
Encoding monadic computations in C# using iterators

Tomáš Petříček

Charles University in Prague

Faculty of Mathematics and Physics

tomas@tomasp.net

Abstract. Many programming problems can be easily solved

if we express them as computations with some non-standard

aspect. This is a very important problem, because today we’re

struggling for example to efficiently program multi-core pro-

cessors and to write asynchronous code. Unfortunately main-

stream languages such as C# don’t support any direct way for

encoding unrestricted non-standard computations.

 In languages like Haskell and F#, this can be done using

monads with syntactic extensions they provide and it has

been successfully applied to a wide range of real-world prob-

lems. In this paper, we present a general way for encoding

monadic computations in the C# 2.0 language with a conve-

nient syntax using a specific language feature called itera-

tors.

 This gives us a way to use well-known non-standard

computations enabling easy asynchronous programming or

for example the use of software transactional memory in

plain C#. Moreover, it also opens monads in general to a

wider audience which can help in the search for other useful

and previously unknown kinds of computations.

1. Introduction
In functional programming languages such as Haskell and

F#, monadic computations are used to solve wide range of

problems. In Haskell (Hudak, et al., 1992), they are

frequently used to deal with state or I/O, which is

otherwise difficult in a purely functional language. F# uses

monadic computations to add non-standard aspects such as

asynchronous evaluation, laziness or implicit error han-

dling to an existing piece of code written in F#. In this

article, we’ll prefer the F# point of view, meaning that we

want to be able to adjust C# code to execute differently,

using additional aspects provided by the monadic

computation.

The primary motivation for this work is that monadic

computations are very powerful technique for dealing with

many modern computing challenges caused by the rise of

multi-core processors and distributed web based applica-

tions. The standard F# library uses monadic computations

to implement asynchronous workflows (Syme, Granicz, &

Cisternino, 2008) which make it easy to write communi-

cation with the web and other I/O operations in the natural

sequential style, but without blocking threads while

waiting. In Haskell, monadic computations are used for

example to implement software transactional memory,

which is a concurrent programming mechanism based on

shared memory, which avoids the need for explicit locking

(Harris, Marlow, Peyton-Jones, & Herlihy, 2005).

The motivation for this article is that we want to be

able to use the techniques just described in a main-stream

and widely used C# language. The main contributions of

this paper are following:

• As far as we’re aware, we show for the first time that

monadic computations can be encoded in C# in a

syntactically convenient way without placing any

restrictions on the C# statements that can be used

inside the computation. This can be done purely as a

library without changing the language using widely

adopted C# 2.0 features (Section 3).

• We use the presented technique to implement a library

that makes it easier to write scalable multi-threaded

applications that perform long running I/O operations.

We demonstrate it using several case study examples

(Section 4).

• Finally, we describe a method for systematical enco-

ding of arbitrary monadic computation in C# (Section

5). This technique can be used for implementing other

useful computations such as software transactional

memory and others.

There are several related projects, mostly concerned with

asynchronous programming (Section 6), but our aim is

wider and focuses on monadic computations in general.

However, asynchronous computations can nicely demon-

strate the problem.

1.1 Asynchronous computations in C# today

Since we’re using asynchronous computations as the

primary real-world motivation for this paper, we should

first clarify what problem we want to solve is. Let’s start by

looking at naïve synchronous code that downloads the first

kilobyte of web site content:

1: var req = HttpWebRequest.Create(url);

2: var rsp = req.GetResponse();

3: var strm = rsp.GetResponseStream();

4: var read = strm.Read(buffer, 0, 1024);

On lines 2 and 4 we’re performing I/O operations that can

take a long time, but that aren’t CPU bounded. When

running the operation, the executing thread will be blocked,

but it cannot perform any other work in the meantime. If

we wanted to run hundreds of downloads in parallel, we

could create hundreds of threads, but that introduces

significant overheads (such as allocation of kernel objects

and thread stack) and also increases context switching. The

right way to solve the problem on the .NET platform is to

use the Asynchronous Programming Model (APM):

1: var req = HttpWebRequest.Create(url);

2: req.BeginGetResponse(a1 => {

3: var rsp = req.EndGetResponse(a1);

4: var strm = rsp.GetResponseStream();

5: strm.BeginRead(buffer, 0, 1024, a2 => {

6: int read = strm.EndRead(a2);

7: // ...

8: }, null);

9: }, null);

In this context “asynchronous” means that the program

invokes start of the operation, registers a callback, transfers

the control to the system and releases the current thread,

so that it can perform other work. In the snippet above,

we’re starting two operations on lines 2 and 5 and we’re

using the C# 3.0 lambda function notation “=>” to specify

the callback function that will be eventually invoked.

The code above is far less readable than the first

synchronous version, but that’s not the only problem. To

download the whole page, we’d need to call the BeginRead

method in a loop until we fetched the whole page, but that’s

ridiculously difficult, because we can’t use any higher level

constructs such as the while loop when writing code using

nested callbacks. For every simple problem, the

programmer has to explicitly write a state machine using

mutable state.

It is worth pointing out that using asynchronous

model does not increase the CPU parallelism in the

application, but it still significantly improves the perfor-

mance and makes the application more scalable because it

considerably reduces the number of (expensive) threads

the application creates.

2. Background
To write non-blocking asynchronous code, we can use

continuation passing style where the next piece of code to

execute after an operation completes is given as a function

as the last argument to the operation. In the snippet above

we’ve written the code in this style explicitly, but as we’ve

seen this isn’t a satisfying solution.

2.1 F# Asynchronous Workflows

In F#, we can use asynchronous workflows, which is one

particularly useful implementation of monadic computa-

tions that is already defined in F# libraries. This feature
hasn’t been described in the literature before, so we quickly

review it here.

When we wrap code inside an async block, the

compiler automatically uses continuation passing style for

specially marked operations. Moreover, we can use all

standard language constructs inside the block including for

example the while loop:

 1: let downloadUrl(url:string) = async {

 2: let req = HttpWebRequest.Create(url)

 3: let! rsp = req.AsyncGetResponse()

 4: let strm = rsp.GetResponseStream()

 5: let buffer = Array.zeroCreate(8192)

 6: let state = ref 1

 7: while !state > 0 do

 8: let! read = strm.AsyncRead(buffer, 0, 8192)

 9: Console.WriteLine("got {0}b", read);

10: state := read }

This function downloads the entire content of a web page in

a while loop. Although it doesn’t use the data in any way

and only reports the progress, it nicely demonstrates the

principle. Its body is an async block, which specifies that

the function doesn’t actually run the code, but instead

returns a value representing computation that can be

executed later.

In the places where the original C# code executed

asynchronous operations, we’re now using the let!

Keyword (lines 3 and 8), which represents monadic value

binding. This means that instead of simply assigning value

to a symbol, the computation invokes Bind operation that is

provided by the async value (called computation builder)

giving it the rest of the code wrapped inside a function as an

argument. The Bind member specifies non-standard

behavior of the operation. In this case the behavior is that

the operation is executed asynchronously.

The computation builder (in this case async) also

defines the meaning of other primitive constructs such as

the while loop or returning the result from a function.

These primitive operations are exposed as standard

methods with well-defined type signatures:

Bind : Async<α> * (α -> Async<β>) -> Async<β>

Return : α -> Async<α>

While : (unti -> bool) * Async<unit> -> Async<unit>

The first two functions are standard operations that define

the abstract monadic type as first described in (Wadler,

1990). These operations are also called bind and unit. The

Bind member takes an existing computation and a function

that specifies how to produce subsequent computation

when the first one completes and composes these into a

single one. The Return member builds a computation that

returns the given value. The additional While member takes

a predicate and a computation and returns result that

executes the computation repeatedly while the predicate

holds.

When compiling code that uses computation expres-

sions, the F# compiler syntactically transforms the code in-

to code composed from the calls to these primitive opera-

tions. The translated version of the previous example can

be found in the online supplementary material for the

article1.

2.2 C# Iterators

One of the non-standard computations that is very often

used in practice is a computation that generates a sequence

of values instead of yielding just a single result. This aspect

is directly implemented by C# iterators (ECMA

International, 2006), but without any aim to be more

generally useful. In this article, we show that it can be used

in a more general fashion. However, we start by briefly

introducing iterators. The following example uses iterators

to generate a sequence of all integers:

1: IEnumerator<int> GetNumbers() {

2: int num = 0;

3: while (true) {

4: Console.WriteLine("generating {0}", num);

5: yield return num++;

6: }

7: }

The code looks just like ordinary method with the exception

that it uses the yield return keyword to generate elements

a sequence. The while loop may look like an infinite loop,

but due to the way iterators work, the code is actually

perfectly valid and useful. The compiler translates the code

into a state machine that generates the elements of the

sequence lazily one by one. The returned object of type

IEnumerator<int> can be used in the following way:

1: var en = GetNumbers();

2: en.MoveNext();

3: Console.WriteLine("got {0}", en.Current);

4: en.MoveNext();

5: Console.WriteLine("got {0}", en.Current);

The call to the GetNumbers method (line 1) returns an object

that represents the state machine generated by the

compiler. The variables used inside the method are

transformed into a local state of that object. Each call to the

1 Available at: http://tomasp.net/academic/monads-iterators.aspx

MoveNext method (lines 2 and 4) runs one step of the state

machine until it reaches the next yield return statement

(line 5 in the earlier snippet) updating the state of the state

machine. This also executes all side-effects of the iterator

such as printing to the console, so the program above

shows the “generating” message directly followed by “got”

for numbers 0 and 1. There are two key aspects of iterators

that are important for this paper:

• The iterator body can contain usual control structures

such as loops or exception handlers and the compiler

automatically turns them into a state machine.

• The state machine can be executed only to a certain

point (explicitly specified by the user using yield

return), then paused and later resumed again by

invoking the MoveNext method again.

In many ways this resembles the continuation passing style

from functional languages, which is essential for monadic

computations and F# asynchronous workflows.

3. Monadic computations in C#
Now that we’ve introduced asynchronous workflows in F#

(as an example of monadic computations) and C# iterators,

we can ask ourselves the question whether iterators could

be used for encoding other non-standard computations

then code that generates a sequence.

The key idea of this article is that it is indeed possible

to do that and that we can write standard C# library to

support any monadic computation. In this section, we’ll

briefly introduce how the library looks using the simplest

possible example and in section 5 we’ll in detail explain

how the encoding works.

3.1 Using option computations

As the first example, we’ll use computations that produce

value of type Option<α>2, which can either contain no value

or a value of type α. The type can be declared using F#/ML

notation like this:

type Option<α> = Some of α | None

Code that is composed from simple computations that

return this type can return None value at any point, which

bypasses the entire rest of the computation. In practice this

is useful for example when performing series of data lookup

that may not contain the value we’re looking for. The usual

way for writing the code would check whether the returned

value is None after performing every single step of the

computation, which significantly complicates the code3.

To show how the code looks when we apply our

encoding of the option computation using iterators, we’ll

use method of the following signature:

ParseInt : string -> Option<int>

The method returns Some(n) when the parameter is a valid

number and otherwise it returns None. Now we can write

code that reads a string, tries to parse it and returns 10

times the number if it succeeds. The result of the

computation will again be the option type.

1: IEnumerator<IOption> ReadInt() {

2: Console.Write("Enter a number: ");

3: var optNum = ParseInt(Console.ReadLine());

2 In Haskell, this type is called Maybe and the corresponding computation is

known as Maybe monad.
3 We could as well use exceptions, but it is generally accepted that using

exceptions for control flow is a wrong practice. In this case, the missing value

is an expected option, so we’re not handling exceptional condition.

4: var m = optNum.AsStep();

5: yield return m;

6: Console.WriteLine("Got a valid number!");

7: var res = m.Value * 10;

8: yield return OptionResult.Create(res);

9: }

The code reads a string from the console and calls the

ParseInt method to get optNum value, which has a type

Option<int> (line 3). Next, we need to perform non-

standard value binding to access the value and to continue

running the rest of the computation only when the value is

present. Otherwise the method can return None as the

overall result straight ahead.

To perform the value binding, we use the AsStep

method that generates a helper object (line 4) and then

return this object using yield return (line 5). This creates

a “hole” in the code, because the rest of the code may or

may not be executed, depending on whether the MoveNext

method of the returned state machine is called again or not.

When optNum contains a value, the rest of the code will be

called and we can access the value using the Value property

(line 7)4.

Finally, the method calculates the result (line 7) and

returns it. To return from a non-standard computation

written using our encoding, we create another helper

object, this time using OptionResult.Create method. These

helper objects are processed when executing the method.

To summarize, there are two helper objects. Both of

them implement the IOption interface, which means that

they can both be generated using yield return. The

methods that create these two objects have the following

signatures:

AsStep : Option<α> -> OptionStep<α>

OptionResult.Create : α -> OptionResult<α>

The first method creates an object that corresponds to the

monadic bind operation. It takes the option value and

composes it with the computation that follows the yield

return call. The second method builds a helper that

represents monadic unit operation. That means that the

computation should end returning the specified value as the

result.

3.2 Executing option calculation

When we write code in the style described in the previous

section, methods like ReadInt only return a state machine

that generates a sequence of helper objects representing

bind and unit. This alone wouldn’t be at all useful, because

we want to execute the computation and get a value of the

monadic type (in this case Option<α>) as the result. How to

do this in terms of standard monadic operations is

described in section 5, but from the end user perspective,

this simply means invoking the Apply method:

Option<int> v = ReadInt().Apply<int>();

Console.WriteLine(v);

This is a simple piece of standard C# code that runs the

state machine returned by the ReadInt method. Apply<α> is

an extension method5 defined for the IEnumerator

<IOption> type. Its type signature is:

Apply : IEnumerable<IOption> -> Option<α>

4 The F# code corresponding to these two lines is: let! value = optNum
5 Extension methods are new feature in C# 3.0. They are standard static

methods that can be accessed using dot-notation as if they were instance

methods (Bierman, Meijer, & Torgersen, 2007).

The type parameter (in the case above int) specifies what

the expected return type of the computation is, because this

unfortunately cannot be safely tracked in the type system.

Running the code with different inputs gives the following

console output:

Enter a number: 42

Got a valid number!

Some(420)

Enter a number: $%§!

None

Strictly speaking, Apply doesn’t necessarily have to execute

the code, because its behavior depends on the monadic

type. The Option<α> type represents a value, so the

computation that produces it isn’t delayed. On the other

hand the Async<α> type, which represents asynchronous

computations is delayed meaning that the Apply method

will only build a computation from the C# compiler

generated state machine.

The encoding of non-standard computations wouldn’t

be practically useful if it didn’t allow us to compose code

from primitive functions and as we’ll see in the next section,

this is indeed possible.

3.3 Composing option computations

When encoding monadic operations, we’re working with

two different types. The methods we write using the

iterator syntax return IEnumerator<IOption>, but the actual

monadic type is Option<α>. When writing code that is

divided into multiple methods, we need to invoke method

returning IEnumerator<IOption> from another method

written using iterators. The following example uses the

ReadInt method from the previous page to read two integer

values (already multiplied by 10) and add them.

1: IEnumerator<IOption> TryCalculate() {

2: var n = ReadInt().Apply<int>().AsStep();

3: yield return n;

4: var m = ReadInt().Apply<int>().AsStep();

5: yield return m;

6: var res = m.Value + n.Value;

7: yield return OptionResult.Create(res);

8: }

When the method needs to read an integer, it calls the

ReadInt method to build a C# state machine. To make the

result useable, it converts it into a value of type

Option<int> (using the Apply method) and finally uses the

AsStep method to get a helper object that can be used to

bind the value using yield return.

We could of course provide a method composed from

Apply and AsStep to make the syntax more convenient, but

this paper is focused on explaining the principles, so we

write this composition explicitly.

The previous example also nicely demonstrates the

non-standard behavior of the computation. When it calls

the RadInt method for the second time (line 4) it does that

after using non-standard value binding (using yield

return on line 3). This means that the user will be asked for

the second number only if the first input was a valid

number. Otherwise the result of the overall computation

will immediately be None.

Calculating with options nicely demonstrates the

principles of writing non-standard computations. We can

use non-standard bindings to mark places where the code

can abandon the rest of the code if it already knows the

overall result. Even though this is already useful, we can

make even stronger point to support the idea by looking at

asynchronous computations.

4. Case Study: Asynchronous C#
As discussed in the introduction, writing non-blocking code

in C# is painful even when we use latest C# features such as

lambda expression. In fact, we haven’t even implemented a

simple loop, because that would make the code too lengthy.

We’ve seen that monadic computations provide an

excellent solution6 and we’ve seen that these can be

encoded in C# using iterators.

As next, we’ll explore one larger example that follows

the same encoding of monadic computations as the one in

the previous section, but uses a different monad to write

asynchronous code that doesn’t block the tread when

performing long-running I/O. The following method reads

the entire content of a stream in a buffered way (using 1kb

buffer) performing each read asynchronously.

 1: IEnumerator<IAsync> ReadToEndAsync(Stream s) {

 2: var ms = new MemoryStream();

 3: byte[] bf = new byte[1024];

 4: int read = -1;

 5: while (read != 0) {

 6: var op = s.ReadAsync(bf, 0, 1024).AsStep();

 8: yield return op;

 9: ms.Write(bf, 0, op.Value);

10: read = op.Value;

11: }

12: ms.Seek(0, SeekOrigin.Begin);

13: string s = new StreamReader(ms).ReadToEnd();

14: yield return AsyncResult.Create(s);

15: }

The code uses standard while loop which would be

previous impossible. Inside the body of the loop, the

method creates an asynchronous operation that reads 1kb

of data from the stream into the specified buffer (line 6)

and runs the operation by yielding it as a value from the

iterator (line 7). The operation is then executed by the

system and when it completes the iterator is resumed. It

stores the bytes to a temporary storage and continues

looping until the input stream is fully processed. Finally, the

method reads the data using StreamReader to get a string

value and returns this value using AsyncResult.Create

method (line 14).

The encoding of asynchronous computations is essen-

tially the same as the encoding of computations with option
values. The only difference is that the method now gene-

rates a sequence of IAsync values. Also, the AsStep method

now returns an object of type AsyncStep<α> and similarly,

the helper object used for returning the result is now

AsyncResult<α>. Thanks to the systematic encoding des-

cribed in section 5, it is very easy to use another non-stan-

dard computation once the user understands one example.

The method implemented in the previous listing is

very useful and surprisingly it isn’t available in the standard

.NET libraries. In the next example, we’ll use it to

asynchronously download the entire content of a web page

as a string and print it to the console.

 1: IEnumerator<IAsync> DownloadPage(string url) {

 2: var req = HttpWebRequest.Create(url);

 3: var resp = req.GetResponseAsync().AsStep();

 4: yield return resp;

 5:

 6: var stream = resp.Value.GetResponseStream();

 7: var html = ReadToEndAsync(stream).

 8: Execute<string>().AsStep();

6 To justify this, we can say that asynchronous workflows are one of the

important features that contributed to the recent success of the F# language.

 9: yield return html;

10: Console.WriteLine(html.Value);

11: }

This example uses two non-blocking calls. It starts by

creating a request and sending it to the web server. This is

done using GetResponseAsync method, which is provided by

our library and returns a value of type Async

<HttpWebResponse>. Methods like this are easily construc-

ted from the BeginFoo/EndFoo pairs that are common in the

.NET libraries, so we won’t discuss this in detail.

To get the actual HttpWebResponse object, we write

non-standard value binding using yield return (line 4).

This waits until the operation completes and then resumes

the iterator. Once the response is received we can use the

response stream (line 6) and asynchronously read its

contents (line 9) using the ReadToEndAsync method from

the previous listing.

So far we haven’t seen how to actually start the

download, but this is also easy. To make the example more

interesting and to leverage the asynchronicity, we can

easily download several pages in parallel:

1: var urls = new string[] {

2: "http://itat.cz", "http://www.cs.cas.cz",

3: "http://www.mff.cuni.cz" };

4:

5: var operations = urls.Select(url =>

6: DownloadPage(url).Apply());

7: var parallel = Async.Parallel(operations);

8: parallel.Spawn();

The code creates an array of URLs that we want to

download. Next it uses the standard Select method7 to

generate sequence of individual asynchronous

computations. Inside the lambda function (line 6) we get

the iterator generated by the DownloadPage method and

then turn it into a value of type Async<Unit> using the Apply

method. This shows two interesting points:

• As opposed to Option<α>, the Async<α> type represents

a delayed computation. This means that the Apply

method only converts iterator into an object

representing a computation that can be executed later.

• Aside from generic Apply method that creates

computation returning some value, there is also a non-

generic overload that returns computation that doesn’t

return anything8.

This implies that the operations value created on line 5 is a

sequence of computations. We can now turn the sequence

into a single operation using the Parallel combinator (line

7), which returns a computation that starts all of the given

operations and waits until they all complete. Finally, we use

the Spawn method of the Async<α> type that actually starts

the processing.

Thanks to the asynchronous nature of the code, it is

very efficient, because it doesn’t block threads when it is

only waiting for a notification from the system. When

downloading for example 100 pages, the asynchronous

version can run efficiently using just 5 system threads,

because a thread is only used when one operation

completes and we need to run a bit of processing before

starting next asynchronous call. On the other hand, a naïve

7 This operation is known as map in functional languages like ML or Haskell.
8 This requires the ability to create empty computation, which cannot be

expressed purely using monadic operations bind and return. However, we

can do that if the monad also has zero operation.

implementation would simply create a thread for each

download.

Implementing the functionality we presented in this

section asynchronously using the usual style would be far

more complicated. For example, to implement the

ReadToEndAsync method we need two times more lines of

very dense C# code. However, the code also becomes hard

to read because it cannot use many high-level language

features (e.g. while loop), so it would in addition also

require a decent amount of comments9.

5. Encoding arbitrary monads
As we’ve seen in the previous two sections, writing

monadic computations in C# using iterators requires

several helper objects and methods. In this section, we’ll

look how these helpers can be defined.

Unfortunately, C# doesn’t support higher-kinded

polymorphism, which is used when defining monads in

Haskell and is available in some object-oriented language

such as Scala (Moors, Piessens, & Odersky, 2008). This

means that we can’t write code that is generic over the

monadic type (e.g. Option<α> and Async<α>). As a result, we

need to define a new set of helper objects for each type of

computation. To make this task easier, we provide two base

classes that encapsulate functionality that can be reused.

The code that we need to write is the same for every

computation, so writing it is straightforward task that could

be even performed by a very simple code-generator tool.

In this section, we’ll look at the code that needs to be

written to support calculations working with option values

that we were using in section 3. The code uses only two

computation-specific operations. Indeed, these are the two

operations bind and unit that are used to define monadic

computations in functional programming:

Bind : Option<α> -> (α -> Option<β>) -> Option<β>

Return : α -> Option<α>

The bind operation uses the function provided as the

second parameter to calculate the result when the first

parameter contains a value. The unit operation wraps an

ordinary value into an option value. The implementation of

these operations is described elsewhere, so we won’t

discuss it in detail. You can for example refer to (Petricek &

Skeet, 2009). We’ll just assume that we already have

OptionM type with the two operations exposed as static

methods.

5.1 Defining iterator helpers

As a first thing, we’ll implement helper objects that are
returned from the iterator. We’ve seen that we need two

helper objects – one that corresponds to bind and one that

corresponds to unit. These two objects share common

interface (called IOption in case of option computations) so

that we can generate a single sequence containing both of

them. Let’s start by looking at the interface type:

interface IOption {

 Option<R> BindStep<R>(Func<Option<R>> k);

}

The BindStep method is invoked by the extension that

executes the non-standard computation (we’ll discuss it

later in section 5.2). The parameter k specifies a

continuation, that is, a function that can be executed to run

the rest of the iterator. The continuation doesn’t take any

9 The source code implementing the same functionality in the usual style can

be found at: http://tomasp.net/academic/monads-iterators.aspx

parameters and returns an option value generated by the

rest of the computation10. The implementation of the helper

objects that implement the interface looks like this:

class OptionStep<T> : MonadStep<T>, IOption {

 internal Option<T> Input { get; set; }

 public Option<R> BindStep<R>(Func<Option<R>> k) {

 return OptionM.Bind(Input, MakeContinuation(k));

 }

}

class OptionResult<T> : MonadReturn<T>, IOption {

 internal OptionResult(T value) : base(value) { }

 public Option<R> BindStep<R> (Func<Option<R>> k) {

 return OptionM.Return(GetResult<R>());

 }

}

The OptionStep<α> type has a property named Input that’s

used to store the option value from which the step was

constructed using the AsStep method. When the BindStep

method is executed the object uses the monadic bind

operation and gives it the input as the first argument. The

second argument is more interesting. It should be a

function that takes the actual value extracted from the input

option value as an argument and returns a new option

value. The extracted value can be used to calculate the

result, but there is no way to pass a value as an argument

back to the iterator in the middle of its evaluation, which is

why the function given as the parameter to BindStep

method doesn’t take any parameters.

As we’ve seen in the examples, the OptionStep<α>

helper exposes this value as the Value property. This

property is inherited from the MonadStep<α> type. The

MakeContinuation which we use to build a parameter for

monadic bind operation is also inherited and it simply

stores the input obtained from bind into the Value

property, so that it can be used in the iterator and then runs

the parameter-less continuation k.

The OptionResult<α> type is a bit simpler. It has a

constructor that creates the object with some value as the

result. Inside the BindStep method, it uses the monadic unit

operation and gives it that value as the parameter. This

cannot be done in a statically type-checked way, so we use
the inherited GetResult method that performs dynamic

type conversion. Finally, the OptionResult.Create and

AsStep methods are just simple wrappers that construct

these two objects in the syntactically most pleasant way.

5.2 Implementing iterator evaluation

Once we have an iterator written using the helpers

described in the previous section, we need some way for

executing it using the non-standard behavior of the

monadic computation. The purpose of the iterator isn’t to

create a sequence of values, so we need to execute it in

some special way. The following example shows an

extension method Apply that turns the iterator into a

monadic value. In case of options the type of the value is

Option<α> but note that the code will be exactly the same

for all computation types.

static class OptionExtensions {

 public static Option<R> Apply<R>

 (this IEnumerator<IOption> en) {

 if (!en.MoveNext())

 throw new InvalidOperationException

 ("Enumerator ended without a result!");

 return en.Current.BindStep<R>(() =>

 en.Apply<R>());

10 The type of the parameter in the F# notation is unit -> Option<R>.

 }

}

The method starts by invoking the MoveNext method of the

generated iterator to move the iterator to the next

occurrence of the yield return statement. If the return

value is false, the iterator ended without returning any

result, which is invalid, so the method throws an exception.

If the iterator performs the step, we can access the

next generated helper object using the en.Current

property. The code simply invokes BindStep of the helper

and gives it a function that recursively calls the Apply

method on the same iterator as the argument. Note that

when the helper is OptionResult<α>, the continuation is

never used, so the recursion properly terminates.

It is worth noting that for monadic computations with

zero operation we can also write a variant of the Apply

method that doesn’t require the iterator to complete by

returning a result. In that case, we’d modify the method to

return a value constructed by the zero operation instead of

throwing an exception in the case when the iterator ends.

Finally, there are also some problems with using

possibly deeply nested recursive calls in a language that

doesn’t guarantee the use of tail-recursion. We can

overcome this problem by using some technique for tail-call

elimination. (Schinz & Odersky, 2001) gives a good

overview in the context of the Scala language. Perhaps the

easiest option to implement is to use a trampoline (Tarditi,

Acharya, & Lee, 1990).

6. Related work and conclusions
There is actually one more way for writing some monadic

computations in C# using the recently added query syntax.

The syntax is very limited compared to the encoding using

iterators, but may be suitable for some computations. We’ll

briefly review this option and then discuss other relevant

related work and conclusions of this paper.

6.1 LINQ queries

As many people already noted (Meijer, 2006), the LINQ

query syntax available in C# 3.0 is also based on the idea of

monad and can be used more broadly than just for encoding

computations that work with lists. The following example

shows how we could write the computation with option

values using LINQ syntax:

1: Option<int> opt =

2: from n in ReadInt()

3: from m in ReadInt()

4: let res = m + n

5: select res;

The implementation of library that allows this kind of

syntax is relatively easy and is described for example in

(Petricek & Skeet, 2009). This syntax is very restricted. In it

allows non-standard value bindings corresponding to the

bind operation using the from keyword (lines 2 and 3),

standard value bindings using the let construct (line 4) and

returning of the result using select keyword (line 5).

However, there are no high-level imperative constructs

such as loops which were essential for the asynchronous

example in section 4. Also, it isn’t (easily) possible to write

code that performs some side effect. With some care, it is

possible to define several mutually recursive queries, but

that still makes it hard to write complex computations such

as the one in section 4.

On the other hand, query syntax is suitable for some

monadic computations where we’re using only a limited

language. Parser combinators as described for example in

(Hutton & Meijer, 1996) can be defined using the query

syntax (Hoban, 2007). In general, C# queries are a bit closer

to writing monads using the Haskell’s list comprehension

notation, while using iterators as described in this article is

closer to the Haskell’s do-notation.

6.2 Related Work

The principle of using a main-stream programming

language for encoding constructs well known in the

research world has been used with many interesting

constructs including for example Joins (Russo, 2007). FC++

(McNamara & Smaragdakis, 2003) is a library that brings

many functional features to C++, including monads, which

means it should be possible to use it for re-implementing

some examples from this paper.

 There are also several libraries that use C# iterators

for encoding asynchronous computations. CCR is a more

sophisticated library (Chrysanthakopoulos & Singh, 2005)

that combines join patterns with concurrent and asynchro-

nous programming, which makes it more powerful than our

encoding. On the other hand it is somewhat harder to use

for simple scenarios such as those presented in this paper.

Richter’s library (Richter, 2009) is also focused

primarily on asynchronous execution. It uses yield return

primitive slightly differently – to specify the number of

operations that should be completed before continuing the

execution of the iterator. The user can then pop the results

from a stack.

6.3 Conclusions

In this paper, we have presented a way for encoding

monadic computations in the C# language using iterators.

We’ve demonstrated the encoding with two examples –

computations that work with option values and computa-

tions that allow writing of non-blocking asynchronous code.

The asynchronous library we presented is useful in

practice and would alone be an interesting result. However,

we described a general mechanism that can be useful for

other computations as well. We believe that using it to

implement for example a prototype of software transac-

tional memory support for C# can bring many other inte-

resting results.

References

Bierman, G. M., Meijer, E., & Torgersen, M. (2007). Lost In
Translation: Formalizing Proposed Extensions to C#. In

proceedings of OOPSLA 2007.

ECMA International. (2006). C# Language Specification.

Harris, T., Marlow, S., Peyton-Jones, S., & Herlihy, M. (2005).

Composable memory transactions. In Proceedings of PPoPP

2005.

Hoban, L. (2007). Monadic Parser Combinators using C# 3.0.

Retrieved May 2009, from

http://blogs.msdn.com/lukeh/archive/2007/08/19/mona

dic-parser-combinators-using-c-3-0.aspx

Hudak, P., Wadler, P., Brian, A., Fairbairn, B. J., Fasel, J.,

Hammond, K., et al. (1992). Report on the programming

language Haskell: A non-strict, purely functional language.

ACM SIGPLAN Notices.

Hutton, G., & Meijer, E. (1996). Monadic parser combinators.

Technical Report. Department of Computer Science,

University of Nottingham.

Chrysanthakopoulos, G., & Singh, S. (2005). An

asynchronous messaging library for C#. In proceedings of

SCOOL Workshop, OOPSLA, 2005.

McNamara, B., & Smaragdakis, Y. (2003). Syntax sugar for

FC++: lambda, infix, monads, and more. In proceedings of

DPCOOL 2003.

Meijer, E. (2006). There is no impedance mismatch

(Language integrated query in Visual Basic 9). In Dynamic

Languages Symposium, Companion to OOPSLA 2006.

Moors, A., Piessens, F., & Odersky, M. (2008). Generics of a

Higher Kind. In proceedings of OOPSLA 2008.

Petricek, T., & Skeet, J. (2009). Functional Programming for

the Real World. Manning.

Richter, J. (2009). Power Threading Library. Retrieved May

2009, from

http://www.wintellect.com/PowerThreading.aspx

Russo, C. V. (2007). The Joins concurrency library. In

proceedings of PADL 2007.

Schinz, M., & Odersky, M. (2001). Tail call elimination on the

Java Virtual Machine. In Proceedings of BABEL 2001

Workshop on Multi-Language Infrastructure and

Interoperability.

Syme, D., Granicz, A., & Cisternino, A. (2008). Expert F#.

Apress.

Tarditi, D., Acharya, A., & Lee, P. (1990). No assembly

required: Compiling standard ML to C. School of Computer

Science, Carnegie Mellon University.

Wadler, P. (1990). Comprehending monads. In proceedings

of ACM Symposium on Lisp and Functional Programming

1990.

