
Denicek: Computational Substrate for
Document-Oriented End-User Programming

Tomas Petricek
tomas@tomasp.net

Faculty of Mathematics and Physics, Charles University
Prague, Czech Republic

Jonathan Edwards
jonathanmedwards@gmail.com

Independent
Boston, USA

BWebnicek CDatnicek

add

wrap

edit

add

ADenicek

Figure 1: Denicek is a computational substrate for document-oriented programming based on document edit histories (A). We
co-design Denicek with a web-based end-user programming environment Denicek (B). Here, Denicek is used to build a Todo
list app via programming-by-demonstration, by copying a value from input to a new list item. We then evaluate the generality
of Denicek by using it to build a data science notebook system Datnicek (C). Here, Datnicek is used to interactively clean the
data table, by removing the “ p” (provisional) marker from numerical columns.

Abstract
User-centric programming research gave rise to a variety of com-
pelling programming experiences, including collaborative source
code editing, programming by demonstration, incremental recom-
putation, schema change control, end-user debugging and concrete
programming. Those experiences advance the state of the art of
end-user programming, but they are hard to implement on the basis
of established programming languages and system.

We contribute Denicek, a computational substrate that simpli-
fies the implementation of the above programming experiences.
Denicek represents a program as a series of edits that construct and
transform a document consisting of data and formulas. Denicek pro-
vides three operations on edit histories: edit application, merging of
histories and conflict resolution. Many programming experiences
can be easily implemented by composing these three operations.

We present the architecture of Denicek, discuss key design con-
siderations and elaborate the implementation of a variety of pro-
gramming experiences. To evaluate the proposed substrate, we use
Denicek to develop an innovative interactive data science notebook
system. The case study shows that the Denicek computational sub-
strate provides a suitable basis for the design of rich, interactive
end-user programming systems.

This work is licensed under a Creative Commons Attribution 4.0 International License.
UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2037-6/2025/09
https://doi.org/10.1145/3746059.3747646

CCS Concepts
• Software and its engineering→ Development frameworks
and environments; • Human-centered computing→ User in-
terface programming;Web-based interaction.

Keywords
Programming Systems, End-User Programming

ACM Reference Format:
Tomas Petricek and Jonathan Edwards. 2025. Denicek: Computational Sub-
strate for Document-Oriented End-User Programming. In The 38th Annual
ACM Symposium on User Interface Software and Technology (UIST ’25), Sep-
tember 28-October 1, 2025, Busan, Republic of Korea. ACM, New York, NY,
USA, 19 pages. https://doi.org/10.1145/3746059.3747646

1 Introduction
A computational substrate defines the structures with which pro-
grams are constructed, how the program state is represented and
how the state evolves during execution [40]. The choice of a sub-
strate affects what programming experiences can be readily sup-
ported. For example, object-oriented programming has been histori-
cally linked to graphical user interfaces [47], while representing pro-
grams as lists enabled Lisp to become a language laboratory [105].

In principle, any programming experience can be developed on
top of any computational substrate. However, a suitable program
representation can eliminate much of the complexity of implement-
ing interesting programming experiences. For example, the reflec-
tive capabilities of Smalltalk make it easy to build rich debugging
tools [94] that are difficult to implement for C/C++ [48, 49].

https://orcid.org/0000-0002-7242-2208
https://orcid.org/0000-0003-1958-7967
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3746059.3747646
https://doi.org/10.1145/3746059.3747646

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Tomas Petricek and Jonathan Edwards

Programming Experiences. We describe Denicek, a computational
substrate that makes it easy to build programming systems sup-
porting diverse compelling programming experiences [74]:

• Collaborative Editing. Users should be able to locally modify
a shared document and merge their changes in a way that
does not require a live connection to a central server [53].

• Programming by Demonstration. Allow users to construct
programs by enacting the steps of the desired behavior using
concrete examples and generalizing from those [15, 61].

• Incremental Recomputation.When a part of a document changes,
formulas whose result depends on the part are invalidated
and, possibly automatically, recomputed [36, 69, 109].

• Schema Change Control. When the user evolves the struc-
ture of the document, affected data and formulas should
automatically co-evolve to match the new structure [27, 67].

• End-User Debugging. The user should be able to ask about
provenance [13] to understand why a computation resulted
in a particular result and what inputs contributed to it [57].

• Concrete Programming. It should be possible to reuse parts of
program logic, or formulas, without introducing abstractions,
that is, program against concrete values [24, 26].

Two-PhaseMethodology. The technical focus of this paper fitswithin
the interior mode of design science research [2]. To design Denicek
(Fig. 1 (A)), we identify six formative examples – simple program-
ming tasks that manifest one or more of the desired programming
experiences (§A). Using those examples, we co-design the Denicek
substrate and a simple web-based end-user programming environ-
ment Webnicek (Fig. 1 (B)), which is built directly on top of the
substrate. Although Webnicek can be used to complete end-user
programming tasks, it is optimized for developing the underlying
substrate rather than for usability.

To evaluate the usability of Denicek for the development of end-
user programming systems, we use it to build Datnicek (Fig. 1 (C)),
an innovative interactive data science notebook that brings to-
gether a range of recent research work [3, 20, 45, 87]. We reflect
on the degree to which Denicek simplifies the implementation of a
programming system that is based on current research advances
and was conceived after the design of Denicek has been fully fi-
nalized (§7.3). We also provide a heuristic evaluation of Denicek
characteristics including importance and generality (§8).

Computational Substrates. Denicek brings together two central de-
sign ideas. First, it represents programs as document trees consisting
of nodes that can represent data, formulas, evaluated results, as well
as static content. Second, Denicek does not store the document tree
itself, but instead, maintains a sequence of edit operations through
which the tree was constructed and transformed.

The substrate then provides three primitive operations for work-
ing with sequences of edits. First, it can apply a series of edits to
reconstruct the document. Second, it can merge two diverging edit
histories. Finally, it can detect conflicts when merging histories and,
for example, remove conflicting edits from one branch.

Key Takeaways. The key insights of this paper are twofold. A spe-
cific technical takeaway is that many compelling programming

experiences can be implemented on top a uniform document rep-
resentation, by using a suitable composition of three primitive
operations that operate on sequences of edit operations.

Editing of data and formulas is done using a single set of primitive
edit operations that manipulate the document. A user-interface
may provide a specialized editor, but still trigger the primitive edits
behind the scenes. Interacting with elements in the document, such
as a entering text in a textbox can also generate a document edit
that can be merged or checked for conflicts (§5.3).

As we will see, past edits that demonstrate an operation done
with the document can be recorded, allowing programming by
demonstration (§5.2). Replaying such recorded edits is implemented
using the merging operation, which means that recorded opera-
tions continue working even if the document structure later evolves.
Moreover, structural changes to the document can be merged with
concurrent data edits (§5.1). Evaluation of formulas also generates
document edits (§5.4). If the evaluated edits conflict with manual ed-
its done later by the user, the evaluated edits are removed, yielding
an incremental recomputation behavior (§5.5).

Amore basic takeaway, illustrated by the development of Denicek,
is that it is worth looking for novel computational substrates that
better support compelling programming experiences developed in
user-centric programming research.

Contributions. The structure and contributions of this paper are:

• We present the Denicek substrate (§4) and provide a detailed
description of its document representation, edit operations
and the key three operations for working with edit histories.

• We illustrate a range of end-user programming experiences
supported in Webnicek, a simple web-based prototype pro-
gramming system (§3), and discuss how the experiences are
implemented on top of the Denicek substrate (§5).

• We analyse key design decisions, alternatives and limitations
(§6), showing that the desired functionality requires a careful
choice among interconnected design options.

• To evaluate how Denicek simplifies the development of
programming systems, we build an innovative data science
notebook and assess its implementation complexity (§7). We
also present heuristic evaluation of the system (§8).

To enable others build on top of Denicek, we share our compact
open-source implementation at: https://github.com/d3sprog/denicek

2 Background
The premise of Denicek is that suitable structures for constructing
programs can make it easier to support a range of compelling user
experiences. A prime example is Smalltalk whose object-oriented
structures enable malleable programming experience [14, 108].

Denicek aims to support a class of systems associated with end-
user programming, liveness and interactivity [37, 74, 96], notational
freedom and self-sustainability [39]. We see programming as inter-
acting with a medium or a substrate [29, 46, 54] and use the term
end-user programming loosely to refer to a part of this spectrum,
also including spreadsheet systems and notebooks for data science.

We follow systems such as BootstrapLab [40], which aims to
support gradual progression from a user to a developer envisioned

https://github.com/d3sprog/denicek

Denicek: Computational Substrate for Document-Oriented End-User Programming UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

in Smalltalk [95] in a primarily graphical environment and Sub-
text [23], which develops a user-friendly programming environ-
ment based on object copying.

2.1 Programming Systems
Programming Systems and Substrates. A number of systems illus-
trate the qualities Denicek aims to support and have a related
underlying structure. Subtext, BootstrapLab and Infra [23, 33, 40]
use structured document-based program representation and pro-
vide some of the desired programming experiences on top of this
representation. Many of those design ideas can be traced back to
Boxer [19], which introduced the naive realism principle (what the
user sees is all there is) that we also follow in Webnicek.

To indicate that Denicek is intended as an underlying infrastruc-
ture on top of which programming systems can be built, we use the
term computational substrate. The term also dates back to Boxer [18]
and is related to the notion of dynamic media of Kay and Goldberg
[46]. Webstrates [54] revisit the idea, providing a substrate based
on synchronization of documents (without edit histories) that has
been used as the basis for multiple programming systems [8, 92].

Edit Histories and Merging. Manipulating programs through seman-
tically meaningful edits is a technique used by structure editors
[5, 34, 109]. The language of edits has been captured formally as
an edit calculus [80] and edit histories have also been recognized as
a suitable basis for live programming environments [112].

Merging of edits is most frequently done in version control sys-
tems. The Pijul system [115] delays merging to a later point by using
a graph or a lattice [99]. In the context of programming environ-
ments, Grove [3] uses a commutative patches with a similar graph
structure as the basis for a collaborative structure editor. Grove
patches (construct, delete, relocate) are sufficient for a structure
editor, but lack some structures and operations that our formative
examples rely on (collections, copying). However, the core model
of Grove provides a possible alternative basis for Denicek.

More generally, merging of edits can use the operational trans-
form (OT) approach [17], where edit conflicts are reconciled, or
conflict-free representation (CRDTs) [65, 100]. The latter is com-
monly associated with local-first software [53] that operates with-
out a central server. In both approaches, supporting complex edits
on tree structures remains a challenge [16, 43]. Mergeable replicated
data types (MRDTs) [44] merge updates using a suitable relational
representation. Recent work on MySubstrates and Grove [3, 55]
has been based on CRDTs, whereas Edwards et al. [25] prefer OT.

Building Programming Experiences. The challenge addressed by
Denicek is that end-user programming experiences are hard to build.
Our experience developing such systems [22, 23, 40, 84, 87] suggests
two difficulties. The first is the need to move between the concrete
and the abstract [39]. A sequence edits strikes a balance between
those opposing representations. The second is the need to combine
multiple experiences, which requires a major engineering effort
when using a conventional program representation.

2.2 Programming Experiences
Collaborative Editing. Since the early collaborative programming
environments such as Collabode [31], real-time collaboration has

became widely used, if not always without challenges [107]. Merg-
ing concurrent edits is one such challenge. In addition to OT-based
and CRDT-based approaches [55], conflicts arising during collabo-
ration have also been solved using fine-grained locking [113].

Programming by Demonstration. Earliest PbD systems used the
paradigm for tasks ranging from graphics and user interfaces to
general-purpose programming [15, 103]. Wrangler [45] showed
the effectivity of PbD for data cleaning, whereas more recent uses
range from augmented reality prototyping [61] and web automa-
tion [12] to end-user software customization [63, 64]. Expressing
conditions in PbD remains an active research topic [90, 91]. A more
general class of demonstrational interfaces [75] also includes pro-
gramming by example, used for example for data transformation
in spreadsheets [32]. Demonstrational interfaces can be used to
directly perform actions, but also to generate code as in Wrex [20].

Incremental Recomputation. Interactive programming systems with
live previews [69, 85] have been attempting to update the previews
without full recomputation at least since the pioneering work on
the Cornell Program Synthesizer [109]. Outside live programming,
more work has been focused on updating computation when data
change, although such data can also be source code passed to an
adaptive interpreter [1]. Incremental recomputation is also a con-
cern in notebook systems where cells can be run out of order [102].
The ordering problem can be addressed using a dependency graph
[58, 89], allowing for incremental recomputation on code change.

Schema Change Control. Schema change control is concerned with
adapting data and code to reflect changes in schema. The problem
is well-studied in the context of databases [9], although only few
systems also automatically adapt database queries [114]. The prob-
lem is starting to be recognized in programming systems research
[27, 67] as well as live programming [4] where state needs to be
preserved during program editing.

End-User Debugging. Non-programmers also need to be able under-
stand and debug their programs [52]. Systems such as Whyline and
Probe Log [56, 57, 59] record information about program execution
to let users analyse why they see a particular result, whereas dis-
playing intermediate steps can aid understanding of data science
pipelines [101]. More generally, such functionality can leverage
provenance tracking [13] and program slicing [82, 97]. The same
infrastructure can also be used to build linked visualizations [83].

Concrete Programming. Programming can be simplified by working
with concrete values instead of abstractions, an idea pioneered by
the prototype-based programming language Self [111]. In Self, pro-
totypes are used at the object level. At the expression level, similar
functionality can be provided by managed copy & paste. Subtext
[24, 26] treats this mechanism as central, whereas other systems
view tracking of copy & paste as an extra editor feature [38, 110].
Copy & paste has also been tracked in spreadsheets [35]. Gridlets
[42] offer a spreadsheet abstraction based on reusing concrete com-
putation, similar to the one proposed for The Gamma [85].

Other Programming Experiences. Several experiences not directly
addressed in this paper are worth further investigation. Projectional
editors such as Lorgnette [30], live literals [79], projection boxes
[62] and data detectors [77] allow visualization or editing of aspects

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Tomas Petricek and Jonathan Edwards

A B C

D E F

G

A

B

C

E

D

G

F

Figure 2: Organizing a conference using Denicek. The Walkthrough shows construction of a user interface for adding speakers
(A, B, C); refactoring of the list and merging edits (D, E); and formulas with schema and code co-evolution (F, G).

of programs through a user interface. The problem of making live
and rich editors compositional is addressed by Engraft [36]. Pro-
gramming environments may be also improved by integrating live
examples [94] and a variety of AI assistance tools [7, 71, 88].

3 Walkthrough
We use the web-based prototype Webnicek to illustrate program-
ming experiences enabled by Denicek. Webnicek is based on a
structure editor that supports navigation in the document and issu-
ing of edit commands. We follow a formative example (§A) where
Evelyn, Juliana and Alfred collaboratively plan a conference.

A B C D E F GAdding a Speaker. Evelyn starts with an empty document, which
is represented as a record. She adds a field for each heading and a
field named speakers containing a list . She uses the command
toolbox to issue edit commands that add the first speaker.

A B C D E F GCreating a User Interface. To simplify adding of further speakers,
Evelyn creates a textbox and a button using the command toolbox.
She enters the details of another speaker into the textbox, adds a
new element and copies the speaker details from the textbox
into the new element in the source view, using a copy command.

A B C D E F GAbstracting the Interaction. After adding the speaker, Evelyn
opens the history view, selects edits that added the speaker and
saves them as the add-speaker interaction. She attaches this inter-
action as an event handler for the click event of the button.

� Programming by Demonstration. Denicek implements program-
ming by demonstration (§5.2) by enabling the user to save and replay
past interactions. Past interactions can be replayed directly, or used as
event handlers in order to construct interactive user interfaces (§5.3).

A B C D E F GRefactoring Document Structure. Alfred starts with the initial
version of the document (A) and turns the list into a table. He

invokes a series of commands that rename tags, wrap elements,
copy values and split strings using the comma as a separator.

A B C D E F GMerging Edits. Alfred then merges the later edits (B, C) done by
Evelyn into his version of the document. The refactoring is applied
to all speakers. New speakers added using the “Add speaker!” button
are also automatically transformed to the new format.

� Local-First Collaboration. Denicek’s merging reapplies edits from
another branch on top of the current history (§5.1). Merging is asym-
metric, but the order does not matter in the above scenario. The same
merging operation is used when handling user interaction (§5.3).

A B C D E F GAdding Budget Calculation. Juliana joins in and adds a budget
calculation to the initial document. She uses the command toolbox
to create document nodes representing formulas. Formulas are
regular nodes with a special x-formula tag and arguments as child
nodes. To count the speakers, she uses the count builtin with a
reference to the node representing the speaker list as the argument.

� Incremental Recomputation. Formulas are document nodes. Eval-
uating a formula yields edits that augment the document with the result
(§5.4). Those evaluated edits are kept at the top of the document history
and are removed in case of a conflict (§5.5), a logic that implements
incremental recomputation using core Denicek operations.

A B C D E F G Merging Formulas. When Juliana merges the budget calculation
(F) with the earlier edits (E), references in formulas are automatically
updated to point to the rows of the table. Adding new speaker via
the “Add speaker!” button invalidates results of only those formulas
that depend on the number of speakers.

� Schema Change Control. The substrate understands references in
the document and updates them when applying structural edits (§5.6).
Evaluation can replace formulas with values, but also augment them to
enable end-user debugging via provenance analysis (§5.7).

Denicek: Computational Substrate for Document-Oriented End-User Programming UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

Selector Notation

Parent .. Refers to a parent of a node
Field field Refers to record field of a given name
Index texttt\#index Refers to list element at a given index
Any * Refers to all children of a list node

Kind arguments

9 List tag, index1 , child1 , . . ., index𝑛 , child𝑛
Ordered list of nodes, addressable by index. Renders as <tag>with children.

� Record tag, field1 , child1 , . . ., field𝑛 , child𝑛
Record with children addressable by field. Renders as <tag> with children.

� Reference selectors
Reference to another document location. Displays the selectors as a link.

~ Primitive string or number
Numerical or textual primitive value. Renders as an HTML text node.

Figure 3: Structure of selectors and document nodes

4 The Denicek Substrate
Denicek represents programs as sequences of edits that construct
and transform a computational document. In this section, we de-
scribe the structure of documents and edits, as well as the operations
that form the backbone of the system and are used to implement
the end-user programming experiences as discussed in §5.

4.1 Selectors, Documents and Edits
A computational document is a tree, consisting of four kinds of
nodes (Fig. 3). Records and lists are labeled with a tag as in HTML.
Record fields have unique names. Lists are expected to contain
elements of the same structure, identified by a unique index (serving
as an ID). Primitive nodes can be strings, numbers or references to
another location in the document tree. References can be relative
or absolute. Edit operations only use absolute references (to denote
a target node), but relative references can appear in the document
(e.g., to refer to another node within the same list element).

A reference is represented as a sequence of selectors (Fig. 3). The
document model assumes that lists are homogeneous and records
heterogeneous, and so the Any selector makes it possible to refer
to all elements of a list, but there is no way to refer to all fields of a
record. Because Denicek does not use implicit numerical indices
for lists, the index of a new list item has to be supplied explicitly.
The reasoning behind this design choice is discussed in §6.

Document Edits. The supported document edits and their behaviors
are listed in Fig. 4. All edits require a target to which they are
applied. Targets are absolute references not containing the Parent
selector. They can contain the Any selector, in which case the edit
is applied to multiple nodes simultaneously. Most edits can only be
applied to target node(s) of a specified kind. As discussed in §6, list
elements as well as fields of a record are ordered and edits that add
a new item take the index or field name of a previous node.

The edits can transform the document structure. Denicek tracks
the effect of the edits on the structure and updates references when
the document structure changes. Fig. 4 distinguishes between edits

that keep references in a document unchanged (above) and edits
that can affect references (below).

Renaming a field or wrapping a node updates any references to
within the target location (§4.2). When deleting a field to which
there is a reference in the document, Denicek rejects the edit. A
copy edit of a node to which there is a reference is also rejected,
because it is ambiguous whether references referring to the original
location should be left unchanged, or modified to point to the target
of the copying (a reference cannot refer to two unrelated locations).

Automatic Reference Update. As discussed in §6, the structure of
Denicek document is implicit and not statically enforced (the sub-
strate can be seen as being dynamically typed). As a consequence,
edits that transform the structure can serve both as structural edits
(affecting the structure) and as value edits (affecting the value of
specific nodes). The latter can be used, for example, when construct-
ing an additional list item. An item is first constructed and then
populated with values. This temporarily violates the invariant that
collections are homogeneous (an issue that could be address by
using transactions as discussed in §6).

Another use of value edits is when evaluating a formula, which
involves wrapping the formula node (§5.4), an operation that should
not affect references to the formula itself. To support value edits,
edits that normally transform references (Fig. 4 below) have a refer-
ence behavior option that can disable automatic reference updating.
This annotation is required when the target contains the Index
selector, which is necessarily a value edit affecting a specific node.

An important principle of the Denicek design is that the effect
an edit has on references inside the document does not depend
on the current value of the document. This makes it possible to
define merging solely in terms of edits, without reference to current
document state. This design choice makes it impossible to encode
computational logic directly in the edits (e.g., through conditional
edits). As we will see in §5.3, such logic can be provided as an
additional mechanism on top of the underlying Denicek substrate.

4.2 Primitive Operations
Denicek provides three primitive operations. A sequence of edits
can be applied to a document, two sequences of edits can be merged
and they can be checked for conflicts. Denicek identifies edit his-
tories by a (git-like) hash, computed from the current edit and the
hash of the preceding edit. The hash is used to identify a common
shared prefix of the history during conflict resolution and merging.

Applying Edits. When applying an edit, Denicek locates the target
node and transforms it according to the edit. If the edit affects
references in the document (Fig 4, below), Denicek updates the
relevant references according to the rules shown in Fig. 5, provided
that the reference behavior of the edit does not prevent updating.

Reference update behavior forWrapRecord andWrapList differs
in that the updated references as a result of WrapList use the All
selector. AlthoughWrapList specifies the index to be used for the
newly created list item, we assume that the operation introduces
a homogeneous list, initially containing a single element, and the
updated references should point to all eventual list items.

Note that the affected references in the document may be more
specific than the edit target. For example, if we rename old to new at

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Tomas Petricek and Jonathan Edwards

Edit arguments Target

+ Add target, field, after, node Record
Add node as a field to the specified record after a given field.

� Append target, index, after, node List
Append node to the end of the specified list after a given field.

	 Reorder target, permutation List
Reorder items of a specified list according to a permutation.

− DeleteItem target, index List
Delete the item at a given index of a specified list.

/ UpdateTag target, tag List or Record
Change the tag of a specified list or record from to a new tag.

� PrimitiveEdit target, transform Primitive
Apply primitive transform to the specified primitive.

~ RenameField target, old field, new field Record
Rename the field of a specified record from old to new.

� DeleteField target, field Record
Delete the field field of a specified record.

� WrapRecord target, tag, field Any
Wrap the specified node as a field of a new record with tag.

9 WrapList target, tag, index Any
Wrap the specified node as a sole element of a new list with tag.

< Copy target, selectors Any
Copy nodes(s) from selectors, replacing the specified target(s).

Figure 4: Summary of document edit types in Denicek

/foo/*, a reference /foo/3/oldwill become /foo/3/new. (A reference
in the document cannot be more general; a more specific edit would
have to contain the Index selector and this would require setting
reference behavior to not trigger reference update.) Finally, if the
document contains a reference that would be invalidated by the
Copy or DeleteField edit, the edit is rejected.

Merging Edit Histories. Merging edit histories is used when two
users edit document independently, but also when replaying edits in
programming by demonstration. The merge operation M𝐸 (𝐸1, 𝐸2)
works on two edit histories, 𝐸, 𝐸1 and 𝐸, 𝐸2, that have a shared
prefix 𝐸. Our merging is akin to git rebase. It turns edits 𝐸2 into
edits 𝐸′

2 that can be reapplied on top of the other edit history. That is,
M𝐸 (𝐸1, 𝐸2) = 𝐸, 𝐸1, 𝐸

′
2. Note that the operation is not symmetric:

M𝐸 (𝐸2, 𝐸1) = 𝐸, 𝐸2, 𝐸
′
1. The result of applying the two histories to

the same node will differ if there are conflicts among the edits in
𝐸1 and 𝐸2. We return to conflict detection in the next section.

The key operation that enables edit history reconciliation takes
two individual edits that occurred independently, 𝑒1 and 𝑒2, and
produces a sequence of edits 𝑒′2, 𝑒

′′
2 , . . . that can be applied after 𝑒1

and have the effect of 𝑒2, modified to respect the effects of 𝑒1. There
are two aspects of such reconciliation:

(1) Apply to Newly Added. If 𝑒2 is adding new nodes to the docu-
ment, but 𝑒1 modified the document through a selector that
would also affect the new nodes added by 𝑒2, we need to ap-
ply the transformation represented by 𝑒1 to the nodes newly
added by 𝑒2. This is done by generating an additional edit,
to be applied after 𝑒2, that is based on 𝑒1 but targets only the
newly added nodes (more details can be found in §B.1).

RenameField target, old, new – Replace Field for matching references.
/target/old_field/nested ⇒ /target/new_field/nested

WrapRecord target, tag, field – Insert Field selector after matching prefix.
/target/nested ⇒ /target/field/nested

WrapList target, index, tag – Insert extra All selector after matching prefix.
/target/nested ⇒ /target/*/nested

Figure 5: How document edits transform references

StructureEffect target – Affects fields or structure of the target node.
RenameField, DeleteField, WrapRecord, WrapList, Copy

ValueEffect target – Transforms value, modifies list or adds a field.
Add, Append, Reorder, DeleteItem, PrimitiveEdit

TagEffect target – Modifies the tag of the target node.
UpdateTag

Figure 6: Effects of individual edit operations

(2) Transform Matching References. If 𝑒2 targets a node that is
inside a node whose structure is changed by 𝑒1, the target
reference in 𝑒2 is updated in a way that corresponds to the
new structure. This is done using the rules in Fig. 5, that apply
when transforming references inside a document, although
we now also support the case when 𝑒1 is Copy (see §B.2).

To illustrate merging, consider a case where we created a list
of work items /todo. In one branch, we add an additional item to
the list (𝑒2). In another branch, we wrap the list in an extra <div>
element (𝑒1) and add a checkbox to each work item (𝑒′1):

𝑒2 = Append(/todo, #1, #0, Do some work)
𝑒1 = WrapRecord(/todo, <div>, items)
𝑒′1 = Add(/todo/items/*, done,nil, <input type="checkbox"/>)

If we want to append the edit 𝑒2 after edits 𝑒1, 𝑒′1, we need to update
its target to reflect the wrapping (2) and we need to create and
additional Add operation that will add the checkbox to the new
item (1). The result is a sequence with two edits 𝑒′2, 𝑒

′′
2 that target

the newly wrapped list and add the checkbox to the added item:

𝑒1 = WrapRecord(/todo, <div>, items)
𝑒′1 = Add(/todo/items/*, done,nil, <input type="checkbox"/>)
𝑒′2 = Append(/todo/items, #1, #0, Do some work)
𝑒′′2 = Add(/todo/items/#1, done,nil, <input type="checkbox"/>)
If we performed the merge operation in the other order, we would
append 𝑒1, 𝑒′1 after 𝑒2 without a change. In this case, the result of
applying the two edit sequences would be the same.

Conflict Resolution. When merging two sequences of edits, 𝐸, 𝐸1
and 𝐸, 𝐸2, it is desirable thatM𝐸 (𝐸1, 𝐸2) andM𝐸 (𝐸2, 𝐸1) result in
the same document. This is not always the case. If the two edits
modify the same value, transform the structure of a node in incom-
patible ways or one edit modifies a node deleted by the other, the
merge operation is not symmetric. Such conflicting edits can be
detected and reported to the user. Conflict detection is also used
to implement incremental recomputation (§5.5), in which case con-
flicting edits produced by evaluation are removed and formulas
have to be recomputed.

The Denicek substrate implements a conflict detection mecha-
nism inspired by effect systems [68]. The mechanism is simple and

Denicek: Computational Substrate for Document-Oriented End-User Programming UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

A

C

B

D

Figure 7: Merging of two independently done sequences of
edits. Two ways of merging B and C result in the same D.

tractable, but over-approximates conflicts, i.e. it may report a con-
flict even if two edits can be merged successfully. Effects describe
how an edit affects the document structure and we distinguish
between three types of effects as shown in Fig. 6.

We say that a set of effects 𝐹1 conflicts with another set of effects
𝐹2 if there are effects 𝑓1 ∈ 𝐹1 and 𝑓2 ∈ 𝐹2 that are of the same kind
and the target of one is a prefix of the target of the other (allowing
a specific Index to match against All in both directions).

Given two edit histories 𝐸, 𝐸1 and 𝐸, 𝐸2, Denicek can use conflict
detection to remove all conflicting edits from 𝐸2 and produce a
sequence of remaining edits 𝑒′2, 𝑒

′′
2 , . . . that can be added after 𝐸, 𝐸1

and do not conflict with edits in 𝐸1.
To do this, we iterate over edits 𝑒2 from 𝐸2 and check if the

dependencies of 𝑒2 conflict with effects of (1) any of the effect 𝑒1
from 𝐸1 or (2) effects of any of the previously removed edits. Here,
the dependencies of 𝑒2 include its target, but also the source of
Copy and additional dependencies recorded explicitly as discussed
in §5.5. If a conflict is detected, the edit 𝑒2 is removed and its effect
is recorded, so that we remove any subsequent edits that depend
on the removed edit.

5 Programming Experiences
The key claim of this paper is that the Denicek computational
substrate makes it easy to support a range of compelling user ex-
periences. The experiences can be implemented by composing the
primitive operations of the substrate, relying in particular on the
operation for merging edits. We demonstrate this claim with the
web-based Webnicek system, which uses Denicek to support:

(i) collaborative document editing (§5.1),

(ii) programming by demonstration (§5.2 and §5.3),

(iii) incremental recomputation (§5.4 and §5.5),

(iv) schema change control (§5.6),

(v) end-user debugging via provenance tracking (§5.7),

(vi) concrete programming via managed copy & paste (§5.8).

We describe the programming experiences in isolation in the con-
text of Webnicek in this section. The data science notebook system
Datnicek, discussed in §7, provides a more comprehensive case
study by combining multiple user experiences together.

1

2

3

Figure 8: Programming by demonstration is implemented by
selecting edits from the document history (1), saving them
in the document (2) and replaying them (3).

5.1 Collaborative Editing
Denicek enables collaborative editing as illustrated earlier (§3, E).
If a document is edited by multiple users, they can each make edits
to their local copy and eventually merge the variants using the
operation to reconcile edit histories. Merging requires coordination
among users, but not a central server as in local-first software [53].

Merging of histories behaves akin to git rebase in that it keeps a
linear history. Synchronization in a distributed system thus requires
first reapplying local edits on top of the remote history, before up-
dating the remote history. Denicek thus implements the convergence
model of document variants [27], i.e., the user cannot, for example,
maintain their own local document structure and import new data
from another variant (an alternative discussed in §6).

Consider the scenario in Fig. 7. Here, the document 𝐷 can be
obtained either by appending𝐶′ (produced by the edit reconciliation
operation) on top of 𝐴, 𝐵 or by appending 𝐵′ on top of 𝐴,𝐶 . The
edit histories resulting from the two ways of merging will differ. In
the first case (𝐵 then 𝐶′), the Append edit that adds a new node is
followed by further focused edits that transform the newly added
node from a list item to a table row. In the second case (𝐶 then 𝐵′),
the structural transformations are applied to all rows.

According to the current implementation of our effect analysis,
the two example histories are conflicting. Although 𝐵 primarily
affects the document structure, it also adds a new field to the record
(email), which is a ValueEffect, conflicting with the ValueEffect of
𝐶 . In this scenario, the conflict can be ignored and the resulting
document will be the same. However, as discussed in §4.2, merging
of edit histories is not symmetric and arising conflicts can also be
resolved by removing conflicting edits.

5.2 Programming By Demonstration
In programming by demonstration [15], the user demonstrates a
task to the system and the system then repeats it, directly or in a
generalized way. To use direct repetition with Denicek (Fig. 8), the
user selects edits from the edit history, names them and replays
them. For general-purpose document editing in Webnicek, this
requires certain forethought, but as shown in §7, the mechanism is
very effective in a domain such as data wrangling [45].

There are two notable aspects of our implementation of program-
ming by demonstration in Webnicek. First, Webnicek records the
saved edits in the document itself (by representing individual edits

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Tomas Petricek and Jonathan Edwards

21

3

4

5

Figure 9: We wrap the initial count (1) in a formula that adds
1 to the value, (2). Evaluation produces the count (3), which
is invalidated on subsequent clicks (4). The button replays
the saved edits that wrap the current count in a formula (5).

as nodes and storing them in a list inside the /saved-interactions

field). This means that no other implementation mechanism outside
of Denicek is needed and also that the stored edits can be modified
by the user or tools working with the document.

Second, when replaying edits, Webnicek does not append the
recorded edits on top of the current history. Instead, it stores the
hash of the history at the time of saving. To replay the edits, it then
appends the edits to the top of the original history and merges this
edit sequence with the current history. This pushes the recorded
edits through later edits made by the user, reconciling them with
potential structural edits. The result can be seen in Fig. 2 (E), where
a newly added list item becomes a table row.

Webnicek also accounts for the case where edits recorded in the
document are themselves transformed (when they are reconciled
with other edits during merging). In this case, Webnicek updates
the recorded edits (an alternative approach is discussed in §6).

5.3 Interactive User Interfaces
Programming by demonstration can be used to define interac-
tive elements in the document. In a simple scenario, illustrated
in Fig. 10 (1), the click event handler is set to a reference to a
sequence of edits recorded in the document. Clicking the button
executes the edits using the mechanism discussed in the previous
section, i.e., Webnicek appends the edits to a history at the time
when the edits were recorded and merges the edits with the current
history.

The use of merging when replaying recorded edits is crucial in
both the Todo App and the Conference List formative examples
(see §A). In both cases, the merging makes it possible to define a
user interface for adding items (new Todo items, new speakers) and
later change the document structure (refactor the speaker list into a
table) or add functionality (formula to evaluate whether a Todo item
has been completed) without having to recreate the user interface
for adding items. The use of merging ensures that new items are
added in a correct format or with the additional functionality.

1 2

Figure 10: Using programming by demonstration to define
a UI. The “Add” button (1) replays edits; the “Remove com-
pleted” button (2) modifies target and specifies a condition.

In addition to the core functionality provided by Denicek, the
Webnicek system also makes it possible to generalize the interac-
tions recorded through programming by demonstration. As shown
in Fig. 10 (2), a button to remove all completed Todo items can
be created by generalising the remove-item interaction, which re-
moves the list item at the index 0. In addition to the recorded
interaction, we manually specify (in the source view) that the edits
should be applied to all elements selected by the /items/* selector,
instead of the original /items/0 selector (prefix) and that the edits
should only be applied to elements for which the formula (which
tests if the checkbox is checked) specified by a relative selector
./condition/comp/result evaluates to true.

Note that the generalization mechanism does not violate the
Denicek principle that edits cannot depend on values (§4.1). Web-
nicek finds all nodes for which the condition holds and generates
one specific (non-conditional) edit for each of the nodes.

º Generalization Heuristic. Specifying generalization manually is
cumbersome. Programming by demonstration systems typically imple-
ment heuristics for generalization [75] that infers and suggests such
generalizations. If integrated into Webnicek, such heuristic could for ex-
ample automatically construct a formula based on positive and negative
examples [60] (selected and deselected Todo list items).

5.4 Formula Language and Evaluation
As illustrated earlier (§3, F), Denicek documents can contain for-
mulas inspired by the spreadsheet paradigm [76]. Formulas in Web-
nicek do not transform the document and their results are transient,
but they can describe richer computations than what can be ex-
pressed using document edits.

Formula evaluation also leverages Denicek’s ability to merge
edit histories. As illustrated in Fig. 9, formulas are represented as
document nodes with a special tag (<x-formula>). They are recog-
nized by a formula evaluator and rendered in a special way (4), but
they are created using ordinary edits and the Denicek substrate
treats them as standard nodes.

To evaluate formulas, the formula evaluator generates edits that
turn the <x-formula> (2) record into <x-evaluated> (3), which keeps
the previous formula state in the formula field and the evaluation
result in the result field. Keeping the previous state of the formula
is not necessary, but it enables provenance analysis as discussed in

Denicek: Computational Substrate for Document-Oriented End-User Programming UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

§5.7. The way edits generated by evaluation are merged with the
document is discussed in the next section.

The Counter App example shown in Fig. 9 illustrates the inter-
action between formulas and programming by demonstration. To
implement a counter, we first add the initial value 0 to the document.
We then perform three edits that wrap the current counter value in
a formula that adds 1 to the value. The three edits (5) are used as
an event handler for the button and so clicking the button creates
an increasingly long sequence of increments. One advantage of
this approach that we will leverage later is that the evaluation also
records a trace of how the final computed value was obtained.

 Formula Language. Webnicek exposes the underlying representa-
tion of formulas to the user, but the same representation could be edited
through a user-friendly mechanism such as a textual calculation view
[98], or a block-based editor [41]. The key point is that Denicek’s tree
structure makes it easy to embed formulas in document in a uniform
way, edit them as other nodes and merge edits that change them.

5.5 Incremental Recomputation
As illustrated in Fig. 11, Webnicek supports incremental recomputa-
tion. The cost of speaker travel depends on the number of speakers,
but the cost of refreshments depends only on two constants. The
edit that adds a speaker invalidates only the former computation.

The evaluation mechanism is illustrated in Fig. 12. When the
formulas are evaluated, Denicek generates edits that wrap the for-
mula in <x-evaluated> and set the result to the computed value.
In Webnicek, those evaluated edits are kept in a separate list that
is always appended to the top of the current edit history. When
the user makes subsequent edits, the evaluated edits are pushed
through the newly added edits using edit reconciliation. If the edits
conflict (according to the conflict detection discussed in §4.2), the
affected evaluated edits are dropped.

The dependencies between edits alongside with the conflict de-
tection mechanism provide functionality that other systems imple-
ment using an explicit dependency graph or by topological sorting.

è Live Programming. The Webnicek prototype does not automati-
cally evaluate formulas. This makes it easier to understand the evaluation
mechanism, but a realistic system based on the substrate could auto-
matically evaluate formulas to provide a live programming experience
[85, 96] and use incremental recomputation for performance reasons.

5.6 Schema Change Control
Document structure often needs to evolve [11], as illustrated by
the formative example Conference List where a list is transformed
into a table. When this happens, data and code that depend on the
structure of the document need to evolve correspondingly. The
problem is well-known in database systems [93] and has recently
been explored in the context of programming systems [27].

Although Denicek does not explicitly track document structure
(schema or type), all documents have an implicit structure and
some edits transform this structure. As discussed in §4.2, Denicek
automatically updates reference nodes in the document when edits
modify the document structure. This enables a form of schema
and code co-evolution [27]. Formulas embedded in documents use
reference nodes to refer to both data sources (in the document) and

1 2 3

Figure 11: Budget calculation based on the number of speak-
ers (1) and the result (2). When speaker is added (3), only the
results of affected formulas are invalidated.

1 2 3 A

1 2 3 4

B

B

1 2 3 Figure 12: Evaluated edits
(A, B) are kept at the top of
the history. Evaluated edits
(A) that conflict with ordi-
nary edits (4) are dropped.

the results of other computations. Consequently, if the document
structure changes, the formulas are automatically updated.

Consider the example in Fig. 14. The original list is turned
into <tbody> using UpdateTag and wrapped inside <table> with a
field body using WrapRecord. For the latter, Denicek updates the
reference accordingly turning the original /speaker reference in
the formula into /speaker/body.

Note that Denicek can only reflect schema changes explicitly
represented by the document structure. If a formula depended on
the structure of the original string representing speakers (with
a comma), Denicek would not be able to amend the logic of the
formula. Systems supporting the divergence model [27] may be able
to lift this restriction by transforming the new value back before
applying the original formula.

Edits produced by document evaluation transform the formula
structure (wrapping it in the <x-evaluated> record). However, the
reference behaviour of those edits is set to keep references un-
changed (as discussed in §4.1) and so references to formulas are not
transformed when the formula is evaluated (otherwise, references
would be updated to point to the original unevaluated formulas).

1 2 3

Figure 13: Using provenance tracking to highlight document
parts that contributed to the calculation of refreshments
costs (1), travel costs (2) and all costs (3).

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Tomas Petricek and Jonathan Edwards

1 2

Figure 14: When an edit changes the document structure,
references in formulas are updated accordingly.

5.7 End-User Debugging
The most common kind of end-user programming question is de-
termining whether a value they observe is right or wrong [52]. One
way to help users answer the question is to provide an explanation
how a value was obtained [57]. Webnicek provides a basic mecha-
nism that highlights document nodes that contributed to a specific
computed result, illustrated in Figure 13.

The implementation leverages the fact that evaluation wraps
the previous state of the formula (§5.4). When a formula is fully
evaluated, the <x-evaluated> document node contains the result,
but also a sub-tree with the full evaluation trace [82]. We analyse
the trace, collect all reference nodes in the trace and highlight all
nodes referred to in the computation. Denicek makes this easy as
we can collect references directly nested in the formula node.

| Explanations and Linked Visualizations. In Webnicek, we imple-
ment provenance analysis to show inputs involved in computation, but
information from the execution trace collected by the Denicek substrate
can also be used to provide a detailed explanation [82] or to automatically
construct a linked visualization [83].

5.8 Concrete Programming
Abstraction is an essential feature of programming, but it has a high
cognitive cost [6]. Programming by demonstration (§5.2) offers one
way of reducing the cost. Another way is making programming
more concrete [22, 103], i.e., to support copying of functionality as
in prototype-based object-oriented programming [104, 111].

Webnicek supports a functionality akin to managed copy &
paste [24, 26] for formulas. Rather than introducing abstractions
(functions), users can copy and modify formulas to reuse them.
When the user discovers an error in the original formula, Webnicek
lets them use the merging mechanism to correct the error in the
original formula and all its copies.

The functionality is illustrated in Fig. 15, which uses the builtin
operation read-csv to load a table from a file. The operation imports
the data as a document table with rows that can be addressed by
subsequent formulas. The then user writes two formulas to sum
the rows and compute an average.

They copy a formula with switched operands using the Copy
edit and then modify it to use a different data source. They then
navigate back in history to the point before the copying and create a
temporary fork of the document. In the fork, they use RenameField

2 4

1 3

Figure 15: The user uses creates a copy of a formula (1). They
notice an error (2), go back in history to switch the arguments
(3), merge the change and re-evaluate both formulas (4).

to switch the operands of the division. When they merge the tem-
porary fork into the original document, the Apply to Newly Added
logic of the merge operation (§4.2) duplicates the RenameField edits
and applies them to the copied formula. Merging with the Copy edit
and the fact that formulas are ordinary document nodes, provide
the key component for a straightforward implementation of the
managed copy & paste functionality.

Ð Linked Editing. Webnicek currently requires users to explicitly
manipulate history to correct errors across multiple code clones. Re-
search on managing duplicated code resulted in multiple tools [21, 110]
with dedicated user interface to manage clones. The Denicek substrate
provides the underlying mechanism that could be used to implement a
more user-friendly interface inspired by those systems.

6 Design Considerations
The design of the Denicek substrate is the result of an iterative
process in which we repeatedly adapted the Denicek design and
revisited the implementation of the Webnicek system until we
obtained a satisfactory solution for the six formative examples
detailed in §A. In this section, we document the design challenges,
many of which are shared with related systems [23, 33, 40, 79].

� Uniformity and Composability. Two guiding principles for the
design of Denicek have been composability and uniformity [39]. The
substrate should cover a large number of scenarios using a small number
of concepts. This is apparent in the design of the document structure –
a node can represent data, code or rich text – as well as in the role of
edits – an edit can be a value change, a structure change, the result of
user interaction or the result of formula evaluation.

Dynamic and Static Typing. Denicek does not explicitly track the
document structure (it is dynamically typed). For example, we as-
sume that lists are homogeneous, but do not enforce this property.
A statically typed system could enforce such properties and ex-
plicitly distinguish structural edits from value edits. This has a
theoretical appeal and it simplifies aspects of the implementation,
e.g. by removing the need to control reference updating, but it
makes working with the system less akin to document editing.

Denicek: Computational Substrate for Document-Oriented End-User Programming UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

The structural invariants are violated when constructing values
gradually (e.g., when adding a new speaker to a table), as well
as during evaluation (wrapping <x-formula> in <x-evaluated>). A
systemwith static types could use a form of edit transactions, where
structural invariants are reestablished after a sequence of edits.

Expressive Selectors and Edits. Our merge operation works on a
pair of edit sequences, but it does not need access to the current
document state or history. This limits the expressiveness of edits.
Denicek does not support conditional edits (applied only when a
specific condition holds), because merging would then not be able
to determine if two edits are conflicting. As a result, generalization
of recorded interactions (§5.3) has to be done at a meta level and
generates a series of individual edits. This design also limits the
expressiveness of selectors. For example, an edit targeting nodes
with a specific tag (e.g., all <h3> elements) would also be conditional.

This limitation means that edits generated by generalized inter-
actions (§5.3) can be only merged in limited ways (an item added to
a list through merging after invoking an action will not be affected
by the action). We expect that the restriction on expressiveness of
selectors can be lifted for edits that do not modify the document
structure, but have not yet lifted this restriction in Denicek.

List Indices and Ordering. Denicek does not use numerical indices
for lists. Indices are unique identifiers that have to be provided ex-
plicitly. (Although Webnicek generates indices automatically when
editing lists.) The design supports a programming by demonstra-
tion scenario where the user adds a new list item and then modifies
it (e.g., when adding a speaker or a Todo item).

With numerical indices, the edits following Append would not
have a direct access to the index of the added item. Computing a
numerical index from the length of the list would require a complex
logic to update indices when merging edit operations that affect
lists. An alternative is to disallow modification of the newly added
item, but this makes programming by demonstration cumbersome.

To maintain order of list elements, Denicek uses a data structure
inspired by the list MRDT [44] and requires specifying the index of
a preceding item when appending or inserting into a list. Denicek
uses the same mechanism for record fields as the order of fields
may be visible to the user, for example in Webnicek where fields
represent children of a HTML node. Making the order of fields
explicit ensures that it is maintained during merging.

Structure and Capabilities ofMerging. Denicek keeps a linear history
and merging appends edits to the top of the history. This model is
akin to git rebase. An alternative is to maintain a graph of edits akin
to git merge. This would simplify recording of edits in programming
by demonstration (§5.2) as we would not need to update saved edits
transformed duringmerging. (Their hashes would remain the same.)
However, supporting special merge edits and non-linear history
would make the basic substrate more complex.

Denicek also only supports the convergence model of collabora-
tive editing [27] where users have to merge all changes in order
and cannot adopt selected edits (cherry picking in git). The diver-
gence model would let users keep their own schema but import all
data edits. Supporting the model requires a retract operation [25]
that is dual to our edit reconciliation (given subsequent edits 𝑒1, 𝑒2,
generate 𝑒′2 that has the same effect as 𝑒2 but can occur before 𝑒1).

Dependency Tracking. Conflict detection in Denicek is used when
merging edits, but also to implement incremental recomputation
(§5.5). Edits generated during formula evaluation (§5.4) may be
Copy edits (when evaluating a reference), but also Add edits (when
setting the evaluation result to a computed value). Add edits need
to record additional dependencies identifying the source of the
operation arguments. Alternative evaluationmodels avoid this need,
but lead to a less uniform system design.

7 Case study: Datnicek Notebooks
Denicek is a low-level computational substrate. It is intended as the
basis for interactive programming systems that view programs as
documents. The most prominent example of such systems today are
notebook environments for data science. To explore this use case,
we have developed Datnicek, a notebook system that shows the
ability of Denicek to support rich interactive user experiences. In
this section, we present Datnicek and reflect on its development. A
simple data exploration conducted in Datnicek is shown in Fig. 16.

7.1 Requirements
The design of Datnicek brings together a range of recent research
ideas on interactive programming environments for data science.
Datnicek notebooks consist of code cells and markdown cells, but
they also support interactive grid cells where the user can use
programming by demonstration to construct data cleaning scripts.
We aim to support the following features:

• Structure Editing. Code in code cells should be edited through
structure editor as in Histogram [84]. This allows Datnicek
to keep track of the code structure and can make the system
accessible to non-programmers [70]. We do not initially aim
to implement advanced keyboard-based editing [5, 73].

• Collaborative Editing. It should be possible to merge inde-
pendently done code changes as in Grove [3], addressing the
known pitfall of versioning Jupyter notebooks [102].

• Code Completion. During editing, code completion should
offer available data transformations and operations as when
using type providers [106] or when using iterative prompting
in The Gamma [87].

• Output Invalidation. When code is edited, the previously
evaluated results that depend on it, directly or transitively,
should be invalidated as in Wrattler [85, 89], addressing
another well-known limitation of Jupyter notebooks [58].

• Interactive Data Cleaning. It should be possible to edit tab-
ular data in an interactive grid and use programming by
demonstration for common cleaning tasks as in Wrangler or
Vizier [45, 50].

• Wrangling Code Synthesis. Interactively constructed data
transformations should be convertible into code that can be
checked and further edited as in Wrex [20].

The Datnicek notebook system implements the above requirements
on top of Denicek. Although Datnicek is a proof of concept, it shows
that Denicek provides a suitable basis for the implementation.

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Tomas Petricek and Jonathan Edwards

1

2

3

Figure 16: A notebook visualizing Air traffic accident data from Eurostat. The user loads data in a code cell (1) and edits it in a
grid that infers edit operations via programming by demonstration (2). They turn the edits into a code cell (3) and add a chart.

7.2 Implementation
Datnicek is implemented using the Elm architecture [28], where a
system maintains a state that is updated through events. The state
consists of the list of Denicek edits, transient state of the user inter-
face, current computed document and other cached information. All
interactions that affect the notebook trigger the same type of event
that appends edits to the list of Denicek edits. Remaining events up-
date the transient user interface state. The support for collaborative
editing is implemented through an ad-hoc mechanism.

User Interface. Datnicek notebooks consists of a series of cells. In
code cells, the user can use the “+” button to add a new variable,
add an operation to the end of an existing chain of operations, but
also to specify an argument of an operation. The button opens a
menu showing all valid options based on the current context.

In the interactive grid, the user can edit column headers and
table cells. When they edit a value, Datnicek suggests generalised
edits to be applied to the entire column or table. For example, when
the user changes the “0 p” value to “0”, Datnicek suggests to replace
“ p” with the empty string in all cells. Other suggested edits include
renaming or deleting a column, splitting a column using a delimiter
and filtering rows based on the selected value. Datnicek can also
turn edits performed interactively into a new code cell.

Programmatic Code Cells. A Denicek document representing a Dat-
nicek notebook is shown in Fig. 17. A notebook is a record storing
individual cells as fields. The tag determines the type of the cell.

The programming language used in code cells is inspired by
the data exploration calculus [85]. A cell consists of a sequence
of bindings of the form let 𝑣 = 𝑒 that assign an expression 𝑒 to a

variable 𝑣 . An expression can be a reference to a variable, global
value (such as data and vis) or a method invocation 𝑒.𝑚(𝑒1, . . . , 𝑒𝑛).

Bindings are represented as fields of a record and expressions
use the formula representation discussed in §5.4. Operations and
global values are identified by an absolute reference pointing to
the special /$datnicek namespace. Chains of method calls are rep-
resented using nested formulas. Evaluation of formulas proceeds
as in Webnicek and wraps <x-formula> in <x-evaluated>. The user
interface displays the original formula alongside with the evaluated
result, supporting tables and Compost data visualizations [86]. Edits
to the formula invalidate dependent results as discussed in §5.5.

Interactive Grid Cells. Grid cells consist of a reference to the data
source they edit and a collection of <transform> nodes that rep-
resent individual data transformations constructed via program-
ming by demonstration. A transformation consists of metadata, a
sequence of edits and a formula representing the transformation
(with <x-hole> standing for the data table to be transformed).

A single transformation may correspond to multiple underlying
Denicek edits. For example, splitting a column named “foo/bar” with
values of the form “7/5” using “/” as the delimiter adds a new column
“bar”, copies values from “foo/bar”, renames “foo/bar” to “foo” and
then transforms the values in the new columns by dropping the
part before and after the delimiter, respectively.

Interactive grid also supports transformations that affect rows
satisfying a given condition (e.g., deleting rows with a specific value
in a given column). As discussed in §4.1, Denicek does not support
conditional selectors. To implement conditional transformations,
we add a special kind of (virtual) edit <x-expandable-edit> that

Denicek: Computational Substrate for Document-Oriented End-User Programming UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

Figure 17: Underlying document representation of a code cell
and a grid cell in the Datnicek notebook system.

stores the underlying edit and a condition. As in §5.3, when applying
the edit, Datnicek finds all rows for which the condition holds and
generates a single non-conditional edit for each such row.

7.3 Reflections
External Validity. The development of Datnicek was only started
after the design and implementation of Denicek and Webnicek was
completed. Thanks to this two-phase methodology, the case study
provides a qualitative evaluation of Denicek’s capabilities. The
design of Denicek is based on third-party research (§7.1) and so the
case study provides a limited external validation. However, several
design choices of Datnicek align it with the capabilities of Denicek.
This includes the use of a structure editor and a user interface for
programming by demonstration that suggests edit operations. We
revisit the generality of Denicek in §8.2, but establishing external
validity ultimately requires adoption of the open-source Denicek
package by other programming system researchers.

Effectiveness and Uniformity. Many of the Datnicek requirements
are addressed byDenicekwithminimal development effort. Denicek
also provides a small and uniform set of primitives. In particular, the
implementation represents all non-transient changes to a notebook
as Denicek edits. Code completions offered by the code editor are
edits (wrapping a formula or appending a parameter), changing a
primitive value is an edit, and recommendations in the interactive
grid are also edits (appending a <transform> node).

The uniform and dynamic nature makes the development ex-
perience of using Denicek more akin to dynamic object-oriented
languages than to statically-typed functional languages. The system

can quickly evolve, but it needs suitable debugging tools, such as
the source view (Fig. 17) or an ability to step through the history.

Notebook Editing. Collaborative editing based on merging of edits
makes conflicts less common when compared to textual merging.
For example, changing a method parameter can be merged with
adding a call to a chain. However, adding two independent calls still
results in a conflict. A formula representation that avoids nesting
[84] may eliminate an even larger proportion of conflicts. Variables
are represented as references and automatic reference updating
prevents a number of errors. References are automatically updated
when the field (variable) name changes and Denicek prevents the
deletion of cells that contain variables to which there are references.

The proof of concept nature of Datnicek means that it currently
lacks suitable user interface for resolving conflicts. Similarly, the
structure editor for code is pointer-based and would benefit from a
better support for keyboard-based input [5, 73]. However, Denicek
provides a suitable infrastructure for implementing this.

Evaluation Model. The evaluation model of Denicek implements
dependency tracking and incremental recomputation, which aid
notebook reproducibility [58, 89]. As in Webnicek (§5.5), Datnicek
keeps evaluated edits on top of the current history and uses conflict
detection to remove invalidated edits. We uses the same logic to
evaluate edits performed in interactive grid cells, suggesting that
the approach is a useful general implementation pattern.

However, as invalidation of evaluated edits is not built into Deni-
cek, it is worth investigating if Denicek could support the standard
evaluation model of Jupyter notebooks based on mutable state.

The development of Datnicek uncovered some limitations of
conflict detection in Denicek. In particular, edits generated by eval-
uation (such as Add edits that set the result) need to be treated as
conflicting with overlapping edits with both value and structure
effects. This is because evaluated edits are the result of evaluation
that considers both value and structure of source nodes.

Finally, data loaded in Datnicek is represented as Denicek nodes
(a table is a list of records). Such uniform representation makes
Denicek more versatile, but places a high demand on the system
performance. We implemented a few basic Denicek optimisations,
but Datnicek is still cumbersome to use with data consisting of
multiple thousands of rows.

FutureWork. One of the design choices discussed in §6 is whether to
track the document structure explicitly. The structure of documents
created in Webnicek can be irregular, which justified the dynamic
nature of Denicek. In contrast, Datnicek notebooks are more regular.
Replicating Datnicek using a system akin to Denicek, but based on
explicit structure would yield an interesting comparison.

Our experience with conflict detection shows the importance of
getting the details of the implementation of programming substrates
like Denicek right. This could be aided by the development of a
formally tractable model of the system and proving a correctness
property akin to that of The Gamma live previews [85].

Finally, the representation of transformations in interactive grid
cells (Fig. 17) highlights an unnecessary duplication – a transfor-
mation stores a sequence of edits, as well as a formula. Unifying
these two notions is another interesting future direction.

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Tomas Petricek and Jonathan Edwards

8 Evaluation
The Datnicek case study provides a primary qualitative evaluation
of Denicek.We complement this with heuristic evaluation according
to the criteria proposed by Olsen [78] and through the technical
dimensions of programming systems framework (TDPS) developed
by Jakubovic et al. [39]. Criteria and dimension names are in bold.

8.1 Complex System Evaluation
First and foremost, Olsen [78] argues that a systemmust illustrate its
importance for a particular class of users performing certain tasks
in a given situation. Denicek is designed to support programmers
and researchers developing novel interactive programming systems,
an active research area, arguably constrained by the dependence
on existing programming languages and systems.

To support a wide range of novel systems, Denicek must satisfy
Olsen’s criterion of generality. We show that Denicek is suitable
for building two very different kinds of programming systems,
Webnicek andDatnicek.We further delineate the space of supported
programming systems in the next section using TDPS.

Denicek makes it easy to try different solutions, satisfying the
flexibility condition. This was experienced during the develop-
ment of Datnicek, where a uniform representation (everything is
an edit) made it possible to quickly prototype different designs.

For an emerging class of programming systems built around
documents, such as Potluck [66] and notebooks for data science,
Denicek provides expressivematch by being nearer to the problem
being solved, i.e., by using document representation for a program-
ming system built around documents.

Denicek also satisfies the inductive combination criterion
by offering a small set of primitives from which different designs
can be built. Specifically, we used Denicek to build a document-
based programming system, interactive grid for data cleaning and
a structure editor with contextual code completion.

Several Olsen’s criteria point to limitations of our work. First, it
is unclear if Denicek can empower new participants to be involved
in programming system design. Second, the Datnicek case study
did not address scalability, although there is arguably a number of
domains for which the capabilities of the system already suffice.

8.2 Technical Dimensions
The technical dimensions (TDPS) framework [39] maps the design
space of interactive programming systems. We use the framework
to characterize the generality of the substrate. For some dimensions,
Denicek can cover the full range of options, while for others, it is
limited to one fixed design or a subset of options.

Interaction. In both Datnicek and Webnicek, there is one primary
mode of interaction. Both systems offer immediate feedback dur-
ing editing, meaning there is one main feedback loop. Denicek
could be used to build systems with multiple modes of interaction
and feedback loops (e.g., by separating editing, checking of edits
and evaluation), but it is unsuitable for live systems that preserve
evaluation state during source code editing [10].

Denicek covers the full range of abstraction construction
approaches. Abstraction from concrete cases can be implemented via
programming by demonstration as shown in §5.2 and §7. Although

Datnicek code cells do not currently support function declarations,
these could be added to provide abstraction from the first principles.

Notation. Denicek supports both notational structures. Comple-
menting notations use distinct representations for different aspects
of a program. For example, Datnicek combines code cells with in-
teractively constructed transformations in grid cells. Overlapping
notations allow editing of the same underlying structure in multiple
ways. Although not integrated in a single system, formula editor
in Webnicek and code editor in Datnicek illustrate this option.

Even though Denicek’s underlying conceptual structure is based
on composability with a small number of primitives, this does not
determine uniformity of notations of systems built on top of
Denicek. These can support representations formed by a small set
of primitives, as well as by a large set of domain-specific constructs.

In Denicek, the surface and internal notation are typically
closely related. The internal notation has an explicit structure (docu-
ment nodes), which can directly encode the surface notation. Using
an unstructured representation (such as text) is possible, but would
be incompatible with other Denicek capabilities such as merging.

Conceptual Structure and Customizability. On the scale of concep-
tual integrity vs. openness, the Denicek substrate favors integrity.
Systems based on Denicek need to use its representation of docu-
ments and document edits. This reduces complexity, but leads to
incompatibility with existing software stacks.

Systems built using Denicek currently do not exhibit the self-
sustainability property, i.e., the ability to be modified from within
themselves. Supporting this is an appealing possibility. A further re-
search on the Denicek computation model should attempt to make
it possible to implement formula evaluation as, for example, condi-
tional edits recorded in the document itself through programming
by demonstration.

9 Conclusion
Many recently developed programming experiences make the task
easier, less error-prone, more direct and more collaborative. We
believe that many more research advances are possible. Alas, novel
programming experiences are difficult to implement on top of ex-
isting programming languages. A suitable computational substrate
can significantly reduce the implementation effort needed to imple-
ment novel programming experiences.

To this end, we present Denicek, a computational substrate that
represents programs as sequences of document edits. We describe
the design of Denicek and show how it supports a range of program-
ming experiences. A remarkable property of the design is that many
programming experiences are implemented through a straightfor-
ward combination of three basic operations provided by Denicek,
namely edit application, merging of histories and conflict detection.

To evaluate the usability of Denicek for the development of in-
teractive programming systems, we use it as the basis for Datnicek,
a data science notebook system that supports a range of program-
ming experiences pioneered in recent research systems. We also
assess the substrate and its generality through heuristic evaluation.

The design of Denicek resolves a number of challenges that have
been faced by authors of related systems, but have never been ex-
plicitly documented. While we hope researchers will adopt Denicek

Denicek: Computational Substrate for Document-Oriented End-User Programming UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

as a foundation for future innovative programming systems, an
equally important contribution of our work is that it documents
this existing but unwritten tacit knowledge.

Acknowledgments
The authors thank Clemens Nylandsted Klokmose for research guid-
ance, attendees of the IFIP WG 2.16 meeting in Serpiano, members
of the Software Architecture Group at HPI and attendees of LIVE
2023 for feedback on the project. Anonymous reviewers provided
invaluable actionable guidance for improving the final version of
the paper. The work has been supported by the Charles University
grant PRIMUS/24/SCI/021 and by the Czech Ministry of Education,
Youth and Sports grant ERC-CZ LL2325.

References
[1] Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2006. Adaptive functional

programming. ACM Trans. Program. Lang. Syst. 28, 6 (Nov. 2006), 990–1034.
https://doi.org/10.1145/1186632.1186634

[2] Marc T.P. Adam, Shirley Gregor, Alan Hevner, and Stefan Morana. 2021. Design
Science Research Modes in Human-Computer Interaction Projects. AIS Trans-
actions on Human-Computer Interaction 13, 1 (2021), 1–11. https://doi.org/10.
17705/1thci.00139

[3] Michael D. Adams, Eric Griffis, Thomas J. Porter, Sundara Vishnu Satish, Eric
Zhao, and Cyrus Omar. 2025. Grove: A Bidirectionally Typed Collaborative
Structure Editor Calculus. Proc. ACM Program. Lang. 9, POPL, Article 73 (Jan.
2025), 29 pages. https://doi.org/10.1145/3704909

[4] Manuel Bärenz. 2020. The essence of live coding: change the program, keep
the state!. In Proceedings of the 7th ACM SIGPLAN International Workshop on
Reactive and Event-Based Languages and Systems (Virtual, USA) (REBLS 2020).
ACM, 2–14. https://doi.org/10.1145/3427763.3428312

[5] Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and Robert
Hirschfeld. 2023. Structured Editing for All: Deriving Usable Structured Editors
from Grammars. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, Article 595, 16 pages. https://doi.org/10.1145/3544548.3580785

[6] A.F. Blackwell. 2002. First steps in programming: a rationale for attention invest-
ment models. In Proceedings IEEE 2002 Symposia on Human Centric Computing
Languages and Environments. 2–10. https://doi.org/10.1109/HCC.2002.1046334

[7] Andrew Blinn, Xiang Li, June Hyung Kim, and Cyrus Omar. 2024. Statically
Contextualizing Large Language Models with Typed Holes. Proc. ACM Program.
Lang. 8, OOPSLA2, Article 288 (Oct. 2024), 31 pages. https://doi.org/10.1145/
3689728

[8] Marcel Borowski, Luke Murray, Rolf Bagge, Janus Bager Kristensen, Arvind
Satyanarayan, and Clemens Nylandsted Klokmose. 2022. Varv: Reprogrammable
Interactive Software as a Declarative Data Structure. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
492, 20 pages. https://doi.org/10.1145/3491102.3502064

[9] Zouhaier Brahmia, Fabio Grandi, and Barbara Oliboni. 2024. A Literature Review
on Schema Evolution in Databases. Computing Open 02, 2430001 (2024), 1–54.
https://doi.org/10.1142/s2972370124300012

[10] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid,
Michal Moskal, Nikolai Tillmann, and Jun Kato. 2013. It’s alive! Continuous
feedback in UI programming. In Proceedings of the 34th ACMSIGPLANConference
on Programming Language Design and Implementation (Seattle, Washington,
USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA,
95–104. https://doi.org/10.1145/2491956.2462170

[11] Margaret M. Burnett and Brad A. Myers. 2014. Future of end-user software
engineering: beyond the silos. In Future of Software Engineering Proceedings
(Hyderabad, India) (FOSE 2014). Association for Computing Machinery, 201–211.
https://doi.org/10.1145/2593882.2593896

[12] Weihao Chen, Xiaoyu Liu, Jiacheng Zhang, Ian Iong Lam, Zhicheng Huang,
Rui Dong, Xinyu Wang, and Tianyi Zhang. 2023. MIWA: Mixed-Initiative Web
Automation for Better User Control and Confidence. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software Technology, UIST 2023, San
Francisco, CA, USA. ACM, 75:1–75:15. https://doi.org/10.1145/3586183.3606720

[13] James Cheney, Stephen Chong, Nate Foster, Margo Seltzer, and Stijn Vansum-
meren. 2009. Provenance: A future history. In Proceedings of the 24th ACM
SIGPLAN Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications (Orlando, Florida, USA) (OOPSLA ’09). ACM, New York,
NY, USA, 957–964. https://doi.org/10.1145/1639950.1640064

[14] Andrei Chiş, Tudor Gîrba, Juraj Kubelka, Oscar Nierstrasz, Stefan Reichhart, and
Aliaksei Syrel. 2017. Moldable Tools for Object-Oriented Development. Springer
International Publishing, Cham, 77–101. https://doi.org/10.1007/978-3-319-
67425-4_6

[15] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: Programming
by demonstration. MIT press.

[16] Liangrun Da and Martin Kleppmann. 2024. Extending JSON CRDTs with Move
Operations. In Proceedings of the 11th Workshop on Principles and Practice of
Consistency for Distributed Data (Athens, Greece) (PaPoC ’24). Association for
Computing Machinery, New York, NY, USA, 8–14. https://doi.org/10.1145/
3642976.3653030

[17] Aguido Horatio Davis, Chengzheng Sun, and Junwei Lu. 2002. Generalizing
operational transformation to the standard general markup language. In Proceed-
ings of the 2002 ACM Conference on Computer Supported Cooperative Work (New
Orleans, Louisiana, USA) (CSCW ’02). Association for Computing Machinery,
New York, NY, USA, 58–67. https://doi.org/10.1145/587078.587088

[18] Andrea A. diSessa. 1995. Thematic Chapter: Epistemology and Systems De-
sign. In Computers and Exploratory Learning, Andrea A. diSessa, Celia Hoyles,
Richard Noss, and Laurie D. Edwards (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 15–29.

[19] Andrea A. diSessa and Harold Abelson. 1986. Boxer: A Reconstructible Compu-
tational Medium. Commun. ACM 29, 9 (1986), 859–868. https://doi.org/10.1145/
6592.6595

[20] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani.
2020. Wrex: A Unified Programming-by-Example Interaction for Synthesizing
Readable Code for Data Scientists. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). ACM, 1–12.
https://doi.org/10.1145/3313831.3376442

[21] Ekwa Duala-Ekoko andMartin P. Robillard. 2008. Clonetracker: Tool support for
code clone management. In Proceedings of the 30th International Conference on
Software Engineering (Leipzig, Germany) (ICSE ’08). Association for Computing
Machinery, New York, NY, USA, 843–846. https://doi.org/10.1145/1368088.
1368218

[22] Jonathan Edwards. 2004. Example centric programming. In Companion to
the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (Vancouver, BC, CANADA) (OOPSLA
’04). Association for Computing Machinery, New York, NY, USA, 124. https:
//doi.org/10.1145/1028664.1028713

[23] Jonathan Edwards. 2005. Subtext: uncovering the simplicity of programming.
In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (San Diego, CA, USA) (OOP-
SLA ’05). Association for Computing Machinery, New York, NY, USA, 505–518.
https://doi.org/10.1145/1094811.1094851

[24] Jonathan Edwards. 2006. First Class Copy & Paste. Technical Report MIT-CSAIL-
TR-2006-037. Massachusetts Institute of Technology. https://dspace.mit.edu/
handle/1721.1/32980

[25] Jonathan Edwards and Tomas Petricek. 2021. Typed Image-based Program-
ming with Structure Editing. arXiv:2110.08993 [cs.PL] https://arxiv.org/abs/
2110.08993 Presented at Human Aspects of Types and Reasoning Assistants
(HATRA’21), Oct 19, 2021, Chicago, US.

[26] Jonathan Edwards and Tomas Petricek. 2022. Interaction vs. Abstraction: Man-
aged Copy and Paste. In Proceedings of the 1st ACM SIGPLAN International
Workshop on Programming Abstractions and Interactive Notations, Tools, and
Environments. 11–19.

[27] Jonathan Edwards, Tomas Petricek, Tijs van der Storm, and Geoffrey Litt. 2025.
Schema Evolution in Interactive Programming Systems. The Art, Science, and
Engineering of Programming 9, ? (2025), 1–34. https://doi.org/00.0000/0000.0000

[28] Simon Fowler. 2020. Model-View-Update-Communicate: Session Types Meet the
Elm Architecture. In 34th European Conference on Object-Oriented Programming,
ECOOP 2020, November 15-17, 2020, Berlin, Germany (Virtual Conference) (LIPIcs,
Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 14:1–14:28. https://doi.org/10.4230/LIPICS.ECOOP.
2020.14

[29] Richard P. Gabriel. 2012. The structure of a programming language revolution.
In Proceedings of the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Tucson, Arizona, USA) (Onward!
2012). Association for Computing Machinery, New York, NY, USA, 195–214.
https://doi.org/10.1145/2384592.2384611

[30] Camille Gobert and Michel Beaudouin-Lafon. 2023. Lorgnette: Creating Mal-
leable Code Projections. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology (San Francisco, CA, USA) (UIST ’23).
Association for Computing Machinery, New York, NY, USA, Article 71, 16 pages.
https://doi.org/10.1145/3586183.3606817

[31] Max Goldman, Greg Little, and Robert C. Miller. 2011. Real-time collaborative
coding in a web IDE. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11).
Association for Computing Machinery, New York, NY, USA, 155–164. https:
//doi.org/10.1145/2047196.2047215

https://doi.org/10.1145/1186632.1186634
https://doi.org/10.17705/1thci.00139
https://doi.org/10.17705/1thci.00139
https://doi.org/10.1145/3704909
https://doi.org/10.1145/3427763.3428312
https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1109/HCC.2002.1046334
https://doi.org/10.1145/3689728
https://doi.org/10.1145/3689728
https://doi.org/10.1145/3491102.3502064
https://doi.org/10.1142/s2972370124300012
https://doi.org/10.1145/2491956.2462170
https://doi.org/10.1145/2593882.2593896
https://doi.org/10.1145/3586183.3606720
https://doi.org/10.1145/1639950.1640064
https://doi.org/10.1007/978-3-319-67425-4_6
https://doi.org/10.1007/978-3-319-67425-4_6
https://doi.org/10.1145/3642976.3653030
https://doi.org/10.1145/3642976.3653030
https://doi.org/10.1145/587078.587088
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/1368088.1368218
https://doi.org/10.1145/1368088.1368218
https://doi.org/10.1145/1028664.1028713
https://doi.org/10.1145/1028664.1028713
https://doi.org/10.1145/1094811.1094851
https://dspace.mit.edu/handle/1721.1/32980
https://dspace.mit.edu/handle/1721.1/32980
https://arxiv.org/abs/2110.08993
https://arxiv.org/abs/2110.08993
https://arxiv.org/abs/2110.08993
https://doi.org/00.0000/0000.0000
https://doi.org/10.4230/LIPICS.ECOOP.2020.14
https://doi.org/10.4230/LIPICS.ECOOP.2020.14
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/3586183.3606817
https://doi.org/10.1145/2047196.2047215
https://doi.org/10.1145/2047196.2047215

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Tomas Petricek and Jonathan Edwards

[32] Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet data
manipulation using examples. Commun. ACM 55, 8 (Aug. 2012), 97–105. https:
//doi.org/10.1145/2240236.2240260

[33] Christopher Hall, Trevor Standley, and Tobias Hollerer. 2017. Infra: structure all
the way down: structured data as a visual programming language. In Proceedings
of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Vancouver, BC, Canada) (Onward!
2017). Association for Computing Machinery, New York, NY, USA, 180–197.
https://doi.org/10.1145/3133850.3133852

[34] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: a light-
weight user interface for structured editing. In Proceedings of the 40th In-
ternational Conference on Software Engineering (Gothenburg, Sweden) (ICSE
’18). Association for Computing Machinery, New York, NY, USA, 654–664.
https://doi.org/10.1145/3180155.3180165

[35] Felienne Hermans and Tijs Van Der Storm. 2015. Copy-Paste Tracking: Fixing
Spreadsheets Without Breaking Them. In Proceedings of the First International
Conference on Live Coding, Alex McLean, Thor Magnusson, Kia Ng, Shelly
Knotts, and Joanne Armitage (Eds.). ICSRiM, University of Leeds, 300. https:
//doi.org/10.5281/zenodo.19341

[36] Joshua Horowitz and Jeffrey Heer. 2023. Engraft: An API for Live, Rich, and
Composable Programming. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology (San Francisco, CA, USA) (UIST ’23).
Association for Computing Machinery, New York, NY, USA, Article 72, 18 pages.
https://doi.org/10.1145/3586183.3606733

[37] Joshua Horowitz and Jeffrey Heer. 2023. Live, Rich, and Composable: Qualities
for Programming Beyond Static Text. In Proceedings of the 13th Annual Workshop
on the Intersection of HCI and PL (PLATEAU 2023). https://arxiv.org/abs/2303.
06777

[38] Patricia Jablonski and Daqing Hou. 2007. CReN: a tool for tracking copy-and-
paste code clones and renaming identifiers consistently in the IDE. In Proceedings
of the 2007 OOPSLAWorkshop on Eclipse Technology EXchange (Montreal, Quebec,
Canada) (eclipse ’07). Association for Computing Machinery, New York, NY,
USA, 16–20. https://doi.org/10.1145/1328279.1328283

[39] Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. 2023. Technical Dimen-
sions of Programming Systems. The Art, Science, and Engineering of Programming
7, 13 (2023), 1–59. https://doi.org/10.22152/programming-journal.org/2023/7/13

[40] Joel Jakubovic and Tomas Petricek. 2022. Ascending the Ladder to Self-
Sustainability: Achieving Open Evolution in an Interactive Graphical System.
In Proceedings of the 2022 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Auckland, New
Zealand) (Onward! 2022). Association for Computing Machinery, New York, NY,
USA, 240–258. https://doi.org/10.1145/3563835.3568736

[41] Bas Jansen and Felienne Hermans. 2019. XLBlocks: a Block-based Formula Editor
for Spreadsheet Formulas. In 2019 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). 55–63. https://doi.org/10.1109/VLHCC.
2019.8818748

[42] Nima Joharizadeh, Advait Sarkar, Andrew D. Gordon, and Jack Williams. 2020.
Gridlets: Reusing Spreadsheet Grids. In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI
EA ’20). Association for Computing Machinery, New York, NY, USA, 1–7. https:
//doi.org/10.1145/3334480.3382806

[43] Tim Jungnickel and Tobias Herb. 2016. Simultaneous editing of JSON objects via
operational transformation. In Proceedings of the 31st Annual ACM Symposium on
Applied Computing (Pisa, Italy) (SAC ’16). Association for Computing Machinery,
New York, NY, USA, 812–815. https://doi.org/10.1145/2851613.2852003

[44] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan.
2019. Mergeable replicated data types. Proc. ACM Program. Lang. 3, OOPSLA,
Article 154 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360580

[45] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: interactive visual specification of data transformation scripts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver,
BC, Canada) (CHI ’11). Association for Computing Machinery, New York, NY,
USA, 3363–3372. https://doi.org/10.1145/1978942.1979444

[46] A. Kay and A. Goldberg. 1977. Personal Dynamic Media. Computer 10, 3 (1977),
31–41. https://doi.org/10.1109/C-M.1977.217672

[47] Alan C. Kay. 1993. The early history of Smalltalk. In The Second ACM SIGPLAN
Conference on History of Programming Languages (Cambridge, Massachusetts,
USA) (HOPL-II). Association for Computing Machinery, 69–95. https://doi.org/
10.1145/154766.155364

[48] Stephen Kell. 2018. Unix, Plan 9 and the Lurking Smalltalk. In Reflections on
Programming Systems: Historical and Philosophical Aspects. Springer, 189–213.

[49] Stephen Kell and J. Ryan Stinnett. 2024. Source-Level Debugging of Compiler-
Optimised Code: Ill-Posed, but Not Impossible. In Proceedings of the 2024 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Pasadena, CA, USA) (Onward! ’24). ACM, 38–53.
https://doi.org/10.1145/3689492.3690047

[50] Oliver Kennedy, Boris Glavic, Juliana Freire, and Mike Brachmann. 2022. The
Right Tool for the Job: Data-Centric Workflows in Vizier. IEEE Computer Society

Data Engineering Bulletin 45, 3 (2022), 129–144.
[51] Eugen Kiss. 2014. Comparison of Object-Oriented and Functional Programming

for GUI Development. Master’s thesis. Leibniz Universität Hannover.
[52] Cory Kissinger, Margaret Burnett, Simone Stumpf, Neeraja Subrahmaniyan,

Laura Beckwith, Sherry Yang, and Mary Beth Rosson. 2006. Supporting end-
user debugging: what do users want to know?. In Proceedings of the Working
Conference on Advanced Visual Interfaces (Venezia, Italy) (AVI ’06). ACM, 135–142.
https://doi.org/10.1145/1133265.1133293

[53] Martin Kleppmann, Adam Wiggins, Peter Van Hardenberg, and Mark Mc-
Granaghan. 2019. Local-first software: you own your data, in spite of the
cloud. In Proceedings of the ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software. 154–178.

[54] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology (Charlotte, NC, USA) (UIST ’15). ACM, New York, NY, USA, 280–290.
https://doi.org/10.1145/2807442.2807446

[55] Clemens Nylandsted Klokmose, James R Eagan, and P. van Hardenberg. 2024.
MyWebstrates: Webstrates as Local-first Software. In UIST’24: Proceedings of the
37th Annual ACM Symposium on User Interface Software and Technology. ACM.

[56] Amy J Ko and Brad AMyers. 2004. Designing the whyline: a debugging interface
for asking questions about program behavior. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 151–158.

[57] Amy J. Ko and Brad A. Myers. 2009. Finding causes of program output with
the Java Whyline. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Boston, MA, USA) (CHI ’09). Association for Computing
Machinery, 1569–1578. https://doi.org/10.1145/1518701.1518942

[58] David Koop and Jay Patel. 2017. Dataflow Notebooks: Encoding and Tracking
Dependencies of Cells. In 9th USENIX Workshop on the Theory and Practice of
Provenance (TaPP 2017). USENIX Association, Seattle, WA. https://www.usenix.
org/conference/tapp17/workshop-program/presentation/koop

[59] Eva Krebs, Patrick Rein, Joana Bergsiek, Lina Urban, and Robert Hirschfeld.
2023. Probe Log: Visualizing the Control Flow of Babylonian Programming. In
Companion Proceedings of the 7th International Conference on the Art, Science,
and Engineering of Programming. 61–67.

[60] Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data extraction by
examples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Edinburgh, United Kingdom) (PLDI ’14).
Association for Computing Machinery, New York, NY, USA, 542–553. https:
//doi.org/10.1145/2594291.2594333

[61] Germán Leiva, Jens Emil Grønbæk, Clemens Nylandsted Klokmose, Cuong
Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2021. Rapido: Prototyping in-
teractive ar experiences through programming by demonstration. In The 34th
Annual ACM Symposium on User Interface Software and Technology. 626–637.

[62] Sorin Lerner. 2020. Projection Boxes: On-the-fly Reconfigurable Visualization
for Live Programming. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). ACM, 1–7. https:
//doi.org/10.1145/3313831.3376494

[63] Geoffrey Litt and Daniel Jackson. 2020. Wildcard: spreadsheet-driven customiza-
tion of web applications. In Companion Proceedings of the 4th International
Conference on Art, Science, and Engineering of Programming (Porto, Portugal)
(Programming ’20). Association for Computing Machinery, New York, NY, USA,
126–135. https://doi.org/10.1145/3397537.3397541

[64] Geoffrey Litt, Daniel Jackson, Tyler Millis, and Jessica Quaye. 2020. End-user
software customization by direct manipulation of tabular data. In Proceedings of
the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Virtual, USA) (Onward! 2020).
Association for Computing Machinery, New York, NY, USA, 18–33. https:
//doi.org/10.1145/3426428.3426914

[65] Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg. 2022.
Peritext: A CRDT for Collaborative Rich Text Editing. Proc. ACM Hum.-Comput.
Interact. 6, CSCW2, Article 531 (Nov. 2022), 36 pages. https://doi.org/10.1145/
3555644

[66] Geoffrey Litt, Max Schoening, Paul Shen, and Paul Sonnentag. 2022. Potluck:
Dynamic documents as personal software. https://www.inkandswitch.com/
potluck. Accessed: 2025-03-25.

[67] Geoffrey Litt, Peter van Hardenberg, and Henry Orion. 2020. Project Cambria:
Translate your data with lenses. https://www.inkandswitch.com/cambria.html.
Accessed: 2020-10-01.

[68] J. M. Lucassen and D. K. Gifford. 1988. Polymorphic effect systems. In Proceedings
of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (San Diego, California, USA) (POPL ’88). Association for Computing
Machinery, 47–57. https://doi.org/10.1145/73560.73564

[69] Sean McDirmid. 2013. Usable live programming. In Proceedings of the 2013
ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software (Indianapolis, Indiana, USA) (Onward! 2013). ACM,
53–62. https://doi.org/10.1145/2509578.2509585

https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/3133850.3133852
https://doi.org/10.1145/3180155.3180165
https://doi.org/10.5281/zenodo.19341
https://doi.org/10.5281/zenodo.19341
https://doi.org/10.1145/3586183.3606733
https://arxiv.org/abs/2303.06777
https://arxiv.org/abs/2303.06777
https://doi.org/10.1145/1328279.1328283
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://doi.org/10.1145/3563835.3568736
https://doi.org/10.1109/VLHCC.2019.8818748
https://doi.org/10.1109/VLHCC.2019.8818748
https://doi.org/10.1145/3334480.3382806
https://doi.org/10.1145/3334480.3382806
https://doi.org/10.1145/2851613.2852003
https://doi.org/10.1145/3360580
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1109/C-M.1977.217672
https://doi.org/10.1145/154766.155364
https://doi.org/10.1145/154766.155364
https://doi.org/10.1145/3689492.3690047
https://doi.org/10.1145/1133265.1133293
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/1518701.1518942
https://www.usenix.org/conference/tapp17/workshop-program/presentation/koop
https://www.usenix.org/conference/tapp17/workshop-program/presentation/koop
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3397537.3397541
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/3555644
https://doi.org/10.1145/3555644
https://www.inkandswitch.com/potluck
https://www.inkandswitch.com/potluck
https://www.inkandswitch.com/cambria.html
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/2509578.2509585

Denicek: Computational Substrate for Document-Oriented End-User Programming UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

[70] Andrew McNutt and Ravi Chugh. 2023. Projectional Editors for JSON-Based
DSLs. In 2023 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC). 60–70. https://doi.org/10.1109/VL-HCC57772.2023.00015

[71] Andrew M Mcnutt, Chenglong Wang, Robert A Deline, and Steven M. Drucker.
2023. On the Design of AI-powered Code Assistants for Notebooks. In Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing Systems
(Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New
York, NY, USA, Article 434, 16 pages. https://doi.org/10.1145/3544548.3580940

[72] Robert C. Miller and Brad A. Myers. 2001. Interactive Simultaneous Editing of
Multiple Text Regions. In Proceedings of the General Track: 2001 USENIX Annual
Technical Conference. USENIX Association, USA, 161–174.

[73] David Moon, Andrew Blinn, and Cyrus Omar. 2022. tylr: a tiny tile-based
structure editor. In Proceedings of the 7th ACM SIGPLAN International Workshop
on Type-Driven Development (Ljubljana, Slovenia) (TyDe 2022). Association for
Computing Machinery, New York, NY, USA, 28–37. https://doi.org/10.1145/
3546196.3550164

[74] Brad A. Myers, Amy J. Ko, and Margaret M. Burnett. 2006. Invited research
overview: end-user programming. In CHI ’06 Extended Abstracts on Human
Factors in Computing Systems (Montréal, Québec, Canada) (CHI EA ’06). ACM,
75–80. https://doi.org/10.1145/1125451.1125472

[75] Brad A. Myers, Richard McDaniel, and David Wolber. 2000. Programming by
example: intelligence in demonstrational interfaces. Commun. ACM 43, 3 (2000),
82–89. https://doi.org/10.1145/330534.330545

[76] Bonnie A. Nardi and James R. Miller. 1990. The spreadsheet interface: A basis
for end user programming. In Proceedings of the IFIP TC13 Third Interational
Conference on Human-Computer Interaction (INTERACT ’90). North-Holland
Publishing Co., NLD, 977–983.

[77] Bonnie A. Nardi, James R. Miller, and David J. Wright. 1998. Collaborative,
programmable intelligent agents. Commun. ACM 41, 3 (March 1998), 96–104.
https://doi.org/10.1145/272287.272331

[78] Dan R. Olsen. 2007. Evaluating user interface systems research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
(Newport, Rhode Island, USA) (UIST ’07). ACM, New York, NY, USA, 251–258.
https://doi.org/10.1145/1294211.1294256

[79] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh. 2021. Filling typed holes with live GUIs. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery,
New York, NY, USA, 511–525. https://doi.org/10.1145/3453483.3454059

[80] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A.
Hammer. 2017. Hazelnut: a bidirectionally typed structure editor calculus. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (Paris, France) (POPL ’17). Association for Computing Machinery,
New York, NY, USA, 86–99. https://doi.org/10.1145/3009837.3009900

[81] Addy Osmani, Sindre Sorhus, Pascal Hartig, and Stephen Sawchuk. 2024.
TodoMVC: Helping you select an MV* framework. https://todomvc.com/. Ac-
cessed: 2024-12-12.

[82] Roly Perera, Umut A Acar, James Cheney, and Paul Blain Levy. 2012. Functional
programs that explain their work. In Proceedings of the 17th ACM SIGPLAN
international conference on Functional programming. 365–376.

[83] Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. 2022. Linked
visualisations via Galois dependencies. Proceedings of the ACM on Programming
Languages 6, POPL (2022), 1–29.

[84] Tomas Petricek. 2019. Histogram: You have to know the past to understand
the present. Presented at Workshop on Live Programming (LIVE’19). https:
//tomasp.net/histogram

[85] Tomas Petricek. 2020. Foundations of a live data exploration environment.
The Art, Science, and Engineering of Programming 4, 8 (2020), 1–37. https:
//doi.org/10.22152/programming-journal.org/2020/4/8

[86] Tomas Petricek. 2021. Composable data visualizations. Journal of Functional
Programming 31 (2021), e13. https://doi.org/10.1017/S0956796821000046

[87] Tomas Petricek. 2022. The Gamma: Programmatic Data Exploration for Non-
programmers. In 2022 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 1–7. https://doi.org/10.1109/VL/HCC53370.2022.9833134

[88] Tomas Petricek, Gerrit J. J. van den Burg, Alfredo Nazábal, Taha Ceritli, Ernesto
Jiménez-Ruiz, and Christopher K. I. Williams. 2023. AI Assistants: A Framework
for Semi-Automated Data Wrangling. IEEE Trans. on Knowl. and Data Eng. 35, 9
(Sept. 2023), 9295–9306. https://doi.org/10.1109/TKDE.2022.3222538

[89] Tomas Petricek, James Geddes, and Charles Sutton. 2018. Wrattler: Reproducible,
live and polyglot notebooks. In 10th USENIXWorkshop on the Theory and Practice
of Provenance (TaPP 2018). USENIX Association, London. https://www.usenix.
org/conference/tapp2018/presentation/petricek

[90] Kevin Pu, Rainey Fu, Rui Dong, Xinyu Wang, Yan Chen, and Tovi Grossman.
2022. SemanticOn: Specifying Content-Based Semantic Conditions for Web
Automation Programs. In Proceedings of the 35th Annual ACM Symposium on
User Interface Software and Technology (Bend, OR, USA) (UIST ’22). Association
for Computing Machinery, New York, NY, USA, Article 63, 16 pages. https:
//doi.org/10.1145/3526113.3545691

[91] Marissa Radensky, Toby Jia-Jun Li, and Brad A. Myers. 2018. How End Users Ex-
press Conditionals in Programming by Demonstration for Mobile Apps. In 2018
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
311–312. https://doi.org/10.1109/VLHCC.2018.8506492

[92] Roman Rädle, Midas Nouwens, Kristian Antonsen, James R. Eagan, and
Clemens N. Klokmose. 2017. Codestrates: Literate Computing with Webstrates.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology (Québec City, QC, Canada) (UIST ’17). ACM, New York, NY,
USA, 715–725. https://doi.org/10.1145/3126594.3126642

[93] Erhard Rahm and Philip A. Bernstein. 2006. An online bibliography on schema
evolution. SIGMOD Rec. 35, 4 (Dec. 2006), 30–31. https://doi.org/10.1145/
1228268.1228273

[94] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-style Programming: Design and Implementation of a General-
purpose Editor Integrating Live Examples Into Source Code. The Art, Science,
and Engineering of Programming 3, 9 (2019), 1–39. https://doi.org/10.22152/
programming-journal.org/2019/3/9

[95] Trygve M H Reenskaug. 1981. User-oriented descriptions of Smalltalk systems.
BYTE 6, 8 (Aug. 1981), 146–151.

[96] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2019. Exploratory and Live, Programming and Coding: A Literature Study
Comparing Perspectives on Liveness. The Art, Science, and Engineering of
Programming 3, 1 (2019), 1–33. https://doi.org/10.22152/programming-journal.
org/2019/3/1

[97] Wilmer Ricciotti, Jan Stolarek, Roly Perera, and James Cheney. 2017. Impera-
tive functional programs that explain their work. Proceedings of the ACM on
Programming Languages 1, ICFP (2017), 1–28.

[98] Advait Sarkar, Andrew D. Gordon, Simon Peyton Jones, and Neil Toronto. 2018.
Calculation View: multiple-representation editing in spreadsheets. In 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 85–
93. https://doi.org/10.1109/VLHCC.2018.8506584

[99] Jonas Schürmann and Bernhard Steffen. 2022. Lazy Merging: From a Potential
of Universes to a Universe of Potentials. In 11th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation - Doctoral
Symposium, Vol. 82. Electronic Communications of the EASST. https://doi.org/
10.14279/tuj.eceasst.82.1226

[100] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In Stabilization, Safety, and Security of
Distributed Systems, Xavier Défago, Franck Petit, and Vincent Villain (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 386–400.

[101] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A Fluent Code
Explorer for Data Wrangling. In The 34th Annual ACM Symposium on User
Interface Software and Technology (Virtual Event, USA) (UIST ’21). Association
for Computing Machinery, New York, NY, USA, 198–207. https://doi.org/10.
1145/3472749.3474744

[102] Jeremy Singer. 2020. Notes on notebooks: is Jupyter the bringer of jollity?. In
Proceedings of the 2020 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Virtual, USA)
(Onward! 2020). Association for Computing Machinery, New York, NY, USA,
180–186. https://doi.org/10.1145/3426428.3426924

[103] David Canfield Smith. 1975. Pygmalion: A Creative Programming Environment.
Ph. D. Dissertation. Stanford University. Available as Stanford AI Memo AIM-
260 and Computer Science Report STAN-CS-75-499.

[104] Randall B. Smith, John Maloney, and David Ungar. 1995. The Self-4.0 user
interface: manifesting a system-wide vision of concreteness, uniformity, and
flexibility. In Proceedings of the Tenth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (Austin, Texas, USA) (OOP-
SLA ’95). Association for Computing Machinery, New York, NY, USA, 47–60.
https://doi.org/10.1145/217838.217843

[105] Guy L. Steele and Richard P. Gabriel. 1993. The evolution of Lisp. In The Second
ACM SIGPLAN Conference on History of Programming Languages (Cambridge,
Massachusetts, USA) (HOPL-II). Association for Computing Machinery, 231–270.
https://doi.org/10.1145/154766.155373

[106] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and Tomas Petricek.
2013. Themes in information-rich functional programming for internet-scale
data sources (DDFP ’13). ACM, New York, NY, USA, 1–4. https://doi.org/10.
1145/2429376.2429378

[107] Xin Tan, Xinyue Lv, Jing Jiang, and Li Zhang. 2024. Understanding Real-Time
Collaborative Programming: A Study of Visual Studio Live Share. ACM Trans.
Softw. Eng. Methodol. 33, 4, Article 110 (April 2024), 28 pages. https://doi.org/
10.1145/3643672

[108] Philip Tchernavskij. 2019. Designing and Programming Malleable Software. Ph. D.
Dissertation. Université Paris Saclay (COmUE).

[109] Tim Teitelbaum and Thomas Reps. 1981. The Cornell program synthesizer: a
syntax-directed programming environment. CACM 24, 9 (Sept. 1981), 563–573.
https://doi.org/10.1145/358746.358755

[110] M. Toomim, A. Begel, and S.L. Graham. 2004. Managing Duplicated Code with
Linked Editing. In 2004 IEEE Symposium on Visual Languages - Human Centric

https://doi.org/10.1109/VL-HCC57772.2023.00015
https://doi.org/10.1145/3544548.3580940
https://doi.org/10.1145/3546196.3550164
https://doi.org/10.1145/3546196.3550164
https://doi.org/10.1145/1125451.1125472
https://doi.org/10.1145/330534.330545
https://doi.org/10.1145/272287.272331
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3009837.3009900
https://todomvc.com/
https://tomasp.net/histogram
https://tomasp.net/histogram
https://doi.org/10.22152/programming-journal.org/2020/4/8
https://doi.org/10.22152/programming-journal.org/2020/4/8
https://doi.org/10.1017/S0956796821000046
https://doi.org/10.1109/VL/HCC53370.2022.9833134
https://doi.org/10.1109/TKDE.2022.3222538
https://www.usenix.org/conference/tapp2018/presentation/petricek
https://www.usenix.org/conference/tapp2018/presentation/petricek
https://doi.org/10.1145/3526113.3545691
https://doi.org/10.1145/3526113.3545691
https://doi.org/10.1109/VLHCC.2018.8506492
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/1228268.1228273
https://doi.org/10.1145/1228268.1228273
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1109/VLHCC.2018.8506584
https://doi.org/10.14279/tuj.eceasst.82.1226
https://doi.org/10.14279/tuj.eceasst.82.1226
https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/3426428.3426924
https://doi.org/10.1145/217838.217843
https://doi.org/10.1145/154766.155373
https://doi.org/10.1145/2429376.2429378
https://doi.org/10.1145/2429376.2429378
https://doi.org/10.1145/3643672
https://doi.org/10.1145/3643672
https://doi.org/10.1145/358746.358755

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Tomas Petricek and Jonathan Edwards

Computing. 173–180. https://doi.org/10.1109/VLHCC.2004.35
[111] David Ungar and Randall B. Smith. 1987. Self: The power of simplicity. SIGPLAN

Not. 22, 12 (Dec. 1987), 227–242. https://doi.org/10.1145/38807.38828
[112] Tijs van der Storm. 2013. Semantic deltas for live DSL environments. In 2013

1st International Workshop on Live Programming (LIVE). 35–38. https://doi.org/
10.1109/LIVE.2013.6617347

[113] April Wang, Zihan Wu, Christopher Brooks, and Steve Oney. 2024. Don’t
Step on My Toes: Resolving Editing Conflicts in Real-Time Collaboration in
Computational Notebooks. In Proceedings of the 1st ACM/IEEE Workshop on
Integrated Development Environments (Lisbon, Portugal) (IDE ’24). ACM, New
York, NY, USA, 47–52. https://doi.org/10.1145/3643796.3648453

[114] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing
database programs for schema refactoring. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New
York, NY, USA, 286–300. https://doi.org/10.1145/3314221.3314588

[115] Pierre Étienne Meunier. 2024. Version Control Post-Git. Presented at FOS-
DEM 2024. https://archive.fosdem.org/2024/schedule/event/fosdem-2024-3423-
version-control-post-git/ Accessed: 2025-03-24.

A Formative Examples
The design the Denicek substrate, we identified six formative exam-
ples shown in Fig. 18. The examples range from established industry
benchmarks (Todo and Counter apps) to cases from literature [26]
and problems posed as schema change challenges [27]. The Denicek
substrate then co-evolved with Webnicek, a simple web-based pro-
gramming environment built (as directly as possible) on top of the
substrate and was used to solve implement the formative examples.

Many of the formative examples include a small programming
challenge, such as adding user interface to add a new speaker, a
new list item or modify the count. Our aim was for the substrate
to enable solving those through programming by demonstration.
Programming by Demonstration is often used in data wrangling [20,
32, 60]. Our Hello World example is only a minimalistic illustration
of such use, loosely inspired by earlier work [72].

B Merging Edit Histories
Recall that merging takes two edit histories, 𝐸, 𝐸1 and 𝐸, 𝐸2, trans-
forms edits 𝐸2 into 𝐸′

2 that can be reapplied on top of the first history
resulting in 𝐸, 𝐸1, 𝐸

′
2. The key operation takes two individual edits,

𝑒1 and 𝑒2 and produces a sequence of edits 𝑒′2, 𝑒
′′
2 , . . . that can be

applied after 𝑒1, and combine the two edits. This section provides
details about the two aspects of this operation.

B.1 Apply to Newly Added
Assume that edits 𝑒1 and 𝑒2 occurred independently. We want to
modify 𝑒2 so that it can be placed after 𝑒1. If the edit 𝑒2 added new
nodes to the document that the edit 𝑒1 would affect, we generate
an additional edit that apply the transformation of 𝑒1 to the newly
added nodes (and only to those).

The only edits that add new document nodes are Add, Append,
Copy and so we consider this case if the edit 𝑒2 is one of those. If
so, we check whether the target of 𝑒1 is within the target of 𝑒2, i.e.,
the list of selectors that forms the target of 𝑒2 is a prefix of the list
of selectors that forms the target of 𝑒1.

Along the way, we compute a more specific prefix. If the target
of 𝑒1 contains the All selector, it can be matched against a specific
Index selector in the target of 𝑒2 (if the selector of 𝑒1 is more specific
than that of 𝑒2, the targets are not matched). We then replace the
original prefix in 𝑒1 with themore specific prefix that contains Index
selector in places where the original edit contained All. This way,

Counter App [51]
Counter with increment and decrement buttons.

The current count is represented by a formula that is modified by the
buttons. Formula modification is shown once and then repeated on
click. The user can inspect the evaluation trace to see how the count
was modified.
Programming experiences: Programming by Demonstration, Incremental
Recomputation, End-User Debugging

Todo App [81]
Todo with buttons to add an item and remove all completed items.

Functionality to add an item is shown once and then recorded. Adding
an item must correctly merge with independently added functionality
to compute which items are completed and remove them based on a
formula result.
Programming experiences: Collaborative Editing, Programming by
Demonstration, Incremental Recomputation, Schema Change Control

Conference List [27]
Managing a list of invited conference speakers and schema change.

Adding speakers to a list through an in-document user interface merges
with refactoring that turns the list into a table and separates name
from an email by copying the value and removing a part of the string
before/after a comma.
Programming experiences: Collaborative Editing, Programming by
Demonstration, Schema Change Control

Conference Budget [27]
Calculate budget based on a speaker list or a table.

References are updated when the list is refactored. Only affected for-
mulas are recomputed and the user can view elements on which the
result depends.
Programming experiences: Collaborative Editing, Incremental Recompu-
tation, Schema Change Control, End-User Debugging

Hello World [72]
Normalize the capitalization of two word messages.

An operation to normalize the text in a list item can be recorded and
applied to all list items or, alternatively, applied directly to all list items.
Programming experiences: Programming by Demonstration

Traffic Accidents [26]
Compute statistics using two data sources.

Formula to compute statistics can be reused with a different data source.
If an error in the formula is corrected, the correction is propagated
automatically to the copied version of the formula.
Experiences: Concrete Programming, Incremental Recomputation

Figure 18: Formative examples used in Denicek design

we obtain 𝑒′1 which is a focused version of 𝑒1 that applies only to
the nodes newly added by 𝑒2. The edit 𝑒2 thus becomes a pair of
edits 𝑒2, 𝑒′1. The final document will contain edits 𝑒1, 𝑒2, 𝑒′1 – that is,
it will first apply the edit 𝑒1 to nodes already in the document, then
add new nodes and then apply the transformation represented by
𝑒1 to the newly added nodes.

B.2 Transform Matching References
As above, assume that edits 𝑒1 and 𝑒2 occurred independently. We
want to modify 𝑒2 so that it can be placed after 𝑒1. If 𝑒1 is any of the
three edits listed in Fig. 5 (RenameField,WrapRecord,WrapList),
we collect all references that appear inside 𝑒2 (the target, the source

https://doi.org/10.1109/VLHCC.2004.35
https://doi.org/10.1145/38807.38828
https://doi.org/10.1109/LIVE.2013.6617347
https://doi.org/10.1109/LIVE.2013.6617347
https://doi.org/10.1145/3643796.3648453
https://doi.org/10.1145/3314221.3314588
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-3423-version-control-post-git/
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-3423-version-control-post-git/

Denicek: Computational Substrate for Document-Oriented End-User Programming UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

of Copy and any references occurring in the nodes added by Add or
Append). If the target of 𝑒1 is a prefix of any of those references, we
update the references accordingly and obtain a new edit 𝑒′2. Note
that it would be an error to match specific Index in 𝑒1 with more
general All in 𝑒2, but this cannot happen – reference updating is
not done when the target of 𝑒1 contains Index.

Now consider the case when 𝑒1 is Copy and the edit 𝑒2 targets
a node that is the source node of the copy operation (or any of its
children). In this case, it is reasonable to require that the edit 𝑒2

is applied to both the source and the target of the copy. (This is
required by the refactoring done in the Conference Budget example.)
We handle the case by creating a copy of 𝑒2 with transformed
selectors (target and, if 𝑒2 is alsoCopy, also its source). To transform
the selectors, we replace the prefix formed by the source of the
Copy by a new prefix, formed by the target target of the Copy. We
then add the new operation as 𝑒′2 if at least one of its selectors was
transformed (typically target, but possibly also source).

	Abstract
	1 Introduction
	2 Background
	2.1 Programming Systems
	2.2 Programming Experiences

	3 Walkthrough
	4 The Denicek Substrate
	4.1 Selectors, Documents and Edits
	4.2 Primitive Operations

	5 Programming Experiences
	5.1 Collaborative Editing
	5.2 Programming By Demonstration
	5.3 Interactive User Interfaces
	5.4 Formula Language and Evaluation
	5.5 Incremental Recomputation
	5.6 Schema Change Control
	5.7 End-User Debugging
	5.8 Concrete Programming

	6 Design Considerations
	7 Case study: Datnicek Notebooks
	7.1 Requirements
	7.2 Implementation
	7.3 Reflections

	8 Evaluation
	8.1 Complex System Evaluation
	8.2 Technical Dimensions

	9 Conclusion
	Acknowledgments
	References
	A Formative Examples
	B Merging Edit Histories
	B.1 Apply to Newly Added
	B.2 Transform Matching References

