
Joinads

A retargetable control-flow construct for reactive,

parallel and concurrent programming

Tomáš Petříček (tomas.petricek@cl.cam.ac.uk)
University of Cambridge, UK

Don Syme (don.syme@microsoft.com)
Microsoft Research, Cambridge, UK

The two key points of the talk

Language extension

We add language support for concurrent, parallel

and reactive programming

Multi purpose

We do this without committing the language to one

particular programming model

We extend F# computation expressions

Similar approach could be used in other functional

languages (especially Haskell’s do-notation)

Reactive, concurrent and parallel

Programming with futures

 Running in background and eventually gives a result

 Language support in Manticore (Fluet et al. 2008)

Event-based programming

 Lightweight threads, communicating using events

 Functional Reactive Programming (Elliott 2000)

Join-calculus

 Joins execute when certain channels contain values

 Both languages (Conchon, Fessant 1999) and libraries (Russo 2007)

Bringing programming models to practice

Language-based solutions

 Language supports only one model

Library-based encodings

 Restricted syntax is limiting

Our approach: Support a recurring pattern

 Successfully used by monads (and arrows & idioms)

 One syntactic extension works for many libraries

Overview

Background

Computation expressions overview

Our extension

Choosing between computations

Merging computations

What are joinads?

Interesting relations

Joinads and other computation types

Computation expressions by example

 Event is modeled as a sequence of time-value pairs

let rec counter n = event {
 let! args = btn.Click
 let! time = Event.sleep 1000
 return n + 1
 return! counter (n + 1) }

btn.Click

counter 0 1 2

sleep 1000

sleep 1000

F# computation expressions

Computation expression syntax

Notation for writing computations (‘do’ in Haskell)

 Translates to primitive function calls

 bind : M<a> → (a → M) → M

 unit : a → M<a>

 combine : M<a> → M<a> → M<a>

cexpr = let pat = expr in cexpr Binding value

 | let! pat = expr in cexpr Binding computation

 | return expr Returning value

 | return! expr Returning computation

 | match expr-list with … Pattern matching on values

F# computation expressions

Computation expression syntax

Our extension adds the obvious

 …and two primitive functions for the translation

 They specify what match! actually means

cexpr = let pat = expr in cexpr Binding value

 | let! pat = expr in cexpr Binding computation

 | return expr Returning value

 | return! expr Returning computation

 | match expr-list with … Pattern matching on values

 | match! expr-list with … Pattern matching on computations

Overview

Background

Computation expressions overview

Our extension

Choosing between computations

Merging computations

What are joinads?

Interesting relations

Joinads and other computation types

Choosing between computations

Operation choose composes multiple clauses

 Wait for events in parallel & run the first enabled body

let rec counter n = event {
 match! btn.Click, win.KeyDown with
 | !_, _ -> let! _ = Event.sleep 1000
 return n + 1
 return! counter (n + 1)
 | _, !Esc -> return 0
 return! counter 0 }

btn.Click

counter 0 0 1

sleep 1000

win.KeyDown

0

Esc EscA Esc

What patterns can we write?

New syntactic category computation pattern

Note the difference between “_” and “!_”

 !Esc is a non-exhaustive computation binding

 !_ is exhaustive but needs a value to match on

 _ matches even if we don’t have a value

cexpr = match! expr-list with Pattern matching on computations

 cpat-list → cexpr | … with a list of clauses

cpat = _ Ignore computation pattern

 | !pat Bind computation using standard pattern

Merging computations

Binding values from multiple computations

 All clauses so far had only single binding pattern

 Operation merge combines computations

let put = new Channel<int>()
let get = new Channel<ReplyChan<string>>()

let buffer = join {
 match! put, get with
 | !num, !chnl ->
 reply chnl (sprint "re %d" num)

1
re 1

re 3

2

3

put get

re 2

What is a joinad?

The match! syntax translates to these

 merge – Combines two computations into a single

 choose – Finds the first enabled computation from a list

of clauses and returns computation that runs the body

Call to Action: Formalization of Joinads

 Are these the simplest primitives we can use?

 How to find complete laws about the primitives?

map : (a → b) → M<a> → M

merge : M<a> → M → M<a * b>

choose : list<M<option<M<a>>>> → M<a>

Overview

Background

Computation expressions overview

Our extension

Choosing between computations

Merging computations

What are joinads?

Interesting relations

Joinads and other computation types

Joinads and monads

Joinads do not imply monads or otherwise

 Many computations are both joinad and monad

Can we get merge inside monad for free?

 The type is M<a> → M → M<a * b>

 Want commutativity merge u v ≡ map swap (merge v u)

let merge ma mb = m { let merge ma mb = m {
 let! a = ma let! b = mb
 let! b = mb ≡ let! a = ma
 return a, b } return a, b }

let merge ma mb = m {
 let! a = ma
 let! b = mb
 return a, b }

Summary & Questions?

Language extension for multiple models

 Reactive based on events (similar to FRP)

 Parallel based on futures (related to Manticore)

 Concurrent based on join calculus (JoCaml, Cω)

 …and possibly many others

Theoretically interesting

 More work to be done on the formal model…

tomas.petricek@cl.cam.ac.uk

The end of the universe

Joinad computations for futures

Future is computation running in background

 Binding means waiting for the completion

let multiply f1 f2 = future {
 match! f1, f2 with
 | !a, !b -> return a * b
 | !0, _ -> return 0
 | _, !0 -> return 0 }

Case !a, !b

Case !0, _

Desugaring of computation expressions

Functions are associated with the event builder

 return and let! translate to Return and Bind

 Sequencing of expressions translates to Combine

let rec counter n = event {
 let! _ = btn.Click
 let! _ = Event.sleep 1000
 return n + 1
 return! counter (n + 1) }

let rec counter n =
 event.Bind(btn.Click, fun _ ->
 event.Bind(Event.sleep 1000, fun _ ->
 event.Combine
 (event.Return(n + 1),
 counter (n + 1))))

Desugaring of joinads

let putInt = new Channel<int>()
let putString = new Channel<string>()
let get = new Channel<ReplyChannel<string>>()

let buffer =
 join { match! get, putInt, putString with
 | !chnl, !n, _ ->
 chnl.Reply("Number: " + n.ToString())
 | !chnl, _, !s ->
 chnl.Reply("String:" + s) }

1

N:1 S:a S:b N:3

2

a b

3

N:2

putInt

putString

get

let putInt = new Channel<int>()
let putString = new Channel<string>()
let get = new Channel<ReplyChannel<string>>()

let buffer =
 join.Choose
 [join.Merge(get, putInt) |> join.Map (fun (chnl, n) ->
 join { chnl.Reply("Number: " + n.ToString()) });
 join.Merge(get, putString) |> join.Map (fun (chnl, s) ->
 join { chnl.Reply("String:" + s) })]

Choose operation explained

Type signature resembles monadic join

 Should behave the same for singleton list with “Some”

 Outer computation

 Maps matching inputs into clauses to be executed

 Inner computation

 Represents the body

val choose : list<M<option<M<'a>>>> → M<'a>

List of clauses Body to run when selected

Produces bodies of a clause Runs the selected body

Joinad laws: Where do they come from?

Transformations that shouldn’t change meaning

match! m with !var -> expr ≡ let! var = m in expr

match! m { return e1 },

 m { return e2 } with

| !var1, !var2 -> cexpr

≡
match e1, e2 with

| var1, var2 -> cexpr

match! …, mp(i), … with
| …, cpat1, p(i), … -> cexpr1
| …
| …, cpatk, p(i), … -> cexprk

≡

match! …, mi, … with
| …, cpat1, i, … -> cexpr1
| …
| …, cpatk, i, … -> cexprk

match! m with

| !var1 -> <cexpr>1

| !var2 -> <cexpr>2

≡
match! m with

| !var1 -> <cexpr>1

Joinad laws: Simplified form

Merge operation (written as ⦷)

 Commutativity is related to commutative monads

 u ⦷ (v ⦷ w) ≡ map assoc ((u ⦷ v) ⦷ w) (associativity)
 u ⦷ v ≡ map swap (v ⦷ u) (commutativity)
 unit (u, v) ≡ (unit u) ⦷ (unit v) (unit merge)

 where assoc ((a, b), c) = (a, (b, c)) and swap (a, b) = (b, a)

Choose operation

 Should always select the first enabled clause

(formal definition doesn’t make things much simpler)

 For monads, should generalize bind operation

Translation of Joinads

Merge inputs for pattern matching and map

Translate clauses using ⟨ – ⟩ and apply choose

