Joinads

A retargetable control-flow construct for reactive,
parallel and concurrent programming

Tomas Petricek (tomas.petricek@cl.cam.ac.uk)
University of Cambridge, UK

Don Syme (don.syme@microsoft.com)
Microsoft Research, Cambridge, UK

The two key points of the talk

Language extension

We add language support for concurrent, parallel
and reactive programming

O Multi purpose

We do this without committing the language to one
particular programming model

OWe extend F# computation expressions

Similar approach could be used in other functional
languages (especially Haskell’'s do-notation)

Reactive, concurrent and parallel

Programming with futures

O Running in background and eventually gives a result
O Language support in Manticore (Fluet et al. 2008)

Event-based programming

O Lightweight threads, communicating using events
O Functional Reactive Programming (Elliott 2000)

Join-calculus

O Joins execute when certain channels contain values

O Both languages (Conchon, Fessant 1999) and libraries (Russo 2007)

Bringing programming models to practice

Language-based solutions

O Language supports only one model

Library-based encodings

4

O Restricted syntax is limiting

O Our approach: Support a recurring pattern

O Successfully used by monads (and arrows & idioms)

O One syntactic extension works for many libraries

Overview

OBackground

Computation expressions overview

L Our extension

Choosing between computations
Merging computations
What are joinads?

OlInteresting relations

Joinads and other computation types

Computation expressions by example

.Punctlon of t}fpe Computation expression
int -> Event<int> creating Event<int>
let rec counter n = event { :

let! args = btn.Click Waiting for the first
let! time = Event.sleep 1000 occurrence of an event

: Recursive return n + 1 Event<Mouselnfo>
looping return! counter (n + 1) } -)
Trigger the created event

Event is modeled as a sequence of time-value pairs

btn.Click

sleep 1000

sleep 1000

counter O

® @)

F# computation expressions

Computation expression syntax

cexpr = let pat = expr in cexpr Binding value

let! pat = expr in cexpr Binding computation
return expr Returning value

return! expr Returning computation
match expr-list with ... Pattern matching on values

Notation for writing computations (do’ in Haskel

O Translates to primitive function calls

bind : M<a> - (a » M) » M
unit - a - M<a>
combine : M<a> - M<a> - M<a>

F# computation expressions

Computation expression syntax

cexpr = let pat = expr in cexpr Binding value

let! pat = expr in cexpr Binding computation
return expr Returning value

return! expr Returning computation
match expr-list with ... Pattern matching on values

Our extension adds the obvious

| match! expr-list with ... Pattern matching on computations

O ...and two primitive functions for the translation

O They specify what match! actually means

Overview

O Background

Computation expressions overview

L Our extension

Choosing between computations
Merging computations
What are joinads?

OlInteresting relations

Joinads and other computation types

Choosing between computations

Operation choose composes multiple clauses
O Wait for events in parallel & run the first enabled body

)) let rec counter n = event {
Button was clicked match! btn.Click, win.KeyDown with
Wait & increment | ', -> let! _ = Event.sleep 1000

return n + 1
return! counter (n + 1)

Runs only when key —, lEsc -> return @
matches pattern return! counter 0 }

btn.Click

win.KeyDown

sleep 1000

©

counter O

What patterns can we write?

New syntactic category computation pattern

cexpr = match! expr-list with Pattern matching on computations

cpat-list > cexpr | ... with a list of clauses
cpat = _ Ignore computation pattern
| lpat Bind computation using standard pattern

Note the difference between* »” and

O !Esc 1s a non-exhaustive computation binding
O!_ i1s exhaustive but needs a value to match on

O matches even if we don’t have a value

Merging computations

Binding values from multiple computations

O All clauses so far had only single binding pattern

O Operation merge combines computations out get

Asynchronous input & \d)
Synchronous output |HEEEE—S S

let put
let get

Computation .Z
match! put, get with based on joins A

| 'num, !'chnl -»)
reply chnl (sprint "re %d" num) \<2>-’ ----- —> re2

new Channel<int>() .z

new Channel<ReplyChan<string>>()

let buffer = join {

Pattern “joining \C?D ---------- —> re 3

the two channels

What is a joinad?

map : (a > b) > M<a> - M
merge : M<a> - M - M<a * b>
choose : list<M<option<M<a>>>> —» M<a>

The match! syntax translates to these

0 merge — Combines two computations into a single

O choose - Finds the first enabled computation from a list
of clauses and returns computation that runs the body

O Call to Action: Formalization of Joinads

O Are these the simplest primitives we can use?
O How to find complete laws about the primitives?

Overview

O Background

Computation expressions overview

L Our extension

Choosing between computations
Merging computations
What are joinads?

OInteresting relations

Joinads and other computation types

Joinads and monads

Joinads do not imply monads or otherwise

O Many computations are both joinad and monad

Can we get merge inside monad for free?

O The type is M<a> - M - M<a * b>
O Want commutativity merge u v=map swap (merge v u)

let merge ma mb = m { let merge ma mb = m {
let! a = ma let! b = mb
let! b = mb let! a = ma
return a, b } return a, b }

Commutative

monads!

Summary & Questions?

Language extension for multiple models

O Reactive based on events (similar to FRP)

O Parallel based on futures (related to Manticore)
O Concurrent based on join calculus (JoCaml, Cw)
O ...and possibly many others

Theoretically interesting

OO0 More work to be done on the formal model...

tomas.petricek@cl.cam.ac.uk

The end of the universe

Joinad computations for futures

Future 1s computation running in background

O Binding means waiting for the completion

Case la, 'b

let multiply f1 f2 = future { “"_ ————————

match! f1, f2 with Lo
| 'a, !'b -> return a * b
| 'e, = -> return @

| _, '@ -> return 0 }

Both futures

One of the futures

completed and
produced zero

completed

Desugaring of computation expressions

let rec counter n = event { |

let!

_ = Event.sleep 1000
return n + 1
return! counter (n + 1) }

Functions are associated with the event builder

O return and let! translate to Return and Bind

O Sequencing of expressions translates to Combine

e courer N] S
event.Bind(btn.Click, fun _ ->

event.Bind(Event.sleep 1000, fun _ ->
event.Combine
(event.Return(n + 1),
counter (n + 1))))

Desugaring of joinads

puﬂnt-—(i) <§}
putString é—é
—Q‘ W

N1 Sa SbN2 N:3

let putInt = new Channel<int>()
let putString = new Channel<string>()
let get = new Channel<ReplyChannel<string>>()

Z‘.‘:(@

Pattern matching

let buffer = done inside Map

join.Choose
[join.Merge(get, putInt) |[> join.Map (fun (chnl, n) ->
join { chnl.Reply("Number: " + n.ToString()) });
join.Merge(get, putString) |[> join.Map (fun (chnl, s) ->
join { chnl.Reply("String:" + s) })]

/ Multiple binding patterns

turned into Merge

Choose operation explained

List of clauses Body to run when selected

val choose : list<M<option<M<'a>>>> — M<'a>

Produces bodies of a clause Runs the selected body

Type signature resembles monadic join

O Should behave the same for singleton list with “Some”
O Outer computation

Maps matching inputs into clauses to be executed
O Inner computation

Represents the body

Joinad laws: Where do they come from?

Transformations that shouldn’t change meaning

Replace trivial
1] l L] . - .
match! m with lvar -> expr let! var = m in expr HatC IR IRIICHIY

match! m { return e, },
m { return e, } with
| lvar,, lvar, -> cexpr

matche;, e, with Pattern matching
| var,, var, -> cexpr on two “units”

match! ...,m,;, ... with match! ...,m, ... with : Reordering of
| ..., cpat]’p(j), ... == Cexpr, | ..., cpat],j, ... == Cexpr, computations
| ... | ... & patterns

| ..., cpaty ,q, --- -> CEXPI | ...,cpaty ;, ... -> cexpr,

match! m with

| _ match! m with " _
| lvar; -> <cexpr>, = | var, -> <cexpr>, Match first enabled clause

| var, -> <cexpr>,

Joinad laws: Simplified form

Merge operation (written as (D)

O Commutativity is related to commutative monads

u@® (v w) =map assoc ((u @ v) @ w) (associativity)
u @ v =map swap (v u) (commutativity)
unit (4, v) = (unit u) @ (unitv) (unit merge)

where assoc ((a,b),c) =(a, (b,c)) and swap (a,b) = (b, a)

Choose operation

O Should always select the first enabled clause
(formal definition doesn’t make things much simpler)

O For monads, should generalize bind operation

Translation of Joinads

Merge inputs for pattern matching and map

Translate clauses using (—) and apply choose

(match! expr;, ..., exprpwith ccl; | ... ccl,)y =
let v, =expr;in ... letv,=expr;mm
choosen [(ccly Y w1, .ovis - (CCly Y, v1, ... vk]

(cpaty, ..., cpaty -> Cexpr). wi....vk =
mapy, (function (pat,, ...), pat, = Some { cexpr)),,
| — None) cargs

where { (paty, vy). (pat,. v,) } = { (pat. v | cpat,= par. 1 =i <k}
cargs =v; Wm ... Om Vg Omv, for n=1

