
Syntax Matters: Writing abstract computations in F#

Tomas Petricek
1
, Don Syme

2

1 University of Cambridge, Cambridge, United Kingdom
2 Microsoft Research, Cambridge, United Kingdom

tp322@cam.ac.uk, dsyme@microsoft.com

Abstract. The academic literature describes a number of abstract computation

types such as monads, monoids, applicative functors and their compositions.

These can be used to describe features of mainstream languages such as genera-

tors in Python or asynchronous computations in C# 5. Functional programmers

are used to work with abstractions directly, but this is often difficult without a

convenient syntactic sugar.

We give an overview of computation expressions, which is a syntactic sugar

for working with abstract computations in F#. Unlike the do notation in Has-

kell, computation expressions are not tied to a single kind of abstract computa-

tions. They support wider range of computations, depending on what operations

are available and they also provide greater syntactic flexibility.

As a result, F# programmers are able to use a single syntactic sugar for a

wider range of computations including monoidal sequence generators, monadic

parsers and applicative formlets. This removes the need for ad-hoc language

extensions that provide “nice syntax” for one particular kind of computations.

1 Introduction

Abstract computation types like monads [1] provide a way for composing computa-

tions with some additional aspects, but monads are not the only example. Applicative

functors [2] provide a weaker (thus more general) abstraction useful for web program-

ming [18], while MonadPlus [8] is a stronger abstraction useful for parsers [10].

In Haskell, we can write such computations using a mix of combinators and

syntactic extensions like monad comprehensions [19] and do notation. On the other

hand, languages such as Python and C# emphasize the syntax and provide single-

purpose support for asynchrony [20] or list generators [11]. Ideally, we would like to

get the best of both worlds. A language should provide unified syntax that can capture

different abstractions and enable appropriate syntax depending on the operations

provided by the abstract computation type.

We argue that F# computation expressions provide such mechanism. Although the

technical aspects of the feature have been described before [17], this paper is the first

specific description of the breadth of applications of computation expressions from

the perspective of abstract computations. The main contributions are:

2 T. Petricek, D. Syme

Abstract computations. We describe abstract computations that can be written using

F# 2.0 computation expressions. Aside from standard computations like monads and

monoids (Sections 3 and 4), we show how to provide convenient notation for additive

monads, monad transformers (Section 5) and applicative functors (Section 6).

Practical examples. Commonly used computation expressions match well-known

computation types. Applications include asynchronous programming (Section 3.1),

parsers, asynchronous sequences (Section 5) and applicative formlets (Section 6).

Handling of effects. F# is an impure language, so expressions may have effects. We

reflect on how computation expressions embed (untracked) effects in abstract compu-

tations. We identify two approaches (Section 3.2) for different kinds of monads.

Examples in Sections 2 to 4 are based on F# 2.0 and Section 6 uses a research exten-

sion proposed by Petricek [22]. An upcoming version F# 3.0 extends the mechanism

further to accommodate query syntax, but we leave that to future work. The examples

in the paper focus on the breadth, so we omit implementations of the computations.

These can be found in an online appendix at: http://tryjoinads.org/computations

2 Computation expressions

Computation expressions are blocks representing non-standard computations – that is,

computations that have some additional aspect, such as laziness, asynchronous evalu-

ation, hidden state or other. The code inside the block mirrors the standard F# syntax,

but it is re-interpreted in the context of a non-standard computation. Computation ex-

pressions may also include a number of constructs that provide non-standard alterna-

tives of standard constructs. For example, the let! syntax provides non-standard

(monadic) version of let binding.

In this section, we use two examples to show how computation expressions unify

single-purpose extensions from other languages. Then we look at the formal defini-

tion in the F# specification [17].

2.1 Unifying computations

The support for asynchronous programming in C# 5.0 is inspired by F# computation

expressions, but it serves as a good example of single-purpose extension. The follow-

ing C# 5.0 code downloads a specified URL without blocking the calling thread. It

returns a Task<string> object that can be used to register callback that will be called

when the operation completes:

async Task<string> GetLength(string url) {
 var html = await DownloadAsync(url);
 return html.Length;
}

Syntax Matters: Writing abstract computations in F# 3

The code uses standard C# features including var for variable binding and return. It

also uses non-standard construct await, which specifies that DownloadAsync returns an

asynchronous I/O operation and that the rest of the code should be run when the

download completes. In F#, the body can be written as follows:

async { let! html = downloadAsync(url)
 return html.Length }

Computation expressions are enclosed in a block like async { .. } that determines

the meaning of the computation. The async identifier is an object, which exposes

members that are used to build the computation. Depending on the available members

different keywords, written in bold font, are enabled (see Section 2.2).

The previous snippet uses non-standard let binding, written as let!, to denote the

fact that the download is done asynchronously. This operation is interpreted using the

Bind member of the async object. This example closely corresponds to the do notation

for monads in Haskell [8], but we will see that we can use many other constructs.

As a second example, we use Python sequence generators that are used to construct

lists. The following Python function duplicates elements in a list and multiplies the

second occurrence of every element by 10:

def duplicate(list):
 for n in list:
 yield n
 yield n * 10

Haskell monad comprehensions [19] allow us to write [n * 10 | n <- list] to

multiply all elements by 10, but they are not expressive enough to capture duplication.

To do that, the code also needs monoidal operation to concatenate two lists. This can

be done using the MonadPlus type class and mplus operation, but then we cannot bene-

fit from any syntactic extension. In F#, we can write the sample as follows:

seq { for n in numbers do
 yield n
 yield n * 10 }

The seq { .. } block is again a computation expression, but it uses a different syntax,

which is more appropriate for generators. As already noted, this example requires mo-

noidal structure, which is provided by Combine member of seq. When the member is

defined, the computation can produce multiple results using either yield or return.

2.2 Computation expressions

Computation expressions have been available in F# since 2007 [15] and they are fully

documented in the F# language specification [17]. In this paper, we look at this purely

syntactic language mechanism from a different perspective, but this section gives a

brief overview of how the syntactic mechanism works. Showing the entire syntax and

translation rules is beyond the scope of this paper, but we include most of the

constructs that are used in this paper. Computation expression is an F# expression, but

the body of computation expressions is a separate syntactic category:

4 T. Petricek, D. Syme

expr = expr { cexpr } Computation expression

cexpr = let pat = expr in cexpr Binding value

 | let! pat = expr in cexp Binding computation

 | return expr Return value

 | return! expr Return computation

 | yield expr Yielding value

 | yield! expr Yielding computation

 | for pat in expr do cexpr For loop computation

 | while expr do cexpr While loop computation

 | cexpr1; cexpr2 Composing computations

 | other-expr Effectful expression

The syntax includes return, yield, let! and for that were used in the previous section

as well as a number of other constructs. The last two cases are perhaps more interes-

ting. The first one represents a sequencing (or composition) of two computations. As

we will see, the construct has different meanings for different types of abstract

computations. The last one represents an effectful expression that can be turned into a

computation that does not return a result, but performs some effect. Finally, the in

keyword in let! and let can be omitted when using a line break instead.

A concrete computation block such as async { .. } or seq { .. } does not allow

all of the keywords – a construct can only be used if the static type of the object

(async or seq) defines members that are required by the translation of the construct.

The object async or seq is called computation builder. Assuming bind and unit are

operations of the asynchronous workflow monad, a computation builder async that

enables let! and return syntax can be written as follows:

type AsyncBuilder() =
 member x.Bind(ma, f) = bind f ma
 member x.Return(a) = unit a

let async = AsyncBuilder()

The type AsyncBuilder is an F# class with members Bind and Return. To write a com-

putation expression block async { .. }, we create an instance of the object and assign

it to the async identifier. In the rest of the paper, we do not use the actual computation

builder notation and show just member names together with their types1.

As mentioned, computation expressions are a lightweight syntactic sugar. They are

translated before type-checking, according to the rules shown in Figure 1. The fact

that the translation occurs before type-checking is significant. It allows more flexi-

bility in definitions of the operations – for example, the Combine member has different

type for monads (Sections 3.2) and monoids (Section 4).

The translation is defined as a function ⟦ – ⟧m parameterized by the computation

builder name. The identifier is used to generate member calls such as m.Bind (tran-

slation of let!) or m.Return (translation return). The omitted rules for yield! and

yield are similar to return and return! using member names Yield and YieldFrom.

1 Polymorphic types are written using a lightweight notation ma instead of the standard F#

notation M<'T>. For example, the type of monadic bind is written as �� → �� → �	
 → �	.

Syntax Matters: Writing abstract computations in F# 5

A particular construct of computation expression syntax is allowed only when the

static type of the computation builder defines members that are required by the tran-

slation. For example, it is not possible to use let! or return inside seq { .. } block,

because seq.Bind and seq.Return are not defined.

An exception from this rule are Delay and Run members. These are used if they are

provided, but when they are not available, a different translation is used. The use of

these two operations is captured by helper functions ∆⟦ cexpr ⟧m and Λ⟦ cexpr ⟧m.

The first one applies m.Run to the translated computation expression (in the first rule)

and the second wraps translated computation in a lambda function and calls m.Delay

(in arguments of Run, While and Combine).

Although F# computation expressions are purely syntactic, they are used to prog-

ram with well known abstract computations. Often, there are multiple encodings using

different syntax. Analyzing and describing these is our key contribution.

3 Monads

Monads, introduced by Moggi [5] and popularized by Wadler [1], are the most widely

known class of abstract computations. In purely functional languages, they are useful

for propagating state, exceptions or effects [6]. The most prominent monads in F# are

asynchronous workflows [7]. They are used for writing non-blocking code that

involves long-running I/O operations without explicit use of callbacks.

3.1 Functional monads

Asynchronous workflows use the most common syntax for writing monadic compu-

tations. Monadic binding is written using let! and returning of a value using return.

To allow the syntax, computation builder must provide the following operations:

expr { cexpr } = let m = expr in ∆⟦ cexpr ⟧m

⟦ let pat = expr in cexpr ⟧m = let pat = expr in ⟦ cexpr ⟧m

⟦ let! pat = expr in cexpr ⟧m = m.Bind(expr, fun pat → ⟦ cexpr ⟧m)

⟦ return expr ⟧m = m.Return(expr)

⟦ return! expr ⟧m = m.ReturnFrom(expr)

⟦ for pat in expr do cexpr ⟧m = m.For(expr, fun pat → ⟦ cexpr ⟧m)

⟦ while expr do cexpr ⟧m = m.While(expr, Λ⟦ cexpr ⟧m)

⟦ cexpr1 ; cexpr2 ⟧m = m.Combine(⟦ cexpr1 ⟧m, Λ⟦ cexpr2 ⟧m)

⟦ other-expr ⟧m = other-expr; m.Zero()

Λ⟦ cexpr ⟧m = m.Delay(fun () → ⟦ cexpr ⟧m)

Λ⟦ cexpr ⟧m = ⟦ cexpr ⟧m (if Delay is missing)

∆⟦ cexpr ⟧m = m.Run(Λ⟦ cexpr ⟧m)

∆⟦ cexpr ⟧m = ⟦ cexpr ⟧m (if Run is missing)

Fig. 1. Translation rules for computation expressions

6 T. Petricek, D. Syme

return : � → ��
bind : �� → �� → �	
 → �	

Defining bind also enables the do! keyword, which is used to call asynchronous ope-

rations that return unit. The following code downloads a web page (asyncDownloadUrl

returns asynchronous computation), waits 1 second and returns the length of the page:

async { let! html = asyncDownloadUrl url
 do! Async.Sleep(1000)
 return html.Length }

The do! notation is treated as a monadic binding that matches the result of computa-

tion against the unit pattern and it is equivalent to writing let! () = e. The above

snippet is translated using two nested calls to bind and a single call to return:

async.Bind(asyncDownloadUrl url, fun html ->
 async.Bind(Async.Sleep(1000), fun () ->
 async.Return(html.Length)))

The return construct is used to lift a value into a monad, but we also need syntax for

returning the result of an existing monadic computation. To keep the syntax uniform,

F# uses the return! keyword (let binds a value, let! binds a computation, return

returns a value and return! returns a computation).

To download a web page asynchronously and immediately return the result, we can

write return! asyncDownloadUrl url. The translation requires the following member:

returnFrom : �� → ��
The only purpose of returnFrom is to allow the return! keyword, which is not

desirable for some computations (i.e. in Section 4). Although the operation can imple-

ment some behavior, it is usually defined to be just an identity function.

The syntax introduced so far is very similar to the do notation in Haskell [8]. The

next section shows additional constructs that are allowed in monadic syntax in F#.

Monad laws. Monad laws specify that certain syntactic transformations preserve the

meaning of code. These are defined in terms of bind and return, but they can also be

expressed using the syntax – monad comprehensions or do notation [1]. We do not

show the syntactic equivalences using the F# computation expression syntax, because

they are quite similar to the well-known equivalences using the Haskell do notation.

3.2 Monads with sequencing and effects

F# uses the unit type for primitive effectful computations. The sequencing expression

e1; e2 first evaluates e1 which is required to return unit, then evaluates e2 and returns

its result. In addition, F# also allows an if expression without the else branch (if e1

then e2), which requires e2 to return unit and implicitly returns unit in the false case.

Monadic sequencing and unit can be expressed in terms of bind and return, but that

excludes other uses of the syntax (Section 5), so the translation requires additional

operations. For monads, these can be defined in two ways.

Syntax Matters: Writing abstract computations in F# 7

Sequencing monadic computations. If ma represents a computation that can be

executed later, it is possible to define a delay operation that takes an effectful function

and wraps it in an ma value. Aside from delay, we define the following operations:

delay : �1 → ��
 → �� combine : �1 → �� → ��
zero : 1 → �1 run : �� → ��

For monadic computations, it is possible to define the above operations in terms of

bind and return, but we leave that as an exercise. The zero operation represents a mo-

nadic unit value and combine corresponds to the ; operator. The run operation wraps

the entire computation expression (which is returned by delay) and can be defined as

an identity function. We will see its utility in the next section.

The operations are used when translating a computation expression that does not

return a value (loops or if without the else branch), followed by another construct:

async { if delay then do! Async.Sleep(1000)
 return! asyncFetch url }

If delay is true, the workflow waits for one second. Then it asynchronously down-

loads a web page and returns the result. The code is translated as follows:

async.Run(async.Delay(fun () ->
 async.Combine(
 (if delay then
 async.Bind(Async.Sleep(1000), fun () -> async.Zero())
 else async.Zero()),
 async.Delay(fun () -> async.ReturnFrom(asyncFetch url)))))

The true branch is translated as a binding that returns the zero computation. The false

branch is added, returning the zero computation as well. The result is then combined

with the upcoming returnFrom, which is wrapped in delay to avoid performing

effects too early when evaluating the arguments of combine. The first argument of

combine is a unit-returning computation. As a result, it is not possible to use return

imperatively to jump out of a monadic computation.

The translation wraps the whole computation in a lambda function passed to delay

and then applies run on the result. As with sequencing, the overall delay wraps any

immediate effects (in the conditional) inside the computation.

Sequencing monadic containers. If ma represents a wrapped, non-delayed value

(such as option<'T>) we cannot implement delay of the previous type without perfor-

ming the effects. However, the translation allows different typing of the operations:

delay : �1 → ��
 → �1 → ��
 combine : �1 → �1 → ��
 → ��
zero : 1 → �1 run : �1 → ��
 → ��

In this alternative, delay may be an identity function that simply returns the provided

function. The result of delay is passed as a second argument to combine (and to run),

so we modify their types accordingly. The operations zero and combine can be

implemented by return and bind. Finally, run applies the delayed function (potentially

performing the effects) to get the result of a computation. This variant makes it pos-

sible to sequence computations of monads representing containers, such as Maybe:

8 T. Petricek, D. Syme

maybe { if b = 0 then return! fail()
 return a / b }

The translation for this snippet calls combine with translation of the first and second

line as the first and second argument, respectively. If delay evaluated the function to

obtain an ma value, it would evaluate a / b even if b equals zero. By returning a fun-

ction, the combine operation may not need to evaluate the second computation (if the

first one fails), avoiding a runtime exception caused by division by zero.

Unifying delayed computations. So far, we represented delayed computations using

�� (for computations) and � → �� (for containers). We can generalize the two

cases by using a new abstract type �� for delayed computations:

delay : �1 → ��
 → � combine : �1 → � → ��
zero : 1 → �1 run : � → ��

To our knowledge, the only types used for � in practice so far are �� and 1 → ��.

However, the generalization simplifies the discussion in upcoming sections. The

computation � may itself have a monadic structure, but this is not required. We only

require that delaying an effect-free function and evaluating it using run is an identity.

Formally !"# $ %&�' �λ). #
+ = #, where # is some effect-free computation.

The equation holds for the standard definitions of delay and run. It guarantees that

the added operations do not change the meaning in case when they are not needed.

3.3 Monadic control flow constructs

The syntax allowed inside computation expressions aims to provide computation-spe-

cific versions of most of the standard control flow constructs of F#. In this section, we

look at the support for (imperative) loops and exception handling.

Looping syntax. The computation expression syntax supports looping constructs for

and while. For monads, these can be defined using zero, combine and bind, but the

translation allows other useful definitions (Sections 4 and 5.2):

for : .�/ → �� → �1
 → �1
while : �1 → bool
 → 1 → �1

The for operation represents sequencing of computations generated from a list and

while represents repeated evaluation of a computation while a condition (relying on

mutable state) holds. The first argument is a function that evaluates the condition. The

second argument represents a delayed body. In for, the second argument is always a

function, so delay is not used.

In asynchronous workflows, looping constructs are useful for writing repeating and

long-running computations. The following example is adapted from [7]:

async { while true do
 for color in [green; orange; red] do
 do! Async.Sleep(1000)
 displayLight color }

Syntax Matters: Writing abstract computations in F# 9

The code creates a workflow that repeatedly changes the color of a semaphore light

with a 1 second delay. The function displayLight mutates the user interface.

Monadic exception handling. In an impure language that supports exceptions, it is

important to provide a mechanism for exception handling within the monadic syntax.

Doing that manually would require wrapping every sub-expression using an exception

handler, because the translation introduces new scopes.

The handling of exceptions in F# is delegated to tryWith and tryFinally members

that represents a monadic versions of try .. with and try .. finally expressions:

tryWith : � → �exn → ��
 → ��
tryFinally : � → �1 → 1
 → ��

The first argument is a computation (obtained using delay) that represents un-evalu-

ated body. The second argument of tryWith is an exception handler that takes a value

representing the exception (exn) as an argument. The second argument of tryFinally is

a cleanup function that releases resources allocated in the current scope.

In the case when � = 1 → �� and �� represents a fully evaluated computation,

the two operations only need to handle exceptions triggered by evaluation of the dela-

yed computation, so their implementation is straightforward. In the case when

 � = �� and �� represents a computation itself, the monadic type needs to provide

a mechanism for exception handling. For example, asynchronous workflows use an

exception continuation for reporting exception, which is used by tryWith and

tryFinally.

4 Semigroups and monoids

Other structures than monads that are ubiquitous in functional programming are semi-

groups and monoids. A semigroup consists of a set of values 4 and an associative

operator ∘. A monoid is a semigroup that also includes a special unit element %.

Well known examples of semigroups or monoids are natural numbers (with mul-

tiplication and 1 or addition and 0), Booleans (with conjunction and true), lists (with

concatenation and empty list), but also Maybe (with left-biased operation for combi-

nation). Most of these structures are monoids, so we do not discuss semigroups sepa-

rately, but we mention what operations would not be available for a semigroup.

Monoids and semigroups. To use computation expression syntax for a monoid, we

need to define the operations below. Similarly to the handling of effects in monads,

encoding of monoidal computations requires delay of type �� → ��
 → ��, where

�� is typically either �� for computations or � → �� for containers.

combine : �� → � → �� run : � → ��
zero : 1 → �� delay : �1 → ��
 → �
yield : � → �� yieldFrom : �� → ��

The delay and run operations have the same type and the same purpose as previously

for monads. The key operations that define the monoidal structure are combine, zero

10 T. Petricek, D. Syme

and yield. The combine function represents the binary operation of the monoid. As F#

is an eager language, the second argument of combine needs to be delayed, so that

effects that might happen when evaluating it only happen at the time when the

computation is required (i.e. when evaluating n
th

 element of a lazy list).

The yield operation is similar to return. It is used to build primitive computations

of the monoid (elements of the set 4). Defining yield instead of return means that the

computation uses yield syntax instead of return. Although this is just a syntactical

difference, the name hints that the computation can produce multiple results. We also

include yieldFrom, which allows composing computations using yield!

Finally, zero is the unit of the monoid. Its type is ��, in contrast with �1 that was

used for monads. This shows that it plays a different role – instead of representing

unit computation, it represents a computation that does not contain a value.

Delayed monoidal computations. As an example, consider a monoid formed by

integers with multiplication and unit 1. Using a computation builder with the above

operations, we can calculate factorial of 10 using factorial 0:

let rec factorial n =
 mul { yield n
 if n <= 10 then yield! factorial (n + 1) }

The body uses combine to compose computation that returns a singleton list (yield)

with a computation that generates the remaining elements. The second argument is

wrapped using delay, so that the entire list is not evaluated immediately:

mul.Run(mul.Delay(
 mul.Combine(mul.Yield(n), mul.Delay(fun () ->
 if n <= 10 then mul.YieldFrom(factorial (n + 1))
 else mul.Zero()))))

Integers are not delayed computations, so delay returns a function that is later execu-

ted by run. However, the same translation would work for lazy computations.

Control flow constructs for monoids. Similarly to monads a computation with a mo-

noidal structure can provide additional members to enable standard F# control flow

constructs. Defining the following in terms of zero and combine is left as an exercise:

for : .�/ → �� → �	
 → �	
while : �1 → bool
 → � → ��

The operations have different types than when working with monads (Section 3.3).

The body of the for loop can now return values (type 1 → �	 instead of 1 → �1) and

so can the body of while (� instead of 1). Using the mul computation builder with

these additional members, we can calculate a factorial as follows:

mul { for num in 1 .. 10 do yield num }

Monoid laws. Every monoid is required to obey two laws. The binary operation must

be associative (� ∘ �	 ∘ 6
 = �� ∘ 	
 ∘ 6) and the unit element is required to behave as

Syntax Matters: Writing abstract computations in F# 11

a unit (1 ∘ � = � = � ∘ 1). Similarly to the monad laws, the properties of monoids

map to syntactic equalities about monoidal computation expressions:

m { cexpr1; cexpr2; cexpr3 } ≡ m { yield! m { cexpr1; cexpr2 }; cexpr3 }

m { if false then cexpr1

 cexpr2 }
≡ m { cexpr2 } ≡

 m { if false then cexpr1

 cexpr2 }

Both of the equalities are intuitively expected to hold when working with monoidal

computations. The first corresponds to the associativity and the second to the unit

laws. The zero of monoid does not have a direct correspondence in the syntax, but one

way to obtain it is to use the if expression without the else clause.

5 Composed computations

We showed that computation expressions provide a notation for monads and monoids.

In this section, we take one step further – we look at computations that combine

monoids and monads and also computations formed by a layer of monads.

5.1 Additive monads

An additive monad is a monad with a monoid structure, also known as MonadPlus in

Haskell. Common examples are parser combinators and collections. Both of these can

be encoded in F#, but the desirable syntax differs.

Parser combinators. Monadic parsers [10] provide both monadic and monoidal in-

terface. The unit operation represents a parser that always succeeds without con-

suming any input and bind represents sequencing (where the second parser may de-

pend on the value parsed first). The monoid structure defines combine as either left-

biased or non-deterministic choice and zero represents a failing parser.

When defining additive monads, we need to choose whether to use the return or

the yield keyword. This is a matter of style, but it depends on which interface is con-

sidered more important. For parsers, we prefer monad and define return:

return : � → �� zero : 1 → ��
bind : �� → �� → �	
 → �	 combine : �� → � → ��

The type of bind, return and zero are the same as for monads and monoids previously.

We omit run, delay and returnFrom which are standard. The type of combine follows

the definition used by monoids (with arguments �� and �), which is more general

than the one for monads (with �1 as the first argument). Sample parsers that reco-

gnize one or more and zero or more repetitions a predicate p are written as follows:

let rec oneOrMore p = parse {
 let! x = p
 let! xs = zeroOrMore p
 return x::xs }

12 T. Petricek, D. Syme

and zeroOrMore p = parse {
 return! oneOrMore p
 return [] }

The definition of oneOrMore uses monadic features to say that the parser should parse p

followed by zero or more repetitions of p. The definition of zeroOrMore is translated

using a monoidal structure that provides a choice from two alternatives. The first is to

parse one or more repetitions of p and the other is to succeed and return immediately.

Sequence expressions. Sequences (or lists) are another example of additive monads.

The usual definition in F# uses syntax that is quite different from the previous section:

let rec listFiles dir = seq {
 yield! Directory.GetFiles(dir)
 for subdir in Directory.GetDirectories(dir) do
 yield! listFiles subdir }

The body combines all files generated from the current directory with a sequence that

is generated by concatenating all files from sub-directories (recursively). The monoi-

dal interface provides combine to concatenate collections (one generated by yield!

and other by for). The monadic structure provides return to build a singleton list and

bind, which concatenates all generated collections.

The above syntax emphasizes the monoidal structure and so it the return of a mo-

nad is exposed as yield and bind is implemented as for. In fact, the usual type of for

for lists (.�/ → �� → �	
 → �) overlaps with the type of bind, because �� = .�/.

5.2 Layered monads

It is often desirable to combine non-standard aspects of multiple computation types.

One example is to combine non-blocking execution of asynchronous workflows with

the ability to return multiple results of sequences. For example, an asynchronous file

download might return data in 1kB buffers. Such a computation type is implemented

by asynchronous sequences [14].

Assuming urls is an asynchronous sequence of URLs (produced by the user input),

the following snippet asynchronously produces the URLs together with their content:

let pages = asyncSeq {
 let wc = new WebClient()
 for url in urls do
 let! html = wc.AsyncDownloadString(Uri(url))
 yield url, html }

The result is a computation that can be called to obtain the head (information about

the next page) together with the tail (that can be called again). On the first call, the

computation initializes WebClient, obtains the first URL from the asynchronous seq-

uence urls, downloads its content and returns it. The download is performed by

binding on an asynchronous workflow returned by AsyncDownloadString. When the

caller requests the next value, the computation runs the next iteration of the for loop.

Syntax Matters: Writing abstract computations in F# 13

Binding for layered monads. The layered monad used above combines an asynchro-

nous workflow Async<'T> (written 78) and an additive monad .8/ into a composed

type 748. Both of the basic types can be lifted to the composite type. We can:

− turn an async workflow into an async sequence that returns a single value, and

− turn a list into an asynchronous sequence that produces values immediately.

The bind operation of the composed monad takes 748 as an argument, but it is also

possible to define operations that lift a list and asynchronous workflow, respectively,

into an asynchronous sequence and then perform the binding. To provide a convenient

syntax, we use ad-hoc polymorphism (overloading) for members and define:

for : AS� → �� → AS	
 → AS	
for : .a/ → �� → AS	
 → AS	
bind : A� → �� → AS	
 → AS	

This definition defines the for keyword (first for) as a monadic bind on asynchronous

sequences. The second overloaded for allows using for keyword to iterate over lists

and bind enables let! for calling asynchronous workflows (returning a single result).

The choice of the for keyword for binding on asynchronous sequences is made to

match the expectations of the user – the body of the for loop is executed repeatedly

(for both lists and asynchronous sequences), while the body of let! is executed just

once (when binding on an asynchronous workflow).

Monad transformer laws. In Haskell, monads can be layered using monad transfor-

mers [13]. Among other applications, they can be used to add state or exceptions to

other monads. F# does not support higher-kinded types, so monad transformers

cannot be encoded directly, but they provide a useful framework for documenting

computations. The above example can be viewed as an application of the list monad

transformer [16] to the asynchronous workflow monad.

Monad transformers also specify a set of laws that should hold about composed

computations. These are written in terms of return and bind of the underlying and re-

sulting monads (async and asyncSeq in our example) and the lift operation that turns

the underlying monad to the composed (type 78 → 748). The laws can be expressed

in the computation expression syntax as follows:

asyncSeq { let! x = async { return v } in return x } ≡ asyncSeq { return v }

asyncSeq { let! y = async { let! x = m in cexpr1 } in cexpr2 }

 ≡ asyncSeq { let! x = m in let! y = async { cexpr1 } in cexpr2 }

The let! syntax inside async block corresponds to the bind of the underlying monad.

Inside asyncSeq, it corresponds to the lift operation followed by bind of the composed

monad. There is no syntax corresponding only to lift. However, we can use the right

unit law of monads (in the first equation), which guarantees that bind followed by

return preserves the meaning of a computation.

14 T. Petricek, D. Syme

6 Applicative functors

Applicative functors [2] provide a weaker abstraction than monads – every monad is

an applicative functor, but not conversely. For example, formlets [18] are an appli-

cative functor for composing HTML forms that are not monads. Using a weaker

abstraction also allows more efficient implementation of parsers [25].

There are two ways of defining applicative functors. The first relies on an opera-

tion of type ��� → 	
 → �� → �	 and is more suitable for writing computations in

an applicative style and propagating their effects. We use the second style, which is

more suitable for computational interpretation used, for example, by formlets:

merge : �� → �	 → ���, 	

map : �� → �� → 	
 → �	
return : � → ��

The declaration replaces monadic bind with map and merge; map applies a function to

values carried by the abstract computation and merge composes additional aspects (or

effects) of two computations and combines their values using a tuple.

The difference between applicative functors and monads is that monadic compu-

tations can perform different effects depending on values obtained as the result. On

the other hand, the additional (effect) structure of applicative functors is fully determi-

ned regardless of the calculations performed using map.

The next sample uses formlets to create a registration form consisting of a textbox

and a dropdown. When the values are entered, it produces a string with user details:

let userFormlet = formlet {
 let! name = Formlet.textBox
 and gender = Formlet.dropDown ["Male"; "Female"]
 return name + " " + gender }

The computation describes two aspect of HTML form – the rendering and the proces-

sing of entered values. The rendering phase uses the fixed structure of the computa-

tion to produce HTML code representing the form. In the processing phase, the values

of name and gender are available and are used to calculate the result of the form.

The structure of applicative computations cannot depends on the values, so the

syntax for uses parallel binding (let! .. and ..), which binds a fixed number of in-

dependent computations. The rest of the computation cannot contain other bindings.

The computation expression from the previous example is translated as follows:

formlet.Map
 (formlet.Merge Formlet.textBox (Formlet.dropDown [...]),
 fun (name, gender) -> name + " " + gender)

The parallel binding is turned into an expression that combines all bindings using the

merge operation. This part of the computation defines the structure and formlets use it

for rendering. The rest of the computation is translated into projection (by removing

the return keyword) and is applied to the composed computation (formlet) using map.

In formlets, the projection function is evaluated only in the input processing phase.

Syntax Matters: Writing abstract computations in F# 15

7 Related work

Abstract computations. Syntactic sugar exist for a number of abstract computations.

Haskell monad comprehensions [19] and do notation are used for working with

monads; McBride [2] proposes a notation for applicative functors. These are all quite

different – in this paper, we have described a single syntax that captures a wider range

of computations. However, our syntax is not flexible enough to encode arrows [21].

Delimited continuations. Filinski demonstrated [26] that monadic computations can

be encoded using continuations. An intriguing question is whether this work could

lead to a simpler notation for monads and more complex structures discussed in this

paper. This alternative could be attractive for languages that support delimited conti-

nuations like Scala [9]. The reset operation of delimited continuations seems related

to the run function of computation expressions, which can be also used to restrict the

scope of behavior. This aspect is used by the imperative computation expression [12].

Generators and monads. Generators, also called iterators [23] are the most common

class of non-standard computations in main-stream languages. Although they are

designed specifically for collections, they have been used to encode other monadic

computations [21] and also delimited continuations [24]. However, the fact that the

syntax has been designed for another purpose is a limiting factor.

Languages with effects. As far as we are aware, the handling of effects allowed by a

host language in monadic computations has not been discussed previously. However,

our delay operation is similar to Filinski’s reify operation [3]. Instead of capturing all

effects, it combines effects of the function arrow and effects associated with the resul-

ting computation. Using a precise type system with annotations for effects, such as

[4], the type of delay would be written as:

>1 ?→ �@�A B→ �C�

The operation represents redistribution of effects. Assuming that ⊕ represents a com-

bination of effects, it must hold that ! ⊕ E = F ⊕ ". A default implementation of

delay simply applies the function (giving ! = F ∧ E = "), but for computations that

can capture effects, it is desirable to provide operation where �" = ! ⊕ E
 ∧ �F = 0
.

8 Conclusions

We presented F# computation expressions, which provide a unified syntactic sugar

for working with a wide range of abstract computations. We showed that a single

syntactic mechanism can be used for working with monoids, monads and applicative

functors, as well as computations composed using monad transformers. We believe

that an easy to use syntax is the key for making the expressivity and compositionality

of these abstractions available to a wider range of practitioners.

16 T. Petricek, D. Syme

References

1. Wadler, P.: Monads for functional programming. In LNCS Vol. 925, 1995.

2. McBride, C. and Paterson, R.: Applicative programming with effects, Journal of Func.

Programming 18 (2008)

3. Filinski, A.: Monads in Action. In Proceedings of POPL 2012.

4. Wadler, P. and Thiemann, P.: The Marriage of Effects and Monads. In ACM Trans.

Comput. Logic, vol. 4, num. 1, pp. 1-32, January 2003.

5. Moggi, E.: Notions of Computation and Monads. In Inf. Comput., vol 93, pp. 55-92, 1991

6. Peyton Jones, S. and Wadler, P.: Imperative Functional Programming. POPL, 1993.

7. Syme, D., Petricek, T. and Lomov, D.: The F# Asynchronous Programming Model.

In Proceedings of PADL 2011.

8. Peyton Jones, S., et al.: Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press, 2003, ISBN: 9780521826143

9. Rompf, T., Maier, I. and Odersky, M.: Implementing first-class polymorphic delimited

continuations by a type-directed selective CPS-transform. In Proceedings of ICFP, 2009

10. Hutton, G. and Meijer, E.: Monadic Parsing in Haskell. In J. Funct. Program.,

vol. 8, num. 4, pp. 437-444, July 1998

11. Hejlsberg, A., Wiltamuth, S., Golde, P.: C# Language Specification, Addison-Wesley, 2003

12. Petricek, T.: Imperative Computations in F# (I. and II.), Unpublished. Retrieved 23 March

2012. Available online at: http://tomasp.net/blog/imperative-ii-break.aspx

13. Liang, S., Hudak, P. and Jones, M.: Monad Transformers and Modular Interpreters. In

Proceedings of POPL 1995.

14. Petricek, T.: Programming with F# Asynchronous Sequences, Unpublished. Retrieved 23

March 2012, Available online at: http://tomasp.net/blog/async-sequences.aspx

15. Syme, D.: Some Details on F# Computation Expressions. http://tinyurl.com/comp-expr

16. Haskell Wiki. ListT done right (Unpublished). Retrieved 23 March 2012, Available online

at: http://www.haskell.org/haskellwiki/ListT_done_right

17. Syme, D. et al.: The F# 2.0 Language Specification (April 2010), Retrieved 23 March 2012,

Available online at: http://tinyurl.com/fsharp-spec

18. Cooper, E., Lindley, S., Wadler, P. and Yallop, J.: The Essence of Form Abstraction. In

Proceedings of APLAS, 2008.

19. Giorgidze, G., Grust, T., Schweinsberg, N. and Weijers, J.: Bringing Back Monad

Comprehensions. In Proceedings of Haskell Symposium, 2011, Tokyo, Japan

20. Bierman, G., Russo, C., Mainland, G., Meijer, E. and Torgersen, M.: Pause 'n' play:

Formalizing asynchronous C#. In Proceedings of ECOOP, 2012

21. Paterson, R.: A new notation for arrows. In Proceedings of ICFP, 2001

22. Petricek, T.: Variations in F#. Retrieved 24 March 2012, Available online at:

http://tomasp.net/blog/fsharp-variations-joinads.aspx

23. Jacobs, B., Meijer, E., Piessens, F. and Schulte, W.: Iterators Revisited. In Proceedings of

the 7th ECOOP Workshop on Formal Techniques for Java-like Programs, 2005

24. James, R. P. and Sabry, A.: Yield: Mainstream Delimited Continuations. In Proceedings of

Theory and Practice of Delimited Continuations, 2011.

25. Swierstra, S. D.: Combinator Parsing: A Short Tutorial, In Language Engineering and

Rigorous Software Development, pp. 252-300, 2009

26. Filinski, A.: Representing layered monads. In Proceedings of POPL, 1999

