
University of Cambridge

Coeffects: Programming languages for rich environments

University of Cambridge, {name.surname}@cl.cam.ac.uk

Tomas Petricek Dominic Orchard supervisor: Alan Mycroft

Computer Laboratory

Motivation: Why context-tracking matters

 Applications today run in diverse environments, such as mobile

phones or the cloud. Different environments provide different

capabilities, data with meta-data and other resources.

 Applications access information and resources of the environment.

Such context-dependent interactions are often more important

than how the application affects or changes the environment.

 Tracking and verifying how computations affect the environment

can be done in a unified way using monadic effect systems, but no

such mechanism exists for tracking and verifying how computa-

tions access and rely on the context.

Example 1: Liveness analysis & optimization

Annotate variable context with false (0) if it is definitely not live;

true (1) if it may be accessed. Unused context can be optimized away.

Context is modelled as dependent Maybe type: C1 A = A and C0 A = 1.

Example 2: Distributed language with resources

Context carries additional rebindable resources that may be ac-

cessed. Annotation specifies a set of resources that are available.

Context is represented using a product type: Cr A = A × (r → Res).

Resource requirements of a function are split between the call site

and the declaration site. Multiple typings are possible, depending

on how the function is used.

Example 3: Efficient data-flow language

Context provides access to previous values of variables. The

annotation specifies how many past values may be needed.

Context is represented as a non-empty list; the annotation

specifies the length of the list: Cn A = A×(A1×…×An)

Unified system: Flat coeffect calculus

Captures the essence of context-dependence tracking. Our unified model

identifies common properties of the three examples and has desirable

theoretical properties (subject reduction and categorical model)

 Sequential composition given by a monoid (⊕, ⟘) or (⊕, ⟙)

 Context is propagated (∨) and split (∧) using two additional operators

Generalized system: Structural coeffect calculus

We often need to capture fine-grained structure with context requirements

corresponding to individual variables (liveness, data-flow, provenance).

 Compose annotations using a product (×) that reflect variable structure

 Write system using structural rules that change annotation accordingly

Effect systems

 Track or infer information

about what the computation

does to the environment

 Information σ, such as set of

performed memory operations,

attached to the result

 Propagate information for-

ward to the overall result

 Modeled as morphisms α → β

where is a monad

Coeffect systems

 Track or infer information

about what the computation

requires from the environment

 Information σ, such as set of

accessed resources, attached to

the variable context

 Propagate information back-

ward to the initial input

 Modeled as morphisms α → β

where is a comonad

fun () →

 let evts = access EventsDatabase

 let date = access CurrentDate

 query evts ʺSELECT Count(*) WHERE Date > %1ʺ date

