boolean) and

𝜎 is a set of possible effects. The judgment states that, given the context Γ, an expression has a type 𝜏 and can

only perform effects specified by the set 𝜎. Wadler and Thiemann (2003) explain how this shapes effect analysis

of a lambda abstraction – that is, how effect systems analyze the effects associated with a definition of a function:

In the rule for abstraction, the effect is empty because evaluation immediately returns the function, with
no side effects. The effect on the function arrow is the same as the effect for the function body, because
applying the function will have the same side effects as evaluating the body.

This means that, when a programmer defines a function, the system records that executing the function will

perform the effects of the body of the function. However, context-dependent computations do not match this

pattern. A function may place context requirements on both the call-site and the declaration-site. This means

that context-dependent computations have different syntactic properties.

3. Approach

Programming languages are fundamental tools used by software developers on daily basis and so the correctness

of programming languages is absolutely crucial. An error in the design of a language that becomes popular can

have massive influence on software quality. For this reason, we place strong emphasis on the theoretical

foundations of the work. We also believe that engaging developers from the industry early is the best way to

evaluate such project. This section briefly discusses both aspects of the approach.

Theoretical foundations

We follow the approach pioneered by Gifford and Lucasen for effect systems. We extend the type system of

(functional) programming languages with a notion of context-dependence. As outlined earlier, such systems

have different syntactic properties than effect systems and they also differ philosophically – by tracking what

programs require from the environment rather than tracking how they affect the environment.

For this reason, we associate the contextual information with the left-hand side of the entailment in the

typing judgment. Our rules have a form Γ, 𝜎 ⊢ 𝑒: 𝜏. The interpretation is that a program 𝑒 can only executed

when provided with variables Γ and an additional custom context 𝜎 (and then it yields a value of type 𝜏).

The examples of context-dependent computations presented earlier fall into two categories. One kind

captures the context of a program as a whole (e.g. resources or platform) and the other captures properties

associated with individual variables (e.g. security or provenance). We develop the following two calculi to

model the two situations:

 Our flat calculus is syntactically similar to effect systems. It tracks single information about the entire

context. Such information may be e.g. a set (of required resources), number (platform version).

 Our structural calculus generalizes the flat calculus and captures more fine-grained structure. It

associates a single piece of information with every variable of the context Γ. For example, when

tracking provenance, each variable is associated with a set representing the labels of data sources.

Typing rules

To provide more details, this section introduces the key aspects of the type systems for the two calculi. The

details of the flat calculus can be found in Petricek et al. (2013). The details are of a technical nature, but they

are the key for developing sound programming languages. More practical demonstration of the two calculi is

available in the next two sections.

Γ, r ⊢ 𝑒1: 𝜏1

𝑠
→ 𝜏2 Γ, t ⊢ 𝑒2: 𝜏1

Γ, 𝑟 ∨ (𝑠 ⊕ 𝑡) ⊢ 𝑒1𝑒2: 𝜏2

(Γ, 𝑥: 𝜏1), 𝑟 ∧ 𝑠 ⊢ 𝑒: 𝜏2

Γ, r ⊢ 𝜆𝑥. 𝑒: 𝜏1

𝑠
→ 𝜏2

(𝑥1: 𝜏, 𝑥2: 𝜏), 𝑟 × 𝑠 ⊢ 𝑒: 𝜏1

(𝑥: 𝜏), 𝑟 ⊗ 𝑠 ⊢ 𝑒[𝑥1 ← 𝑥, 𝑥2 ← 𝑥]: 𝜏1

Γ1, 𝑟 ⊢ 𝑒1: 𝜏1

𝑠
→ 𝜏2 Γ2, 𝑡 ⊢ 𝑒2: 𝜏1

(Γ1, Γ2), 𝑟 × (𝑠 ⊕ 𝑡) ⊢ 𝑒1𝑒2: 𝜏2

Figure 1a. Application and

abstraction of the flat calculus
Figure 1b. Application and contraction

of the structural calculus

The flat calculus (Figure 1a) uses tags of a structure (𝑆,∨,⊕). Variable contexts and domain of functions are

annotated with a tag (written Γ, r and 𝜏1

𝑟
→ 𝜏2, respecttively) to denote the context requirements. Application

is typeable in a context that satisfies a combination of the requirements of the two expressions and the

requirements of the function. Lambda abstraction splits the requirements of the body between the declaring

context and the function (i.e. resources can be provided by both declaration and use site).

To track more fine-grained calculus, the structural calculus (Figure 1b) mirrors the structure of the variable

context Γ in the annotation using ×. Information associated with individual variables can be merged using two

operations. The contraction rule combines information about two individual variables 𝑥1 and 𝑥2 into

information 𝑟 ⊗ 𝑠 associated with a single variable. The application rule combines information about the first

part of the context (𝑟 corresponding to Γ1) with an information 𝑠 ⊕ 𝑡, which specifies that all variables from

Γ2 (tagged with 𝑠) may affect the input of the function 𝑒1 (tagged with 𝑡).

Example: Flat calculus

To give a concrete example of the flat calculus, consider the following simple program which takes a price and

converts it to another currency using a resource called ConversionRate:

let convertPrice price =
 (access ConversionRate) ∗ price

In a distributed programming language (e.g. client-server web application), the function may be defined on the

server, but then passed to the web browser and executed repeatedly (as the user edits price). The key aspect

of the flat calculus is that the resource ConversionRate can be provided by either of the environments. It may

come both from the server, but also obtained dynamically by the web application (for example, if the web

application is connected to a web service that provides currency rate information).

Example: Structural calculus

As an example of the structural calculus, consider a language that allows us to get a value of a variable

(representing some changing data-source) x versions back using the syntax a[x]. To track information about

individual variables, we use a product-like operation × that mirrors the product structure of variables. For

example, a program that accesses 5th value of a and 10th value of b looks as follows:

a[5] + b[10]

Such program requires the context 𝑎: stream, 𝑏: stream, 5 × 10. The context specifies that a and b are both

streams. The annotation 5 × 10 corresponds to the variable context 𝑎, 𝑏. It denotes that we need at most 5

and 10 past values of a and b. If we substitute c for both a and b, we get the following code:

c[5] + c[10]

The substitution corresponds to the first rule in Figure 1b. The annotations 5 and 10 are combined into one

using the ⊗ operation – for this specific application, the operations needs to be the 𝑚𝑎𝑥 function and so the

required context for the second code snippet is 𝑚𝑎𝑥(5,10) = 10.

4. Results

There is an increasing need for capturing how computations depend on the context in which they execute –

examples from the literature include tracking of security information, provenance, resources or data sets

accessed by programs. However, all of the above have been presented as single-purpose mechanism. We unify

such notions of context-dependence into a single programming model.

Specific contributions

The work done so far consists of analyzing different notions of context-dependence, looking how to improve

data-access in main-stream languages and building the theoretical foundations for flat calculus and structural
calculus presented above. Two publications written (or co-authored) by the author form the key contributions:

 Syme et al. (2013) focuses on data access as one of the most important notions of context-dependence

used in majority of applications today. We presented a mechanism that integrates data access directly

into a (functional) programming languages. Data from external data sources (such as XML, JSON or

CSV files, web services, databases and many more) can be integrated by developing a compiler

extension (type provider). Such provider enables the compiler to check that the structure of external

data matches the expectations of the developer and it also provides autocomplete for the IDE (editor),

which can offer information about available data.

 Petricek et al. (2013) presents the flat calculus outlined in the earlier section in detail. It looks at three

examples of context-dependent computations (dynamically scoped parameters, resources and data-flow

computations) and explains how the flat calculus unifies all three systems. Furthermore, it extends the

semantic model of Uustalu and Vene (2008) to capture fine-grained information about context using

indexed comonads.

In addition to the above, we are also developing a practical implementation of the programming model as an

extension to the programming language F#. The extension follows a pragmatic approach – we aim to develop

an extensions that practitioners can easily evaluate to provide feedback. This is done by adapting the F#

computation expression syntax (see Petricek and Syme (2012)) and extending the type checking mechanism to

accommodate custom structures such as sets (of resources), versions (of platforms) and other.

Long-term outlook

In the long-term, we envision a programming language, together with additional tooling, that is capable of

building programs that run as distributed computations in diverse environments and across different platforms.

The compile-time checking provides developers with useful information (which functions can be reused in

certain environments) and prevents bugs (attempting to access unavailable resource) and security issues.

Programming languages of the future will be able to use such information in order to cross-compile single

program for a wide range of platforms (JVM, .NET, HTML5, JavaScript, native). Compilation of a program

will also split program into components for different execution environments (server-side, client-side, mobile,

etc.). Sadly, designing and developing such language (with sound theory and complete tool-chain) is well beyond

the scope of a single 3-year PhD topic.

References

D. K. Gifford and J. M. Lucassen (1986). Integrating Functional and Imperative Programming. In Proceedings

of Conference on LISP and Functional Programming, 1986. ISBN 0897912004.

E. Moggi (1991). Notions of Computation and Monads. Information Computation,

Vol 93: 55–92. July 1991. ISSN 0890-5401

P.Wadler and P. Thiemann (2003). The Marriage of Effects and Monads. ACM Transactions

on Computational Logic, Vol 4:1–32, January 2003.

T. Murphy, VII., K. Crary, and R. Harper (2008). Type-safe distributed programming with ML5. In

Proceedings of Conference on Trustworthy Global Computing, 108–123, 2008.

T. Uustalu and V. Vene (2008). Comonadic Notions of Computation. In Electronic Notes in Theoretical

Computer Science. Vol 203:263–284, June 2008. ISSN 1571-0661.

D. Syme, K. Battocchi, K. Takeda, D. Malayeri, T. Petricek (2013). Themes in information-rich functional

programming for internet-scale. In Proceedings of DDFP 2013.

T. Petricek, D. Orchard and A. Mycroft (2013). Coeffects: Unified static analysis of context-dependence. To

appear in Proceedings of ICALP 2013.

T. Petricek, D. Syme (2012). Syntax Matters: Writing abstract computations in F#. Available in pre-

proceedings of TFP 2012. http://www.cl.cam.ac.uk/~tp322/drafts/notations.html

StackOverflow (2011), by user ‘brechtvhb’. Method x has no supported translation to SQL.

http://stackoverflow.com/questions/5309338/ (Retrieved 3 March 2013)

