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Abstract 

The reactive programming model is largely different to what 
we’re used to as we don’t have full control over the application’s 
control flow. If we mix the declarative and imperative program-
ming style, which is usual in the ML family of languages, the situ-
ation is even more complex. It becomes easy to introduce patterns 
where the usual garbage collector for objects cannot automatically 
dispose all components that we intuitively consider garbage.  

In this paper we discuss a duality between the definitions of 
garbage for objects and events. We combine them into a single 
one, to specify the notion of garbage for reactive programming 
model in a mixed functional/imperative language and we present a 
formal algorithm for collecting garbage in this environment.  

Building on top of the theoretical model, we implement a 
library for reactive programming that does not cause leaks when 
used in the mixed declarative/imperative model. The library 
allows us to safely combine both of the reactive programming 
patterns. As a result, we can take advantage of the clarity and 
simplicity of the declarative approach as well as the expressivity 
of the imperative model. 

Categories and Subject Descriptors D.3 [Programming Langua-

ges]: Processors—Memory Management (garbage collection) 

General Terns Algorithms, Design, Languages 

1. Introduction 
Writing applications that need to react to events is becoming inc-
reasingly important. A modern application needs to carry out a 
rich user interaction, communicate with web services, react to 
notifications from parallel processes, or participate in cloud com-
putations. The execution of reactive applications is controlled by 
events. This principle is called inversion of control or more ane-
cdotally the Hollywood principle (“Don’t call us, we’ll call you”). 
Dealing with inversion of control affects not just the programming 
model, but also the memory model. 

The techniques for writing reactive applications can be cate-
gorized either as declarative (also called data-flow) or imperative 
(or control-flow). The first approach is based on composing prog-
rams from primitives (e.g. Lustre [10], techniques originating 
from Fran and FRP [1, 17]). When using the second approach, we 
encode programs as sequences of imperative actions (e.g. 
Imperative Streams [3], Esterel [11, 12], but also Erlang [13]).  

F# provides libraries for both types of reactive programming 

models [19, 18]. The common concept shared by both of them is 
the notion of event. It represents an asynchronous output channel 
of some running computation. Application’s components can re-
gister with events to receive values from the channel. Combining 
the two programming models allows the user to choose the 
approach more appropriate for a particular task. 

In this paper, we look at garbage collection in this scenario. 
For events, we need to consider not only whether the event value 
is reachable, but also whether it can have any effect. An incorrect 
treatment can lead to unexpected behavior and can cause memory 
leaks when combining the two styles of reactive programming. In 
particular, the key contributions of this paper are the following: 

• We review two reactive programming models for a mixed 
functional/imperative language (Section 2) and analyze a 
design issue, arising when combining them. This problem is 
present in the current version of F# libraries (Section 3).  

• We state which events are garbage and show that this defini-
tion is dual to the notion of garbage for objects. We compose 
these two concepts into a single one that is useable for an 
environment containing both events and objects (Section 4). 
To build a better intuition, we present a formal algorithm for 
garbage collection (Section 5) in this environment. 

• Finally, we present an implementation of combinators for 
declarative event-driven programming in F#, which does not 
suffer from memory leaks (Section 6) and we show how it 
follows from our formal model (Section 7). 

Our approach is pragmatic, so we target mainly established plat-
forms. We aim to show how to develop a correct, memory-leak 
free reactive library without modifying the GC algorithm and 
using only features available at most of the platforms. 

We present the examples in F# (ML family) which should be 
more familiar to the academic community. However the concepts 
from the paper are directly applicable to mixed functional/impera-
tive languages including Scala, C# 3.0 or Python. It is also highly 
relevant to modern JavaScript frameworks such as [24, 25]. 

2. Reactive programming 
We review the two approaches to reactive programming using 
examples from F#. As our main interest is the memory model and 
we cover the semantics of the programming models only infor-
mally. We start by looking at the unifying concept of an event. 

2.1 Event as the unifying concept 
Events in F# appear as an abstract type which allows the user to 
register and unregister handlers. A handler of type Handler<'a>, 
is a wrapped function (unit -> 'a), with a support for compa-
rison via reference equality. We use a simplified event type in this 
paper, so we define it as a record: 
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type IEvent<'a> = 
  { AddHandler    : Handler<'a> -> unit 
    RemoveHandler : Handler<'a> -> unit } 

A simple event keeps a mutable list of registered handlers (in a 
closure) and invokes all handlers from the list when it is triggered.  

2.2 Declarative event handling 
In the declarative style, we write code using an algebra of events 
(combinator library) that allows us to compose complex events 
from simple ones. The following example demonstrates how the 
declarative approach looks in F#. We take a primitive event 
btn.MouseDown (representing clicks on a button named btn) and 
constructs a composed event value called rightClicks: 

1: let rightClicks = btn.MouseDown 
2:   |> Event.filter (fun me ->  
3:        me.Button = MouseButtons.Right) 
4:   |> Event.map (fun _ -> "right click!") 

We’re using the pipelining operator |> (also known as the reverse 
application), which takes a value together with a function and 
passes the value as an argument to the function. This means that 
the MouseDown event will be given as an argument to filter 
function and the overall result is then passed to map. 

The MouseDown event carries values of type MouseEventArgs 
and is triggered whenever the user clicks on the button. We use 
the filter primitive (line 2) to create an event that is triggered 
only when the value carried by the original event represents a 
right click. Next, we apply the map operation (line 4) and construct 
an event that always carries a string value "right click!". This 
approach is similar to Fran [2] and has the following properties: 

• Composability. We can build events that capture complex lo-
gic from simpler events using easy to understand combina-
tors. The complexity can be hidden in a library. 

• Declarative. The code written using combinators expresses 
what events to produce, not how to produce them. 

• Limited expressivity. On the other hand, the F# combinator 
library is limited in some ways and makes it difficult to en-
code several important patterns (e.g. arbitrary state machine)1. 

2.3 Imperative event handling 
In the imperative style, we attach and detach handlers to events 
imperatively. To create more complex events, we construct a new 
event and trigger it from a handler attached to other events. 

In F#, we can embed this behavior into asynchronous work-
flows [4] (essentially, a one-shot continuation with additional 
features such as cancellation). A workflow allows us to perform 
long-lasting operations without blocking the program. When run-
ning an asynchronous operation, the operation starts and registers 
a callback that will be triggered when the operation completes. 

To work with events, we can define a primitive asynchronous 
operation AwaitEvent, which takes an event value, waits for the 
first occurrence of the event and then runs the continuation. The 
implementation relies on imperatively registering a handler when 
the asynchronous operation starts and unregistering it when the 
event occurs for the first time (a complete implementation is 
available in Appendix A [27]). We can use this primitive to get a 
powerful imperative programming model which is similar to 
Imperative Streams [3] or the Esterel language [11, 12]:  

                                                                 

1 It is possible, but there is no obvious “natural” encoding of a state 
machine (such as using mutually recursive functions). 

1: let clickCounter = new Event<int>() 
2: 

3: let rec loop count = async {  
4:   let! _ = btn.MouseDown |> Async.AwaitEvent 
5:   clickCounter.Trigger (count + 1)  
6:   let! _ = Async.Sleep 1000  
7:   return! Loop (count + 1) }  
8: loop 0 |> Async.StartImmediate 

The listing shows a function loop, which asynchronously waits 
for an occurrence of the MouseDown event (line 4) and then 
triggers the clickCounter event (created on line 1) with the inc-
remented number of clicks as an argument. Next, it asynchronou-
sly waits one second and recursively calls itself and starts waiting 
for another click. Finally, we imperatively start the loop (line 8). 
The sane example implemented using event combinators is shown 
in Appendix B [27] and is much harder to understand. 

When the AwaitEvent operation completes the handler regi-
stered with the MouseDown event is unregistered, so all clicks that 
occur while sleeping (line 6) are ignored (there is no implicit 
caching of events). This means that the code shows a counter of 
clicks that limits the frequency of clicks to 1 click per second. In 
general, this approach has the following properties: 

• Imperative. The code is written as a sequence of operations 
(e.g. waiting for an event occurrence) and modifies the state 
of events by (un)registering handlers or by triggering events. 

• Single-threaded. Code in this style can be single-threaded 
using cooperative multi-tasking implemented using corouti-
nes. This makes the concurrency in the model deterministic. 

• Composable. Even though the implementation is imperative, 
the created event processors can be easily composed. In the 
listing, we constructed an event value clickCounter, which 
can be published, while the loop function remains hidden. 

• Expressive. We can easily encode arbitrary finite state ma-
chines using mutually recursive functions (using the return! 
primitive). In the example, we have a simple case with just 
two states: 1) waiting for click and 2) waiting one second. 

So far, we demonstrated the reactive programming model using 
the F# implementation. However, the approach is by no means 
limited to F# or some highly specific programming environment. 
It mainly relies on the support for higher order functions, which is 
now present in many languages including C# 3.0, Scala, Python, 
Ruby, but also for example JavaScript.  

2.4 Compositional events in other environments 
An implementation of event-based programming model is already 
available for C# 3.0 [5] and JavaScript library [24] builds on 
similar ideas. We created a simple implementation of F# event 
combinators in JavaScript (available on our web site [27]). The 
following example shows JavaScript version of the code from 
section 2.2. Note that this is very similar to code written using the, 
nowadays very popular, declarative jQuery library [25]: 

1: var rightClicks = $("btn").mouseDown. 
2:   filter (function (me) {   
3:     return me.button == 2; }). 
4:   map (function (_) {  
5:     return "right click!"; }); 

The listing starts by accessing a primitive event value representing 
clicks on a button (line 1). The event value provides a filter fun-
ction for filtering events and map for projection. We use them to 
create an event that carries the specified string value (line 5) and 



 
 

is triggered when the button value is 2, corresponding to the right 
click (line 3). As JavaScript doesn’t have any equivalent to asyn-
chronous workflows from F#, the imperative example would be 
slightly more complicated, but it can be implemented as well. 

2.5 Combining event handling techniques 
We can view the declarative programming style of event proces-
sing as a higher-level approach. It allows us to write a limited set 
of operations in a way that is succinct, elegant and easy to reason 
about. On the other hand, the imperative style is lower-level, but 
as the previous discussion shows, it is extremely important for the 
ability to easily express state machines.  

Now that we have two complementary approaches, it seems 
like a perfect solution to combine them and use the one that’s 
more appropriate for the part of the problem that we need to solve. 
Unfortunately, combining the techniques brings some important 
implementation challenges.  

3. Problems with mixing styles 
When using the declarative style alone, we don’t concern our-
selves with removing handlers, because the event processing 
pipeline remains active during the entire application lifetime. 
However, when mixing the styles, the AwaitEvent primitive 
needs to add and remove a handler each time we use it. 

3.1 Event-based programming model 
In our reactive library, events are values like any other. In the 
formal model, we’ll distinguish between these two constructs. 
This allows us to treat objects and events differently in the GC 
algorithm. This is desirable as events are in many ways special. 

Private references. One notable property of events is that all 
references to other events or objects are private. They are captured 
in a closure and cannot be accessed by the user of the event. This 
has an important practical implication for our implementation. If 
an event e1 references event e2 and object o1 references e1, we 
cannot directly access the event e2 from code that uses o1. 

Created by combinators. When developing the reactive prog-
ramming library, we’ll use the described garbage collection tech-
niques only for collecting events that are created by declarative 
event combinators. Notably, due to the limited set of combinators, 
this guarantees that there won’t be any cyclic references between 
events. Our formal model (Section 5) is fully general, but our 
reactive library (Section 6) takes advantage of this simplification. 
In the absence of cycles, we can safely use a variant of reference-
counting in the library implementation (Section 6.6).  

Side-effects. Our programming model can be embedded in an 
impure functional language, so the predicates provided as parame-
ters to combinators (e.g. Event.map) may contain side-effects. It 
is not intuitive when and how often the side-effects should hap-
pen, so they are discouraged. However, we make the following 
very weak guarantees that are fulfilled by both implementations 
discussed in this paper as well as [5]:  

• When a handler is attached to an event created by a combina-
tor with an effectful predicate, the side-effect is executed one 

or more times when the source event occurs. 

• When no handler is attached to the event, the effect may be 
executed zero or more times when the source event occurs. 

Next, we’ll explore an example that motivated this paper. It will 
clarify which events should be garbage collected. 

3.2 Disposing processing chains 
It is possible to implement event combinators using a very simple 
pattern2. In this pattern, each combinator creates a new event (a 
stateful object that stores a list of event handlers) and registers a 
handler to the source event that triggers the created event: 

1: let map f (src: IEvent<_, _>) = 
2:   let ev = new Event<_>()  
3:   src.AddHandler(Handler(fun x ->  
4:     ev.Trigger(f x))) 
5:   ev.Publish 

The listing shows the Event.map combinator. It registers a handler 
(lines 3, 4) to the source event and when the event occurs, it 
applies the function f to the carried value and triggers the created 
event. As you can see, it never unregisters the handler that was 
attached to the source event using the AddHandler member. 

Let’s demonstrate what exactly happens when we create an 
event processing chain using several combinators, add an event 
handler, wait for the first occurrence of the event and then remove 
the handler. This behavior is just a special case of what we can 
write using the AwaitEvent function: 

1: let awaitFirstLeftClick src k = 
2:   let clicks = src.MouseDown  
3:     |> Event.filter (fun m ->  
4:          m.Button = MouseButtons.Left) 
5:     |> Event.map (fun m -> (m.Y, m.X)) 
6:   let rec hndl = new Handler<_>(fun arg -> 
7:     clicks.RemoveHandler(hndl) 
8:     k arg) 
9:   clicks.AddHandler(hndl) 

The function takes a continuation k and a source event src as 
parameters. It uses event combinators to create an event that is 
triggered only when the source event was caused by a left click 
(lines 2 to 5). On the line 6, we create a handler object (using F# 
value recursion [20]). When it is called, it unregisters itself from 
the event and invokes the continuation (lines 7, 8). Finally, the 
function registers the handler returning a unit value as the result. 

 

Figure 1. References in the processing chain after it 
is created (A); when references from window are lost 
(B); after the handler is removed (C); events are shown 
as circles, objects as diamonds; window is marked as a 
root object; white color means that object or event is 
not referenced (and will be garbage collected) 

                                                                 

2 This pattern has been used in F# libraries including version 1.9.7.8, 
which is the latest version available at the time of writing this paper. 



 
 

The Figure 1 shows objects and references between them, 
which are created by running the previous function. When 
constructing the event clicks, each combinator creates a refe-
rence from the source event to the newly created event (by regi-
stering an event handler). The initial situation, right after running 
the line 7, is shown in (A). The executing program still keeps 
references to the local values of the function (hndl and  »map«) 
and the closure of the hndl value references the event »map« 
(captured because of the reference on line 5). 

We can see what happens when the function returns in (B). 
The stack frame for the call is dropped, so the root object loses 
direct references to the constructed event and the handler. At this 
point, we don’t want to dispose any part of the chain! It can still 
do something useful (run the handler and trigger the continuation). 
As the diagram shows, there are still references from window to all 
events, so the implementation above behaves as we need. 

The situation displayed in (C) is more interesting. When the 
event occurs, the handler unregisters itself from »map«. There are 
no other references to hndl and it can be garbage collected. The 
rest of the processing chain isn’t disposed, because it is still refe-
renced from the root. Arguably, the chain cannot do anything use-
ful now, as there are no attached handlers. When the source event 
occurs, it will only run the specified predicates, which is allowed, 
but not necessary (as discussed in 3.1). 

More importantly, when we add and remove handlers in a 
loop (e.g. the example in section 2.2), we’ll create a large number 
of abandoned events that cannot be garbage collected. Obviously, 
this isn’t the right implementation. 

4. Garbage in the dual world 
Due to the inversion of control, event-driven applications are in a 
way dual to “control-driven” applications. To our knowledge, this 
duality hasn’t been described formally in the academic literature, 
but it has been observed by Meijer [5]. He explains that a type 
representing events is dual to a type representing sequences. 
Interestingly, we can use the principle of duality when talking 
about garbage collection in the reactive scenario as well. 

4.1 Garbage in worlds of objects and events 
In section 3.1, we’ve discussed a case where an event intuitively 
appeared to be useless, but wasn’t disposed by the GC, because it 
was still referenced. This example suggests that we need a 
different definition of “garbage” for reactive applications. 

Formally, we model references between objects as an oriented 
graph � = ��, �� consisting of vertices V and edges E. A set of 
roots � ⊆ � models objects of a program that are not the subject 
of garbage collection (such as objects currently on the stack etc). 

A vertex � ∈ � is object-reachable iff there exist a path ���, … ,  �!, �� where �� ∈ �. Objects that are garbage are those that are not object-reachable. (2) 

Let’s now focus on events. In section 3.2, we stated that events 
are useless if they cannot trigger any handler. We’ll define this 
notion more formally. We take leaves ' ⊆ � to be events with 
attached handlers. Then the event value is useful if we can follow 
references from it and reach one of the leaf events (meaning that 
triggering of an event can cause some action). If we were in a 
world where everything is an event and the events are triggered 
from the outside, then we could use the following definition: 

A vertex � ∈ � is event–reachable if and only if there exists a path ��, ��, … , �!� where �! ∈ '. Events that are garbage are those that are not event-reachable. (3) 

We can observe that the definition of event-reachable (3) is 
equivalent to the definition of object-reachable (2) in the inverted 
reference graph (taking leaves L as roots R). 

This explains why we were referring to the duality principle 
in the introduction of this section. The reactive world isn’t dual 
only when it comes to types, but also when it comes to the 
definition of garbage. 

4.2 Garbage in the mixed world 
In practice, we’re working with an environment that contains both 
objects and events. When collecting garbage, we want to mix the 
two approaches. We want to follow the object-reachable defini-
tion for objects and event-reachable definition for events.  

Combining the two notions requires some care.  We will take 
the roots R of the graph to be the root objects, but how can we 
incorporate events? In this section, we’ll look at an intuitively 
clear way to define collectability for a mixed world. We start by 
distinguishing between objects and events: 

Let vertices � be a union of two disjunct sets �. ∪ �� where �. is the set of events and ��  is the set of objects.   

Events in the mixed environment aren’t triggered from the out-
side, but by other events or objects that reference them. This 
means that events that are not object-reachable are also garbage in 
the mixed world. A more subtle problem is determining leaf 

events that “are useful”. We will explain the definition shortly. 

We define the set of leaf events T as follows: 

0 = 1� ∈ �. 2∃v4 ∈ ��: �� is 6789:;-<9=:ℎ=7?9 
and @���, �� ∈ � ∨ ��, ��� ∈ �B C 

 
 

(4) 

An object or event � ∈ � is collectable if and only if it is not object-reachable given roots R or if it is an event �� ∈ �.� and it is not event-reachable given leaves T. (5) 

As already discussed, we check object-reachability of both events 
and objects (5). For events we apply an additional rule, using a 
constructed set of event leaves T. The elements of T in (4) are 
defined as a disjunction of two conditions. The first one specifies 
events that are directly referenced by some object. In this case, we 
mark them as “useful”, because they can be directly accessed by 
program and the program may intend to register a handler with 
them at some later point. The second condition specifies events 
that directly reference some object, which corresponds to the fact 
that there is some registered event handler. 

The definition is demonstrated by Error! Reference source 

not found.. As we can see, all events directly referenced by 
objects or referencing an object (handler) are marked as leaves. 
Using the first part of (5), we mark objects and events in the lower 
part as garbage, because they are not referenced from the root 
object. The upper part demonstrates events that become garbage 
due to the second part of the definition. They are referenced from 
the root object, but there is no path leading to any leaf event.  

In the next section, we will describe a garbage collection 
algorithm for the mixed environment of objects and events, taking 
advantage of the aforementioned duality. 



 
 

5. Garbage collection algorithm 
Implementing a specialized GC algorithm is a difficult task in 
practice, so we instead describe how to build an algorithm using a 
standard GC algorithm for collecting objects that are not object-

reachable. Such algorithms are already well-understood and are 
implemented and optimized on many platforms. 

5.1 Constructing the algorithm 
The input of our algorithm is a reference graph � = ��, �� with a 
set of root objects �. It works in three steps. The first two steps 
perform pre-processing dealing with the integration of environ-
ments and the third step uses the duality principle. 

Pre-collection. As already discussed, only events that are refe-
renced by an object or another event can be triggered. As a result, 
we first need to collect objects and more importantly also events 
that are not object-reachable using (2). This corresponds to 
running a GC algorithm on the original reference graph containing 
both events and objects. This can be described as follows: 

�FG. = H� ∈ �|� is 6789:;-<9=:ℎ=7?9}  

��FG. , �FG.� = �FG. = �[�FG.] (6) 

The graph �FG.  is a subgraph of G induced by the reduced set of 
vertices �FG.. We’ll also need a reduced set of object vertices ��FG. = �FG. ∩ ��  and event vertices �.FG. = �FG. ∩ �.. We can 
easily see that the constructed graph doesn’t contain any 
collectable objects or events as defined by the first part of (5). 

Mock references. From this point, we want to treat events 
separately from objects, so events will no longer keep other 
objects alive by referencing them. To make sure that all object-

reachable will remain object-reachable we add mock references 
to simulate chains of events. We’ll add references from event 
sources (objects that reference events) to all event handlers 
(objects that are referenced by events) that are reachable by 
following only event vertices. More formally: 

�FG.N = �FG. ∪ O��, P�Q�, P ∈ ��FG.: R.��, P�S,  (7) 

R.��, P� = ∃R=;ℎ��, �T, … , �!, P�: U > 0 ∧ ∀Z: �[ ∈ �.FG.  

The predicate pe states that there is a path between two vertices, 
which visits only events and its length is at least two. By adding 
edges to the graph (7), we ensure that all event handlers that can 
be triggered by an event will be referenced. Note that these event 
handlers correspond to the second part of the condition specifying 
leaf events T in the definition (4). 

Duality principle. The previous two steps performed pre-pro-
cessing that is necessary when we want to integrate events and 
objects. Now we can use the key idea of this article, which is the 
duality between the definitions of object-reachable and event-

reachable. We construct a transformed garbage graph �∗: 

�∗ = @�FG. , H]�9�| 9 ∈ �FG.N}B where (8) 

]�P, �� = 1�P, �� ^ℎ9U P ∈ ��FG.
��, P� ^ℎ9U P ∈ �.FG. _  

The function d reverses references leading from an event to any 
other vertex. It unifies the notion of object-reachable from (2) and 
event-reachable from (3). This allows us to handle the second part 
of the collectability definition (5) using a standard GC algorithm 
for passive objects. Finally, we run it on the garbage graph �∗: 

�`[! = H� ∈ �FG.|� is 6789:;-<9=:ℎ=7?9 from � in �∗} (9) 

The definition (9) gives us the final set of objects and events that 
are not garbage. To get the final reference graph, we take the re-

sult of pre-processing (6) and take a subgraph induced by �`[!. 
5.2. Garbage collection example 
Before we discuss the correctness of the algorithm, let’s look at 
Figure 3, which demonstrates the construction steps using a 
minimal example with most of the important situations. 

 

Figure 3. Graph construction. Objects are shown as 
diamonds, events as circles; dashed lines are referen-
ces to events and objects that were garbage collected. 

The diagram (A) shows an initial state with a root object re-
ferencing an event source. The source can trigger a MouseDown 
event, which is propagated through the chain to a handler. 
During the pre-processing, we run garbage collection to remove 
events that cannot be triggered, which removes the evt1 event and 
we also add a mock reference from source to handler, which 
allows us to reverse references of the chain (B). 

       

Figure 2. Mixed garbage definition. 

(A) shows initial reference graph that 
mixes objects (diamonds) with events 
(circles); root objects and calculated 
leaf events are marked with rings. (B) 
shows which objects and events are 
garbage (filled with white color).  

 



 
 

Finally, (C) shows what happens after reversing the edges that 
lead from events. Thanks to this operation, we start applying the 
dual rule to events, so all events that cannot trigger any leaf event 
become garbage (e.g. evt2 in the diagram). However, thanks to 
pre-processing, we don’t affect collectability of non-events. The 
algorithm should intuitively follow the definition, but a formal 
proof of its correctness is available in Appendix C [27].  

5.3 Removing events during collection 
As noted earlier, we use the formal algorithm mainly as a formal 
model and it motivates the implementation of a reactive library in 
the next section, but first we briefly discuss an aspect that would 
be important for an actual implementation of the algorithm. 

When removing an event from the memory (for example evt2 
in Figure 3), there won’t be any references to it from objects, 
because that would make the event a leaf event and it wouldn’t be 
collected.  However, it may be referenced from other events. To 
avoid dangling references, we need to deal with these possible 
references when collecting the event.  

Ideally, the garbage collector would have some knowledge 
about events and it could remove the reference to the collected 
event from the source event (for example if an event in the actual 
system contained a list of referenced events). Another approach 
would be to redirect the reference to a special null event, which 
doesn’t perform any action when triggered. 

6 Implementing the reactive library 
The algorithm proposed in section 5 has the advantage that it can 
be built on top of a standard garbage collection algorithm, but we 
wanted to avoid modifying the runtime altogether. In this section, 
we discuss an implementation of combinators which is inspired by 
the previous discussion and implements almost identical behavior. 

As discussed in section 3.2, a naïve implementation of event 
combinators registers a handler to the source event (using the 
AddHandler function). It keeps a mutable list of handlers and 
returns a new IEvent<'a> value, which adds or removes handlers 
to or from this internal list. When the source event fires the com-
binator chooses whether to trigger the handlers and also calculates 
a value to use as an argument. This implementation is faulty, 
because it never removes the handler from the source event.  

6.1 Implementation requirements 
Let’s briefly summarize the requirements for the new implementa-
tion. Section 3.2 already discussed the most important aspect: 

• Collectable event chains. When the user unregisters all 
previously registered handlers and when there is no other 
reference to the event value, the entire processing chain 
should be available for garbage collection. This corresponds 
to the definition of garbage for events from section 4. 

• No explicit referencing. When there is a handler attached to 
the event value representing the chain, the chain shouldn’t be 
collected as the handler can still perform some useful work. 

• Stateful. As we’ll clarify in section 6.2, the current semantics 
of event combinators is stateful, meaning that the mutable 
state of a combinator can be observed by multiple handlers. 
We want to preserve this semantic property. 

• Composability. When we create a chain using a sequence of 
pipelined Event.xyz transformations, we should be able to 
freely split it into several independent pieces (e.g. we should 
not require adding a special combinator to the end or the 
beginning of the event processing pipeline). 

The original implementation didn’t meet the first requirement. 
However, when designing a library that satisfies the first condi-
tion, it is easy to accidentally break another one. The requirement 
for stateful combinators deserves more explanation. 

6.2 Stateful and stateless model 
Certain combinators maintain a state. The same state is shared by 
all handlers attached to a single event value. We can demonstrate 
this behavior using one more example that counts clicks: 

1: let counter = btn.MouseDown  
2:   |> Event.map (fun _ -> 1) |> Event.scan (+) 0 
3:  
4: let rec loop() = async {  
5:   let! num = counter |> Async.AwaitEvent 
6:   printf "count: %d" num 
7:   return! loop() } 

We take the MouseDown event and project it into an event that 
carries the value 1 each time the button is clicked. The stateful 
combinator Event.scan uses the second argument as an initial 
state (line 2). Whenever the source event occurs, it uses the 
function provided as the first argument (in our case +) to calculate 
a new state from the previous one and the value carried by the 
event. The returned event is triggered (carrying the current state) 
each time the state is recalculated.  

Next, we switch to the imperative event handling style and 
implement a processing loop that prints the current count 
whenever counter event fires. The loop repeatedly attaches a 
handler to the event (line 5), so the code works only if the state 
stored by the event is shared between all event handlers.  

Let’s compare the two possible implementations of event 
combinators that maintain a state between two occurrences of the 
event (such as Event.scan): 

• Stateless. In this model, we create a unique instance of the 
state for each attached event handler. This model keeps the 
code referentially transparent, but it works well only in a 
purely declarative scenario. If we ran the example above 
using a stateless implementation, it would print 1 for every 
click, which is somewhat unexpected. 

• Stateful. The state of an event created by the combinator is 
shared between all handlers. This approach is consistent with 
the imperative event handling (the example in section 2.2 
works this way). As the previous example demonstrates, the 
two styles work very well together in this setting. 

The stateless approach has its benefits, especially for pure langua-
ges. It has been used in Haskell [2] and is also being used by the 
Reactive Framework [5], which builds on LINQ [7]. We’ll follow 
the pragmatic ML tradition and use the stateful implementation.  

The next section shows an implementation inspired by the 
formal algorithm that follows all the technical requirements. 

6.3 Constructing event chains 
We’ll discuss the implementation by looking at an example simi-
lar to the problematic case from section 3.2, but we’ll also analyze 
other important situations. We start by constructing an event chain 
and a handler that we’ll later attach to the composed event: 

1: let clicks = src.MouseDown  
2:   |> Event.filter (fun m ->  
3:        m.Button = MouseButtons.Left) 
4:   |> Event.map (fun m -> (m.Y, m.X)) 
5: 

6: let hndl = new Handler<_>(...) 



 
 

 

Figure 4. Implementation using reversed links. The 
state right after creating an event chain (A); after 
registering a handler, forward references are created 
(B). Removing the handler also removes forward 
references. If we also lose direct references from the 
program, the entire chain becomes collectable (C). 

Figure 4 (A) shows what happens after running this code. Our 
implementation doesn’t attach any event handler to the original 
event source. Each event only keeps a reference to the source, so 
that it can attach the handler later. We call this lazy initialization. 
If we compare this diagram with the references in the naïve imp-
lementation (Figure 1, A), we can see that edges leading from 
events are reversed, which corresponds to our construction in (9). 

6.3 Adding event handlers 
Now that the chain is initialized, let’s look at what happens when 
we register hndl as a handler for the event constructed by the map 
function (displayed as »map« and aliased by the clicks value). 
This can be done by calling clicks.AddHandler(hndl). 

The state after adding the handler is displayed in Figure 4 (B). 
There is a new link from the »map« event to the hndl value. This 
represents the fact that the event keeps a reference to the handler, 
so that it can trigger the handler. More interestingly, there are also 
new links from the event source along the entire event chain up to 
the »map« value. This is a result of the lazy initialization. 

When we register the handler, the event checks whether the 
number of registered handlers was originally zero. If that’s the 
case, it means that it hasn’t yet registered an event handler for its 
source, which is the »filter« event in the diagram. The 
»filter« event performs the same check and possibly also 
registers event handler with its source. This way, the registration 
is propagated up to the primary source, which is an external event. 

Thanks to the propagation, the call to AddHandler adds all the 
necessary forward references, so when the primary source event 
(MouseDown) occurs, all the event transformations will trigger and 
the provided handler will be called. Note that before adding the 
event handler to the constructed clicks event, the transformations 
wouldn’t be called (and none of the functions we provided as an 
argument to Event.map and other combinators would run).  

6.4 Removing handlers and losing references 
There are several situations that can arise after we add an event 
handler. In this section, we’ll analyze interesting combinations of 
removing the event handler and losing references to the chain. 

Losing references. If the program returns from a routine that con-
structed the chain, it loses references to both the handler and the 
chain. As follows from our definition of garbage and the require-
ments (Section 5.1), we don’t want to dispose the event chain, be-
cause if the source event fires, it can trigger some useful handler. 

We can see that our implementation behaves correctly in this 
case. Even if we lose the direct references to »map« and hndl, 
there are still references from the source to the handler. The links 
that keep the handler “alive” are forward references, which were 
created by propagating the call to AddHandler. 

 
Removing handler. If we unregister the handler, but keep a refe-
rence from the program to the constructed event chain, the event 
checks whether the number of handlers reached zero (after the re-
moval). If yes, it propagates the removal and removes its handler 
from its source event. Again, this may continue up to the original 
source event. This is a valid approach, because if there are no 
event handlers to trigger, we don’t need to listen to the source.  

The state of the event chain after adding and removing a 
single handler is exactly the same as the initial state after creation. 
In the diagram, we return back to the state in Figure 4 (A). This 
means that the whole event chain is still in a usable state. As long 
as we keep a reference to the object representing the chain »map« 
we can again attach a handler and start listening to the event.  

Removing handler and losing references. Now, let’s look at the 
situation that motivated this paper. What if we remove the event 
handler and then lose references to the object representing the 
event chain (or remove handler after losing references)?  

In this case, the event chain becomes garbage. No one is 
listening to it, so it doesn’t need to fire and we cannot attach an 
event handler to the chain, because we don’t keep any reference to 
it. The original implementation of combinators is deficient in this 
case, because it keeps references from the event source to the end 
of the event chain, even though there are no attached handlers. 

Our implementation using reversed links behaves differently. 
After removing the last handler, the removal is propagated, so 
there are no forward references in the chain. As shown in Figure 4 
(C), the only remaining references are reverse links from the end 
of the chain. We don’t keep any reference to the chain, so all 
events that form the chain become garbage and can be collected. 

The same situation occurs if the handler references the »map« 
value and unregisters itself, which was our original motivation 
(Section 3.2). Until it does so, there are forward references, which 
keep the event chain alive, but once the last handler is removed, 
the removal is propagated and the chain is garbage collected. 

6.5 Implementing sample combinator 
In this section, we demonstrate our implementation of event com-
binators, by examining the map combinator. We already explained 
several aspects of the implementation: 

• Due to laziness, no handler is registered with the source  
event when the combinator is called. 

• When the first handler is added, the combinator adds a 
handler to its source event. 

• Similarly, when the last handler is removed, the combinator 
also unregisters itself from the source event. 

The implementation directly follows these rules. It is more comp-
licated than the version in section 3.2, but it can be simplified by 
composing combinators using primitive higher-order functions. 

 



 
 

1: let map f (source:IEvent<_>) = 
2:   let list = new ResizeArray<Handler<_>>() 
3:   let this = new Handler(fun arg -> 
4:     for h in list do h.Invoke(f arg)) 
5:   let add h = 
7:     list.Add(h) 
8:     if list.Count = 1 then 
9:       source.AddHandler(this)) 
10:  let remove h =  
12:    list.Remove(h)  
13:    if list.Count = 0 then 
14:      source.RemoveHandler(this))  
15:  { AddHandler = add; RemoveHandler = remove } 

The combinator first initializes a mutable list of registered han-
dlers (line 2) and a handler (line 3) that will be later attached to 
the source event. The handler implements the projection, so when 
it is called, it iterates over all currently registered handlers and 
invokes them with the projected value as the argument (line 4). 

On the next few lines, we define two local functions that will 
be called when the user adds a handler to the returned event (line 
5) and when a handler is removed (line 10). Both of the functions 
have similar structure. They first add or remove the handler given 
as an argument to or from the list attached handlers.  Next, they 
check whether the change should cause propagation and register 
with or unregister from the source event (lines 9 and 14).  

6.6 Relations to standard GC techniques 
At this point, it is worth discussing the relations between our 
implementation and standard garbage collection techniques. 

Reference counting. As noted in section 3.1, our algorithm bears 
similarity to reference counting. A well-known problem of refe-
rence counting is that it fails to reclaim objects with reference 
cycles. We rely on GC implemented by the runtime when collec-
ting objects or events that are not object-reachable and uses refe-
rence counting to collect events that are not event-reachable. This 
means that only cyclic references between events would be a 
problem. However, as noted in section 3.1, the set of combinators 
provided by F# library doesn’t allow creating cyclic references 
between events, so the problem is avoided in our setting 

Weak references. Many runtime environments support advanced 
features for controlling the garbage collector, such as weak refe-

rences and so it seems natural to ask whether these could be used 
in our implementation. We consider using weak references for 
forward or backward links, but as we’ll see both of these uses 
would break the implementation. 

If forward links were weak, the GC could collect events with 
attached handlers that perform some useful work (e.g. if we 
registered a handler with the event constructed in section 2.2 and 
then lost reference to the event chain). On the other hand, if 
backward links were weak, the GC could collect parts of a chain 
before registering the first handler (e.g. the »filter« event in 
Figure 4 (A)). This discussion raises some interesting problems 
for future research (Section 8.1). 

7 Correspondence with the model 
In the previous two sections of the paper, we’ve introduced a for-
mal model and an implementation that is inspired by the model. In 
this section, we discuss the correspondence between the algorithm 
from section 5 and the library implementation.  

 

Figure 5. Formal algorithm and implementation. In 
the initial state, the implementation and the formal mo-
del give the same result (A). After registering a han-
dler, the formal model (B) and the implementation (C) 
differ, but are equivalent in terms of reachability.  

7.1 Duality of event references 
When we create an event using a combinator, it only keeps a 
reference to previous event of the chain. This corresponds to the 
formal model, where we reverse all links leading from an event 
(8). If we look at a simple case, where none of the pre-processing 
steps take place, the formal model and implementation yield 
exactly the same result. An example is shown in Figure 5 (A). 

Once we attach an event handler to the constructed event, the 
situation becomes more complicated. We’ll discuss this case in 
7.2. The other pre-processing step is collecting unreferenced event 
values, which we’ll discuss in section 7.3. 

7.2 Mock references 
When an event references a handler (object) in the formal model, 
we add a mock reference (7) from the event source (an object that 
references the first event of the chain) to the event handler (an 
object referenced by the last event). On the other hand, the imple-
mentation adds forward references by propagating the registration 
of the handler back to the source. 

The Figure 5 demonstrates what happens in the formal model 
(B) as well as in the implementation (C). It shows the situation in 
which we’re not directly referencing the event chain and the 
handler from the program (other cases would be similar). Even 
though the diagrams look different, it isn’t difficult to observe that 
they are equivalent in terms of collectability of objects.  

This equivalence is in details discussed in Appendix D [27]. 
Briefly, a mock reference in the formal model corresponds to a 
situation when a handler was registered in the implementation, 
which causes the propagation of handler registration back to the 
original event source. Now, events that become reachable thanks 
to mock references correspond to events that become reachable 
after registration propagation. To show this formally, we need to 
analyze the paths to events of the event chain. Informally, you can 
verify this by looking at Figure 5 (B) and (C).  



 
 

7.3 Event collection 
The first pre-processing step in the formal model guarantees that 
we will collect all events that can’t be triggered. In the imple-
mentation, there is no feature corresponding to this step. Let’s 
demonstrate this mismatch using an example: 

1: let test() = 
2:   let form = new Form(Visible=true) 
3:   form.MouseDown  
4:     |> Event.filter (...) 
5:     |> Event.map (...) 
6: let evt = test() 
7: evt.AddHandler(Handler(fun e -> printf "!")) 
8: eventsList.Add(evt) 

When we invoke the function in the code snippet (line 6), it 
constructs a visible form and returns an event. We add a handler 
to the event (line 7), and keep a reference to it in some global list 
of events (line 8). When the form is later closed, the runtime no 
longer keeps a reference to it, so the form as well as the 
constructed event chain should be collected (with the exception of 
the last event, which is directly referenced). 

However, because of backward references, there is a link 
from the last event to all preceding events in the chain, so the 
entire event chain is kept alive. We don’t find this limitation a 
problem in practice. In order to keep the event chain alive, the 
user needs to reference the constructed event value, but keeping a 
list of created events is rarely done in practice.  

Similar situation arises in .NET and can be solved using the 
“Weak Delegate” pattern [21]. We provide combinator Event. 
weak [8] which allows the user to overcome this problem. This 
issue is, however, orthogonal to the one that motivated this paper. 

8. Related work and conclusions 
In this section, we first look at programming models that are 
related to those available in F# (Section 2) and then review the 
related work in the area of garbage collection. 

Synchronous languages. The reactive programming model for 
mixed functional-imperative languages is related to the work in 
synchronous languages [6]. Our model isn’t synchronous and isn’t 
aimed at the development of real-time embedded systems, but it 
shares similar aspects with two of the synchronous languages.  

The declarative programming model from 2.1 is similar to the 
data-flow model of the Lustre language [10], as we also declarati-
vely construct computations and have limited expressive power. 
In Lustre this makes programs verifiable. On the other hand, the 
imperative programming model from section 2.2 is similar to 
Estrel [11, 12], which is described as “imperative and suited for 
describing control” in [6]. However, since Lustre and Estrel exist 
separately and cannot be mixed, the authors didn’t have to face 
the integration problem that motivated this paper. 

From Fran to Reactive Framework. Our research is inspired by 
functional reactive programming, started by Fran [1, 2]. Modern 
FRP [17] inspired the design of F# event combinators, which is 
the declarative model discussed in section 2.1. The imperative 
model from section 2.2 is more similar to Imperative Streams [3]. 

Meijer’s Reactive Framework [5, 9] is very relevant to our 
work, because it is also directly useable from the F# language. It 
builds on the declarative model of composing computations using 
combinators. It provides large number of combinators, which 
makes it very expressive, but for example encoding state machi-
nes in this model is not straightforward. 

Reactive Framework overcomes the memory problems by 
being stateless. It creates a new “instance” of an event chain for 
every handler and then disposes the entire chain when the handler 
is removed. This is compelling, but we cannot use it cannot be 
used with the stateful semantics of F# combinators. 

Garbage collection research. When collecting events, we aim to 
collect objects and events that we consider as garbage, but that 
wouldn’t be collected by the standard GC algorithm. This is 
related to research that provides the algorithm with an additional 
liveness property and collects not only objects that are unreacha-

ble, but also objects that are not alive. (e.g. [22, 23]).  
The question whether we could collect objects matching the 

definitions in section 4 using similar techniques is an interesting 
future research problem that complements our work. One notable 
difference is that an event can be considered garbage even if it can 
still be triggered. As discussed in 5.3, this problem would have to 
be handled carefully in a GC algorithm implementation. Liveness 
analysis usually deals with objects that won’t be accessed by the 
program, but the GC algorithm fails to recognize this.  

Garbage collection of actors. The Actor model [16] describes 
concurrent programs in terms of active objects that communicate 
using messages, which is in many ways similar to the popular lan-
guage Erlang [13]. Our imperative model is related to the actor 
model – waiting for an event plays the role of receiving a message 
and triggering an event corresponds to sending a message.  

Actors face a similar problem, because garbage is defined in 
terms of the state of the actor (however, it cannot be expressed 
using the duality principle as in our work). Various specialized 
algorithms for collecting the garbage have been developed for the 
actor model [14]. However, the most relevant work is [15], which 
describes how to implement garbage collection for actors in terms 
of standard garbage collection algorithm by translating the actor 
reference graph to a passive object reference graph. The specific 
steps performed by the algorithm are very different, but the 
general approach of manipulating the reference graph and using a 
standard GC algorithm is shared with our work (Section 5). 

8.1 Future work 

In this paper, we have focused on the definition of garbage and 
finding an implementation that doesn’t cause memory leaks in the 
situations when we combine declarative and imperative style of 
reactive programming as introduced in sections 2 and 3. However, 
it would be also desirable to study the semantics of event combi-
nators more formally. 

Combinator semantics. The alternative implementation of com-
binators, which is presented in this paper doesn’t change the 
meaning of any of the pure combinators (such as Event.map and 
Event.filter), but it slightly modifies the semantics of stateful 
combinators (e.g. Event.scan). The semantics remains stateful 
(as required in section 5.1), but differs from the original F# 
implementation. In particular, when we initialize Event.scan in 
the original implementation, it starts updating its internal state 
right away even before we attach a handler. On the other hand, 
our implementation updates the internal state only when there are 
some handlers attached to the event constructed by our com-
binator. In fact, it is difficult to judge which of the implementa-
tions is more intuitive, so we believe this isn’t a problem in prac-
tice as long as it is clarified in the library documentation. How-
ever, it shows the need for a more formal treatment of the 
semantics of event combinators. 



 
 

Garbage collection in reactive scenarios. Our paper deals with 
garbage collection in a concrete reactive programming model built 
using events. However, similar problems have been observed for 
other programming models such as the actor model [15]. This 
suggests that we may need more powerful GC algorithms for 
reactive programming in general. It is not yet clear to us whether 
the work on liveness analysis [22, 23] can provide a more general 
solution. The algorithm we proposed serves mainly as a useful 
formal model for the design of reactive library, but it would be 
interesting to see if it can be generalized to cover all known 
reactive scenarios and implemented in practice. 

Another problem is to show that garbage collection in the 
reactive (or more generally, in any non-standard) memory model 
in fact needs a specialized GC algorithm. In section 6.6, we dis-
cussed why we cannot use weak references in our model, but there 
are other advanced features such as ephemerons [26] that may 
provide the necessary expressive power. In general, this demon-
strates the need for a solid framework for formal reasoning about 
the expressivity of garbage collection techniques. 

8.2 Discussion 
This paper provided a review of reactive programming models 
that can be used in mixed functional/imperative languages and we 
looked at the F# implementation of these models. We discussed a 
problem with garbage collection of events, which emerges when 
we attempt to mix the declarative and imperative style and is also 
present in the current implementation of F# event combinators. 

We defined the problem formally by providing a simple 
definition of collectability for reactive programming model. It 
combines both objects and events and benefits from the duality 
principle. Using this definition, we presented a garbage collection 
algorithm, which reclaims all collectable objects and events. The 
algorithm is based on graph transformation. This technique could 
be used to reduce the problem to well known GC algorithms. 

However, our implementation aim wasn’t to actually replace 
a garbage collection algorithm. Instead, we have shown an 
alternative implementation of library of F# event combinators, 
solely in terms of object references. Our implementation closely 
corresponds to the formal model and doesn’t cause memory leaks 
when used in an environment that combines both declarative and 
imperative approach to reactive programming. 
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