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Abstract. Many programming problems can be easily solved 

if we express them as computations with some non-standard 

aspect. This is a very important problem, because today we’re 

struggling for example to efficiently program multi-core pro-

cessors and to write asynchronous code. Unfortunately main-

stream languages such as C# don’t support any direct way for 

encoding unrestricted non-standard computations. 

  In languages like Haskell and F#, this can be done using 

monads with syntactic extensions they provide and it has 

been successfully applied to a wide range of real-world prob-

lems. In this paper, we present a general way for encoding 

monadic computations in the C# 2.0 language with a conve-

nient syntax using a specific language feature called itera-

tors. 

  This gives us a way to use well-known non-standard 

computations enabling easy asynchronous programming or 

for example the use of software transactional memory in 

plain C#. Moreover, it also opens monads in general to a 

wider audience which can help in the search for other useful 

and previously unknown kinds of computations. 

 

1. Introduction 
In functional programming languages such as Haskell and 

F#, monadic computations are used to solve wide range of 

problems. In Haskell (Hudak, et al., 1992), they are 

frequently used to deal with state or I/O, which is 

otherwise difficult in a purely functional language. F# uses 

monadic computations to add non-standard aspects such as 

asynchronous evaluation, laziness or implicit error han-

dling to an existing piece of code written in F#. In this 

article, we’ll prefer the F# point of view, meaning that we 

want to be able to adjust C# code to execute differently, 

using additional aspects provided by the monadic 

computation.  

The primary motivation for this work is that monadic 

computations are very powerful technique for dealing with 

many modern computing challenges caused by the rise of 

multi-core processors and distributed web based applica-

tions. The standard F# library uses monadic computations 

to implement asynchronous workflows (Syme, Granicz, & 

Cisternino, 2008) which make it easy to write communi-

cation with the web and other I/O operations in the natural 

sequential style, but without blocking threads while 

waiting. In Haskell, monadic computations are used for 

example to implement software transactional memory, 

which is a concurrent programming mechanism based on 

shared memory, which avoids the need for explicit locking 

(Harris, Marlow, Peyton-Jones, & Herlihy, 2005).  

The motivation for this article is that we want to be 

able to use the techniques just described in a main-stream 

and widely used C# language. The main contributions of 

this paper are following: 

• As far as we’re aware, we show for the first time that 

monadic computations can be encoded in C# in a 

syntactically convenient way without placing any 

restrictions on the C# statements that can be used 

inside the computation. This can be done purely as a 

library without changing the language using widely 

adopted C# 2.0 features (Section 3). 

• We use the presented technique to implement a library 

that makes it easier to write scalable multi-threaded 

applications that perform long running I/O operations. 

We demonstrate it using several case study examples 

(Section 4). 

• Finally, we describe a method for systematical enco-

ding of arbitrary monadic computation in C# (Section 

5). This technique can be used for implementing other 

useful computations such as software transactional 

memory and others. 

There are several related projects, mostly concerned with 

asynchronous programming (Section 6), but our aim is 

wider and focuses on monadic computations in general. 

However, asynchronous computations can nicely demon-

strate the problem. 

1.1 Asynchronous computations in C# today 

Since we’re using asynchronous computations as the 

primary real-world motivation for this paper, we should 

first clarify what problem we want to solve is. Let’s start by 

looking at naïve synchronous code that downloads the first 

kilobyte of web site content:  

1: var req = HttpWebRequest.Create(url); 

2: var rsp = req.GetResponse(); 

3: var strm = rsp.GetResponseStream(); 

4: var read = strm.Read(buffer, 0, 1024); 

On lines 2 and 4 we’re performing I/O operations that can 

take a long time, but that aren’t CPU bounded. When 

running the operation, the executing thread will be blocked, 

but it cannot perform any other work in the meantime. If 

we wanted to run hundreds of downloads in parallel, we 

could create hundreds of threads, but that introduces 

significant overheads (such as allocation of kernel objects 

and thread stack) and also increases context switching. The 

right way to solve the problem on the .NET platform is to 

use the Asynchronous Programming Model (APM): 

1: var req = HttpWebRequest.Create(url); 

2: req.BeginGetResponse(a1 => { 

3:   var rsp = req.EndGetResponse(a1); 

4:   var strm = rsp.GetResponseStream(); 

5:   strm.BeginRead(buffer, 0, 1024, a2 => { 

6:     int read = strm.EndRead(a2); 

7:     // ... 

8:   }, null); 

9: }, null); 



In this context “asynchronous” means that the program 

invokes start of the operation, registers a callback, transfers 

the control to the system and releases the current thread, 

so that it can perform other work. In the snippet above, 

we’re starting two operations on lines 2 and 5 and we’re 

using the C# 3.0 lambda function notation “=>” to specify 

the callback function that will be eventually invoked.  

The code above is far less readable than the first 

synchronous version, but that’s not the only problem. To 

download the whole page, we’d need to call the BeginRead 

method in a loop until we fetched the whole page, but that’s 

ridiculously difficult, because we can’t use any higher level 

constructs such as the while loop when writing code using 

nested callbacks. For every simple problem, the 

programmer has to explicitly write a state machine using 

mutable state. 

It is worth pointing out that using asynchronous 

model does not increase the CPU parallelism in the 

application, but it still significantly improves the perfor-

mance and makes the application more scalable because it 

considerably reduces the number of (expensive) threads 

the application creates. 

2. Background 
To write non-blocking asynchronous code, we can use 

continuation passing style where the next piece of code to 

execute after an operation completes is given as a function 

as the last argument to the operation. In the snippet above 

we’ve written the code in this style explicitly, but as we’ve 

seen this isn’t a satisfying solution. 

2.1 F# Asynchronous Workflows 

In F#, we can use asynchronous workflows, which is one 

particularly useful implementation of monadic computa-

tions that is already defined in F# libraries. This feature 
hasn’t been described in the literature before, so we quickly 

review it here. 

When we wrap code inside an async block, the 

compiler automatically uses continuation passing style for 

specially marked operations. Moreover, we can use all 

standard language constructs inside the block including for 

example the while loop: 

 1: let downloadUrl(url:string) = async { 

 2:   let req = HttpWebRequest.Create(url) 

 3:   let! rsp = req.AsyncGetResponse() 

 4:   let strm = rsp.GetResponseStream() 

 5:   let buffer = Array.zeroCreate(8192) 

 6:   let state = ref 1 

 7:   while !state > 0 do 

 8:     let! read = strm.AsyncRead(buffer, 0, 8192) 

 9:     Console.WriteLine("got {0}b", read); 

10:     state := read } 

This function downloads the entire content of a web page in 

a while loop. Although it doesn’t use the data in any way 

and only reports the progress, it nicely demonstrates the 

principle. Its body is an async block, which specifies that 

the function doesn’t actually run the code, but instead 

returns a value representing computation that can be 

executed later.  

In the places where the original C# code executed 

asynchronous operations, we’re now using the let! 

Keyword (lines 3 and 8), which represents monadic value 

binding. This means that instead of simply assigning value 

to a symbol, the computation invokes Bind operation that is 

provided by the async value (called computation builder) 

giving it the rest of the code wrapped inside a function as an 

argument. The Bind member specifies non-standard 

behavior of the operation. In this case the behavior is that 

the operation is executed asynchronously. 

The computation builder (in this case async) also 

defines the meaning of other primitive constructs such as 

the while loop or returning the result from a function. 

These primitive operations are exposed as standard 

methods with well-defined type signatures: 

Bind   : Async<α> * (α -> Async<β>) -> Async<β> 

Return : α -> Async<α> 

While  : (unti -> bool) * Async<unit> -> Async<unit>   

The first two functions are standard operations that define 

the abstract monadic type as first described in (Wadler, 

1990). These operations are also called bind and unit. The 

Bind member takes an existing computation and a function 

that specifies how to produce subsequent computation 

when the first one completes and composes these into a 

single one. The Return member builds a computation that 

returns the given value. The additional While member takes 

a predicate and a computation and returns result that 

executes the computation repeatedly while the predicate 

holds.  

When compiling code that uses computation expres-

sions, the F# compiler syntactically transforms the code in-

to code composed from the calls to these primitive opera-

tions. The translated version of the previous example can 

be found in the online supplementary material for the 

article1.  

2.2 C# Iterators 

One of the non-standard computations that is very often 

used in practice is a computation that generates a sequence 

of values instead of yielding just a single result. This aspect 

is directly implemented by C# iterators (ECMA 

International, 2006), but without any aim to be more 

generally useful. In this article, we show that it can be used 

in a more general fashion. However, we start by briefly 

introducing iterators. The following example uses iterators 

to generate a sequence of all integers: 

1: IEnumerator<int> GetNumbers() { 

2:   int num = 0; 

3:   while (true) { 

4:     Console.WriteLine("generating {0}", num); 

5:     yield return num++; 

6:   } 

7: } 

The code looks just like ordinary method with the exception 

that it uses the yield return keyword to generate elements 

a sequence. The while loop may look like an infinite loop, 

but due to the way iterators work, the code is actually 

perfectly valid and useful. The compiler translates the code 

into a state machine that generates the elements of the 

sequence lazily one by one. The returned object of type 

IEnumerator<int> can be used in the following way: 

1: var en = GetNumbers(); 

2: en.MoveNext(); 

3: Console.WriteLine("got {0}", en.Current); 

4: en.MoveNext(); 

5: Console.WriteLine("got {0}", en.Current); 

The call to the GetNumbers method (line 1) returns an object 

that represents the state machine generated by the 

compiler. The variables used inside the method are 

transformed into a local state of that object. Each call to the 

                                                                        
1 Available at: http://tomasp.net/academic/monads-iterators.aspx  



MoveNext method (lines 2 and 4) runs one step of the state 

machine until it reaches the next yield return statement 

(line 5 in the earlier snippet) updating the state of the state 

machine. This also executes all side-effects of the iterator 

such as printing to the console, so the program above 

shows the “generating” message directly followed by “got” 

for numbers 0 and 1. There are two key aspects of iterators 

that are important for this paper: 

• The iterator body can contain usual control structures 

such as loops or exception handlers and the compiler 

automatically turns them into a state machine. 

• The state machine can be executed only to a certain 

point (explicitly specified by the user using yield 

return), then paused and later resumed again by 

invoking the MoveNext method again.  

In many ways this resembles the continuation passing style 

from functional languages, which is essential for monadic 

computations and F# asynchronous workflows. 

3. Monadic computations in C# 
Now that we’ve introduced asynchronous workflows in F# 

(as an example of monadic computations) and C# iterators, 

we can ask ourselves the question whether iterators could 

be used for encoding other non-standard computations 

then code that generates a sequence. 

The key idea of this article is that it is indeed possible 

to do that and that we can write standard C# library to 

support any monadic computation. In this section, we’ll 

briefly introduce how the library looks using the simplest 

possible example and in section 5 we’ll in detail explain 

how the encoding works. 

3.1 Using option computations 

As the first example, we’ll use computations that produce 

value of type Option<α>2, which can either contain no value 

or a value of type α. The type can be declared using F#/ML 

notation like this: 

type Option<α> = Some of α | None 

Code that is composed from simple computations that 

return this type can return None value at any point, which 

bypasses the entire rest of the computation. In practice this 

is useful for example when performing series of data lookup 

that may not contain the value we’re looking for. The usual 

way for writing the code would check whether the returned 

value is None after performing every single step of the 

computation, which significantly complicates the code3.  

To show how the code looks when we apply our 

encoding of the option computation using iterators, we’ll 

use method of the following signature: 

ParseInt : string -> Option<int> 

The method returns Some(n) when the parameter is a valid 

number and otherwise it returns None. Now we can write 

code that reads a string, tries to parse it and returns 10 

times the number if it succeeds. The result of the 

computation will again be the option type. 

1: IEnumerator<IOption> ReadInt() { 

2:   Console.Write("Enter a number: "); 

3:   var optNum = ParseInt(Console.ReadLine()); 

                                                                        
2 In Haskell, this type is called Maybe and the corresponding computation is 

known as Maybe monad. 
3 We could as well use exceptions, but it is generally accepted that using 

exceptions for control flow is a wrong practice. In this case, the missing value 

is an expected option, so we’re not handling exceptional condition. 

4:   var m = optNum.AsStep(); 

5:   yield return m; 

6:   Console.WriteLine("Got a valid number!"); 

7:   var res = m.Value * 10; 

8:   yield return OptionResult.Create(res); 

9: } 

The code reads a string from the console and calls the 

ParseInt method to get optNum value, which has a type 

Option<int> (line 3). Next, we need to perform non-

standard value binding to access the value and to continue 

running the rest of the computation only when the value is 

present. Otherwise the method can return None as the 

overall result straight ahead. 

To perform the value binding, we use the AsStep 

method that generates a helper object (line 4) and then 

return this object using yield return (line 5). This creates 

a “hole” in the code, because the rest of the code may or 

may not be executed, depending on whether the MoveNext 

method of the returned state machine is called again or not.  

When optNum contains a value, the rest of the code will be 

called and we can access the value using the Value property 

(line 7)4. 

Finally, the method calculates the result (line 7) and 

returns it. To return from a non-standard computation 

written using our encoding, we create another helper 

object, this time using OptionResult.Create method. These 

helper objects are processed when executing the method.  

To summarize, there are two helper objects. Both of 

them implement the IOption interface, which means that 

they can both be generated using yield return. The 

methods that create these two objects have the following 

signatures: 

AsStep : Option<α> -> OptionStep<α> 

OptionResult.Create : α -> OptionResult<α> 

The first method creates an object that corresponds to the 

monadic bind operation. It takes the option value and 

composes it with the computation that follows the yield 

return call. The second method builds a helper that 

represents monadic unit operation. That means that the 

computation should end returning the specified value as the 

result. 

3.2 Executing option calculation 

When we write code in the style described in the previous 

section, methods like ReadInt only return a state machine 

that generates a sequence of helper objects representing 

bind and unit. This alone wouldn’t be at all useful, because 

we want to execute the computation and get a value of the 

monadic type (in this case Option<α>) as the result. How to 

do this in terms of standard monadic operations is 

described in section 5, but from the end user perspective, 

this simply means invoking the Apply method: 

Option<int> v = ReadInt().Apply<int>(); 

Console.WriteLine(v); 

This is a simple piece of standard C# code that runs the 

state machine returned by the ReadInt method. Apply<α> is 

an extension method5 defined for the IEnumerator 

<IOption> type. Its type signature is: 

Apply : IEnumerable<IOption> -> Option<α> 

                                                                        
4 The F# code corresponding to these two lines is:   let! value = optNum 
5 Extension methods are new feature in C# 3.0. They are standard static 

methods that can be accessed using dot-notation as if they were instance 

methods (Bierman, Meijer, & Torgersen, 2007). 



The type parameter (in the case above int) specifies what 

the expected return type of the computation is, because this 

unfortunately cannot be safely tracked in the type system. 

Running the code with different inputs gives the following 

console output: 

Enter a number: 42 

Got a valid number! 

Some(420)  

Enter a number: $%§! 

None 

Strictly speaking, Apply doesn’t necessarily have to execute 

the code, because its behavior depends on the monadic 

type. The Option<α> type represents a value, so the 

computation that produces it isn’t delayed. On the other 

hand the Async<α> type, which represents asynchronous 

computations is delayed meaning that the Apply method 

will only build a computation from the C# compiler 

generated state machine. 

The encoding of non-standard computations wouldn’t 

be practically useful if it didn’t allow us to compose code 

from primitive functions and as we’ll see in the next section, 

this is indeed possible. 

3.3 Composing option computations 

When encoding monadic operations, we’re working with 

two different types. The methods we write using the 

iterator syntax return IEnumerator<IOption>, but the actual 

monadic type is Option<α>. When writing code that is 

divided into multiple methods, we need to invoke method 

returning IEnumerator<IOption> from another method 

written using iterators. The following example uses the 

ReadInt method from the previous page to read two integer 

values (already multiplied by 10) and add them. 

1: IEnumerator<IOption> TryCalculate() { 

2:   var n = ReadInt().Apply<int>().AsStep(); 

3:   yield return n; 

4:   var m = ReadInt().Apply<int>().AsStep(); 

5:   yield return m; 

6:   var res = m.Value + n.Value; 

7:   yield return OptionResult.Create(res); 

8: } 

When the method needs to read an integer, it calls the 

ReadInt method to build a C# state machine. To make the 

result useable, it converts it into a value of type 

Option<int> (using the Apply method) and finally uses the 

AsStep method to get a helper object that can be used to 

bind the value using yield return.  

We could of course provide a method composed from 

Apply and AsStep to make the syntax more convenient, but 

this paper is focused on explaining the principles, so we 

write this composition explicitly. 

The previous example also nicely demonstrates the 

non-standard behavior of the computation. When it calls 

the RadInt method for the second time (line 4) it does that 

after using non-standard value binding (using yield 

return on line 3). This means that the user will be asked for 

the second number only if the first input was a valid 

number. Otherwise the result of the overall computation 

will immediately be None. 

Calculating with options nicely demonstrates the 

principles of writing non-standard computations. We can 

use non-standard bindings to mark places where the code 

can abandon the rest of the code if it already knows the 

overall result. Even though this is already useful, we can 

make even stronger point to support the idea by looking at 

asynchronous computations. 

4. Case Study: Asynchronous C# 
As discussed in the introduction, writing non-blocking code 

in C# is painful even when we use latest C# features such as 

lambda expression. In fact, we haven’t even implemented a 

simple loop, because that would make the code too lengthy. 

We’ve seen that monadic computations provide an 

excellent solution6 and we’ve seen that these can be 

encoded in C# using iterators.  

As next, we’ll explore one larger example that follows 

the same encoding of monadic computations as the one in 

the previous section, but uses a different monad to write 

asynchronous code that doesn’t block the tread when 

performing long-running I/O. The following method reads 

the entire content of a stream in a buffered way (using 1kb 

buffer) performing each read asynchronously. 

 1: IEnumerator<IAsync> ReadToEndAsync(Stream s) { 

 2:   var ms = new MemoryStream(); 

 3:   byte[] bf = new byte[1024]; 

 4:   int read = -1; 

 5:   while (read != 0) { 

 6:     var op = s.ReadAsync(bf, 0, 1024).AsStep(); 

 8:     yield return op; 

 9:     ms.Write(bf, 0, op.Value); 

10:     read = op.Value; 

11:   } 

12:   ms.Seek(0, SeekOrigin.Begin); 

13:   string s = new StreamReader(ms).ReadToEnd(); 

14:   yield return AsyncResult.Create(s); 

15: } 

The code uses standard while loop which would be 

previous impossible. Inside the body of the loop, the 

method creates an asynchronous operation that reads 1kb 

of data from the stream into the specified buffer (line 6) 

and runs the operation by yielding it as a value from the 

iterator (line 7). The operation is then executed by the 

system and when it completes the iterator is resumed. It 

stores the bytes to a temporary storage and continues 

looping until the input stream is fully processed. Finally, the 

method reads the data using StreamReader to get a string 

value and returns this value using AsyncResult.Create 

method (line 14). 

The encoding of asynchronous computations is essen-

tially the same as the encoding of computations with option 
values. The only difference is that the method now gene-

rates a sequence of IAsync values. Also, the AsStep method 

now returns an object of type AsyncStep<α> and similarly, 

the helper object used for returning the result is now 

AsyncResult<α>. Thanks to the systematic encoding des-

cribed in section 5, it is very easy to use another non-stan-

dard computation once the user understands one example.  

The method implemented in the previous listing is 

very useful and surprisingly it isn’t available in the standard 

.NET libraries. In the next example, we’ll use it to 

asynchronously download the entire content of a web page 

as a string and print it to the console. 

 1: IEnumerator<IAsync> DownloadPage(string url) { 

 2:   var req = HttpWebRequest.Create(url); 

 3:   var resp = req.GetResponseAsync().AsStep(); 

 4:   yield return resp; 

 5: 

 6:   var stream = resp.Value.GetResponseStream(); 

 7:   var html = ReadToEndAsync(stream). 

 8:              Execute<string>().AsStep(); 

                                                                        
6 To justify this, we can say that asynchronous workflows are one of the 

important features that contributed to the recent success of the F# language. 



 9:   yield return html; 

10:   Console.WriteLine(html.Value); 

11: } 

This example uses two non-blocking calls. It starts by 

creating a request and sending it to the web server. This is 

done using GetResponseAsync method, which is provided by 

our library and returns a value of type Async 

<HttpWebResponse>. Methods like this are easily construc-

ted from the BeginFoo/EndFoo pairs that are common in the 

.NET libraries, so we won’t discuss this in detail. 

To get the actual HttpWebResponse object, we write 

non-standard value binding using yield return (line 4). 

This waits until the operation completes and then resumes 

the iterator. Once the response is received we can use the 

response stream (line 6) and asynchronously read its 

contents (line 9) using the ReadToEndAsync method from 

the previous listing. 

So far we haven’t seen how to actually start the 

download, but this is also easy. To make the example more 

interesting and to leverage the asynchronicity, we can 

easily download several pages in parallel: 

1: var urls = new string[] { 

2:   "http://itat.cz", "http://www.cs.cas.cz", 

3:   "http://www.mff.cuni.cz" }; 

4: 

5: var operations = urls.Select(url =>  

6:   DownloadPage(url).Apply()); 

7: var parallel = Async.Parallel(operations); 

8: parallel.Spawn(); 

The code creates an array of URLs that we want to 

download. Next it uses the standard Select method7 to 

generate sequence of individual asynchronous 

computations. Inside the lambda function (line 6) we get 

the iterator generated by the DownloadPage method and 

then turn it into a value of type Async<Unit> using the Apply 

method. This shows two interesting points: 

• As opposed to Option<α>, the Async<α> type represents 

a delayed computation. This means that the Apply 

method only converts iterator into an object 

representing a computation that can be executed later. 

• Aside from generic Apply method that creates 

computation returning some value, there is also a non-

generic overload that returns computation that doesn’t 

return anything8. 

This implies that the operations value created on line 5 is a 

sequence of computations. We can now turn the sequence 

into a single operation using the Parallel combinator (line 

7), which returns a computation that starts all of the given 

operations and waits until they all complete. Finally, we use 

the Spawn method of the Async<α> type that actually starts 

the processing. 

Thanks to the asynchronous nature of the code, it is 

very efficient, because it doesn’t block threads when it is 

only waiting for a notification from the system. When 

downloading for example 100 pages, the asynchronous 

version can run efficiently using just 5 system threads, 

because a thread is only used when one operation 

completes and we need to run a bit of processing before 

starting next asynchronous call. On the other hand, a naïve 

                                                                        
7 This operation is known as map in functional languages like ML or Haskell. 
8 This requires the ability to create empty computation, which cannot be 

expressed purely using monadic operations bind and return. However, we 

can do that if the monad also has zero operation. 

implementation would simply create a thread for each 

download. 

Implementing the functionality we presented in this 

section asynchronously using the usual style would be far 

more complicated. For example, to implement the 

ReadToEndAsync method we need two times more lines of 

very dense C# code. However, the code also becomes hard 

to read because it cannot use many high-level language 

features (e.g. while loop), so it would in addition also 

require a decent amount of comments9. 

5. Encoding arbitrary monads 
As we’ve seen in the previous two sections, writing 

monadic computations in C# using iterators requires 

several helper objects and methods. In this section, we’ll 

look how these helpers can be defined.  

Unfortunately, C# doesn’t support higher-kinded 

polymorphism, which is used when defining monads in 

Haskell and is available in some object-oriented language 

such as Scala (Moors, Piessens, & Odersky, 2008). This 

means that we can’t write code that is generic over the 

monadic type (e.g. Option<α> and Async<α>). As a result, we 

need to define a new set of helper objects for each type of 

computation. To make this task easier, we provide two base 

classes that encapsulate functionality that can be reused. 

The code that we need to write is the same for every 

computation, so writing it is straightforward task that could 

be even performed by a very simple code-generator tool.  

In this section, we’ll look at the code that needs to be 

written to support calculations working with option values 

that we were using in section 3. The code uses only two 

computation-specific operations. Indeed, these are the two 

operations bind and unit that are used to define monadic 

computations in functional programming: 

Bind   : Option<α> -> (α -> Option<β>) -> Option<β> 

Return : α -> Option<α>  

The bind operation uses the function provided as the 

second parameter to calculate the result when the first 

parameter contains a value. The unit operation wraps an 

ordinary value into an option value. The implementation of 

these operations is described elsewhere, so we won’t 

discuss it in detail. You can for example refer to (Petricek & 

Skeet, 2009). We’ll just assume that we already have 

OptionM type with the two operations exposed as static 

methods. 

5.1 Defining iterator helpers 

As a first thing, we’ll implement helper objects that are 
returned from the iterator. We’ve seen that we need two 

helper objects – one that corresponds to bind and one that 

corresponds to unit. These two objects share common 

interface (called IOption in case of option computations) so 

that we can generate a single sequence containing both of 

them. Let’s start by looking at the interface type: 

interface IOption { 

  Option<R> BindStep<R>(Func<Option<R>> k); 

} 

The BindStep method is invoked by the extension that 

executes the non-standard computation (we’ll discuss it 

later in section 5.2). The parameter k specifies a 

continuation, that is, a function that can be executed to run 

the rest of the iterator. The continuation doesn’t take any 

                                                                        
9 The source code implementing the same functionality in the usual style can 

be found at: http://tomasp.net/academic/monads-iterators.aspx 



parameters and returns an option value generated by the 

rest of the computation10. The implementation of the helper 

objects that implement the interface looks like this: 

class OptionStep<T> : MonadStep<T>, IOption { 

  internal Option<T> Input { get; set; } 

  public Option<R> BindStep<R>(Func<Option<R>> k) { 

    return OptionM.Bind(Input, MakeContinuation(k)); 

  } 

} 

class OptionResult<T> : MonadReturn<T>, IOption { 

  internal OptionResult(T value) : base(value) { } 

  public Option<R> BindStep<R> (Func<Option<R>> k) { 

    return OptionM.Return(GetResult<R>()); 

  } 

} 

The OptionStep<α> type has a property named Input that’s 

used to store the option value from which the step was 

constructed using the AsStep method. When the BindStep 

method is executed the object uses the monadic bind 

operation and gives it the input as the first argument. The 

second argument is more interesting. It should be a 

function that takes the actual value extracted from the input 

option value as an argument and returns a new option 

value. The extracted value can be used to calculate the 

result, but there is no way to pass a value as an argument 

back to the iterator in the middle of its evaluation, which is 

why the function given as the parameter to BindStep 

method doesn’t take any parameters. 

As we’ve seen in the examples, the OptionStep<α> 

helper exposes this value as the Value property. This 

property is inherited from the MonadStep<α> type. The 

MakeContinuation which we use to build a parameter for 

monadic bind operation is also inherited and it simply 

stores the input obtained from bind into the Value 

property, so that it can be used in the iterator and then runs 

the parameter-less continuation k. 

The OptionResult<α> type is a bit simpler. It has a 

constructor that creates the object with some value as the 

result. Inside the BindStep method, it uses the monadic unit 

operation and gives it that value as the parameter. This 

cannot be done in a statically type-checked way, so we use 
the inherited GetResult method that performs dynamic 

type conversion. Finally, the OptionResult.Create and 

AsStep methods are just simple wrappers that construct 

these two objects in the syntactically most pleasant way. 

5.2 Implementing iterator evaluation 

Once we have an iterator written using the helpers 

described in the previous section, we need some way for 

executing it using the non-standard behavior of the 

monadic computation. The purpose of the iterator isn’t to 

create a sequence of values, so we need to execute it in 

some special way. The following example shows an 

extension method Apply that turns the iterator into a 

monadic value. In case of options the type of the value is 

Option<α> but note that the code will be exactly the same 

for all computation types.  

static class OptionExtensions { 

  public static Option<R> Apply<R> 

      (this IEnumerator<IOption> en) { 

    if (!en.MoveNext()) 

      throw new InvalidOperationException 

        ("Enumerator ended without a result!"); 

    return en.Current.BindStep<R>(() =>  

      en.Apply<R>()); 

                                                                        
10 The type of the parameter in the F# notation is unit -> Option<R>. 

  } 

} 

The method starts by invoking the MoveNext method of the 

generated iterator to move the iterator to the next 

occurrence of the yield return statement. If the return 

value is false, the iterator ended without returning any 

result, which is invalid, so the method throws an exception. 

If the iterator performs the step, we can access the 

next generated helper object using the en.Current 

property. The code simply invokes BindStep of the helper 

and gives it a function that recursively calls the Apply 

method on the same iterator as the argument. Note that 

when the helper is OptionResult<α>, the continuation is 

never used, so the recursion properly terminates. 

It is worth noting that for monadic computations with 

zero operation we can also write a variant of the Apply 

method that doesn’t require the iterator to complete by 

returning a result. In that case, we’d modify the method to 

return a value constructed by the zero operation instead of 

throwing an exception in the case when the iterator ends. 

Finally, there are also some problems with using 

possibly deeply nested recursive calls in a language that 

doesn’t guarantee the use of tail-recursion. We can 

overcome this problem by using some technique for tail-call 

elimination. (Schinz & Odersky, 2001) gives a good 

overview in the context of the Scala language. Perhaps the 

easiest option to implement is to use a trampoline (Tarditi, 

Acharya, & Lee, 1990). 

6. Related work and conclusions 
There is actually one more way for writing some monadic 

computations in C# using the recently added query syntax. 

The syntax is very limited compared to the encoding using 

iterators, but may be suitable for some computations. We’ll 

briefly review this option and then discuss other relevant 

related work and conclusions of this paper. 

6.1 LINQ queries 

As many people already noted (Meijer, 2006), the LINQ 

query syntax available in C# 3.0 is also based on the idea of 

monad and can be used more broadly than just for encoding 

computations that work with lists. The following example 

shows how we could write the computation with option 

values using LINQ syntax: 

1: Option<int> opt =  

2:   from n in ReadInt() 

3:   from m in ReadInt() 

4:   let res = m + n 

5:   select res; 

The implementation of library that allows this kind of 

syntax is relatively easy and is described for example in 

(Petricek & Skeet, 2009). This syntax is very restricted. In it 

allows non-standard value bindings corresponding to the 

bind operation using the from keyword (lines 2 and 3), 

standard value bindings using the let construct (line 4) and 

returning of the result using select keyword (line 5). 

However, there are no high-level imperative constructs 

such as loops which were essential for the asynchronous 

example in section 4. Also, it isn’t (easily) possible to write 

code that performs some side effect. With some care, it is 

possible to define several mutually recursive queries, but 

that still makes it hard to write complex computations such 

as the one in section 4. 

On the other hand, query syntax is suitable for some 

monadic computations where we’re using only a limited 



language. Parser combinators as described for example in 

(Hutton & Meijer, 1996) can be defined using the query 

syntax (Hoban, 2007). In general, C# queries are a bit closer 

to writing monads using the Haskell’s list comprehension 

notation, while using iterators as described in this article is 

closer to the Haskell’s do-notation. 

6.2 Related Work  

The principle of using a main-stream programming 

language for encoding constructs well known in the 

research world has been used with many interesting 

constructs including for example Joins (Russo, 2007). FC++ 

(McNamara & Smaragdakis, 2003) is a library that brings 

many functional features to C++, including monads, which 

means it should be possible to use it for re-implementing 

some examples from this paper. 

 There are also several libraries that use C# iterators 

for encoding asynchronous computations. CCR is a more 

sophisticated library (Chrysanthakopoulos & Singh, 2005) 

that combines join patterns with concurrent and asynchro-

nous programming, which makes it more powerful than our 

encoding. On the other hand it is somewhat harder to use 

for simple scenarios such as those presented in this paper.  

Richter’s library (Richter, 2009) is also focused 

primarily on asynchronous execution. It uses yield return 

primitive slightly differently – to specify the number of 

operations that should be completed before continuing the 

execution of the iterator. The user can then pop the results 

from a stack.  

6.3 Conclusions 

In this paper, we have presented a way for encoding 

monadic computations in the C# language using iterators. 

We’ve demonstrated the encoding with two examples – 

computations that work with option values and computa-

tions that allow writing of non-blocking asynchronous code. 

The asynchronous library we presented is useful in 

practice and would alone be an interesting result. However, 

we described a general mechanism that can be useful for 

other computations as well. We believe that using it to 

implement for example a prototype of software transac-

tional memory support for C# can bring many other inte-

resting results. 
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