19
20
21
22
23
24
25
26
27
28

29

33
34
35
36
37
38
39
40
41
42
43
44

46
47
48

50
51

52

Iterative Prompting: Programmatic Data Exploration for Non-programmers

ANONYMOUS AUTHORC(S)

Data exploration tools based on code have many desirable characteristics. They can easily access a wide range of different data
sources, result in reproducible scripts and encourage users to reuse and modify existing code. Unfortunately, most programming tools
require expert coding skills. Can we make data exploration based on code accessible to non-experts? We present The Gamma, a novel
text-based data exploration environment that answers the question in the affirmative. The Gamma is based on a novel interaction
principle, iterative prompting, which lets users create transparent and reproducible scripts without writing code. The Gamma lowers
the barrier to entry and learning from previously created data analyses. We evaluate the usability of The Gamma through a user study
on non-technical employees of a research institute. Our work shows that we may not need to shy away from code in order to build

accessible, reproducible and transparent tools that will allow a broad audience to benefit from the rise of open data.

CCS Concepts: « Human-centered computing — Interaction paradigms; - Software and its engineering — Integrated and

visual development environments; Dormain specific languages.

Additional Key Words and Phrases: data exploration; end-user programming; data journalism; programming languages; type providers

ACM Reference Format:
Anonymous Author(s). 2020. Iterative Prompting: Programmatic Data Exploration for Non-programmers. In Woodstock '18: ACM
Symposium on Neural Gaze Detection, June 03—05, 2018, Woodstock, NY. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION

Despite the advances on visual tooling, programmatic data exploration remains the choice of expert analysts. It is
flexibile, offers greater reusability and leads to transparent analyses. We aim to make programmatic data exploration
accessible to a wider range of users. The design of a data exploration tool that would make this possible poses a number
of challenges. First, the tool needs to have a low barrier to entry. Second, it needs to support a wide range of data sources
in a uniform way. Third, the users should be able to learn how to use the tool by looking at existing data analyses.
We contribute The Gamma, a text-based data exploration environment for non-experts. The Gamma is based on a
single, easy to understand interaction principle and provides a uniform access to a range of data sources including data
tables, graph databases and data cubes. The resulting analysis is a transparent script that can be followed to reproduce

the result from scratch. This allows learning from existing analyses and encourages readers to engage with data.

Iterative Prompting. The main contribution of our work is the iterative prompting interaction principle, which makes it
possible to construct all valid data exploration scripts by repeatedly choosing an item from a list of options offered through
auto-complete. The design favors recognition over recall and allows non-programmers to write entire scripts without
typing code and without learning a programming language first. Yet, it still results in transparent and reproducible
code. In other words, iterative prompting turns auto-complete from a programmer assistance tool into a non-expert
programming mechanism. A crucial feature is that iterative prompting only offers operations that are valid in a given

context and that it offers all such operations; it is both correct and complete.

© 2020
Manuscript submitted to ACM

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

53
54

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

Woodstock ’18, June 03-05, 2018, Woodstock, NY Anon.

olympics.'filter data'.'Games is'.'Rio (2016)'.then Programming via
.'group data'.'by Team'.'sum Gold'.'sum Silver'.then iterative prompting
.'sort data’ |
A by Gold @
A by Gold descending
Full source code K by silver
in a text editor A by Silver descending
A by Team
A by Team descending
A then
Team Gold Silver
United States 141 55
United Kingdom (Great Britain) 68 55
Germany 53 @ Instantaneous

preview of results

Fig. 1. Obtaining teams with the greatest number of gold medals from Rio 2016 Olympics with a reproducible The Gamma script (1),
contextual iterative prompting mechanism offering ways of sorting the data (2) and an instant preview of results (3).

Data Exploration. The Gamma focuses on data exploration of the kind illustrated in Figure 1. The user accesses data
available in a structured format. They make several experiments to find an interesting way of looking at the data,
e.g. by applying different aggregations or filters. They may choose to view the results as a table or a basic chart before
publishing their analysis. The Gamma makes such programmatic data exploration simple enough for non-experts, but
scraping and cleaning of messy data or building custom data visualizations is currently outside of the scope of our

work. Exposing those using iterative prompting remains an interesting and worthwhile future challenge.

Paper Overview. The Gamma is available (non-anonymously) at http://thegamma.net, both as a JavaScript library and a

hosted data exploration service. In this paper, we describe and evaluate the design principles behind the project!:

e We introduce the iterative prompting principle in The Gamma and show how it can be used for querying of
distinct data sources including data tables, graph databases and data cubes (Section 3).

o We evaluate the system through a number of case studies (Section 4) and a user study (Section 5), which confirms
that non-programmers can use The Gamma to construct non-trivial data queries.

o We reflect how our design lowers barriers to entry, supports learning without experts and offers a complete and

correct program construction method (Section 6).

2 RELATED WORK

The key contribution of our work is that it develops a new, fundamentally different, way of using the established
auto-completion mechanism. Unlike most past work dating back to Kaiser [24], we do not view it as a programmer
assistance tool. Instead, we turn it into an interaction mechanism through which non-experts can create entire programs.
We build on recent research on information-rich programming [53] and aim to make those advances available to
non-programmers [35, 37], in the context of data exploration as done, for example, by journalists [15]. Our work features
a novel combination of characteristics in that our iterative prompting interaction principle (i) is centered around editing
and understanding of code, (ii) reduces conceptual complexity to a single basic kind of interaction, yet (iii) it is correct
and complete in that it can be used to construct all meaningful queries for a variety of data sources.

This paper is 11 pages (5500 words), without citations, to be commensurate with the size of the contribution.

2

http://thegamma.net

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

152
153

155

156

Iterative Prompting: Programmatic Data Exploration for Non-programmers Woodstock *18, June 03-05, 2018, Woodstock, NY

Code Completion for Data Science. A key component in The Gamma is the use of auto-complete for offering possible
operations. Our work follows type providers [41, 53], which integrate external data into a static type system of F#,
allowing the use of auto-completion; for querying data tables, we utilize the theory developed by Petricek [39]. The key
difference in our work is that The Gamma can be used without a programming language expertise.

Most similar to our approach are tools that make recommendations when users begin interacting with data. Those
based on machine learning-based code completion for domain specific languages [17, 18] differ in that they do not
guarantee completeness, i.e. it is unclear whether the user can create all possible scripts. Approaches based on natural
language are effective [45, 50], but hide the underlying structure and do not help the user understand it. Conversational
agents [13] share similar characteristics, except that the construction process is iterative.

Code completion based on machine learning or statistical methods [5, 43] also exists for general-purpose programming
languages used by data scientists such as Python [52], providing assistance to expert programmers. Finally, DS.js [59] is

interesting in that it enables querying of data on the web. It uses JavaScript, but with rich contextual code completion.

Notebooks and Business Intelligence Tools. Notebooks such as Jupyter [28], which allow combining source code with
commentary and visual outputs, are widely used by data scientists, but require expert programming skills. The Gamma
targets non-experts, but could also be integrated with a multi-language notebook system [40]. Spreadsheets, business
intelligence tools [33, 58] and other visual data analytics tools [8, 19] do not involve programming, but require mastering
a complex GUI. In contrast, The Gamma is based on a single kind of interaction, through which all available operations
can be completed. Several systems [25, 42, 47] record interactions with the GUI as a script that can be modified by the

user. Unlike in The Gamma, the source code does not guide the user in learning how to use the system.

Easier Programming Tools. We aim to build an easy to use and learn programming system. Many approaches to
this goal have been tried. Victor [56] introduced design principles that inspired many to build live programming
systems [14, 29, 44] that give immediate feedback to help programmers understand how code relates to output and
exploratory systems [26, 27] that assist with completing open-ended tasks. A system combining textual language
with visualization also exists for graph querying [2]. To avoid difficulties with editing code as text, some systems
use structured editors [32, 38, 54]. In Subtext [11, 12] the language itself is co-designed with the editor to make the
interactions with code more natural. The Gamma is live in that our editor gives an instant preview of the results.
Many systems simplify programming by offering high-level abstractions, e.g. for interactive news articles [7], statistical
analyses [23] or interactive data visualization [48, 49]. The Gamma exposes a number of data sources through high-level

abstractions that support iterative prompting, but support for tasks other than querying remains furture work.

Programming without Writing Code. There are two main approaches to programming where the user does not write
code. In programming by example [31], the user gives examples of desired results. This has been used, e.g. for specifying
data transformations in spreadsheets and data extraction [16, 30]. In direct manipulation [21], a program is specified by
directly interacting with the output. This has been used in the visual domain [20], but also for data querying [4, 51].
The VQE language [10] also considers how to allow code reuse and modification in this context. Direct manipulation

can also support data exploration by letting users partially edit queries, e.g. by changing quantifiers as in DataPlay [1].

Gestures and Data Entry. Although our focus is on program construction, our work can be positioned in the broader
context of input methods. Akin to Dasher [57], our system provides a way of navigating through a complete space of
options, while on-screen feedforward [3] allows efficient selection in gesture-based interfaces. Those provide compelling

alternatives to auto-completion menus, although the efficiency of input methods is typically not an issue in programming.
3

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

Woodstock ’18, June 03-05, 2018, Woodstock, NY Anon.

3 OVERVIEW

The Gamma aims to make text-based data exploration easy enough for non-experts. The aim is motivated, in part, by
the desirable properties of text-based data exploration tools such as transparency, reproducibility and learnability and,
in part, by an aim to explore an unexplored point in the design space of data exploration tools. Although various efforts
make text-based programming easier, most systems that target non-experts shy away from code.

The Gamma is a text-based data exploration environment that allows non-experts explore data using iterative
prompting — by repeatedly selecting an item from an auto-complete list. The study presented in Section 5 confirms that

the kind of data exploration shown in the next section can, indeed, be successfully done by non-experts.

3.1 Querying Travel Expenses

The walkthough in Figure 2 shows a typical task completed using The Gamma. A data analyst from Kent is exploring
travel expense claims by members of the House of Lords published by the UK government [55]. The following shows a
subset of the data in the CSV format:

@ @ expenses

.'filter data'.'County is'.Kent.then
expenses .'sort data'.'by Days Away descending'

& drop columns Name County Days Attended Days Away Travel Costs
K filter data

S get series Lord Astor of Hever Kent 7 0 85
#get the data Lord Freud Kent 1 0 0
A group data
paging Lord Harris of Peckham ~ Kent 3 0 0
A sort data
i Baroness Noakes Kent 6 0 135
Bishop of Rochester Kent 1 0 10
expenses expenses
.'filter data'.'County is'.ke .'filter data'.'County is'.Kent.then
.'sort data'.'by Days
K Kent

K by County descending

A by Days Attended

& by Days Attended descending
K by Days Away

& by Days Away descending

K by Name

Kincardineshire
K Lanarkshire

K Lancashire

K Leicestershire
K Lincolnshire

A London .
2L & by Name descending
K by Travel Costs
& by Travel Costs descending
then
expenses expenses
.'filter data'.'County is'.Kent .'sort data'.'by Travel Costs descending'.then
.'filter data'.'County is'.Kent.then
.paging.take(5)
Name County DaysAttended ~ DaysAway Travel Costs 'get series'.'with key Name'.'and value Travel Costs'
Lord Astor of Hever Kent 7 0 85
Lord Freud Kent 1 0 0 Lord Swinfen
Lord Harris of Peckham ~ Kent 3 0 0 Baroness Noakes :|:’:|:|:':
Baroness Noakes Kent 6 0 135
Baroness Suttie
Bishop of Rochester Kent 1 0 10
Lord Astor of Hever
Baroness Suttie Kent 8 0 118
Lord Swinfen Kent 8 0 210 Bishop of Rochester |

Fig. 2. Constructing a script that charts the top 5 members of the House of Lords for Kent, based on their travel costs.

4

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

260

Iterative Prompting: Programmatic Data Exploration for Non-programmers Woodstock *18, June 03-05, 2018, Woodstock, NY

1 Name, County, Days Attended, Days Away, Travel Costs
2 Lord Adonis, London, 8, 0, 504

3 Baroness Afshar, Yorkshire, 2, 0, 0

4+ Lord Alderdice, Oxfordshire, 3, 0, 114

5 Lord Alli, London, 5, 0, @

The analyst imports the file through a web interface, the environment is initialised with code that refers to the imported

data as expenses and she starts exploring the data using the type provider for tabular data (Section 3.3):

(1) The analyst types ‘. (dot) to trigger auto-completion on expenses. The type provider offers a list of operations
that the analyst can perform. To find House of Lords members from Kent, the analyst chooses filter data.

(2) The analyst is offered a list of columns based on the schema of the tabular data and choses County is. She is then
offered a list of counties in the data set and types ke to search for Kent and she selects Kent.

(3) The Gamma evaluates the code on-the-fly and shows a preview of results. The analyst now sees a table with
House of Lords members from Kent. She wants to see if there are any members who missed any House sessions.

(4) The analyst finishes specifying the (possibly compound) sorting key by choosing then and is offered the same
list of querying operations as in the first step. She selects sort data followed by by Days Away descending.

(5) The analyst sees that there are no reported “days away” and decides to compare travel costs. She hits the
backspace key a number of times, is offered the list of keys again and selects by Travel Costs descending.

(6) The analyst chooses then and is, again, offered the list of querying operation. She uses paging to get top 5
records, which requires typing 5 as the argument. She then uses the get series operation to obtain a data series

associating travel expenses with a name, which is automatically visualized using a bar chart.

The constructed code is not unlike an SQL query, except that the whole script is constructed using iterative prompting,
by repeatedly selecting one of the offered members. Those represent both operations, such as sort by and arguments,

such as Kent. The only exception is when the analyst needs to type the number 5 to specify the number of items to take.

3.2 The Gamma Programming Environment

A program in The Gamma is a sequence of commands. A command can be either a variable declaration or an expression
that evaluates to a value such as a data table or a chart. An expression is a reference to a data source followed by a chain
of member accesses. A member can be either an ordinary member such as paging or an operation which takes a list of
parameters enclosed in parentheses as in take(5). Names with non-alphanumerical characters are escaped using quotes.

The Gamma uses a type system to infer what members are available at a given point in a chain. Each expression has
a type with a list of members that, in turn, have their own types. The types are not built-in, but are generated by type
providers for individual data sources. The programming environment for The Gamma is based on the Monaco editor
[34]. When the user types ° the editor triggers auto-completion and retrieves a list of available members based on the
type information. The Gamma evaluates scripts on-the-fly and shows a preview as illustrated in Figure 1.

There is a handful of situations where The Gamma does not yet fully support the iterative prompting principle. First,
it allows operations with parameters such as take(5). This is currently needed when writing a query that skips or takes
the first N elements from a table. Second, The Gamma allows the user to declare (immutable) variables using let. This

is not needed for basic data exploration, but allows advanced users to better structure more complex code.

5

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

Woodstock ’18, June 03-05, 2018, Woodstock, NY Anon.

Indicator Indicator Dalek Bad Wolf
O o
Year Pt
co co Year el
2 2 D°°t°r,,~’ River Song Day of The Moon
2010 O

ENEMY APPEARS

us Country Country

The Silence

(a) Exploring World Bank data using the data cube type provider, (b) To query graph data, the user specifies a path through
users choose values from two dimensions to obtain a data series. the data, possibly with placeholders to select multiple nodes.

Fig. 3. Design of type providers for exploring data cubes and graph databases.

3.3 Type Providers for Data Querying

The Gamma can be extended to support any data source by implementing a type provider, which defines a domain
specific language for exploring data of a particular kind. A type provider generates object types with members (such as
paging or Kent) that are accessed via iterative prompting. We describe type provider for exploring data cubes (inspired

by Syme et al. [53]), tabular data (based on theory developed by Petricek [39]), and graph databases.

Data Cube Type Provider. Our first type provider allows users to explore data cubes, which are multi-dimensional arrays
of values. For example, the World Bank collects a range of indicators about many countries each year while the UK
government expenditure records spending for different government services, over time, with different adjustments:

1 worldbank.byCountry. 'United States'.'Climate Change'.'CO2 emissions (kt)'

2 expenditure.byService.Defence.inTermsOf.GDP

The dimensions of the worldbank cube are countries, years and indicators, whereas the dimensions of expenditure are
government services, years and value type (adjusted, nominal, per GDP). Figure 3a how the provider allows users to
slice the data cube. Choosing byCountry. 'United States', restricts the cube to a plane and selecting 'C02 emissions
(kt)' then gives a series with years as keys and emission data as values. Similarly, we could first filter the data by a

year or an indicator. The same mechanism is used to select UK government spending on defence in terms of GDP.

Tabular Data Type Provider. Our second type provider allows users to construct queries to explore data in tabular
formats. Unlike the data cube provider, the provider for tabular data does not just allow selecting a subset of the data,
but it can be used to construct SQL-like query. Consider the example from Figure 1:

1 olympics.'filter data'.'Games is'.'Rio (2016)'.then

2 .'group data'.'by Team'.'sum Gold'.'sum Silver'.then

3 .'sort data'.'by Gold descending'

The example queries a table that records individual medals awarded in Olympic games. The chain constructs a query that
selects rows corresponding to the Rio 2016 Olympics and then calculates total number of gold and silver medals for each
team (country) before sorting the data. When using the provider, the user specifies a sequence of operations. Members
such as 'filter data' or 'group data' determine the operation type. Those are followed by operation parameters. For
example, when grouping data, we first select the key and then choose a number of aggregations to calculate over the
group. Unlike SQL, the provider only allows users to choose from pre-defined aggregations such as calculating the sum,

average or the number of distinct values. Section 4 shows that this is sufficient to construct a range of practical queries.
6

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364

Iterative Prompting: Programmatic Data Exploration for Non-programmers Woodstock *18, June 03-05, 2018, Woodstock, NY

Who does the Doctor fight most frequently? If Michael Phelps was a country...
Dalek Mexico
Master South Africa
Cyberman Michael Phelps
River Song Mixed Team
Silurian Ethiopia
0 10 20 30 40 0 10 20 30 40

(a) Exploring Dr Who graph database by composing type providers (b) Exploring Olympic medallists using tabular data type provider

Fig. 4. Charts produced by two case studies of using The Gamma.

Graph Database Type Provider. Our third type provider allows users to explore data from graph databases, which store
nodes representing entities and relationships between them. The following example explores a database of Doctor Who
characters and episodes. It retrieves all enemies of the Doctor that appear in the Day of the Moon episode:

1 drwho.Character.Doctor. 'ENEMY OF'.'[any]'."'APPEARED IN'.'Day of the Moon'

We start from the Doctor node and then follow two relationships. We use "ENEMY OF'.'[any]' to follow links to all
enemies of the Doctor and then specify 'APPEARED IN' to select only enemies that appear in a specific episode. The
result appears in in Figure 3b. The provider works with any graph database and generates members automatically, based
on the data. In the above, ENEMY OF and APPEARED IN are labels of relations and Doctor and Day of the Moon are labels
of nodes. The [any] member defines a placeholder that can be filled with any node with the specified relationships.
The results returned by the provider is a table of properties of all nodes along the specified path. As illustrated by an

example discussed in Section 4, the returned table can be further queried using the tabular data type provider.

4 CASE STUDIES

The Gamma aims to simplify programmatic data exploration while keeping enough expressive power to allow users
to create interesting data explorations. In this section, we consider two case studies that evaluate expressivity and
show what can be achieved using the simple iterative prompting principle?. We used The Gamma for larger projects

exploring the UK government expenditure, activities of a research institute adn Olympic medal winners>.

The Most Frequent Doctor Who Villains. Our first case study uses a graph database with data from the Dr Who series. It
lists Dr Who villains by the number of episodes in which they appear. This case study is interesting as it combines the
graph database provider for fetching the data with the tabular data provider for summarization:

1 drWho.Character.Doctor. 'ENEMY OF'.'[any]'."'APPEARED IN'.'[any]'.explore

2 .'group data'.'by Character name'.'count distinct Episode name'.then
3 .'sort data'.'by Episode name descending'.then
4 .paging.take(8).'get series'.'with key Character name'.'and value Episode name'

Line 1 use the graph provider to find all paths linking the Doctor with any character linked via ENEMY OF, followed by any
episode linked by APPEARED IN. This produces a table that can be analysed using the tabular data provider by selecting
explore. For each character (the villain) we count the number of distinct episodes. The result is shown in Figure 4a.
Despite performing a sophisticated data analysis that involves a graph database query, followed by an SQL-like data

aggregation, the code can be constructed using iterative prompting, with the exception of the numbers in paging.

2 Available (non-anonymously) at: http://gallery.thegamma.net/86/ and http://gallery.thegamma.net/87/, respectively.
3 Available (non-anonymously) at http://turing.thegamma.net and http://rio2016.thegamma.net

7

http://gallery.thegamma.net/86/
http://gallery.thegamma.net/87/
http://turing.thegamma.net
http://rio2016.thegamma.net

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

416

Woodstock ’18, June 03-05, 2018, Woodstock, NY Anon.

If Michael Phelps were a Country. Michael Phelps has won so many medals that media compared the number to
countries [36], often using a chart that shows a country league table including Michael Phelps as an additional data
point. We reproduce the chart, shown in Figure 4b, using the tabular data type provider:

1 let data = olympics.'group data'.'by Team'.'sum Gold'.then

2 .'sort data'.'by Gold descending'.then
3 .paging.skip(43).take(4).'get series'.'with key Team'.'and value Gold'

s let phelps = olympics.'filter data'.'Athlete is'.'Michael Phelps'.then
6 .'group data'.'by Athlete'.'sum Gold'.then

7 .'get series'.'with key Athlete'.'and value Gold'

8

9 charts.bar(data.append(phelps)).setColors(["#aec7e8", "#aec7e8","#1f77b4"])

The data analysis is done in three commands. The first counts gold medals by countries and uses paging to fetch 4
countries with suitable number of medals. In the second, we use the grouping operation to aggregate data for just a
single group. The two data series are then assigned to local variables (for readability) and passed to the chart.columns
function. The example illustrates a case when more advanced language features are necessary. The data exploration itself

has been completed via iterative prompting, but producing the final chart currently requires some manual programming.

5 USER STUDY

Using the characterization by Olsen [22], data exploration environments are complex systems that do not yield to simple
controlled experimentation. Consequently, our goals are modest and we do not attempt to quantitatively compare our
work with other tools. We merely aim to study whether The Gamma can be successfully used by non-programmers.
We conducted a study in which we gave volunteers one of four data exploration tasks and assessed whether they
were able to complete the task and how much assistance, if any, they needed. Some aspects of the study offer insights

into how users learn and understand The Gamma. We summarize those points, but do not claim conclusive results.

5.1 Study Design

We performed a between-subjects study to evaluate the first experience of using The Gamma. We recruited 13 participants
(5 male, 8 female) from a business team of a research institute working in non-technical roles (project management,
partnerships, communications). Only one participant (#12) had prior programming experience. We split participants into
4 groups and asked each group to complete a different task. We gave participants a brief overview of The Gamma (content
depended on the task). The participants worked for 30 minutes, after which we conducted a 30 minute semi-structured

group interview. We let participants work independently, but offered guidance if they got stuck. The four tasks were:

o Expenditure. Participants were given a demo using worldbank. They were asked to use the expenditure data source
to compare the UK government spending on “Public order and safety” and “Defence” in terms of GDP.

e Lords. Participants were given a demo using worldbank. They were asked to use the lords data source (a table
with House of Lords members expenses) to find a members representing London with the highest travel costs.

o Worldbank. Participants were given a minimal demo of iterative prompting and a code sample using worldbank.
They were asked to solve a different task using the worldbank data source.

o Olympics. Participants were given a basic demo using olympics. They were asked to solve a more complex
problem, involving grouping and aggregation, using the same data source.

8

417
418
419
420
421
422
423

424

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

452
453

455
456

458
459
460
461
462
463
464
465
466
467

468

Iterative Prompting: Programmatic Data Exploration for Non-programmers Woodstock *18, June 03-05, 2018, Woodstock, NY

Task Kind Done Notes
#1 expenditure cube o Obtained one of two data series
#2 expenditure cube o Explored furhter data series independently
#3 expenditure cube o Explored further data series independently
#4 expenditure cube 9 Completed following a hint to use another member
#5 expenditure cube o Explored further data series independently
#6 worldbank cube o Completed after a syntax hint about whitespace
#7 worldbank cube [Completed very quickly
#8 worldbank cube o Completed, but needed longer to find correct data
#9 lords table o Struggled with composition of operations
#10 lords table [Completed very quickly
#11 lords table 9 With a hint to avoid operations taking arguments
#12 olympics table o With a hint to avoid operations taking arguments
#13 olympics table 9 With hints about ‘then’ and operations taking arguments

Table 1. Overview of work completed by individual participants in the study.
The marks denote: @ = completed, @ = required some guidance, O = partially completed

Our primary hypothesis was that non-programmers will be able to use The Gamma to explore data. This was tested by
all four tasks for one of the supported data sources. Some aspects of the study shed light on questions concerning the
learnability of The Gamma. The tasks expenditure and lords test if knowledge can be transferred between different data
sources by using one sources in the introduction and another in the task. The task worldbank explores whether users
can learn from just code samples by providing only minimal upfront explanation. The task lords lets us study to what

extent participants form a correct mental model of the more complex query language used in the tabular data source.

5.2 Study Results

Table 1 summarizes the work done by the study participants. For each participant, we record the task, the kind of data
source used and the level of completion. For participants who needed assistance, the notes section details the help given.

The experience suggests a number of possible design improvements for The Gamma, which are discussed below.

Can non-programmers explore data with The Gamma? All participants were able to complete, at least partially, a non-
trivial data exploration task and only half of them required further guidance. Participants spent 10-25 minutes (average
17 minutes) working with The Gamma and 12 out of 13 completed the task; 6 required assistance, but 3 of those faced an
issue related to operations taking arguments (discussed later), which could be addressed in the introduction. A number
of participants also shared positive comments in the interviews. For example, participant #3 noted taht “this is actually
pretty simple to use. You think about the logic of what you’re actually asking and then you try to get it into the format you
can.” Participant #2 noted that The Gamma alleviated their unease about code: “For somebody who does not do coding or

programming, this does not feel that daunting. It’s not like you're giving me large screen full of code, which is reassuring.”

How users learn The Gamma? There is some evidence that knowledge can be transferred between different data sources.
Two of the tasks (expenditure and lords) used different data sources in the introduction and the task. Participants were
able to complete those, although lords has been challenging as it involves a complex data source. Participant #2 also
shared a positive comment: ‘T found it quite easy to translate what you showed us in the demo to the new dataset.”.
There is also some evidence that users can learn just from code samples. In the worldbank task, participants were
given only a minimal demo of how to invoke iterative prompting together with print-out of 2 code samples. All three
9

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499

501
502

504
505

507
508

510

511

513
514

516
517

519

520

Woodstock ’18, June 03-05, 2018, Woodstock, NY Anon.

participants were able to complete a related task using the same data source. When discussing suitable educational
materials for The Gamma, participant #7 also confirmed that having code is sufficient when they noted that “a video
would just be this [i.e. a code sample] anyway”. This supports our hypothesis that, once a user understands the iterative

prompting principle, they can learn how to use any specific data source just from code samples.

How users understand complex query languages? The tabular type provider has a rich structure and uses a member
named then to complete the specification of a current operation, for example when specifying a list of aggregation
operations. We asked participants who worked with tabular data (lords or olympics) about their understanding of the
then member. Two participants (#12 and #13) initially thought that then is used to split a command over multiple lines,
but rejected the idea after experimenting. Participant #12 then correctly concluded that it “allows us to chain together
the operations” of the query; after a hint, participant #13 reflected that “if I knew this from the start, it would [have been
easier].” In summary, iterative prompting allows users to start exploring new data sources, but the structures exposed

by more complex data sources have their own further design principles that the users need to understand.

What would make The Gamma easier to use? The type provider for tabular data generates operations that take arguments
such as take(5) in a number of places. When filtering data, it allows writing olympics. 'filter data'.'Year is greater
than' (2004). Those operations violate the iterative prompting principle as one cannot type °’ after 'Year is greater
than'. Three participants (#11, #12, #13) struggled to complete a task, because they initially attempted to use those
operations. This suggests that we should either avoid such operations, or hide them under an “advanced operations” tab.

The Gamma uses an ordinary text editor. This has both benefits and drawbacks compared to structured editors [32, 38,
54]. Most participants had no difficulty navigating around code, making edits or deleting fragments, which is arguably
harder in a structured editor. Some participants used text editor effectively, e.g. participant #5, who used copy-and-paste
to fetch the same data for multiple countries. However, we also observed two issues. Participant #2 struggled with

indentation and participant #6 had a syntax error in an unrelated command, which prevents charts from rendering.

6 DISCUSSION

The Gamma examines an unexplored point in the design space of tools for data exploration. It is a text-based programming
environment for non-programmers. Its design has been motivated by a curiosity as to whether iterative prompting can
make text-based programming with data accessible to non-experts. In this section, we theoretically assess the resulting

design, making use of criteria for judging whether a system advances the state of the art proposed by Olsen [22].

Learning without experts. The Gamma allows non-programmers to produce transparent and reproducible scripts
that explore data from a wide range of sources. It allows new participants to benefit from the capabilities offered
by programmatic data exploration, satisfying the exmpowering new participants criteria proposed by Olsen [22]. To
empower new participants, our design aims to make The Gamma suitable for users who cannot dedicate significant
amount of time to learning it in advance and may not have access to experts. This is supported in two ways.

First, the iterative prompting principle makes it easy for users to start experimenting. The user needs to select an
initial data source and then repeatedly choose an item from a list of choices. Iterative prompting is easier to use than
e.g. a command line or a REPL (read-eval-print-loop), because it follows the recognition over recall usability heuristic.
The users are not required to recall and type a command. They merely need to select one from a list of options. Second,
the resulting source code serves as a trace of how the analysis was created. It provides the user with all information
that they need to recreate the program, not just by copying it, but also by using iterative prompting. Such design has

10

521
522
523
524
525
526
527
528

529

546

565
566
567
568
569
570
571
572

Iterative Prompting: Programmatic Data Exploration for Non-programmers Woodstock *18, June 03-05, 2018, Woodstock, NY

been termed design for percolation by Sarkar [46], who studies how Excel users learn. He points out that users learn
new features when the usage of a feature is apparent in a spreadsheet. For example, users can learn different functions
in formulas, because those are visible in the cell. Learning how to use a wizard for creating charts is hard because the

operation leaves no full trace in the spreadsheet. Design for percolation thus supports learnability.

Lowering barriers to entry. Data exploration has a certain irreducible essential complexity. To make a system usable,
this complexity needs to be carefully stratified. The Gamma uses a two level structure. The first level consists of the
language itself with the iterative prompting mechanism. The second level consists of the individual members generated
by a type provider. This can be seen as a domain specific language, embedded in The Gamma language. Although
the complexity of individual domain specific languages differs, the user can always start exploring through iterative
prompting, even when faced with an unfamiliar data source. In tackling complexity, The Gamma satisfies two criteria
proposed by Olsen [22]. The Gamma satisfies the generality criteria in that it can be used uniformly with a wide range
of data sources. It also satisfies the expressive leverage criteria in that it factors out common aspects of different data

queries into the core language (first level) and leaves the specifics of each data source to the second level.

Correctness and completeness. An important characteristic of our design is that the iterative prompting mechanism
is both correct and complete with respect to possible data exploration scripts. The two properties are a consequence
of the fact that a program is a formed by a chain of operations and that the auto-completion leverages a static type
system. When invoking iterative prompting at the end of a well-typed script, a selected option, which is a valid object
member, is added to the end of the script, resulting in another well-typed script. This distinguishes our system from
auto-completion based on machine learning, which may offer members not valid in a given context. Auto-completion
lists offered via iterative prompting contain all available members and so the user can construct all possible scripts. Two

exceptions to completeness in our current design are the let binding and specifying numerical parameters as in take(5).

Importance of applications. Although The Gamma targets a broad audience of non-programmers, some of our work has
been particularly motivated by the use of data in journalism. It has the potential to enable journalists to make factual
claims backed by data more commonplace and enable wider audience to engage with such claims. As such The Gamma
satisfies the importance criteria proposed by Olsen [22]. Although The Gamma is open-source, it has not been deployed
in a newsroom so far. This would lead to valuable insights, but it requires finding a suitable fortuitous opportunity. The
potential is indicated by a comment from a former journalist who participated in our study (#13): “There’s a lot of effort

going into data journalism that programming could make much quicker, (...) like this would really simplify things.”

7 CONCLUSIONS

Exploring data in a programming environment that makes the full source code available increases transparency,
reproducibility and empowers users to ask critical questions about the data analysis. But can we make those features
accessible to non-programmers? In this paper, we presented The Gamma, a simple data exploration environment for
non-programmers that answers this question in the affirmative.

The Gamma is based on a single interaction principle, iterative prompting. It can be used to complete a range of
data exploration tasks using tabular data, data cubes and graph databases. The design lowers the barrier to entry
for programmatic data exploration and makes it easy to learn the system independently through examples and by
experimentation. We implemented The Gamma, make it available as open source and conducted a user study, which

lets us conclude that The Gamma can be used by non-programmers to construct non-trivial data exploration scripts.
11

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

624

Woodstock ’18, June 03-05, 2018, Woodstock, NY Anon.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71

(18]
[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

Azza Abouzied, Joseph M. Hellerstein, and Avi Silberschatz. 2012. DataPlay: interactive tweaking and example-driven correction of graphical
database queries. In The 25th Annual ACM Symposium on User Interface Software and Technology, UIST ’12. ACM, 207-218.

Eytan Adar. 2006. GUESS: a language and interface for graph exploration. In Proceedings of the 2006 Conference on Human Factors in Computing
Systems, CHI 2006. ACM, 791-800. https://doi.org/10.1145/1124772.1124889

Olivier Bau and Wendy E. Mackay. 2008. OctoPocus: a dynamic guide for learning gesture-based command sets. In Proceedings of the 21st Annual
ACM Symposium on User Interface Software and Technology. ACM, 37-46. https://doi.org/10.1145/1449715.1449724

Ivan Bretan, Robert Nilsson, and Kent Saxin Hammarstrom. 1994. V: a visual query language for a multimodal environment. In Conference on
Human Factors in Computing Systems, CHI °94, Catherine Plaisant (Ed.). ACM, 145-147. https://doi.org/10.1145/259963.260174

Marcel Bruch, Martin Monperrus, and Mira Mezini. 2009. Learning from examples to improve code completion systems. In Proceedings of the 7th
Jjoint meeting of the European Software Engineering Conference and the ACM International Symposium on Foundations of Software Engineering. ACM.
James Cheney, Stephen Chong, Nate Foster, Margo L. Seltzer, and Stijn Vansummeren. 2009. Provenance: a future history. In Companion to the 24th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA "09. ACM, 957-964.

Matthew Conlen and Jeffrey Heer. 2018. Idyll: A Markup Language for Authoring and Publishing Interactive Articles on the Web. In The 31st Annual
ACM Symposium on User Interface Software and Technology, UIST °18. ACM, 977-989. https://doi.org/10.1145/3242587.3242600

Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. 2015. Vizdom: Interactive Analytics Through Pen and Touch.
Proceedings of the VLDB Endownment 8, 12 (Aug. 2015), 2024-2027. https://doi.org/10.14778/2824032.2824127

William Davies. 2017. How statistics lost their power - and why we should fear what comes next. The Guardian. Retrieved March 6, 2020 from
https://www.theguardian.com/politics/2017/jan/19/crisis- of-statistics-big-data-democracy.

Mark Derthick, John Kolojejchick, and Steven F. Roth. 1997. An Interactive Visual Query Environment for Exploring Data. In Proceedings of the 10th
Annual ACM Symposium on User Interface Software and Technology, UIST *97. ACM, 189-198. https://doi.org/10.1145/263407.263545

Jonathan Edwards. 2005. Subtext: uncovering the simplicity of programming. ACM SIGPLAN Notices 40, 10 (2005), 505-518.

Jonathan Edwards. 2018. Direct Programming. https://vimeo.com/274771188

Ethan Fast, Binbin Chen, Julia Mendelsohn, Jonathan Bassen, and Michael S. Bernstein. 2018. Iris: A Conversational Agent for Complex Tasks. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada, April 21-26, 2018. ACM, 473.
Chris Granger. 2012. LightTable: A new IDE concept. http://www.chris-granger.com/2012/04/12/light-table-a-new-ide-concept/

Jonathan Gray, Lucy Chambers, and Liliana Bounegru. 2012. The data journalism handbook: how journalists can use data to improve the news. O’Reilly.
Sumit Gulwani, William R Harris, and Rishabh Singh. 2012. Spreadsheet data manipulation using examples. Commun. ACM 55, 8 (2012), 97-105.
Philip J Guo, Sean Kandel, Joseph M Hellerstein, and Jeffrey Heer. 2011. Proactive wrangling: Mixed-initiative end-user programming of data
transformation scripts. In Proceedings of the 24th annual ACM symposium on User interface software and technology. 65-74.

Jeffrey Heer, Joseph M Hellerstein, and Sean Kandel. 2015. Predictive Interaction for Data Transformation. In CIDR.

Joseph M. Hellerstein, Ron Avnur, Andy Chou, Christian Hidber, Chris Olston, Vijayshankar Raman, Tali Roth, and Peter J. Haas. 1999. Interactive
data analysis: the Control project. Computer 32, 8 (8 1999), 51-59. https://doi.org/10.1109/2.781635

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-Directed Programming for SVG. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology, UIST "19. ACM, 281-292. https://doi.org/10.1145/3332165.3347925

Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manipulation interfaces. Human—Computer Interaction 1, 4 (1985), 311-338.
Dan R. Olsen Jr. 2007. Evaluating user interface systems research. In Proceedings of the 20th Annual ACM Symposium on User Interface Software and
Technology, UIST 07. ACM, 251-258. https://doi.org/10.1145/1294211.1294256

Eunice Jun, Maureen Daum, Jared Roesch, Sarah Chasins, Emery Berger, René Just, and Katharina Reinecke. 2019. Tea: A High-level Language and
Runtime System for Automating Statistical Analysis. In Proceedings of the 32nd Annual ACM UIST Symposium 2019. ACM, 591-603.

G. E. Kaiser and P. H. Feiler. 1987. An Architecture for Intelligent Assistance in Software Development. In Proceedings of the 9th International
Conference on Software Engineering (Monterey, California, USA) (ICSE ’87). IEEE Computer Society Press, Washington, DC, USA, 180-188.

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wrangler: Interactive Visual Specification of Data Transformation Scripts.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 3363-3372.

Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting Exploratory Programming by Data Scientists. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA). ACM, 1265-1276.

Mary Beth Kery and Brad A Myers. 2017. Exploring exploratory programming. In 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), Austin Henley, Peter Rogers, and Anita Sarma (Eds.). IEEE, 25-29. https://doi.org/10.1109/VLHCC.2017.8103446

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick,
Jason Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for reproducible computational workflows. In 20th International
Conference on Electronic Publishing, Fernando Loizides and Birgit Schmidt (Eds.). 87-90. https://doi.org/10.3233/978-1-61499-649-1-87

Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2018. The Road to Live Programming: Insights from the Practice. In Proceedings of the 40th
International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 1090-1101.

Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data extraction by examples. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 542-553.

https://doi.org/10.1145/1124772.1124889
https://doi.org/10.1145/1449715.1449724
https://doi.org/10.1145/259963.260174
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.14778/2824032.2824127
https://www.theguardian.com/politics/2017/jan/19/crisis-of-statistics-big-data-democracy
https://doi.org/10.1145/263407.263545
https://vimeo.com/274771188
http://www.chris-granger.com/2012/04/12/light-table-a-new-ide-concept/
https://doi.org/10.1109/2.781635
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.3233/978-1-61499-649-1-87

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

651

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

Iterative Prompting: Programmatic Data Exploration for Non-programmers Woodstock *18, June 03-05, 2018, Woodstock, NY

[42]
[43]

[44]

[45]

[46]

[47
[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56
[57]

[58]

[59]

Henry Lieberman. 2001. Your wish is my command: Programming by example. Morgan Kaufmann.

Eyal Lotem and Yair Chuchem. 2018. Lamdu Project. https://github.com/lamdu/lamdu

Microsoft Corporation. 2020. Microsoft Power BL. https://powerbi.microsoft.com/en-us/

Microsoft Corporation. 2021. Monaco Editor. https://microsoft.github.io/monaco-editor/

Brad A. Myers, A. J. Ko, and Margaret M. Burnett. 2006. Invited research overview: end-user programming. In Extended Abstracts Proceedings of the
2006 Conference on Human Factors in Computing Systems, CHI "06. ACM, 75-80. https://doi.org/10.1145/1125451.1125472

Greg Myre. 2021. If Michael Phelps Were A Country, Where Would His Gold Medal Tally Rank? https://www.npr.org/sections/thetorch/2016/08/14/
489832779/

Bonnie A Nardi. 1993. A small matter of programming: perspectives on end user computing. MIT press.

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live Functional Programming with Typed Holes. PACMPL 3, POPL (2019).
Tomas Petricek. 2017. Data exploration through dot-driven development. In 31st European Conference on Object-Oriented Programming.

Tomas Petricek, James Geddes, and Charles A. Sutton. 2018. Wrattler: Reproducible, live and polyglot notebooks. In 10th USENLX Workshop on the
Theory and Practice of Provenance, TaPP 2018, London, UK, July 11-12, 2018., Melanie Herschel (Ed.).

Tomas Petricek, Gustavo Guerra, and Don Syme. 2016. Types from Data: Making Structured Data First-class Citizens in F#. In Proceedings of Conference
on Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI ’16). ACM, 477-490. https://doi.org/10.1145/2908080.2908115
Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s wheel: An interactive data cleaning system. In VLDB, Vol. 1. 381-390.

Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2014. Code completion with statistical language models. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14. ACM, 419-428. https://doi.org/10.1145/2594291.2594321

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape. 2019. Exploratory and Live, Programming and Coding. The Art,
Science, and Engineering of Programming 3, 1 (2019). https://doi.org/10.22152/programming-journal.org/2019/3/1

Xin Rong, Shiyan Yan, Stephen Oney, Mira Dontcheva, and Eytan Adar. 2016. CodeMend: Assisting Interactive Programming with Bimodal
Embedding. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16. ACM, 247-258.

Advait Sarkar and Andrew Donald Gordon. 2018. How do people learn to use spreadsheets? (Work in progress). In Proceedings of the 29th Annual
Conference of the Psychology of Programming Interest Group (PPIG 2018). 28-35.

Arvind Satyanarayan and Jeffrey Heer. 2014. Lyra: An interactive visualization design environment. In Computer Graphics Forum, Vol. 33. 351-360.
Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. 2016. Vega-lite: A grammar of interactive graphics. IEEE
transactions on visualization and computer graphics 23, 1 (2016), 341-350.

Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. 2014. Declarative interaction design for data visualization. In The 27th Annual ACM
Symposium on User Interface Software and Technology, UIST '14. ACM, 669-678. https://doi.org/10.1145/2642918.2647360

Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and Angel X. Chang. 2016. Eviza: A Natural Language Interface for Visual Analysis. In
Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST °16. ACM, 365-377. https://doi.org/10.1145/2984511.2984588
Ben Shneiderman, Christopher Williamson, and Christopher Ahlberg. 1992. Dynamic Queries: Database Searching by Direct Manipulation. In
Conference on Human Factors in Computing Systems, CHI *92. ACM, 669-670. https://doi.org/10.1145/142750.143082

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia: Al-assisted Code Completion System. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD °19. ACM, 2727-2735. https://doi.org/10.1145/3292500.3330699
Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and Tomas Petricek. 2013. Themes in Information-rich Functional Programming for
Internet-scale Data Sources. In Proceedings of Workshop on Data Driven Functional Programming. ACM, 1-4. https://doi.org/10.1145/2429376.2429378
Gerd Szwillus and Lisa Neal. 1996. Structure-based editors and environments. Academic Press, Inc.

UK Parliment. 2021. Members’ allowances and expenses. https://www.parliament.uk/mps-lords-and-offices/members-allowances/house-of-
lords/holallowances/

Bret Victor. 2012. Inventing on Principle. http://worrydream.com/InventingOnPrinciple

David J. Ward, Alan F. Blackwell, and David J. C. MacKay. 2000. Dasher - a data entry interface using continuous gestures and language models. In
Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology, UIST "00. ACM, 129-137.

Richard Wesley, Matthew Eldridge, and Pawel T. Terlecki. 2011. An Analytic Data Engine for Visualization in Tableau. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data. ACM, 1185-1194. https://doi.org/10.1145/1989323.1989449

Xiong Zhang and Philip J. Guo. 2017. DS.js: Turn Any Webpage into an Example-Centric Live Programming Environment for Learning Data Science.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST °17. ACM, 691-702.

https://github.com/lamdu/lamdu
https://powerbi.microsoft.com/en-us/
https://microsoft.github.io/monaco-editor/
https://doi.org/10.1145/1125451.1125472
https://www.npr.org/sections/thetorch/2016/08/14/489832779/
https://www.npr.org/sections/thetorch/2016/08/14/489832779/
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.1145/142750.143082
https://doi.org/10.1145/3292500.3330699
https://doi.org/10.1145/2429376.2429378
https://www.parliament.uk/mps-lords-and-offices/members-allowances/house-of-lords/holallowances/
https://www.parliament.uk/mps-lords-and-offices/members-allowances/house-of-lords/holallowances/
http://worrydream.com/InventingOnPrinciple
https://doi.org/10.1145/1989323.1989449

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Querying Travel Expenses
	3.2 The Gamma Programming Environment
	3.3 Type Providers for Data Querying

	4 Case Studies
	5 User Study
	5.1 Study Design
	5.2 Study Results

	6 Discussion
	7 Conclusions
	References

