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1. Introduction
Programming may not be the new literacy, but it is finding its way
into many areas of modern society. For example, making sense of
large amounts of data that are increasingly made available through
open government data initiatives1 is almost impossible without
some programming skills. In media, data journalism reflects this
development. Data journalists still write articles and focus on sto-
ries, but programming is at the core of their work.

Improving support for data access in programming language can
make understanding data simpler, more usable and reproducible:

• Simpler. Many programming languages treat data as foreign
entities that have to be parsed or processed. Instead, data should
be treated as first-class entities fully integrated with the rest of
the programming language.

• Usability. Modern developer tools make coding easier with
auto-complete and early error checking. Unfortunately, these
typically rely on static types which, in turn, make programming
with standard untyped data harder.

• Reproducible. Data journalists often use a wide range of tools
(including Excel, scripts and other ad-hoc tools). This makes it
hard to reproduce the analysis and detect errors when the input
data changes.

The presented work reconcilles the simplicity of data access
in dynamically-typed programming languages with the usability
and reproducibility provided by statically-typed languages. More
specifically, we develop F# type providers for accessing data in
structured data formats such as CSV, XML and JSON, which are
frequently used by open government data initiatives as well as other
web-based data sources.

2. Motivation: Accessing structured data
Despite numerous schematization efforts, most data on the web
is available without an explicit schema. At best, the documenta-
tion provides a number of typical requests and sample responses.
For simplicity, we demonstrate the problem using the OpenWeath-
erMap service, which can be used to get the current weather for a
given city2. The page documents the URL parameters and shows
one sample JSON response to illustrate the response structure.

Statically-typed. In a statically typed functional language like F#,
we could use a library for working with HTTP and parsing JSON
to call the service and read the temperature. Here, the parsing
library returns a value of a JsonValue data type and we use pattern
matching to extract the value we need3:

1 In the US (http://data.gov) and in the UK (http://data.gov.uk).
2 See “Current weather data”: http://openweathermap.org/current
3 We abbreviate the full URL: http://api.openweathermap.org/data/
2.5/weather?q=Prague&units=metric

let data = Http.Request("http://weather.org/?q=Prague")
match JsonValue.Parse(data) with
| Record(root)→
match Map.�nd "main" root with
| Record(main)→
match Map.�nd "temp" main with
| Number(num)→ printfn "Lovely %f degrees!" num
| _→ failwith "Incorrect format"
| _→ failwith "Incorrect format"
| _→ failwith "Incorrect format"

The pattern matching assumes that the response has a particular
format (as described in the documentation). The root node must
be a record with a "main" field, which has to be another record
containing a "temp" field with a numerical value. When the format
is incorrect, the data access simply fails with an exception.

The code is complicated, because data is parsed into a fully gen-
eral data structure that we then process. The code is not benefiting
from the generality of the data structure – quite the opposite!

Dynamically-typed. Doing the same in JavaScript is shorter and
simpler (not surprisingly, as JSON has been designed after a subset
of JavaScript). Using jQuery to perform the request, we can write:

jQuery.ajax("http://weather.org/?q=Prague",
function(data) {
var obj = JSON.parse(data);
write("Lovely ", obj.main.temp, " degrees!");
});

Although the code is shorter, writing it is not easier than writing
the original statically-typed version. Even though some JavaScript
editors provide auto-completion, they will fail to help us here,
because they have no knowledge of the shape of the object obj.
So, the author will have to open the documentation and guess the
available fields from the provided sample.

Type providers. This paper presents the F# Data library that im-
plements type providers for accessing structured data formats such
as XML, JSON and CSV. Using the JSON type provider, we can
write code with the same functionality in three lines, but with full
editor support including auto-complete on the obj object:

type W = JsonProvider "http://weather.org/?q=Prague"
let obj = W.GetSample()
printfn "Lovely %f degrees!" obj.main.temp

On the first line, JsonProvider "..." invokes a type provider at
compile-time with the URL as a sample. The type provider infers
the structure of the response from the sample and provides a type
that has a statically known property main, returning an object with
a property temp that provides the temperature as a number.

This gives us the best of both worlds – the simplicity of dynamic
typing with the usability, safety and associated tooling common in
statically-typed languages.
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3. Background: Type providers
This paper presents a collection of type providers for integrating
structured data into the F# programming language. As outlined in
the previous example, our key technical contribution is the algo-
rithm that infers appropriate type from an example document and
and the type providers that expose the type. In this section, we give
a brief overview of the type provider mechanims and of related ap-
proaches to integrating data into programming languages.

3.1 How type providers work
Documents in the JSON format consists of several possible kinds
of values. The OpenWeatherMap example in the introduction used
only (nested) record and a numerical value. To demonstrate other
aspects, we look at a more complex example that also invloves
collections and strings:

[ { "name": "Jan", "age": 25 },
{ "name": "Alexander", "age": 3.5 },
{ "name": "Tomas" } ]

Say we want to print the names of people in the list with an age
if it is available. Assuming people.json contains the above sample
and data is a string value that contains another data set in the same
format, we can use JsonProvider as follows:

type People = JsonProvider "people.json"

let items = People.Parse(data)
for item in items do
printf "%s " item.name
Option.iter (printf "(%f)") item.age

In contrast to the earlier example, the example now uses a local file
people.json as a representative sample for the type inference, but
then processes data (available at run-time) from another source.

Type providers. The notation JsonProvider "people.json" on
the first line passes a static parameter to the type provider. Static
parameters are resolved at compile-time, so the file name has to
be a constant. The provider analyzes the sample and generates a
type that we name People. In F# editors, the type provider is also
executed at development-time and so the same provided types are
used in code completion.

The JsonProvider uses a type inference algorithm discussed
below and infers the following types from the sample:

type Entity =
member name : string
member Age : option decimal

type People =
member GetSample : unit → Entity[]
member Parse : string → Entity[]

The type Entity represents the person. The field Name is available
for all sample values and is inferred as string. The field Age is
marked as optional, because the value is missing in one sample.
The two sample ages are an integer 25 and a decimal 3.5 and so the
common inferred type is decimal.

The type People provides two methods for reading data. Get-
Sample returns the sample used for the inference and Parse parses
a JSON string containing data in the same format as the sample.
Since the sample JSON is a collection of records, both methods
return an array of Entity values.

Erasing type providers. At compile-time, F# type providers use
an erasure mechanism similar to Java Generics [1]. A type provider
generates types and code that should be executed when members
are accessed. In compiled code, the types are erased and the pro-
gram directly executes the generated code. In the above example,
the compiled (and actually executed) code looks as follows:

let items = asArray(JsonValue.Parse(data))
for item in items do
printf "%s " asString (getProp "name" item)
Option.iter (printf "(%f)")

(Option.map asFloat (tryGetProp "age" item))

The generated type Entity is erased to a type JsonValue, which
represents any JSON value and is returned by the Parse method.
The remaining properties are erased to calls to various operations
of the type provider runtime such as asArray, getProp or asFloat
that attempt to convert a JSON value into the required structure
(and produce a run-time exception if this is not possible).

The (hidden) type erasure process turns the static provided types
into code that we might write without type providers. In partic-
ular, checked member names become unchecked strings. A type
provider cannot remove all possibilities for a failure – indeed, an
exception still occurs if the input does not have the right format,
but it simplifies writing code and removes most errors when a rep-
resentative sample is provided.

3.2 Type systems and data integration
The F# Data library connects two lines of research that have been
previously disconnected. The first is extending the type systems of
programming languages and the second is inferring the structure of
real-world data sources.

The type provider mechanism has been introduced in F# [17,
18] and used in areas such as semantic web [14]. The library
presented in this paper is the most widely used library of type
providers and it is also novel in that it shows the programming
language theory behind a concrete type provider.

Extending the type systems. A number of systems integrate exter-
nal data formats into a programming language. Those include XML
[8, 16] and databases [4]. In both of these, the system either requires
the user to explicitly define the schema (using the host language)
or it has an ad-hoc extension that reads the schema (e.g. from a
database). LINQ [10] is more general, but relies on code genera-
tion when importing the schema.

The work that is most similar to F# Data is the XML and
SQL integration in Cω [11]. It extends C# with types capable of
representing structured data formats, but it does not infer the types
from samples and it modifies the C# language (rather than using a
general purpose embedding mechanism).

Aside from type providers, a number of other advanced type
system features could be used to tackle the problem discussed in
this paper. The Ur [2] language has a rich system for working with
records; meta-programming [15], [5] and multi-stage programming
[19] could be used to generate code for the provided types. How-
ever, as far as we are aware, none of these systems have been used
to provide the same level of integration with XML, CSV and JSON.

Typing real-world data. The second line of research related to
our work focuses on inferring structure of real-world data sets. A
recent work on JSON [3] infers a succinct type using MapReduce
to handle large number of samples. It fuses similar types based on
a type similarity measure. This is more sophisticated than our tech-
nique, but it would make formally specifying the safety properties
difficult.

The PADS project [6, 9] tackles a more general problem of han-
dling any data format. The schema definitions in PADS are simi-
lar to our structural type. The structure inference for LearnPADS
[7] infers the data format from a flat input stream. A PADS type
provider could follow many of the patterns we explore in our work,
but formally specifying the safety property would be again chal-
lenging.
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4. Approach and uniqueness
The F# Data library relies on two key techniques. First, it imple-
ments a type inference algorithm that generates a suitable type
from one or more sample documents. Second, it implements a type
provider that turns this structural type into an ordinary F# type that
is then used by the programmers. The mapping preserves an im-
portant property that we call relativized type safety. Informally, we
prove that when the provided sample is representative, code written
using the type provider will not fail.

Whether a sample is representative is formally described using
a subtyping relation on structural types σ. The full definition of the
relationship can be found in our recent report [12]. In this paper, we
provide a brief overview and discuss one interesting case in detail.

4.1 Structural types
The grammar below defines a structural type σ. We distinguish
between non-nullable types that always have a valid value (written
as σ̂) and nullable types that encompass missing and null values
(written as σ). We write ν for record field:

σ̂ = {ν1 : σ1, . . . , νn : σn}
| �oat | int | bool | string

σ = σ̂ | σ̂ option | [σ]
| σ1 + . . .+ σn | > | null

The non-nullable types include records (consisting of zero or more
fields with their types) and primitive types (int for integers, �oat
for floating-point numbers, strings and Booleans).

Any non-nullable type is also a nullable type, but it can be
wrapped in the option constructor to explicitly permit the null
value. These are typically mapped to the standard F# option type.
A simple collection type [σ] is also nullable and missing values or
null are treated as empty collection. The type null is inhabited by
the null value (using an overloaded but not ambiguous notation)
and > represents the top type.

Finally, a union type in our model implicitly permits the null
value. This is because the type provided for unions requires the
user to handle the situation when none of the case matches (and
so developers always provide code-path that can be run when the
value is missing).

4.2 Subtyping relation
The subtyping relation between structural types is illustrated in
Figure 1. We split the diagram in two parts. The upper part shows
non-nullable types (with records and primitive types). The lower
part shows nullable types with null, collections and optional values.
We omit links between the two part, but any type σ̂ is a subtype
of σ̂ option (in the diagram, we abbreviate σ option as σ?). The
following excerpt specifies some of the relationships formally:

Definition 1. σ1 :> σ2 denote that σ2 is a subtype of σ1. The
subtyping relation is defined as a transitive reflexive closure of:

�oat :> int (1)
σ :> null (iff σ 6= σ̂) (2)

σ̂ option :> σ̂ (for all σ̂) (3)

{ν1 :σ1, .., νn :σn} :> {ν1 :σ′1, .., νn :σ′n} (σi :>σ
′
i) (4)

{ν1 :σ1, .., νn :σn} :> {ν1 :σ1, .., νm :σm} (m≥n) (5)
{ν1 :σ1, .., νn :σn} :> {νπ(1) :σπ(1), .., νπ(m) :σπ(m)} (6)

{ν1 :σ1, .., νn :σn, νn+1 :null, .., νn+m :null} :>
{ν1 :σ1, .., νn :σn} (7)

Here is a summary of the key aspects of the definition:

 

stringν {ν1:σ1,  , νn:σn}

σ1 +   + σn

int

bool

decimal

float

{ν1:σ1,  , νn:σn}

bit

null

string?ν {   }?

σ1 +   + σn

int?

bool?

decimal?

float?

[σ]

bit?

 

Non-nullable types

Nullable types

Figure 1. Subtype relation between structural types

• For numeric types (1), we infer the most precise numeric type
that can represent all values from a sample dataset (even though
this means loss of precision in some cases).

• The null type is a subtype of all nullable types (2), that is all σ
types excluding non-nullable types σ̂). Any non-nullable type
is also a subtype of its optional version (2).

• The subtyping on records is covariant (4), subtype can have ad-
ditional fields (5) and fields can be reordered (6). The interest-
ing rule is (7) – together with covariance, it states that a subtype
can omit some fields, provided that their types are nullable.

The rule that allows subtype to have fewer record elements (8) is
particularly important. It allows us to prefer records in some cases.
For example, given two samples {name : string} and {name :
string, age : int}, we can find a common supertype {name :
string, age : int option} which is also a record. For usability
reasons, we prefer this to another common supertype {name :
string} + {name : string, age : int}. Working with records does
not require pattern matching and it makes it easier to explore data
in editors that provide auto-completion.

4.3 Common supertype relation
As demonstrated by the example in the last section, structured types
do not have a unique greatest lower bound. Our inference algorithm
prefers records over unions and is defined in terms of the common
supertype relation. The type infernce obtains a type for each sample
(or each element of a collection) and then uses the relation to finds
their common type. To demonstrate the idea, we show the definition
for primitive types and records:

Definition 2. A common supertype of types σ1 and σ2 is a type σ,
written σ1Oσ2 ` σ, obtained according to the inference rules in
Figure 2 (remaining rules can be found in the report [12]).

When finding a common supertype of two records (record), we
return a record type that has the union of fields of the two argu-
ments. We assume that the names of the first k fields are the same
and the remaining fields have different names (other rules permit
reordering of fields). The types of shared fields become common
supertypes of their respective types (recursively). Fields that are
present in only one record are marked as optional using the follow-
ing helper definition:

dσ̂e = σ̂ option (non-nullable types)
dσe = σ (otherwise)

3 2015/4/13



(record)
(νi = ν′j ⇔ (i = j) ∧ (i ≤ k)) ∀i ∈ {1..k}.(σi O σ′i ` σ′′i )

{ν1 : σ1, . . . , νk : σk, . . . , νn : τn} O {ν′1 : σ′1, . . . , ν
′
k : σ′k, . . . , ν

′
m : τ ′m} `

{ν1 : σ′′1 , . . . , νk : σ′′k , νk+1 : dσk+1e, . . . , νn : dσne, ν′k+1 : dσ′k+1e, . . . , ν′m : dσ′me}

(list)
σ1 O σ2 ` σ

[σ1] O [σ2] ` [σ]
(prim)

int O �oat ` �oat
(null-1) σ O null ` σ (σ :> null)

(null-2) σ O null ` σ option (σ :≯ null)

Figure 2. Selected inference judgements that define the common supertype relation

Discussing the full system is out of the scope of this paper, but
the system has a number of desirable properties – the common
supertype is uniquely defined and it is a supertype of both of the
provided examples. Furthermore (to aid usability) our algorithm
finds a common supertype that is not a union, if such type exists.

5. Results and contribution
The contributions and results of the presented work fall in three
categories. First, our work is interesting in that it looks at a con-
crete type provider from the perspective of programming language
theory and we introduce a novel notion of relativized type safety.
Second, the F# Data library has become the most frequently down-
loaded F# library and is de-facto standard for data access in F#.
Third, the work is also interesting from philosophical perspective
because it illustrates an important change in thinking about types
that we need to adopt when developing types for systems in the
modern age of the web.

5.1 Relativized type safety
The safety property of F# Data type providers states that, given rep-
resentative sample documents, any code that can be written using
the provided types is guaranteed to work. We call this relativized
safety, because we cannot avoid all errors. In particular, the user
can always use the type provider with an input that has a different
structure than any of the samples – and in this case, it is expected
that the code will fail at runtime. Our formal model [12] states pre-
cisely what inputs can be handled by a provided type:

– Input can contain smaller numerical values (for example, if a
sample contains float, the input can contain an integer).

– Records in the actual input can have additional fields.
– Records in the actual input can have fewer fields, provided that

the type of the fields is marked as optional in the sample.
– Union types in the input can have both fewer or more cases.
– When we have a union type in the sample, the actual input can

contain values of any of the union cases.

This is proved by our safety theorem, which relies on a simplified
model of type providers and the F# language. We follow the ap-
proach of syntactic type safety [20] and show the type preservation
(reducing expression does not change type) and progress (an ex-
pression that is not a value can be reduced).

Theorem 1 (Relativized safety). Assume s1, . . . , sn are samples,
σ is a common supertype of the types of si. Next, assume that the
type provider maps structural type σ to an F# type τ and that it
provides a function f that takes an input s and produces a value τ .

Then for all new inputs s′ that are subtypes of one of the samples
si, and for any expression ec (user code) such that x : τ ` ec : τ ′,
it is the case that ec[x← f(s′)]→∗ v for value v and ` v : τ ′.

5.2 New perspective on static typing
The relativized safety property does not guarantee the same amount
of safety as standard type safety for programming languages with-
out type providers. However, it reflects the reality of programming

with external data sources that is increasingly important in the age
of the web. In short, type providers do not reduce the safety – they
simply reveal an existing issue.

In a separate paper [13], we argue that this is an important futrue
direction for programming languages. Programs increasingly ac-
cess external data sources (be it open government data accessed
by data journalists or services consumed by mobile applications).
Most programming language theory treats programs as closed ex-
pressions with no external dependencies – this gives us a formally
tractable model, but it “throws out the baby with the bath water”.
Our experience with F# Data suggests that we can accept the real-
ity of working with data and still provide clear formal model with
provable safety properties.

5.3 Practical experience
The F# Data library has become the standard library for accessing
data in F# and is widely used by both open-source projects and
commercial users of F#. At the time of writing, it has 38 contribu-
tors and it has over 43,000 downloads4.

The success of the library provides an evidence that some of the
pragmatic (and perhaps controversial) choices made in the F# Data
design work well in practice:

• The fact that a provided type may fail at run-time is not a
problem as developers expect this when working with external
data. In practice, the input that caused the issue can be added as
another sample – the new compilation errors show which part of
the program need to be modified to handle the input correctly.

• The F# Data library has been designed to work well with
modern F# editors that use the F# compiler to provide auto-
completion based on static types5. The success of F# Data con-
firms that editting experience and interactive development are
important aspect of modern programming environments.

6. Conclusions
The F# Data library presented in this paper simplifies working
with structured data formats such as XML, JSON and CSV. This
is achieved by using the type provider mechanism to integrate
external structured data into the programming language. We briefly
outlined the programming language theory behind F# Data as well
as its practical usability properties that contributed to its adoption.

Accessing and processing data is becoming an important ability
in the modern information-rich society and we believe that tools
such as F# Data can make programming simpler, more usable
and more trustworthy – and, for example, enable data journalists
produce analyses that their readers can not just understand, but also
verify and modify.

4 The first version (providing the functionality discussed here) has been
created by the author of this paper; further contributions added new
features and significantly improved the portability and overall quality of
the library. See https://github.com/fsharp/FSharp.Data.

5 This includes Visual Studio, Emacs, Xamarin Studio, Atom and others.
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