Computer Laboratory University of Cambridge

Coeffects: Programming languages for rich environments

Tomas Petricek Dominic Orchard supervisor: Alan Mycroft

University of Cambridge, {name.surname}@cl.cam.ac.uk

Motivation: Why context-tracking matters

Effect systems Coeffect systems

e Applications today run in diverse environments, such as mobile
phones or the cloud. Different environments provide different )

capabilities, data with meta-data and other resources. : : :
e Track or infer information

e Track or infer information
about what the computation

does to the environment

o Applications access information and resources of the environment. about what the computation

Such context-dependent interactions are often more important
than how the application affects or changes the environment.

requires from the environment

e Information o, such as set of Information o, such as set of

e Tracking and verifying how computations affect the environment
can be done in a unified way using monadic effect systems, but no

performed memory operations, accessed resources, attached to

attached to the result the variable context

such mechanism exists for tracking and verifying how computa-

e Propagate information for-
ward to the overall result

tions access and rely on the context. Propagate information back-

ward to the initial input

Example 1: Liveness analysis & optimization

e Modeled as morphisms a = Cf Modeled as morphisms Da — 3

Annotate variable context with false (0) if it is definitely not live; where C is a monad where D is a comonad

true (1) if it may be accessed. Unused context can be optimized away.

Context is modelled as dependent Maybe type: C1A =A and Co A = 1.

Unified system: Flat coeffect calculus
C'T €1. CtT1 — 1o C°T €r:.T7Tq

Captures the essence of context-dependence tracking. Our unified model
CTV(SAt)F - e1 e>: Ty

identifies common properties of the three examples and has desirable

T theoretical properties (subject reduction and categorical model)
X:T

CIT+x: 1T

n € {0,1,2, ..}
CT - n: 1

e Sequential composition given by a monoid (B, 1) or (B, T)
e Contextis propagated (V) and split (A) using two additional operators

Example 2: Distributed language with resources
C'T I €1 CtT1 — T9 C°T €21

C’"V(S@t)f‘ F e ey Ty

C"S([T,x:ty) F e:1,

Context carries additional rebindable resources that may be ac-
cessed. Annotation specifies a set of resources that are available.

Context is represented using a product type: C-A = A x (r — Res).

fun () - C'T+-Ax.e:C5t1 = 15
let evts = access EventsDatabase
let date = access CurrentDate x:Tt €l x:T €Tl
] sk 0 ] Or
query evts "SELECT Count(*) WHERE Date > %1" date CiT - v T C'TExT

Resource requirements of a function are split between the call site
and the declaration site. Multiple typings are possible, depending
on how the function is used.

C™5(T,x:1t1) F e: 1y

C'T + Ax. e: CST1 — T»

CTF - €1. CtTl — 1o CSF - €r:Tq
CTUSUtl" - €1 €2:17>

Example 3: Efficient data-tflow language

Context provides access to previous values of variables. The
annotation specifies how many past values may be needed.

Context is represented as a non-empty list; the annotation
specifies the length of the list: C, A = Ax(A1%...xAy)

CTF - €1. CtT1 — 1o CSF - €. Tq
cmnax (rs+OT 1 €1 €2:7TH
C'Tre:T
C"*IT + preve:t

Generalized system: Structural coeffect calculus

We often need to capture fine-grained structure with context requirements
corresponding to individual variables (liveness, data-flow, provenance).

e Compose annotations using a product (X) that reflect variable structure
e Write system using structural rules that change annotation accordingly

C'Ty ke :Cty -1, CT, ket
CTX(SAt) (Fl, Fz) - €1 €279

C"*(,x:t1) F e:1y

C'T + Ax. e: CST1 — 1o

C"S(x:t,y:t) Fe:T
C™Vs(z:t) v {z/x¥{z/yle: T

5 UNIVERSITY OF
CAMBRIDGE

44 44



