On the Limits of Making Programming Easy

Tomas Petricek! and Joel Jakubovic!-2

! Charles University, Prague, Czechia
tomas@tomasp.net
2 University of Kent, Canterbury, UK
joel. jakubovic@cantab.net

Abstract. A lot of programming research shares the same basic motiva-
tion: how can we make programming easier? Alas, this problem is difficult
to tackle directly. Programming is a tangle of conceptual models, program-
ming languages, user interfaces and more and we cannot advance all of
these at the same time. Moreover, we have no good metric for measuring
whether programming is easy. As a result, we usualy give up on the orig-
inal motivation and pursue narrow tractable research for which there is a
rigorous methodology.

In this paper, we investigate the limits of making programming easy.
We use a dialectic method to circumscribe the design space within which
easier programming systems may exist. In doing so, we not only bring to-
gether ideas on open-source software, self-sustainable systems, visual pro-
gramming languages, but also the analysis of limits by Fred Brooks in his
classic “No Silver Bullet” essay. We sketch a possible path towards easier
programming of the future, but more importantly, we argue for the im-
portance of proto-theories as a method for tackling the original motivating
basic research question.

Keywords: Programming systems - complexity - technical dimensions.

1 Introduction

A cold winter morning, 1st December 2023, outside the Cambridge Computer
Laboratory; two computer scientists arrive in the area known as The Street in
front of the lecture theaters; they came to attend the MycroftFest symposium:
Tomas Petricek—a former PhD student of Alan—and Joel Jakubovic, Tomas’ PhD
student. The elder and younger researchers discuss threads of programming
study as different from each other as The Street and the Cambridge Computer
Laboratory are from Trinity Street and Peterhouse.
Let’s eavesdrop.

2 T. Petricek, J. Jakubovic

2 Programming systems

Towmas: I hope you are ready for your PhD defense next week, Joel! The exam-
iners will surely ask you to give a brief summary of your work, so you’ll need
a good answer for that. Have you figured out how to summarize what your
PhD work is about?

JOEL: I always like to introduce it as making programming “suck less!” I suppose
I will need something that sounds more formal than that. Of course, I mean
it in a very focused and specific way that is small enough to fit into a PhD.

Towmas: My PhD was about making programming easier too. I worked on client-
server web programming before [[35] and found it tricky to keep track of the
right context on the two sites. Some code requires resources that are only
available on the server (e.g. a database), while some requires resources only
available in the web browser (e.g. the user’s location).

JOEL: So what did you do to make client-server web programming easier?

Towmas: I tried to fix this by designing a context-aware programming language
that would track the context requirements, or coeffects, in the type system [34].
With coeffects (Figure [1j), the type would tell you not just what your func-
tions take and return, but also what resources they require. Coeffects would
tell you that some part of your code can run only on some of the sites.

JOEL: I thought coeffects were about tracking how programs use variables. The
two examples I saw involved dataflow and liveness. There was no mention
of client-server web programming!

Tomas: Well, yes, there is some irony in the fact that the original motivation
did not actually fit all that well with the formal model that we developed.
Dataflow and liveness were much better examples.

JOEL: And did coeffects make programming easier in the end?

Towmas: I only ever built a prototype implementation of a language with coeffect
supportE] but if someone implemented a proper language based on the the-
ory, then it would make programming client-server web applications easier...

JOEL: Oh dear... so your work was only concerned with improving programming
languages.

ToMAs: Of course. Programming languages are the medium through which you
program. But you make it sound like you have something else in mind.

JOEL: We both say that we are interested in making programming easier. Pro-
gramming is about much more than programming languages and their formal
properties. We should be thinking about programming systems more gener-
ally, not just about languages (see Figure[1).

Tomas: What is the difference? What is a programming system?

3 The prototype can be found, in the form of an interactive essay, at https://tomasp.net.

https://tomasp.net

On the Limits of Making Programming Easy 3

z:7€el’ C'I'te :Clrn o1 C°TbFer:mn
(var) CI'tz:71 (app) CVERI P el e T
CI'ke:T C™™(Ix:m)Fe:m
b =—— =" (s< b
(sub) C'I'ke:T (s<7) (abs) C'I'EAMx.e:C°11 — 7o

(a) Type and coeffect system for tracking context requirements [34].

What is HyperCard? S==—————H|

What is HyperCard?

Stacks
Cards

Buttons

Haotne

hdare Stacks

Creating Stacks

& 1993-1998, Apple Computer, Inc. &ll Fights reserved.

(b) A screenshot of Hypercard, an early hypertext system that allowed
users to easily create their own interactive “decks”.

Fig. 1: The contrast between programming languages and programming sys-
tems. We know how to study languages (a), but not how to study systems (b).

JOEL: A programming language is an abstract formal entity. A programming sys-
tem is a running, interactive and stateful collection of software. A system may
implement a language (or multiple languages). It includes a runtime and a
compiler or an interpreter, but it also consists of graphical interfaces used to
edit code, debug code and so on.

Tomas: I'm still not convinced. Of course you need to write your code and invoke
the compiler in some way. That’s why you also have a terminal and Emacs to
do programming.

JOEL: You are still thinking about the problem through the lens of the languages
paradigm. The point is that the systems paradigm gives you a different per-
spective, different problems and different research methods. Gabriel wrote
about this in his “Structure of a Programming Language Revolution” [16]],
where he points out that there was a paradigm shift through the 1990s from
thinking about systems to thinking about languages.

4 T. Petricek, J. Jakubovic

JOEL: The paradigm shift encouraged more formal academic work on program-
ming, but Gabriel also explains how some good ideas about programming
became unthinkable because of this shift.

Towmas: Does he say unthinkable, or unpublishable in OOPSLA?

JOEL: The latter, but in practice, the two co-evolve and end up being the same
thing! What can be published tends to shape people’s research agendas and
their way of thinking about problems...

TomAS: You can say that a programming language plus all the extra things it
needs is a programming system, but what other good ideas about program-
ming does this view enable?

JOEL: First, the different view lets us consider ways to make programming eas-
ier which are hard to think about as languages. For example, visual pro-
gramming, block-based editing [[37] or systems like Flash [2]] and Hypercard.
These are programming systems we should learn from. Second, the view lets
us talk about interactivity and self-sustainable systems that can be modified
from within themselves [21J20]. It would be useful to understand highly
malleable programming systems like Lisp and Smalltalk, because they can in
principle be used to make their own programming easier.

TomaAs: But Lisp and Smalltalk are languages ... ah, I see what you'’re going to
say. Smalltalk-the-system contains Smalltalk-the-language, but a lot of other
important things like its interface! And similarly for systems built on Lisp...

JOEL: Exactly, and there is much more than the interface. When you think about
Smalltalk-the-system or Lisp-the-system, you also need to consider all the
libraries that are readily available to you as parts of the system.

Tomas: Those are very good points. I'm starting to believe that this program-
ming systems view is actually useful. But let’s return to it later, because I
wanted to return to one more point you made...

3 Essential complexity

ToMAS: You said that the goal of your work was to make programming easier. I
can see how thinking about programming systems rather than programming
languages is a better way to approach the problem. Yet, I worry that this may
not be as much help as you hope. Didn’t Fred Brooks show that you cannot
make programming an order of magnitude easier?

JOEL: Interesting, why did he think that?

ToMAS: Brooks [[7] analysed the different kinds of complexity involved in build-
ing software. The essential complexity is the inherent complexity of the con-
cepts that software works with. It arises from the data sets, interconnections,
algorithms and operations that the software is to perform. The accidental
complexity comes from imperfection in our tools and languages.

On the Limits of Making Programming Easy 5

JOEL: This would make more sense to me if the essential complexity came from
the fact that our software has to encode the many (perhaps ad-hoc) rules of
the human world. Algorithms and data structures sound less essential to me.

Towmas: I like your interpretation, but maybe the algorithms and data structures
that Brooks talks about are reflections of the real world? In any case, Brooks
argues that we can reduce the accidental complexity through better tools,
but the essential complexity will remain. He then points out that we will not
be able to get an order of magnitude improvement in overall complexity of
software unless the accidental complexity in software today is more than 10x
that of the essential complexity.

JOEL: This assumes that you have to tackle the essential complexity all at once,
but that is only the case if you are designing a system from scratch. Did
Brooks say anything about open source that was emerging at the time and
avoids this problem by letting anyone use and adapt software as they wish?

Tomas: No, Brooks does not mention open source. He talks about buying off-the-
shelf packages as an alternative to building software. Even with open source,
I think Brooks’ basic idea still holds. No matter if you use open source or
replace the Waterfall of the 1980s with Agile methodologies of the 2020s, you
still have to put together the entire system with all its essential complexity.

JOEL: Well, I know you like to relate software development to architecture [32],
so perhaps that can help me explain what I'm thinking.

Towmas: Architecture needs upfront planning even more than software. You first
have to resolve all the design problems that the design of the house involves.
There are different ways of doing this. You can rely on modernist analysis or
the traditional "unselfconscious" way of building that the Christopher Alexan-
der favoured in his early work [[1], but you still need a detailed plan before
you start building.

JOEL: I think you can look at the problem very differently though. As argued
by Stewart Brand [5]], buildings also evolve. Old power stations become gal-
leries, a garage becomes a co-working space, while a formal city plaza sud-
denly gains new use as an ice-skating rink [8]. Even when the spaces are not
designed for their future use, they often end up fitting it remarkably well.

Towmas: You are probably right. Buildings seem like the most static things, yet
they evolve. Software, being structured information, ought to be much more
malleable than the rigid materials of buildings; accordingly, it evolves much
faster. But how can this solve the problem of software complexity?

JOEL: Like buildings, I think we often build software by gradual adaptation. We
may not always think about it that way, but we should embrace this view.
Very often, you have software that does almost what you want, but not quite.

Towmas: I guess systems that you can buy and configure, like SAP that was slowly
rising to prominence when Brooks was writing his paper [27]], would be an

6 T. Petricek, J. Jakubovic

Fig. 2: MIT Building 20 was a temporary timber building, erected for radar re-
search during the World War IL. It continued to exist for over 50 years and was
highly popular for its infinite adaptability [5] (photo: MIT Museum).

interesting example of that. Contemporary no-code and low-code systems go
even further in that they blur the distinction between code and configuration.

JOEL: This is not quite what I had in mind, but fair enough! My point is that we
can sidestep Brooks’ “doom prophecy” by focusing on how software is built by
making small changes to existing software. To make software development
easy, we should make it easy to make changes!

ToMAS: Wait a second! Aren’t we getting back to open source and the free soft-
ware movement? The free software manifesto says you should have “The
freedom to study how the program works, and change it so it does your
computing as you wish.”[14] This sounds very much like building software
through a sequence of small adaptations.

JOEL: In theory, yes, but does access to source code really give you the freedom
to change a program as you wish for any moderately complex open-source
software today?

TomMaAs: I think you are right. The complexity of most software that we are deal-
ing with today means that, even as a hacker myself, I cannot hope to under-
stand and modify software with a reasonable amount of effort, even if I do
have the source code.

JOEL: In fact, the freedom to change a program as you wish probably worked in
the 1980s when the GNU utilities were a manageable size and all the users
were hackers who could modify and compile the code!

On the Limits of Making Programming Easy 7

Towmas: The kind of sofware we need today is just more complex, because com-
puters get used for more complex problems. We are facing Brooks’ essential
complexity again. To make a small change to a large piece of software, you
may not need to understand all of it, but you need to understand a significant
part of it and even that is prohibitive.

4 Programming that scales

JOEL: Isn’t it inevitable that static source code simply doesn’t scale for under-
standing complex dynamic systems? The change we want to make is to the
dynamic behaviour, but we have to trace the causality backwards and figure
out which change to the initial state will produce it. At today’s scales, this
is like being a surgeon forced to operate on the DNA and then regrow the
entire patient. Who would expect this to work?

Towmas: Isn’t the whole point of programming to tackle this kind of complexity
through abstractions? Going back to my own PhD, a key idea in it was that
you can hide multiple fairly complex specific instances of context-dependence
behind a simple unified mathematical structure.

JOEL: Many computer scientists like to see programming as a formal mathemat-
ical activity, but this is just a metaphor and it has its limits. De Millo, Lipton
and Perlis pointed this out in 1979 [9]! They believed that formal verifica-
tion of software is bound to fail, because the complexity of the formal entities
computer scientists work with is different than the complexity of the formal
entities mathematicians work with. A mathematical proof is probably correct
because mathematicians excitedly go over it on a whiteboard with their col-
leagues, but no such social process accompanies formal proofs of softwareE]

Towmas: If seeing programs as formal mathematical entities is not the right per-
spective, then what is the alternative?

JOEL: In the early 2000s, the Software Engineering Institute at Carnegie Mellon
University asked this very question as part of their project on Ultra-large-scale
systems [[13]] They said that we need to shift how we think about problems we
face and that new perspectives will by inspired by work looking at disciplines
such as microeconomics, biology, city planning, and anthropology.

TomMmaAs: I do like the city planning metaphor for thinking about software. If you
look how people understand a city, as documented in the classic book “The
Image of the City” [28]], I think much of that applies to source code. If you
want to get from one place to another in a city, you do not need to understand
the whole city. There are paths through the city that take you there like, for
example, the metro line. Is this what you are thinking about?

* For a detailed and a refined account of the debate that followed the publication of the
paper, as well as the historical context, see the book written by MacKenzie [29]].

8 T. Petricek, J. Jakubovic

JOEL: You can surely alleviate some of the scaling problems with source code by
organising it better, but it is still wrong to have to search through the source
code and look for names that sound like the right thing, in order to find the
relevant code for the change we want to achieve.

Tomas: What do you imagine, then?

JOEL: Well, a programming system should model the chain of cause to effect
in programs that you create. Then, when you want to make a change to
something that you can see, or to something that produces visible outputs
or effects on the screen, it can point you back to the code that you need to
change. Bret Victor demonstrated what this could look like [39], but I'm un-
aware of any follow-up work to realise his vision—which raises the question
of how he himself got his demo to work, something that does occasionally
keep me up at night.

TomMAs: I think I can imagine the technical characteristics such a system would
need to work: it would need to record information about its execution and
make it acessible. Basman [3]] refers to this idea as “materialized execution”
and traces it to the 1980s Boxer project [11]. We used a similar idea recently
to automatically link data visualizations by analysing code used to produce
them [31]].

JOEL: This is useful technical background, but we should also look to interesting
real programming systems—not just demos—for inspiration about interfaces
that would make such program editing accessible.

TomaAs: Perhaps the various live and exploratory programming systems [36]
may be relevant here?

JOEL: Yes, those tools give you rapid feedback. Perhaps a surprisingly good ex-
ample here is Excel, which also, to some extent, keeps track of the chain of
cause to effect in that you can view the source of the formula and see which
other cells were used to compute the result. You do have to backtrace the
causal chain manually by looking up the cells one by one. But it is the best
example I can think of.

TomaAs: Excel has surprisingly good backtracing support these days! But regard-
less of whether you trace manually or with the system’s help, this only works
with the relatively simple formula language. If you want to achieve some
more complicated behaviour, you have to do that with VBA macros and give
up this traceability.

5 Programming substrates and notations

JOEL: True, so let’s stop to think about notations for a bit. We can understand
them better by charting the scope of change that can be achieved through
a particular notation against the difficulty of using the notation. Figure
shows this for a hypothetical accounting system and a spreadsheet system.

On the Limits of Making Programming Easy 9

hard

DIFFICULTY

S vBA macros

equations

DIFFICULTY

SPREADSHEET/EXCEL

simple |2

R tables minimal SCOPE OF CHANGE large
simple

minimal SCOPE OF CHANGE large

(b) An ideal system would have one adapt-
(a) Excel offers multiple but disconnected able substrate that makes minimal changes
substrates (data entry, formulas, macros). simple, but allows harder larger chages.

Fig. 3: Scope of change vs. difficulty of use of multiple programming substrates.

Towmas: I see. For an accounting system, you have the graphical interface that
provides a notation for using the system and a notation (say, Java or C++)
with which the system is implemented. For a spreadsheet, you have tables
where you enter your data, formulas, VBA macros and then the notation
used to implement Excel itself.

JOEL: Right. This is already better than regular software, because there are ap-
propriate notations for changes at multiple difficulty levels, but it is not a
perfect system of notations yet...

TowmaAs: There is perhaps a nice characterization of the ideal notational con-
tinuum that we are looking for in the work of Pierre Depaz [[10, p.123] on
aesthetics of code. He says that “simplicity is found in source code when the
syntax and the ontologies used are an exact fit to the problem: simple code is
code that is neither too precise, nor too generic, displaying an understanding of
and a focus on the problem domain, rather than the applied tools.”

JOEL: I think this really boils down to two things. First, to be able to use the
right tools for different jobs, you need to be free from a restriction to just
one notation. Second, you should also be free from a restriction to plain text;
non-textual notations should be on the menu, because those are sometimes
the most appropriate fit for a problem.

Tomas: Hmm, but wouldn’t such a “notational pluralism” be impractical? In
Excel, you may use multiple disjoint notations such as tables, formulas and
macros—yet this also means that there is no gradual progression between
them. If you learn how to use formulas, it does not help you at all with
learning how to write macros (or even become a C++ developer working on
Excel at Microsoft...).

JOEL: Yes, the right approach seems to be to have an adaptable substrate. Some-
thing that has a basic form, but can be adapted in various ways to suit par-

10 T. Petricek, J. Jakubovic

Fig. 4: “Hello world” program in the es-
oteric programming language Piet. The
program instructions are encoded as
colours and are executed as a pointer
moves over the individual colour re-
gions of the bitmap.

|
|
ticular domain-specific problems. See the illustration in Figure [3b|where the

same (adaptable) substrate can be used for both small and simple changes,
but also large and (inevitably) difficult changes.

TowmaAs: This reminds me of a brief research programme focused on “extensible
programming languages” in the late 1960s [33]], which tried to solve the
problem of designing a universal programming language by having a base
language that can be extended by the user. I'm still trying to figure out what
happened to this idea...

JOEL: Ah, but you are talking about languages again, rather than systems!

ToMAs: But how would this work? You would need a substrate where an end-
user can make a small change and gradually progress. The starting point then
has to be something they are already familiar with. To take a spreadsheet as
an example, do you think the substrate could somehow “grow” from filling
numbers in a table to modifying some simple aspects of the system that users
may care about, like making the interface color scheme colour blind friendly
or making the wording of menu items clearer?

JOEL: Something like this could work in spreadsheets. I can think of some parts
of Excel-the-application that transfer well to a portion of a spreadsheet. One
could press a button to “reflect” the key/value pairs in the preferences menu
into two columns of cells. When edited, these cells would update Excel’s in-
ternal preferences that you normally edit in a dialog box. At a stretch, perhaps
other parts of such a dialog could also be reflected—say, the list of options in
a drop-down box. And then you could, for example, have your preferences
computed with formulas!

TomAS: Hmm, are you getting at some general principle with this idea?
JOEL: The notation for development should resemble the notation for use!

ToMAs: Well, this is a heavy constraint on the notations we can use for develop-
ment! What would justify such an idea?

JOEL: I admit, it’s about as restrictive as one could get! The motivation is that
the user is already familiar with the “notation for use” in the software—so
to the extent that “development” can be massaged to use the same nota-

On the Limits of Making Programming Easy 11

tion, they are able to adapt the software by re-using the same skills. They
no longer have to invest in learning a completely different notation (like a
programming language) before they can do that.

ToMAS: So, to take this idea to its limits, you're saying that Microsoft Paint
should be written in the Piet esolang that we can see in Figure [4P!

JOEL: Fair enough. I wouldn’t go so far; given that the use-notation in Paint is
what it is, there aren’t many changes to Paint that fit sensibly within it. That
being said—the program’s tool icons could be “reflected” in its canvas and
re-drawn that way, but that’s the only straw I can think to grasp!

JOEL: The principle will break down with absurd examples if you commit to it
fully, but that doesn’t mean we shouldn’t explore its domain of validity. It is
still promising, but you need to think about what is the essence of the sub-
strate through which most people interact with computers. It is not pixels...

TowmaAs: Do you mean buttons, tabs, tables, lists, forms and such?

JOEL: I believe there is a more fundamental substrate behind all of those. You
can model a lot of user interface widgets as rigid bodies that exist in some
space, connected with rods and springs and perhaps forces such as attraction
and repulsion between particular entities.

Tomas: How do you imagine this would provide a programming substrate?

JOEL: I do not have a perfect answer to this question, but you can think of
the basic substrate as a sort of “user interface physics” within which specific
visual notations for particular problems could be deﬁned Such a substrate
could even be the result of taking a 2D physics engine [[15], stripping it of
concepts like mass and rotations, and optimising it for this simpler domain.

JOEL: If we had that, then I think we would make a step towards the ideal
substrate for programming. And the substrate would need to live within an
actual running materialized system, rather than a static blueprint like a pro-
gram in source code today.

6 Research methodologies

ToMAS: You certainly have some very interesting ideas about the future of pro-
gramming here, but let me ask an annoying practical question. How do you
turn this into a realistic research project? Is there something you can analyse

® Constraint-based systems for specifying user interfaces, such as Cassowary [4], can
be seen as related to this idea, although they focus more on rendering the layout for
the end-user than on developing a foundational underlying substrate. Additionally,
individual constraints are too low-level for a human-friendly UI substrate, although
they could well be what such a substrate “compiles” to in order to run. This was the
subject of much research in the 1990s [30].

12 T. Petricek, J. Jakubovic

formally or measure about a prototype? To make this into a research agenda,
there needs to be some scientific methodology behind it!

JOEL: Tomas, remind me, didn’t you run into a problem in your thesis with the
intersection of provable and interesting things?

TomAs: You remember correctly. There was a point in my PhD when I realized
that all the things I could prove about my programming language were not
that interesting, and all the things that I found interesting about program-
ming were not particularly formalizable. I guess I was getting increasingly in-
terested in what people sometimes call “programming experience” research.ﬁ]
The experience also made me think much more about research methodology
and led me to interest in history and philosophy of science.

JOEL: Does that shed any light on why programming language researchers are
so focused on formalization and proofs?

Towmas: For one thing, there is a bias for theory over experiment in all branches
of science. Ian Hacking [[19] pointed this out in the case of physics, as did
Hossenfelder [22]], and the same applies to computer science. Finding a suit-
able methodology for programming experience research is an open problem
that does not have a definite answer. It may need a range of qualitative and
quantitative methods, including formalisms, empirical evaluation, but also
system descriptions, user studies and perhaps even interactive artifacts [12].

JOEL: I do not understand how you are supposed to make general and unifying
claims if you do not first start by looking at the concrete and specific!

Towmas: Fair enough, and there are two examples to support your perspective.
For most of its history, particle physics consisted of two sub-cultures that Pe-
ter Galison refers to as the “image” and “logic” traditions [[17]]. While the
latter focused on statistical analysis of observations, the former attempted to
capture “golden events” that show the decay of a single particle. These con-
crete traces went on to be hugely influential in shaping the theory of particle
physics. And in the case of city planning, Jane Jacobs made a similar argu-
ment [23] in favor of looking at specific cases, which she calls “unaverage
clues”. An example is a chain of bookshops that always remain open until
late, except for one branch in Brooklyn. The clue tells you something signifi-
cant about that part of the city.

JOEL: OK, but on reflection, we need something in between. In order to do any
formalisation or a user study, you need conceptual clarity on what you're
studying and what you’re trying to find out. I don’t think we have any such
clarity on many interesting aspects of programming systems.

Towmas: But what kind of knowledge structure can give you such conceptual

clarity, without being as detailed as a formal model?

® The topic is the subject of the Programming Experience workshop
(https://programming-experience.org) that has been running since 2016.

On the Limits of Making Programming Easy 13

Months

(a) Time versus number of workers: (b) Time vs. number of workers:
Perfectly partionable task Task with complex inter-relationships

Fig. 5: Two illustrations by Brooks showing how communication overhead means
that adding workforce to a delayed project makes things worse (from [6])

JOEL: You made a reference to Fred Brooks earlier. I think his other essay “The
Mythical Man-Month” [6] is a good example. In the essay, Brooks explains
why adding more workforce to a delayed project only makes the delay worse.
The argument is based on analysing the amount of communication that needs
to happen (Figure[5)). For a perfectly partitionable programming task, adding
people helps. But if the work requires communication, the overhead of the
communication grows exponentially as people are added, eventually over-
taking the gain you get from the linear growth of people who can do the
programming. Brooks illustrates this with charts and equations. He does not
have formal proofs or specific numbers, but the model provides a good theory
that provides conceptual clarity.

Towmas: Interesting, this kind of reasoning seems to be quite common in software
engineering. I can think of another example from a book about the history
of anti-ballistic missile systems [38]]. One of the arguments for why such sys-
tems cannot be reliably built was based on comparing the rate of change in
the environment and the rate of change of the system. The idea was that the
US cannot build a reliable defence system, because changing the software
takes more work than changing some of the characteristics of the Soviet mis-
siles. Ergo, their defences won’t be able to keep pace with Soviet innovations
in offensive capability. Again, this is a somewhat mathematical argument that
provides conceptual clarity.

JOEL: Right. I think we can refer to such models that provide conceptual clarity
proto-theories. I would say that we need more thinking like this! They can be
later refined to more formal models, but not prematurely. I would also add
that mathematical formulations like those above are not the only kinds of
proto-theories we should be creating.

Towmas: Well, I would have loved to pursue proto-theories during my PhD—but
I fear I would not have been able to defend it!

14 T. Petricek, J. Jakubovic

JOEL: Exactly—there needs to be a way for researchers to get credit for doing this
sort of work; until then, it’s disincentivised. The Onward! tracks at SPLASH
provide this opportunity, but there ought to be more venues for it.

Tomas: So what would be a useful proto-theory about programming systems?

7 Technical dimensions of programming systems

JOEL: Well, a good place to start would be the published framework of “technical
dimensions” [25] which break down programming systems into narrower
properties of which they can have more or less.

ToMAS: Dimensions? That rings a bell...

JOEL: You're thinking of the Cognitive Dimensions of Notations [18]] which was
the main inspiration. However, the Technical Dimensions are concerned with
the programming system as a whole, not just its notation.

Tomas: I can see how you capture various properties of notations. They can be
more or less dense, more or less consistent, more or less easy to modify etc.
But what kind of properties can you capture as dimensions about program-
ming systems in general?

JOEL: The list is quite long and I do not think it is complete. but it includes some
of the characteristics of programming systems that we have talked about al-
ready. For example, modes of interaction captures whether you do everything
in a single environment or whether “using” is distinct from “programming”;
notational structure captures whether there is just a single adaptable notation
or a range of different ones; self-sustainability captures the degree to which
the system can be modified from within itself and so on.

TomaAs: Just to get back to our original question, how does such a framework
contribute to making programming easier?

JOEL: Remember Figure |1} which illustrated that we know how to study pro-
gramming languages, but not how to study programming systems? Well,
many people came up with interesting programming systems that make pro-
gramming easier in some way. But because we lacked a good way for talking
about them, the ideas were never clearly described and nobody was able to
adopt them and develop them further.

Towmas: This is the incommensurability that Gabriel [[16] warns us about! He
would chuckle and reminisce about the glory days of Lisp systems in the
1980s, before shift to the mathematical paradigm made all the programming
systems work incomprehensible.

JOEL: Alas, we cannot travel in time back to the 1980s! We should take time to-
day to set up a framework for programming languages people to understand
and appreciate work on programming systems.

On the Limits of Making Programming Easy 15

ToMAS: I guess what you are saying is that technical dimensions of programming
systems gives us a set of common points of reference that allow for apples-
to-apples comparison of widely different programming systems? But is this
meant to supersede the existing programming language research methods?

JOEL: Not at all. Since many programming systems contain a programming lan-
guage, all existing programming language research is applicable to their syn-
tax, semantics, types, paradigms, and so on. The technical dimensions simply
establish the analogues of those concepts for the other parts of those systems.

Towmas: Didn’t you link the change from thinking about programming languages
to thinking about programming systems to the idea of Kuhnian scientific rev-
olution before?

JOEL: Yes, it would be a corrective to the shift that Gabriel observed in the oppo-
site direction [[16]]; not by fighting PL research, but by simply making space to
do the more general thing. To truly establish a new paradigm, the return to
thinking about systems would put more emphasis on research methods that
can talk about them in their full complexity. It would not invalidate program-
ming language theory, but it could make it more of a speciality instead of the
default. However, we are quite far from what Kuhn called “normal science”.
It is still early days for programming systems research!

Tomas: What do you think still needs to be done? I have to say that, compared to
established programming language research methods, the work on technical
dimensions seems quite informal!

JOEL: Right. The full realisation of the aims of the framework is a long-term
research program. What we have already is the seed to start it off. We have
a set of dimensions that come with qualitative descriptions. Future work,
as set out towards the end of my dissertation [24], involves making these
descriptions more precise and possibly even quantifiable.

Towmas: Quantifiable? Does this risk the problem we mentioned about focusing
on what is formalizable rather than on what is interesting?

JOEL: That spectre is always hanging over it, yes. But the solution is to refine the
framework slowly and carefully, with input and critique from the research
community. This is why the dimensions were published in their qualitative
state; better to grit our teeth and endure the informality, than to prematurely
formalise before we know what we’re doing! Just the fact that we’re breaking
down programming systems into a common vocabulary of properties to fo-
cus on, helps to analyse programming systems and compare them with each
other. It also means we can map the design space of possible systems and
spot combinations of properties that haven’t been tried yet.

Towmas: It is funny to hear us discussing the theoretical framework of program-
ming systems, after we complained about the scientific bias in favour of the-
oretical work! You have just outlined the future work for interested “theo-
reticians”, but the future work for “experimentalists” should be at least as

16 T. Petricek, J. Jakubovic

important. I guess the experimental work should be filling the database of
how different systems fit into the framework.

JOEL: That is certainly one task for the experimentalists. But they can also ex-
plore the design space to find new designs. To get back to our original moti-
vation of making programming easier, my thesis explores programming sys-
tems that have three properties: notational freedom, which would give you
the kind of adaptable substrate we talked about, explicit structure, which is
a pre-condition for building such a substrate, and self-sustainability, which
would make it possible to evolve the system from within itself, enabling a
virtuous cycle of self-improvement.

ToMmAS: So your thesis not only proposes a proto-theory, but it also showcases
an application of it. Is that something that you'll be able to defend?

JOEL: Let’s hope so! I do feel prepared to defend it; we’ll find out for sure in one
week’s time!l’]

8 Conclusions

ALAN (arrives in his festive Christmas jumper): Ho Ho Ho! It is nice to see you!
What have you two been chatting about here?

ToMAs: Joel was practicing the elevator pitch for his PhD thesis, but we got a bit
distracted. We ended up talking about whether it is possible for programming
to be easier, whether there are any fundamental limits to that, and also what
kind of research methodology can get us there!

ALAN: And what did you conclude?

JOEL: On a more general level, we agreed that we need more thinking about in-
teractive, stateful programming systems and their characteristics. Program-
ming can only become easier if we start thinking about how programming
systems are used. In other words, think more about programming systems
than about programming languages. Today, this is tricky, because we lack the
right vocabulary for talking about programming systems, but the technical
dimensions are a useful proto-theory that serves as the starting point!

ALAN: And on the more specific level?

JOEL: We do not have a concrete system yet, but we believe it will have a number
of general properties. It needs to be built around a programming substrate
that can grow with the user. It should make it easy to make small changes to
the system, but also allow making more complex and difficult changes. We
also need to think about programming as gradual adaptation, to overcome
Brooks’ “doom prophecy” of essential complexity. But I remain optimistic.

ToMAS: My tongue-in-cheek suggestion is that your Concepts in Programming
Languages module, which I very much enjoyed supervising back in the day,

7 1t turned out such a thing did work out after all.

On the Limits of Making Programming Easy 17

should become Concepts in Programming Systems! We need a new genera-
tion of researchers who will adopt the programming systems perspective and
come up with great new theories and experimental systems!

ALAN: So, what do you think the next generation of Computer Lab programming
systems PhD students should be doing?

JOEL: I would love to see more research that looks at how programming lan-
guages are embedded in broader stateful interactive systems. This is some-
thing where we are lacking both theory and new interesting design ideas. I
also think programming researchers should look at things that we do not re-
ally see as programming languages. What is it that makes systems like Excel,
but also Flash, Hypercard or game engines work well as programming tools?
We also need to be more fearless in looking at problems that are interesting,
but informal. If we are to study informal properties that are not simply true or
false, we will also need more focus on finding consensus among researchers
working on programming tools, such as agreeing on the right proto-theories
on which to further advance our work]

Acknowledgments. The events portrayed in this essay are entirely fictional. Any resem-
blance to actual persons, living or dead, is purely coincidental. But we are grateful to
the non-fictional people who participated in a lively discussion at Mycroftfest and helped
to shape this essay, as well as to the anonymous reviewers who may find some of their
suggestions embedded in the dialogue.

The authors were supported by the Charles University grant “Type systems for data-
centric programming” (PRIMUS24/SCI/021) and the first author also beneifted from the
support of the Charles University-funded research centre “Language, Image, and Gesture:
Forms of Discursivity” (UNCE24/SSH/026).

References

1. Alexander, C.: Notes on the synthesis of form. Harvard University Press
2. Ankerson, M.S.: Dot-com design: The rise of a usable, social, commercial web,
vol. 15. NYU Press (2018)
3. Basman, A.: Boxer and the tradition of materialised programming (2022), presented
at Boxer Salon, Porto
4. Borning, A., Marriott, K., Stuckey, P., Xiao, Y.: Solving linear arithmetic constraints
for user interface applications. In: Proceedings of the 10th Annual ACM Symposium
on User Interface Software and Technology. p. 87-96. UIST 97, Association for Com-
puting Machinery, New York, NY, USA (1997). https://doi.org/10.1145/263407.
263518
. Brand, S.: How Buildings Learn: What Happens After They're Built. Viking (1994)
6. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley Professional (1975)

9]

8 A recent seminar focused on the problem of developing new “theories of programming”
[26]]. However, we believe that a theory needs to start as an informal proto-theory and
that premature scientific framing in terms of hypotheses may inhibit progress.

https://doi.org/10.1145/263407.263518
https://doi.org/10.1145/263407.263518
https://doi.org/10.1145/263407.263518
https://doi.org/10.1145/263407.263518

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.

25.

T. Petricek, J. Jakubovic

Brooks, E.P.: No silver bullet: Essence and accidents of software engineering. Com-
puter 20(4), 10-19 (1987). https://doi.org/10.1109/MC.1987.1663532

Cohen, S.: Physical context/cultural context: Including it all. OPPOSITIONS 2, 1-40
(January 1974)

De Millo, R.A., Lipton, R.J., Perlis, A.J.: Social processes and proofs of theorems and
programs. Commun. ACM 22(5), 271-280 (may 1979). https://doi.org/10.1145/
359104.359106

Depaz, P.: The role of aesthetics in understanding source code. Ph.D. thesis, Univer-
sité Sorbonne Nouvelle, ED120 - THALIM (2023)

diSessa, A.A., Abelson, H.: Boxer: a reconstructible computational medium. Com-
mun. ACM 29(9), 859-868 (sep 1986). https://doi.org/10.1145/6592.6595
Edwards, J., Kell, S., Petricek, T., Church, L.: Evaluating programming systems de-
sign. In: Marasoiu, M., Church, L., Marshall, L. (eds.) Proceedings of the 30th Annual
Workshop of the Psychology of Programming Interest Group (PPIG 2019). Newcastle
University, UK (August 2019)

Feiler, P., Gabriel, R., Goodenough, J., Linger, R., Longstaff, T., Kazman, R., Klein, M.,
Northrop, L., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-Large-Scale Systems: The
Software Challenge of the Future (Jun 2006), https://insights.sei.cmu.edu/library/
ultra-large-scale-systems-the-software-challenge- of-the-future/, accessed: 2024-
Feb-5

Free Software Foundation: What is free software (version 1.1) (2001), https://www.
gnu.org/philosophy/free-sw.en.html, accessed on: 5 February 2024

Gabriel, R.P.: Exploratory research proposal: Virtual-world-inspired programming
language design
https://www.dreamsongs.com/Files/VirtualWorldsForCodeProposalPure.pdf
Gabriel, R.P.: The structure of a programming language revolution. In: Proceedings
of the ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. p. 195-214. Onward! 2012, Association for Com-
puting Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2384592.
2384611

Galison, P.: Image and Logic: A Material Culture of Microphysics. University of
Chicago Press (1997)

Green, T.R.G.: Cognitive dimensions of notations. In: Proceedings of the Fifth Confer-
ence of the British Computer Society, Human-Computer Interaction Specialist Group
on People and Computers V. p. 443—-460. Cambridge University Press, USA (1990)
Hacking, I.: Representing and Intervening: Introductory Topics in the Philosophy of
Natural Science. Cambridge University Press, Cambridge (1983)

Hirschfeld, R., Masuhara, H., Rose, K. (eds.): Workshop on Self-Sustaining Systems,
S3 2010, Tokyo, Japan, September 27-28, 2010. ACM (2010). https://doi.org/10.
1145/1942793

Hirschfeld, R., Rose, K. (eds.): Self-Sustaining Systems, First Workshop, S3
2008, Potsdam, Germany, May 15-16, 2008, Revised Selected Papers, Lecture
Notes in Computer Science, vol. 5146. Springer (2008). https://doi.org/10.1007/
978-3-540-89275-5

Hossenfelder, S.: Lost in Math: How Beauty Leads Physics Astray. Basic Books (2018)
Jacobs, J.: The Death and Life of Great American Cities. Random House (1961)
Jakubovic, J.: Achieving Self-Sustainability in Interactive Graphical Programming
Systems. Ph.D. thesis, University of Kent (March 2024), https://kar.kent.ac.uk/
105537/

Jakubovic, J., Edwards, J., Petricek, T.: Technical dimensions of programming sys-
tems. The Art, Science, and Engineering of Programming 7(3), 13-1 (2023)

https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1145/359104.359106
https://doi.org/10.1145/359104.359106
https://doi.org/10.1145/359104.359106
https://doi.org/10.1145/359104.359106
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/6592.6595
https://insights.sei.cmu.edu/library/ultra-large-scale-systems-the-software-challenge-of-the-future/
https://insights.sei.cmu.edu/library/ultra-large-scale-systems-the-software-challenge-of-the-future/
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://www.dreamsongs.com/Files/VirtualWorldsForCodeProposalPure.pdf
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/1942793
https://doi.org/10.1145/1942793
https://doi.org/10.1145/1942793
https://doi.org/10.1145/1942793
https://doi.org/10.1007/978-3-540-89275-5
https://doi.org/10.1007/978-3-540-89275-5
https://doi.org/10.1007/978-3-540-89275-5
https://doi.org/10.1007/978-3-540-89275-5
https://kar.kent.ac.uk/105537/
https://kar.kent.ac.uk/105537/

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

On the Limits of Making Programming Easy 19

LaToza, T.D., Ko, A., Shepherd, D.C., Sjgberg, D., Xie, B.: Theories of programming
(dagstuhl seminar 22231). In: Dagstuhl Reports. vol. 12. Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik (2023)

Leimbach, T.: The sap story: Evolution of sap within the german software industry.
IEEE Annals of the History of Computing 30(4), 60-76 (2008). https://doi.org/10.
1109/MAHC.2008.75

Lynch, K.: The Image of the City. MIT Press, Cambridge, MA (1960)

MacKenzie, D.: Mechanizing Proof: Computing, Risk, and Trust. The MIT Press (09
2001). https://doi.org/10.7551/mitpress/4529.001.0001

Myers, B.A. (ed.): Languages for developing user interfaces. A. K. Peters, Ltd., USA
(1992)

Perera, R., Nguyen, M., Petricek, T., Wang, M.: Linked visualisations via galois depen-
dencies. Proc. ACM Program. Lang. 6(POPL) (jan 2022). |https://doi.org/10.1145/
3498668

Petricek, T.: Programming as architecture, design, and urban planning. In: Pro-
ceedings of the 2021 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. p. 114-124. Onward!
2021, Association for Computing Machinery, New York, NY, USA (2021). https:
//doi.org/10.1145/3486607.3486770

Petricek, T.: The rise and fall of extensible programming languages (2023), https:
//tomasp.net/academic/drafts/extensible-rise/hapoc-2023.pdf, presented at HaPoP
Petricek, T., Orchard, D.A., Mycroft, A.: Coeffects: Unified static analysis of context-
dependence. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.Z., Peleg, D. (eds.)
Automata, Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 7966, pp. 385-397. Springer (2013). https://doi.org/10.1007/
978-3-642-39212-2 35

Petricek, T., Syme, D.: F# Web Tools: Rich client/server web applications in
F#. Unpublished draft. Online at https://tomasp.net/academic/articles/fswebtools/
fswebtools-ml.pdf

Rein, P., Ramson, S., Lincke, J., Hirschfeld, R., Pape, T.: Exploratory and live, pro-
gramming and coding. The Art, Science, and Engineering of Programming 3(1)
(2018)

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.: Scratch: program-
ming for all. Commun. ACM 52(11), 60-67 (nov 2009). https://doi.org/10.1145/
1592761.1592779

Slayton, R.: Arguments that Count: Physics, Computing, and Missile Defense, 1949-
2012. MIT Press (2013). https://doi.org/10.7551/mitpress/9234.001.0001

Victor, B.: Learnable programming: Designing a programming system for under-
standing programs (2012), http://worrydream.com/LearnableProgramming

https://doi.org/10.1109/MAHC.2008.75
https://doi.org/10.1109/MAHC.2008.75
https://doi.org/10.1109/MAHC.2008.75
https://doi.org/10.1109/MAHC.2008.75
https://doi.org/10.7551/mitpress/4529.001.0001
https://doi.org/10.7551/mitpress/4529.001.0001
https://doi.org/10.1145/3498668
https://doi.org/10.1145/3498668
https://doi.org/10.1145/3498668
https://doi.org/10.1145/3498668
https://doi.org/10.1145/3486607.3486770
https://doi.org/10.1145/3486607.3486770
https://doi.org/10.1145/3486607.3486770
https://doi.org/10.1145/3486607.3486770
https://tomasp.net/academic/drafts/extensible-rise/hapoc-2023.pdf
https://tomasp.net/academic/drafts/extensible-rise/hapoc-2023.pdf
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-642-39212-2_35
https://tomasp.net/academic/articles/fswebtools/fswebtools-ml.pdf
https://tomasp.net/academic/articles/fswebtools/fswebtools-ml.pdf
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.7551/mitpress/9234.001.0001
https://doi.org/10.7551/mitpress/9234.001.0001
http://worrydream.com/LearnableProgramming

	On the Limits of Making Programming Easy

