
Encoding monadic computations
using C# 2.0 iterators

Tomáš Petříček, Matemtaicko-fyzikální fakulta UK

http://tomasp.net/blog
tomas@tomasp.net

The key theme of the talk

Functional languages have interesting solutions
to many real-world problems…

» Working with state, Computations that can fail, …

» Asynchronous programming [Syme et al. 2008]

» Concurrency using transactions [Harris et al. 2005]

Unfortunately, only a few companies really use
functional languages in the real-world.

We show that we can express the concept that
makes this possible using just C# 2.0

Agenda

Introduction
Motivation – two frequent problems

Background – monadic computations in F#

Encoding monadic computations in C#
Working with null values

Asynchronous programming

Conclusions
Future work – other interesting applications

Working with ‘null’ values

We need to check for null after every call…

static Product GetProduct() {
 Console.Write("Enter ID:");
 var id = ReadLineOrNull();
 if (id != null) {
 Console.WriteLine("- got non-null id");
 var prod = Products.FirstOrDefault(p => p.ID == id);
 if (prod != null) {
 Console.WriteLine("- found product");
 return prod;
 }
 }
 return null;
}

Non-standard aspect
of the computation

… repeated!

Asynchronous programming

Running operations, which can take a long time
» Communication with the web, performing I/O…

» The application should not block the thread!
When I click on Xyz, it’s time for a coffee…

Can we create new thread for each operation?
» The thread is not doing anything most of the time!

» Not a good idea - threads are expensive (.NET/Java)

The idiomatic solution is to use callbacks
» Callback gets called when the operation completes

» No threads are blocked in the meantime

Asynchronous programming

We specify the rest of the operation as a callback

This becomes really, really, really difficult!

» No high-level control flow constructs (e.g. while)

static void DownloadAsync(string url) {

 var req = HttpWebRequest.Create(url);

 req.BeginGetResponse(ar => {

 var response = req.EndGetResponse(ar);

 Stream resp = response.GetResponseStream();

 byte[] buffer = new byte[8192];

 resp.BeginRead(buffer, 0, 8192, ar2 => {

 int read = resp.EndRead(ar2);

 Console.WriteLine("got first {0} bytes", read);

 }, null);

 }, null);

}

Non-standard aspect
of the computation

… again!

How would I like to write this?

Mark code as nullable or asynchronous…

» Define these non-standard aspects as libraries

» Compiler inserts non-standard behavior automatically

Nothing new in Haskell or F# [Wadler 1990]

» Monad – defines the non-standard behavior

» Abstract algebraic structure with two operations

» Supported by Haskell/F# language syntax

How monads work in F#?

Adding non-standard behavior to existing code:

Meaning is defined by the computation builder

» let! is language syntax for using monads

let GetProduct() =
 Console.Write("Enter ID:")
 let id = ReadLineOrNull()
 Console.WriteLine("- got non-null id")
 let prod = Products.FirstOrDefault(fun p -> p.ID == id)
 Console.WriteLine("- found product")
 prod

Computation builder

let GetProduct() = nullable {
 Console.Write("Enter ID:")
 let! id = ReadLineOrNull()
 Console.WriteLine("- got non-null id")
 let! prod = Products.FirstOrDefault(fun p -> p.ID == id)
 Console.WriteLine("- found product")
 return prod }

Non-standard operation

Agenda

Introduction
Motivation – two frequent problems

Background – monadic computations in F#

Encoding monadic computations in C#
Working with null values

Asynchronous programming

Conclusions
Future work – other interesting applications

How to do the same thing in C#?

yield return in C# 2.0 creates a “hole” in the code

» Used for on-demand enumeration of elements

» We can later specify what happens at that point

static IEnumerator<INull> GetProduct() {
 Console.Write("Enter ID:");
 var id = ReadLineOrNull().AsStep();
 yield return id;
 Console.WriteLine("- got non-null id");

 var prod = Products.FirstOrDefault
 (p => p.ID == id.Value).AsStep();
 yield return prod;
 Console.WriteLine("- found product");

 yield return NullResult.Create(prod.Value);
}

Specifies the
non-standard aspect

Non-standard operation

…again!

What have we achieved so far?
Avoid unnecessary repetition of code

» Non-standard aspect is hidden in a library

No need to nest the operations

» Program looks like usual sequential code

We can use higher-level language constructs

» For example loops (e.g. while), exceptions, etc…

operation
block {
 operation
 block {
 operation
 }
}

operation
operation
operation

Agenda

Introduction
Motivation – two frequent problems

Background – monadic computations in F#

Encoding monadic computations in C#
Working with null values

Asynchronous programming

Conclusions
Future work – other interesting applications

Asynchronous programming today

System notifies the caller
when operation completes

Hand-written state machine

» Difficult to write & read

» Example – implements
simple loop (35 lines)

Used less often than it should!

» … and applications hang

class ReadToEndState {
 MemoryStream ms = new MemoryStream();
 Stream stream;
 Action<string> k;

 // Initialize state machine for downloading stream
 public ReadToEndState
 (Stream stream, Action<string> k) {
 this.stream = stream;
 this.k = k;
 }
 internal void Step() {
 byte[] buffer = new byte[1024];
 // Read 1kb of data asynchronously
 stream.BeginRead(buffer, 0, 1024, ar => {
 var count = stream.EndRead(ar);
 ms.Write(buffer, 0, count);
 if (count == 0) {
 ms.Seek(0, SeekOrigin.Begin);
 string s = new StreamReader(ms).ReadToEnd();
 // Return the parsed string via continuation
 k(s);
 } else {
 // Run the state-machine step repeatedly
 Step();
 }
 }, null);
 }
}

static void ReadToEndAsync
 (this Stream stream, Action<string> k) {
 // Construct state-machine and start the first step
 new ReadToEndState(stream, k).Step();
}

We can do better than that!

Why is this code sample better?

» Total 14 lines of code – less than half of the original

» Preserves the logic of the algorithm

» We describe a systematic encoding

var ms = new MemoryStream();
int read = -1;
while (read != 0) {
 byte[] buffer = new byte[1024];
 var count = stream.ReadAsync(buffer, 0, 1024).AsStep();
 yield return count;
 ms.Write(buffer, 0, count.Value);
 read = count.Value;
}
ms.Seek(0, SeekOrigin.Begin);
string s = new StreamReader(ms).ReadToEnd();
yield return AsyncResult.Create(s);

Waits for completion
of the operation

Inside ‘while’ loop!

Agenda

Introduction
Motivation – two frequent problems

Background – monadic computations in F#

Encoding monadic computations in C#
Working with null values

Asynchronous programming

Conclusions
Future work – other interesting applications

Future work

Asynchronous and multi-core are important today!

Asynchronous programming
» Integration with more real-world libraries

Software transactional memory (STM)
» Concurrent programming without locks

» Based on transactions from database world

Non-standard computation for STM
» Transaction log keeps track of state changes

» Implements transaction manager and scheduler

Time for questions & suggestions!

» We can use advanced functional ideas in C# 2.0

» It makes asynchronous programming a lot easier

» There are potentially many useful applications

Paper and supplementary code:

» http://tomasp.net/academic/monads-iterators.aspx

» Feel free to ask: tomas@tomasp.net

Backup slides

How to do the same thing in C#?

Insert non-standard behavior at specified points

» We need to fill-in the holes in the code

» C# 2.0 iterators give us a way to create those holes:

» Transforms the code into a state machine

» We can run parts of the code step-by-step

static IEnumerator<int> GetNumbers() {
 int i = 0;
 while (true) {
 yield return i;
 i = i + 1;
 }
}

