
1

Don’t Call Us, We’ll Call You
Towards Mixed-Initiative Interactive Proof Assistants for Programming Language Theory

JAN LIAM VERTER, Faculty of Mathematics and Physics, Charles University, Czech Republic
TOMAS PETRICEK, Faculty of Mathematics and Physics, Charles University, Czech Republic

There are two kinds of systems that programming language researchers use for their work. Semantics
engineering tools let them interactively explore their definitions, while proof assistants can be used to check
the proofs of their properties. The disconnect between the two kinds of systems leads to errors in accepted
publications and also limits the modes of interaction available when writing proofs.

When constructing a proof, one typically states the property and then develops the proof manually until an
automatic strategy can fill the remaining gaps. We believe that an integrated and more interactive tool that
leverages the typical structure of programming language could do better. A proof assistant aware of the typical
structure of programming language proofs could require less human input, assist the user in understanding
their proofs, but also use insights from the exploration of executable semantics in proof construction.

In the early work presented in this paper, we focus on the problem of interacting with a proof assistant
and leave the semantics engineering part to the future. Rather than starting with manual proof construction
and then completing the last steps automatically, we propose a way of working where the tool starts with
an automatic proof search and then breaks when it requires feedback from the user. We build a small proof
assistant that follows this mode of interaction and illustrates the idea using a simple proof of the commutativity
of the “+” operation for Peano arithmetic. Our early experience suggests that this way of working can make
proof construction easier.

1 INTRODUCTION
Programming language researchers use two kinds of tools to describe the semantics of programming
languages and study their properties. Semantics engineering tools like PLT Redex [Felleisen et al.
2009] make it possible to define, explore and debug the operational semantics of a language, while
proof assistants such as SASyLF [Aldrich et al. 2008], Coq and Agda are used to formalize and check
proofs of programming language properties. Unfortunately, there is a disconnect between these two
kinds of tools, leading to errors even in peer-reviewed high-profile publications [Klein et al. 2012].
Our research objective is to design a unified system that will integrate support for programming
language semantics description, inspired by PLT Redex, with support for proof checking, inspired
by SASyLF. We are interested in exploring research questions such as:

(1) Can the proof assistant leverage the typical structure of programming language proofs to
support a more effective interactive proof development?

(2) Can we use interactive exploration of executable semantics as the basis for constructing
proofs, e.g., by taking inspiration from programming by demonstration [Cypher et al. 1993]?

(3) Can we make writing programming language models and proofs more accessible by writing
them directly in the concrete language syntax [van der Storm 2023]?

In this paper, we focus on the first question and present our early work on developing a proof
assistant that is based on a novel mode of interaction where the assistant initiates the search for a
proof using a very simple proof strategy, but asks the user for guidance when a more sophisticated
human insight is needed. We draw on human-computer interaction research, where the approach
where “each agent (human or computer) contributes what [it is best equipped for] at the most
appropriate time” is known as mixed-initiative interaction [Allen et al. 1999].

Authors’ addresses: Jan Liam Verter, Department of Distributed and Dependable Systems, Faculty of Mathematics and
Physics, Charles University, Czech Republic, verter@d3s.mff.cuni.cz; Tomas Petricek, Department of Distributed and
Dependable Systems, Faculty of Mathematics and Physics, Charles University, Czech Republic, tomas@tomasp.net.

1:2 Jan Liam Verter and Tomas Petricek

Ideally, the resulting interaction should mimick the level of detail needed in rigorous informal
proofs in programming language theory. Those typically consist of instructions such as what kind
of induction to use (e.g., over term structure, over typing derivation), what induction hypothesis to
use, how to use a lemma, how to do a case splitting and further hints for non-trivial cases.

To illustrate the idea, we developed a proof assistant for first-order predicate logic based on the
natural deduction system. The assistant can check proofs written in the explicit Fitch-style notation,
but it can also semi-automatically complete partial proofs by interacting with the user. In this paper,
we demonstrate the process using a simple proof of commutativity of the “+” operation for Peano
arithmetic. The proof itself is of little interest, but it shows the integration between automatic
search and human input that we aim to support for typical programming language research proofs.

2 WORKED EXAMPLE
The mode of interaction with a typical proof assistant is that the user manually constructs the proof
structure and, after providing enough structure, invokes an “auto” command to complete the proof
through search. In this section, we introduce an alternative mixed-initiative mode of interaction
where the user invokes the proof assistant, which proceeds with automatic search, but asks the
user when it needs more input to complete the proof. To contrast the two modes of interaction, we
use a simple theorem in the theory of natural numbers. This worked example, although simplistic,
shows how the intended interaction proceeds.

We first give a description of the proof in prose to show how such a theorem might be justified
in a research paper (Section 2.2). This demonstrates the proof structure and the level of detail that
both, the writer and the reader of the justification might consider satisfactory. We then try to
match that level of detail in the formal proof presented (Section 2.3) and show how a proof with
the same level of detail can be constructed using our proposed mixed-initiative mode of interaction
(Section 2.4).

2.1 A Primer on Notation
First, we showcase the notation of our tool using a simple example. The following derives the
modus ponens theorem schema using the built-in implication elimination:

theorem schema modus−ponens for all propositions P, K : P =⇒ K, P ⊢ K
proof : | p→k : P =⇒ K

| p : P
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| K by rule =⇒−elim on p→k, p

The example demonstrates the notation well – we can label assertions and sub-proofs with
names (such as p→k and proof), those are then used for referring to them later. Note that p→k is
just a conveniently named identifier and we could equally write, e.g. p_imp_k. We can also omit the
naming of the statement when we don’t need to directly address it. For example, we omit naming
the last statement in the sub-proof, because it is implicitly used as the result.

The tool has built-in support for all logical connectives and in the context of defining a theorem
(schema) it also supports the “turnstile”. This convenient notation allows us to use a theorem
defined like this one (with one or more premises and a turnstile) using only a single justification
without having to first claim the statement it represents and then use one or more implication
eliminations to obtain the conclusion. However, nothing prevents us from using the more explicit

Don’t Call Us, We’ll Call You 1:3

notation and defining it explicitly as an implication: (P =⇒ K) =⇒ P =⇒ K – both declarations are
proved the same way.
We use built-in rules for the introduction and elimination of the usual logical connectives to

justify logical statements. To make the above example more interesting, we also employ the limited
support for parametric theorems and rules (parametrized over propositions) that is available in our
prototype. However, we will not make use of this facility in the main example.

2.2 Informal Proof
The example that we use to explain the proposed mode of interaction is the following formula:

∀ (n1 : N) (n2 : N) : ∃ (n3 : N) : Sum(n1, n2, n3) ∧ Sum(n2, n1, n3)

The justification in the prose form might typically look like this:
The proof proceeds by induction on the first variable (n1).

(1) When n1 is Zero, the corresponding goal Sum(Zero, n2, N3) ∧ Sum(n2, Zero, N3) for an
unspecified (universal) n2 : N and some arbitrary N3 : N is justified using sum-zero for the
left-hand side and an auxiliary lemma ∀ (n : N) : Sum(n, Zero, n) for the right-hand side.

(2) When n1 is S(m1) for an unspecified (universal) m1, we obtain an induction hypothesis
∀ (n2 : N) : ∃ (n3 : N) : Sum(m1, n2, n3) ∧ Sum(n2, m1, n3). We then use case analysis
on the universal variable n2 splitting the proof into two cases:
(a) When the n2 is Zero, we have the goal Sum(n1, Zero, N3) ∧ Sum(Zero, n1, N3) for some

arbitrary N3 : N. We solve it by following the same steps as above only switching the order –
we use the auxiliary lemma to justify the left-hand side and the rule sum-zero to justify the
right-hand side of the conjunction.

(b) When the n2 is S(m2) for an unspecified (universal) m2 : N, we finally get to the interesting
part. To justify our goal Sum(S(m1), S(m2), N3) ∧ Sum(S(m2), S(m1), N3) for some
arbitrary N3 : N we use the induction hypothesis on S(m2) obtaining ∃ (n3 : N) : Sum(m1,
S(m2), n3) ∧ Sum(S(m2), m1, n3). Next we use the rule sum-s on the left-hand side and
the auxiliary lemma ∀ (n1,n2,n3 : N) : Sum(n1, n2, n3) =⇒ Sum(n1, S(n2), S(n3))
on the right-hand side of its "instantiation". This gives the justification for our final goal.

2.3 Formal Proof in Checking Mode
Ideally, the proof written using a proof assistant would have the same structure as the hand-written
informal proof and the proof assistant would be able to complete the easy cases automatically, only
requiring guidance in the trickier parts of the proof, e.g., the (2b) case.
If we follow the standard mode of interaction with a proof assistant, we write the structure of

the proof ourselves and let the assistant handle the repetitive and uninteresting parts of the proof
automatically using the prove command. When written in this way, the formal proof has a similar
level of detail as the informal proof – it keeps the focus on the parts that are interesting and require
creativity – but elaborating the structure of the proof is somewhat tedious. (This would be even
more the case for programming language theory proofs that often have a typical fixed structure.)
The formal version of the proof checkable by our prototype is shown in figure 1.1 (With the

most interesting parts requiring human creativity highlighted.) Despite the significant verbosity
of the notation2 (notably when dealing with ∀ and ∃ eliminations), the proof shows the absence of
the uninteresting parts and puts all of the focus on the part considered interesting and requiring

1The source file containing the complete module – the proof together with definitions can be found at this GitHub Gist.
2Focusing on the highlighted parts of the most nested sub-proof makes it more readable. It also roughly corresponds to the
level of verbosity we would want in future versions of the tool.

https://gist.github.com/lambduli/a11407156b8c9c0d54d9ea6972efc73d

1:4 Jan Liam Verter and Tomas Petricek

theorem sum-total-comm : ∀ (n1, n2 : N) : ∃ (n3 : N) : Sum(n1, n2, n3) ∧ Sum(n2, n1, n3)

∀ (n1 : N) (n2 : N) : ∃ (n3 : N) : Sum(n1, n2, n3) ∧ Sum(n2, n1, n3) by induction :

case Zero ->

|

|---

| 1: prove ∀ (n2 : N) : ∃ (n3 : N) : Sum(Zero, n2, n3) ∧ Sum(n2, Zero, n3)

case S(m1) ->

| ind-hyp: ∀ (n2 : N) : ∃ (n3 : N) : Sum(m1, n2, n3) ∧ Sum(n2, m1, n3)

|--

| 1: | for any (N2 : N)

| |--

| | ∃ (n3 : N) : Sum(S(m1), N2, n3) ∧ Sum(N2, S(m1), n3) by case analysis on N2 :

| | case Zero ->

| | |

| | |--

| | | 2: prove ∃ (n3 : N) : Sum(S(m1), Zero, n3) ∧ Sum(Zero, S(m1), n3)

| |

| | case S(m2) ->

| | |

| | |--

| | | 3: ∃ (n3 : N) : Sum(m1, S(m2), n3) ∧ Sum(S(m2), m1, n3) by rule ∀-elim on ind-hyp

| | | 4:| p: Sum(m1, S(m2), N3) ∧ Sum(S(m2), m1, N3) for some (N3 : N)

| | | |--

| | | | 5: Sum(m1, S(m2), N3) by rule ∧-elim on p

| | | | 6: Sum(S(m2), m1, N3) by rule ∧-elim on p

| | | | 7: Sum(S(m1), S(m2), S(N3)) by rule sum-s on 5

| | | | 8: ∀ (n1,n2,n3 : N): Sum(n1, n2, n3) =⇒ Sum(n1, S(n2), S(n3)) by theorem sum-s-rhs

| | | | 9: Sum(S(m2), m1, N3) =⇒ Sum(S(m2), S(m1), S(N3)) by rule ∀-elim on 8

| | | | 10: Sum(S(m2), S(m1), S(N3)) by rule =⇒-elim on 9, 6

| | | | 11: Sum(S(m1), S(m2), S(N3)) ∧ Sum(S(m2), S(m1), S(N3)) by rule ∧-intro on 7, 10

| | | | 12: ∃ (n3: N) : Sum(S(m1), S(m2), n3) ∧ Sum(S(m2), S(m1), n3) by rule ∃-intro on 11

| | | 13: ∃ (n3 : N) : Sum(S(m1), S(m2), n3) ∧ Sum(S(m2), S(m1), n3) by rule ∃-elim on 3, 4

| 14: ∀ (n2 : N) : ∃ (n3 : N) : Sum(S(m1), n2, n3) ∧ Sum(n2, S(m1), n3) by rule ∀-intro on 1

Fig. 1. A semi-manual formal proof of the theorem sum-total-comm

creativity. But could it be constructed in a way where the user only has to explicitly write the
highlighted interesting parts?

2.4 Formal Proof in Mixed-Initiative Mode
In the standard checking mode of interaction, the tool handles simple parts of the proof when the
user writes the rest of the proof manually. The aim of the alternative mixed-initiative mode of
interaction that we present in this paper is to reverse the way of working – ask the tool to prove
the whole theorem on its own and only seek human input when it is needed.
In the mixed-initiative mode, the proof assistant can not only complete the simple cases, but it

is also able to generate the structure of the proof. Depending on the specific configuration of the

Don’t Call Us, We’ll Call You 1:5

proof-search strategy (discussed in Section 3), the tool deals with some parts automatically and
prompts the user when it gets stuck.

For the example proof discussed in this section, our proof assistant finds a structure that matches
the one written manually and it handles those parts that were left for automatic proof-search in
the original proof above. The interaction with our prototype is started by entering the following
command in the context of a proof:

prove ∀ (n1 : N) (n2 : N) : ∃ (n3 : N) : Sum(n1, n2, n3) ∧ Sum(n2, n1, n3)

the tool starts searching for a way to justify the given goal. Depending on the specific configuration
(in the case of our prototype – depending on the hardcoded strategy) it might be able to deal with
parts of the proof on its own and only get stuck when it needs to prove
∃ (n3 : N) : Sum(S(m1), S(m2), n3) ∧ Sum(S(m2), S(m1), n3). At that point, it prompts
the user with a request for help. In our prototype, the output looks like this: 3

I am solving a theorem `sum-total-comm'

1) goal: `∀ (n1 : N) : ∀ (n2 : N) : ∃ (n3 : N) : Sum(n1, n2, n3) ∧ Sum(n2, n1, n3)'

strategy: induction

2) case n1 := S(m1)

goal: `∀ (n2 : N) : ∃ (n3 : N) : Sum(S(m1), n2, n3) ∧ Sum(n2, S(m1), n3)'

ind. hypothesis: `ind-hyp1 : ∀ (n2 : N) : ∃ (n3 : N) : Sum(m1, n2, n3) ∧ Sum(n2, m1, n3)'

3) goal: `∀ (n2 : N) : ∃ (n3 : N) : Sum(S(m1), n2, n3) ∧ Sum(n2, S(m1), n3)'

strategy: induction

4) case n2 := S(m2)

goal: `∃ (n3 : N) : Sum(S(m1), S(m2), n3) ∧ Sum(S(m2), S(m1), n3)'

ind. hypothesis: `ind-hyp2 : ∃ (n3 : N) : Sum(S(m1), m2, n3) ∧ Sum(m2, S(m1), n3)'

My goal is: `∃ (n3 : N) : Sum(S(m1), S(m2), n3) ∧ Sum(S(m2), S(m1), n3)'.

Type a command or a proof:

At this point, the user can write the part of the proof from above – between 3 and 13 (inclusive).
Here’s that part again: (Mind the only change – a different name for the induction hypothesis.)

3: ∃ (n3 : N) : Sum(m1, S(m2), n3) ∧ Sum(S(m2), m1, n3) by rule ∀-elim on ind-hyp1

4: | p: Sum(m1, S(m2), N3) ∧ Sum(S(m2), m1, N3) for some (N3 : N)

|---

| 5: Sum(m1, S(m2), N3) by rule ∧-elim on p

| 6: Sum(S(m2), m1, N3) by rule ∧-elim on p

| 7: Sum(S(m1), S(m2), S(N3)) by rule sum-s on 5

| 8: ∀ (n1, n2, n3 : N) : Sum(n1, n2, n3) =⇒ Sum(n1, S(n2), S(n3)) by theorem sum-s-rhs

| 9: Sum(S(m2), m1, N3) =⇒ Sum(S(m2), S(m1), S(N3)) by rule ∀-elim on 8

| 10: Sum(S(m2), S(m1), S(N3)) by rule =⇒-elim on 9, 6

| 11: Sum(S(m1), S(m2), S(N3)) ∧ Sum(S(m2), S(m1), S(N3)) by rule ∧-intro on 7, 10

| 12: ∃ (n3: N) : Sum(S(m1), S(m2), n3) ∧ Sum(S(m2), S(m1), n3) by rule ∃-intro on 11

13: ∃ (n3 : N) : Sum(S(m1), S(m2), n3) ∧ Sum(S(m2), S(m1), n3) by rule ∃-elim on 3, 4

3In our current version the interaction is much more verbose. The output of the tool has been shortened for clarity.

1:6 Jan Liam Verter and Tomas Petricek

At this point, the tool accepts the proof and the search for the proof of the theorem succeeds. The
proof checked by the proof assistant, in this case, is the same as in the checking mode of interaction,
but the user had to write a much smaller proportion of the proof code explicitly.

In our current prototype, the toolmerely reports success but does not remember the guidance from
the user or the discovered proof. However, it could easily output the structure of the proof, either in
full or with gaps to be completed automatically. This way, we could construct the proof initially in
the mixed-initiative mode, obtaining an artifact that can be automatically and reproducibly checked
in the checking mode of interaction.

3 SEARCH STRATEGY
The current search strategy is intentionally simple and as non-creative as possible. This is to
demonstrate that even a simple search configuration, combined with the mixed-initiative mode of
interaction, is sufficient for constructing proofs. The current prototype does not support configurable
search strategies so the prototype has the “simple configuration” simply hard-corded, but we expect
to explore more advanced and creative strategies in the future. In our prototype, the search works
in the following way.
• When the current goal is a literal:

– we try to find an exact match (using unification) in the environment.
– we try to use a rule (schema) that would justify the corresponding literal. If a rule’s conclusion

matches (unifies), we attempt to satisfy all the goals introduced by the rule’s premises.
– we try to use a theorem (or a lemma).

• When the current goal is a formula with a conjunction respectively disjunction at the top, we
split that goal and try to prove both respectively at least one of its parts.

• When the current goal is an implication, we put the premise of it in the local scope and within
that augmented scope we try to prove the conclusion of the implication.

• When the current goal is an existentially quantified formula, we instantiate it with a fresh
unification variable and try to prove the body of the formula.

• When the current goal is a universally quantified formula, we use induction to prove it. We do
case split according to the type of the quantified variable and supply the induction hypothesis
accordingly.
It is worth pointing out that our current search strategy intentionally does not fully support

backtracking. The theorem that we use for demonstration is so simple that had we implemented
the search for all supported logical connectives and made the backtracking work it would be able
to solve that theorem completely on its own. That would take away the opportunity to showcase
the intended behavior on a simple example. With our extremely simple search strategy, we can
illustrate the situation when the automated reasoning fails to find the proof on its own and needs
help from the human user, that is the mode of interaction that we want to support for proofs about
more realistic programming langauge models in the future.

4 IDEAS TO EXPLORE
The prototype proof assistant outlined above raises a number of research questions that we intend
to explore in the future. One set of topics is motivated by our interest in educational use of the
proof assistant, where it needs to support not just construction of proofs, but also their better
understanding. Another set of topics is concernedwith the best way of implementing and supporting
the mixed-initiative mode of interaction.

Educational use of the assistant. For use as an educational tool, it is important that the system
should not become a black box like a sophisticated “auto” tactic. It needs to allow writing the

Don’t Call Us, We’ll Call You 1:7

proofs by hand and merely checking them. The search strategy needs to be simple enough to be
understandable. To support learning, the system may also offer multiple degrees of automation, so
that it can be used as a checker at the start, gradually becoming more automatic.

When to ask for human insight. Our experiments suggest that our proof assistant can easily “take
the wrong turn” and get stuck leading to prompting the user in a situation in which there is no
going forward. In such cases, the user would be forced to backtract the search, defying the point of
having an automated system. An interesting problem to investigate is thus when to ask the human
user for insight – the tool would ideally do so as soon as it faces a decision that would lead it to a
state that cannot be solved automatically, but detecting such a state is not trivial.

A partial solution would be to propose steps and ask the user for confirmation or offer a choice
of multiple directions to explore. This could, however, lead to the user micro-managing the tool and
again, defy the point of having the tool. Another option would be to rely on configurable tactics.
The strategies would be able to specify whether it is necessary or preferred to prompt the user
before they make a certain action. Finally, a visual interface might also help with this issue.

It might be possible to avoid the issue of choosing between prompting way too late or way too
often by changing the interaction a little bit. Instead of the tool asking for help when it gets stuck
and the user being presented with a prompt reconstructing the line of reasoning that led to the tool
getting stuck, the user would start from the goal and let the tool retrace the path leading to getting
stuck. So, instead of the tool asking for permission to do a step too often or asking for forgiveness
too late, it allows the user to look at the attempt in a similar way to how a teacher would look
at an incorrect solution from a student. We intend to explore those and similar ideas and try and
combine them into a design that would offer the best fitting strategy for each specific situation.

Configurable compositional tactics. One way of thinking about automation is as a composition
of simple search tactics. This may be useful as an implementation technique, but also as a way to
support the educational use outlined above. We imagine the systemmay be configured by specifying
a structure consisting of pre-defined composable more primitive tactics. Basic automation for a
novice user may include just a basic search. Amore sophisticated configuration may invoke multiple
automatic or interactive tactics.

It seems that some of the directions with respect to interactivity mentioned above would go well
with a Prolog-like way of defining the proof search. The author of the tactics library (the user or
a teacher) would be able to specify one or more ways to handle a goal having a certain shape or
a certain quality. The search procedure would then proceed similarly to Prolog languages – in a
depth-first way with backtracking.

Notation and user interaction. Currently, the tool is implemented as a terminal utility that prints
information and accepts textual input, but we want to investigate multiple ways of displaying
information and interacting with the tool. There are two basic modes of interaction. First, the
assistant can use an interactive command-based interface where some state is displayed to the user
and the user enters commands to alter it. Second, the assistant can be built around a representation
of proof that it gradually evolves and that the user can manually change. (The first style resembles
systems like Coq, whereas the latter systems like Agda.) Both cases can support the mode of
interaction we propose where the automatic search can ask for user input. It may also be interesting
to embed the interaction in a structured editor (e.g. [Beckmann et al. 2023; Moon et al. 2022; Omar
et al. 2017]), especially in the second case (interaction built around a representation of a proof).

1:8 Jan Liam Verter and Tomas Petricek

5 CONCLUSIONS
We believe that more powerful tools supporting the work of programming language researchers
can be created by a closer integration between semantics engineering tools, which make it possible
to define, explore and debug formal models of programming languages, and proof assistants, which
can be used to formalize and check properties of such formal models.
This paper is one small step towards our vision. We believe that proof assistants, used by

programming language researchers, can be made more effective by using mixed-initiative mode of
interaction, where the assistant performs simple automatic search and the human provides crucial
insight at the right time. We illustrated this way of working using a simple proof, checked using
our prototype proof assistant. Although our prototype is basic (and could easily be made more
powerful and less verbose), it demonstrates the mode of interaction that we envision.
In the future, we believe the mixed-initiative mode of interaction could leverage other insights

about the structure of programming language models, including those about the typical strucutre
of their proofs, but also insights gained from interactive exploration of programming language
models, such as those done in semantics engineering tools today.

ACKNOWLEDGMENTS
The research has been supported by the Charles University PRIMUS grant PRIMUS/24/SCI/021. We
thank to anonymous reviewers at HATRA’24 for valuable feedback and references.

REFERENCES
Jonathan Aldrich, Robert J. Simmons, and Key Shin. 2008. SASyLF: an educational proof assistant for language theory. In

Proceedings of the 2008 International Workshop on Functional and Declarative Programming in Education (Victoria, BC,
Canada) (FDPE ’08). Association for Computing Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/1411260.
1411266

James E Allen, Curry I Guinn, and Eric Horvtz. 1999. Mixed-initiative interaction. IEEE Intelligent Systems and their
Applications 14, 5 (1999), 14–23.

Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and Robert Hirschfeld. 2023. Structured Editing for All:
Deriving Usable Structured Editors from Grammars. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA, Article
595, 16 pages. https://doi.org/10.1145/3544548.3580785

Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby, Brad A. Myers, and Alan Turransky
(Eds.). 1993. Watch what I do: programming by demonstration. MIT Press, Cambridge, MA, USA.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics engineering with PLT Redex. Mit Press.
Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew Flatt, Jay A. McCarthy, Jon

Rafkind, Sam Tobin-Hochstadt, and Robert Bruce Findler. 2012. Run your research: on the effectiveness of lightweight
mechanization. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Philadelphia, PA, USA) (POPL ’12). Association for Computing Machinery, New York, NY, USA, 285–296.
https://doi.org/10.1145/2103656.2103691

David Moon, Andrew Blinn, and Cyrus Omar. 2022. tylr: a tiny tile-based structure editor. In Proceedings of the 7th
ACM SIGPLAN International Workshop on Type-Driven Development (Ljubljana, Slovenia) (TyDe 2022). Association for
Computing Machinery, New York, NY, USA, 28–37. https://doi.org/10.1145/3546196.3550164

Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer. 2017. Hazelnut: a bidirectionally
typed structure editor calculus. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (Paris, France) (POPL ’17). Association for Computing Machinery, New York, NY, USA, 86–99. https:
//doi.org/10.1145/3009837.3009900

Tijs van der Storm. 2023. Semantics engineering with concrete syntax. In Eelco Visser Commemorative Symposium (EVCS
2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

https://doi.org/10.1145/1411260.1411266
https://doi.org/10.1145/1411260.1411266
https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1145/2103656.2103691
https://doi.org/10.1145/3546196.3550164
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1145/3009837.3009900

	Abstract
	1 Introduction
	2 Worked example
	2.1 A Primer on Notation
	2.2 Informal Proof
	2.3 Formal Proof in Checking Mode
	2.4 Formal Proof in Mixed-Initiative Mode

	3 Search Strategy
	4 Ideas to Explore
	5 Conclusions
	Acknowledgments
	References

