
Coeffects: The essence of context dependence

Tomas Petricek
1
, supervisor: Alan Mycroft

1

1 University of Cambridge, 15 JJ Thomson Avenue, CB3 0FD, UK

tomas.petricek@cl.cam.ac.uk, alan.mycroft@cl.cam.ac.uk

1. Motivation

Modern applications run in diverse environments, such as mobile phones or the cloud. Different environ-

ments provide capabilities to perform operations, retrieve data or to use environment’s resources. Some

also provide meta-data about quality, provenance and security. Understanding how applications depend

on contextual information is often more important than understanding how they affect the environment.

Tracking interactions with the environment can be done in a unified way using effect systems, but

no such unified mechanisms exist for tracking how programs depend on the context. As a result, tracking

of context-dependence is often done in an ad-hoc fashion.

let validate(input) =

 (input ≠ null) && (input.ForAll(isLetter))

let displayProduct(name) =

 if validate(name) then

 let product = lookup(name, access ProductsDb)

 generateProductPage(product)

 else generateErrorPage()

Listing 1. Generating web page in an online store application

In Listing 1 we would like to check the following properties at compile time:

• Cross-platform and versioning. The ForAll function is only available when running on .NET

or JVM, but cannot be translated to SQL and executed as database code.

• Tracking resource usage. The construct access product connects to a database and so

displayProducts can only execute on a server in the cloud.

• Provenance and security. For auditing purposes, we want to track provenance to know that the

result of displayProduct relies only on the given input and database data.

2. Background

Effect systems introduced by Gifford and Lucasen (1986) track actions performed by computations, such

as memory operations or communication. The judgments are of a form Γ ⊢ �: �, �, associating effects �

with the result. Moggi (1991) models the semantics of effectful computations as monadic computations

� →
 and Wadler with Thiemann (2003) relate the two concepts.

Conversely, typing judgements of context-dependent properties (or coeffects) have a form Γ, � ⊢

�: �, associating context information � with free variables Γ. Syntactically, coeffects are similar to effects

(i.e. Murphy, Cray and Harper (2008) use effect syntax to track coeffect properties), but there is a number

of differences. Coeffects support both call-by-name and call-by-value, while effects require explicit

evaluation order and they can be also used to track context information about individual variables.

Semantically, effects and coeffects differ significantly. Uustalu and Vene (2008) show that context-

dependent programs can be modelled as comonadic computations �� → �. Our work extends their

semantics in a number of ways discussed later.

3. Approach

We develop coeffect calculus to capture context-dependence properties. Although a number of existing

systems fit with the model, no unified systems have been presented so far:

• Our flat calculus is syntactically similar to effect systems. It tracks single information about the

entire context. In distributed language the information would be the set of required resources.

• Our structural calculus generalizes the flat calculus and captures more fine-grained structure. It

tracks information about individual variables in the variable context. When tracking provenance,

the information describe data sources that can influence the value of the variable.

�Γ ⊢ �1: �
��1 → �2							�

�Γ ⊢ �2: �1

�∨�∨�Γ ⊢ �1�2: �2

�∨��Γ, �: �1� ⊢ �: �2

�Γ ⊢ ��. �: ���1 → �2

��⊗���: �, �: �� ⊢ �: ��

��⊕���: �� ⊢ � � ← �, � ← �": ��

��Γ� ⊢ 	 ��: �
#�� → �$						�

�Γ$ ⊢ �$: ��

��⊗�#⊕���Γ�, Γ$� ⊢ ���$: �$

Figure 1a. Application and

abstraction of the flat calculus

Figure 1b. Application and contraction

of the structural calculus

Figure 1 shows interesting typing rules. The flat calculus (Figure 1a) uses tags of a semi-lattice �%,∨�.

Variable contexts and domain of functions are annotated with a tag (written ��Γ and ���� → �$, respect-

tively) to denote the context requirements. Application is typeable in a context that satisfies requirements

of the two expressions and the requirements of the function. Lambda abstraction splits the requirements

of the body between the declaring context and the function (i.e. resources can be provided by both

declaration and use site). This is crucial for supporting both call-by-name and call-by-value.

To track more fine-grained calculus, the structural calculus (Figure 1b) mirrors the structure of the

variable context Γ in the tag using ⊗. Information associated with individual variables can be merged

using the ⊕ operation. The contraction rule combines information about two individual variables and �

into information ⊕ � associated with a single variable. The application rule combines information about

the first part of the context (corresponding to Γ�) with an information � ⊕ �, which specifies that all

variables from Γ$ (tagged with �) may affect the input of the function �� (tagged with �).

4. Contributions

There is an increasing need for capturing how computations depend on the context in which they execute.

Examples from the literature include tracking of security information, provenance, resources or executing

nodes in distributed programs, but all of the above are single-purpose mechanisms.

• We present a unified calculus for tracking context-dependence, providing a counterpart to the

well-known effect systems. The calculus can be used syntactically, as a basis for type system,

and semantically, to give comonadic semantics of a language.

• We identify the information structures that can be tracked using coeffects. We use the flat

calculus to track dynamically scoped parameters, resources and execution environments. We use

the structural calculus to track security and provenance information.

• We extend the comonadic semantic of Uustalu and Vene (2008) to use tagged comonads and to

accommodate sub-coeffecting and fine-grained tracking of information in our structural calculus.

References

D. K. Gifford and J. M. Lucassen (1986). Integrating Functional and Imperative Programming. In

Proceedings of Conference on LISP and Functional Programming, 1986. ISBN 0897912004.

E. Moggi (1991). Notions of Computation and Monads. Information Computation,

Vol 93: 55–92. July 1991. ISSN 0890-5401

P.Wadler and P. Thiemann (2003). The Marriage of Effects and Monads. ACM Transactions

on Computational Logic, Vol 4:1–32, January 2003.

T. Murphy, VII., K. Crary, and R. Harper (2008). Type-safe distributed programming with ML5. In

Proceedings of Conference on Trustworthy Global Computing, 108–123, 2008.

T. Uustalu and V. Vene (2008). Comonadic Notions of Computation. In Electronic Notes in Theoretical

Computer Science. Vol 203:263–284, June 2008. ISSN 1571-0661.

