
Critical Architecture/Software Theory

Tomas Petricek

April 28, 2025

The name of the architect Christopher Alexander is perhaps better known in program-
ming circles than among architects, so hemakes for the perfect opening of a text that aims
to find new links between the world of architecture and the world of software. But let me
be clear that I reference Alexander mainly to highlight a question that he posed about the
software practice, rather than to draw inspiration for better software design fromhiswork,
a task already done by others.1

The question I want to refer to was raied by Alexander in a keynote that he deliv-
ered in 1996 at the annual ACM Conference on Object-Oriented Programs, Systems, Lan-
guages and Applications (OOPSLA). This was not an incidental invitation. By themid-1990s,
Alexander’s ideas on pattern languages and design patterns were already influential in the
computer science and software engineering circles andmany of those involved in bringing
Alexander’s ideas into the world of software were regular participants at OOPSLA.

In his keynote, Alexander talked about his lifelong quest for creating living structures
in the world, i.e., beautiful structures where each element is in harmony with each other,
structures that evolve well and reflect natural inclinations of their human inhabitants. In
the last part of his talk, Alexander called upon the attendees to take responsibility for the
built environment and tackle the problem of generating living structures. As Alexander
pointed out, the idea of generative process is natural to computer scientists and so they
are well equipped for the task.

Alexander commented on a perceived “undercurrent of unease as to where all this—
software design—is going”. In a “very direct and blunt” comment, he suggests that:

It could be thought that the technical way in which you [computer scientists]
currently look at programming is almost as if you were willing to be “guns for
hire.” In other words, you are the technicians. You know how to make the
programs work. “Tell us what to do daddy, and we’ll do it.” That is the worm
in the apple.2

One could conclude that computer scientists and programmers share their predica-
ment with architects who, as argued by Charles Jencks3 “have little power, [and] are not in
any better position to commandwhat is built.” Perhaps like architects, computer scientists
and programmers being “fairly low in the chain of command and needing jobs, are prone
to compromise with the state and the establishment.”

There may be some truth in that, but I believe this is not the entire truth. On a more
basic level, programming, computer science and software development lack the critical
language that is needed for thinking about the problem. In other words, regardless of
whether we have the power to command what is built, we do not know how to effectively
critically question what is built, how to imagine alternatives, and how to ironically poke at
the undesirable characteristics of what is being built.

Critical Language for Software

This text is an attempt to develop such critical language of software. To do so, I will draw
on a number of architects and architectural critics. Their work provides an inspiration for
what, I believe, is needed for software. Some of those critiques are in the form of written
text, but more notably, architects also use building plans and buildings themselves to raise
important points about architecture. I believe we, programmers and computer scientists,

1

similarly need to find ways of designing software that not only fulfils a certain function,
but also raises critical questions. I acknowledge a certain irony in my effort. What you are
looking at is itself text and not a piece of software.

Although I started with Alexander’s comment and I share his belief that programmers
and computer scientists should not accept the role of “guns for hire,” my thinking follows a
different route than that suggested by Alexander—one that would likely not make Christo-
pher Alexander himself very happy.4 Rather than seeking a way of building that achieves a
living structure, I turn to debates on architecture that emerged from post-modern critical
architecture and debates about it.

Even if our sole goal as programmers and computer scientists was to produce “living
structures” in the world, I do not think we can achieve this without first having a critical
language that lets us reflect on our work, criticise existing approaches, deconstruct our
creations and look for alternative arrangements.

In other words, I believe there is a value in exploring disharmony5 and in using a critical
language of architecture—or in my case of software—to criticise the state of the discipline
and imagine new ways of thinking and new ways in which software can support social
structures. Although I mainly look to writing on post-modern ar chitecture for sources
of inspiration, the idea of using buildings to question established order is by no means
new. We can trace similar ideas to the rise of modernism in Europe following the First
World War when some architects “overwhelemed by the nightmare of industrialization
(...) briefly speculate on alternative condition”:6

It is not the crazy caprice of a poet that glass architecture will bring a new
culture. It is a fact. (. . .) Therefore the European is right when he fears that
glass architecture might become uncomfortable. Certainly it will be so. And
that is not its least advantage. For first of all the European must be wrenched
out of his coziness.

On the next couple of pages, I will look at two themes from post-modern architecture
that highlight some of the aspects of the critical language developed by architects that I
hope to create for software. I will then return to methodological problem of how such
language can be structured.

The Ironical Column

To illustrate some of the ways through which architects use architecture to communicate,
I start with themost basic structural element of classical architecture, the column. Figure 1
shows several uses of columns, starting from the ancient Parthenon built in Athens in 5th
century BC (bottom left) followed by four examples that include a variety of references to
the classical column.7

2

Figure 1: Six different uses of columns in architecture. (1) Unironical use of the column in the 1935
neoclassical building of the US National Archives, (2) Supporting pilotis in Le Corbusiers 1931 Villa
Savoye, (3) The Parthenon in Athens built in the 5th century BC according to the Doric order (4)
Adolf Loos’ playful reference to the Doric column in a 1922 entry for the Chicago Tribune Tower
Competition, (5) Hans Hollein’s ironical Facade of Morphed Columns, at the 1980 Venice Architec-
ture Biennale, and (6) Robert Venturi’s “ironic” column from the 1977 addition to the Allen Memo-
rial Art Museum.

Neoclassical architecture, which gradually grew in prominence in the late 18th century,
looks back to the Classical past. It sees it as a source of pure geometric order with ideal
proportions and symmetry. The return to the architecture of the antiquity started during
the Renaissance period in the 15th and 16th century. This included the rediscovery of the
Ten Books on Architecture (“De architectura”) by Roman architect Vitruvius and Andrea
Palladio’s architecture that aimed to design according to ideal proportions, inspired by his
studies of antiquity. In the 17th and 18th century, Palladio’s study of symmetry and for-
mal classical architecture inspired a new interpretation of classical architecture and also
one of the styles of neoclassical architecture.8 Neoclassical architecture remained influ-
ential after the 18th century, but its meaning slowly shifted. It turned from an attempt
to rediscover and recreate simple, purely geometrical structures to an idealized style that
emphasises tradition. The use of the style for many US federal buildings is thus a reference
to the values that the style encompasses.9

The modernist Villa Savoye designed by Le Corbusier also looks back to the Classical
past, but it does so in a different way. Rather than directly copying the style and order
of the ancient Greek temples, the building is a reinterpretation of the ideas of a Greek
temple.10 It reimagines the ideal structure of Greek temple based on geometric principles
(using the golden ratio), but replaces ancient Greek columns with minimalistic modernist
pilotis. Following the modernist focus on function, Le Corbusier’s design uses pilotis to
give prominence to the automobile (parked on the ground floor). Although the same his-
torical reference is present in Villa Savoye, it is used at a more conceptual level and is not
immediately apparent.

3

The importance of the column as an icon representing a certain style of architecture
waswell understoodbyothermodernist architects, includingAdolf Looswho is best known
as the author of the modernist manifesto “Ornament and Crime”, first presented as a lec-
ture in 1910. In his entry for the Chicago Tribune headquarters competition in 1922, Loos
made yet another reference to the ancient Greek temple and shaped the entire building
as a giant Doric column. Loos himself did not view the column in his design as ornamental
and instead saw it as supporting the public nature of the building with appropriate sym-
bolism.11 The structure of the building itself here becomes the symbol in a way that is
reminiscent of later post-modernist works where construction patterns and material tex-
tures themselves become ornament.12 Despite being rooted in themodernist thinking, the
Chicago Tribune Tower project became an inspiration for later post-modern architects who
make, more or less subtle, historical references in an ironic way. They will include columns
in their buildings to indicate that they recognize being a part of architectural culture and
tradition, even if they no longer need columns as structural support mechanisms.

A good illustration of the ironic reference is the facade created by Hans Hollein for the
1980 Venice Biennale. The event took place in Corderia of the Arsenale, a large historical
building itself featuring supporting columns. The participants of the Biennale were asked
to design a facade for their exhibition that would cover (and hide) the historical structure
of the Corderia. Hollein did the exact opposite. He complemented two columns of the
Corderia with a range of ironical forms of columns. Onewas a bushy tree cut into the shape
of a column, while another was a scaled-down version of Loos’ Chicago Tribune Tower. The
entrance into the exhibition was under a hanging fragment of a column, which clearly lost
its original structural function, but gained a different function as an exhibition entrance.
Here, the ironical use of the architectural language is direct and understandable.13

Hollein’s entry addressed the theme of the Biennale, “The Presence of the Past” in
a way that is funny and ironic, but sends a clear message about history and continuity of
architecture. It also illustrates the changing function of a column from supporting structure
to a decoration. Moreover, the ironical style of the presentation, shared with many other
post-modern architectural works, makes themessage accessible and engaging for broader
public. Hollein’s facade is interesting for yet another reason. It uses architectural language
to communicate architectural ideas, but it is neither text, nor a building. As we will see
repeatedly, built structures such as stage sets or monuments are often interesting media
through which critical architectural ideas can be expressed.

The column takes yet another form in the addition to the Allen Memorial Art Museum
designed by Robert Venturi in 1977. The extension itself is based on an idea that Venturi
refers to as the “decorated shed”. The basic structure and spatial disposition of the building
itself is simple and serves its function which was, in part, to provide more storage space.
Any symbolic, cultural and aesthetic meaning is provided “by modifying the basic shell
by means of design decisions of a second order.”14 One such second-order decision is
the addition of isolated iconic elements, such as the mock Ionic column that marks the
building as cultural institution. In a way, the column serves similar role as the neoclassical
architecture of the US National Archives, but is here addedmerely as an ironic decoration.
The association of ancient Greek columnswith important public buildings remains, but the
story is told in a very different way.

4

Towards Critical Software

In my attempt to translate the critical langauge of architecture into the world of software,
I will alternate between two modes of working. First, I will reinterpret existing practices in
software development and computer science in light of the architectural theory. Second,
I will suggest how we could more deliberately follow in the footsteps of architects and
create new software artifacts that express critical points about software.

In other words, can we follow post-modern architects and embed criticism as a first-
class element in software practice, rather than leaving it to a second-class (and largely
optional) critical writing?15 We can also look to post-modern architects for initial ideas of
what such critical software can say. The architectural style known as eclecticism makes
funny references such as Hans Hollein who decorated his Austrian Travel Agency office
with metalic palm trees and broken Greek column.16 The appeal of the style is not just its
straightforward humour, but the fact that it is understandable and can communicate with
wider audience. Similarly, post-modern architects have used contextualism to highlight
important characteristics of the environment they work in or use references to suggest
alternative social organization.

Looking at existing software practices, we can imagine how the above architectural
ideas can apply to basic structural elements from which software is built. One such ele-
ment may be the data structures around which software is structured.17 Data structures
in software are arguably even more fundamental than columns in architecture, because
any software that works with data needs to store the data in some way. The limitation
of this metaphor is that, unlike columns which are typically visible, data structures are
typically hidden from the end-user. There also is no singular classical model of data struc-
tures, although a number of models fit a similar role. These include the relational model
of databases, flat memory model of low-level programming languages and data types that
model data as collections of nested records.18

We can use the architecturalmetaphor to talk about the differnt kinds of classicalmod-
els of data structures. Whereas the relatively expressive language of the relational model
or the nested records model could be linked to different kinds of classical columns, the
minimalistic models of flat memory or nested lists of the Lisp programming language are
more akin to modernists undecorated and purely functional pilotis.

When the data structures are used to store data, they serve the original intended pur-
pose, just like columns functioning as supporting structure. But equally, there are software
systems where data structures are used more as rhetorical elements, intended not for the
computer execution of the software, but for the end-user or programmer. One example
would be types in the TypeScript programming language. Here, the actual representation
of data can be anything permitted by the underlying JavaScript runtime. TypeScript type
declarations are mere labels, intended for the human and for the static TypeScript type
checker, but they are not enforced or used for checking at runtime. The type declarations
still look like a definition of the shape of a data structure (a column), but they no longer
play the basic structural function. They are used for paratial checking (a scaffolding around
a column?) and as information for the programmer (a purely rhetorical column). A simi-
lar case would be the use of data structures in non-relational databases such as key-value
stores or document databases. The data stored in such systems in practice has some im-
plicit structure. However, any explicit description of the structure is merely literal. The

5

<CsamlFile xmlns="http://schemas.microsoft.com/winfx/2006/xaml/csaml"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<NamespaceDeclaration Identifier="MyNamespace">
<ClassDeclaration Identifier="MyClass" Access="Public">
<MethodDeclaration Identifier="Main" Access="Public"

Modifier="Static" ReturnType="{x:Type void}">
<InvocationExpression MemberAccess="System.Console.WriteLine">
<InvocationExpression.ArgumentList>
<Literal Type="{x:Type string}" Value="Hello, CSAML!">

</InvocationExpression.ArgumentList>
</InvocationExpression>

</MethodDeclaration>
</ClassDeclaration>

</NamespaceDeclaration>
</CsamlFile>

Figure 2: The “Hello world” program written using the C# Application Markup Language (CSAML),
conceived by Charles Petzold in an April Fool’s post on 1 April 2006.

description may use the language of standard data structures (collections, records, primi-
tive types), but this is not used for representation.

Do certain data structures also have particular symbolic associations, in a manner sim-
ilar to how the Classical column stands for traditional values, often associated with US
federal buildings? I believe this is the case. For instance, the class-based object-oriented
programming paradigm is often associated with maintainability. Languages that adopt
class-based object-oriented abstractions as their basic data structure do not do so just
for practical, but also for symbolical reasons. TypeScript serves to illustrate this again. One
of the first books on the language claims that “TypeScript [brings] a level of maintainable
structure to JavaScript development through its class and module features.”19 Written in
the same year when the language was released, the claim could not rely on empirical ex-
perience with the language, but mainly on the symbolic associations of the data structure.

For my last example based on a reference to an existing artefact, I want to show that
data structures have already beenused tomake critical ironical statements. TheApril Fool’s
postwritten by Charles Petzold in 2006 introducing the “C# ApplicationMarkup Language”
is a illustration.20 The post introduces a new notation that encodes programs written in
the C# language using XML (Figure 2). The post can be seen as an ironical work of contextu-
alism. The post was published in the heyday of the XML format when Microsoft released
multiple development frameworks built around XML. As a well-written April Fool’s joke,
the post made readers think. The post praises the semantic clarity of the XML format and
gives various examples that are extremely lengthy and tedious. After a brief puzzlement,
most readers realise the joke. But the post makes them wonder about the verbosity and
unnecessary overuse of the format at the time.

The C# Application Markup Language example hints at a number of themes that I will
further explore later. It is perhaps blatantly funny, but it can still be seen asmaking a serious
point. Moreover, the system that the post describes has never been actually implemented.
The post is merely a (very basic) plan for a system. This does not, however, make it any less
valuable as critical software. Many interesting pieces of critical architecture have also not
been built, yet, they became important references. The Chicago Tribune tower by Adolf
Loos is one such case, but even better example would be one of the many architectural

6

Figure 3: “Exodus, or the Voluntary Prisoners of Architecture: The Strip (Aerial Perspective)” by
Rem Koolhaas, Elia Zenghelis, Madelon Vriesendorp and Zoe Zenghelis. The project imagines a
walled city of “new urban culture” within the city of London.

projects that use the architectural language to intentionally propose structures that cannot
be built. One such project is The Strip (Figure 3) by Rem Koolhaas. The project imagines
an enclosed restricted city cutting through London. Although the work was inspired by
the situation of West Berlin during the Cold War, the ideas of building a wall to separate
cultures can be seen in new (and alarming) light today.

In the subsequent chapters, we will see that hypothetical design proposals, fictional
plans that cannot be built or impractical systems are a powerful way of making a point
about software systems, just like they are a powerful way of making a point about archi-
tecture. The C# Application Markup Language can be seen an example of a much broader
class of esoteric programming languages, which are created jokingly, but can be often read
as valuable critiques.21

As I wrote earlier, I believe that we can take inspiration from the critical architectural
language both to analyze existing software systems and projects, but also to come up with
new ideas. Some of the references to a column that I discussed earlier make points that
may well be applicable to software systems. For example, they may ironically highlight the
fact that a column is used for its symbolic value, but not for its original purpose. They high-
light the fact that it is no longer needed functionally, even if it is often used for rhetorical
reasons. We can imagine a range of similar critical points to be raised about the technical
concept of data structures in the context of programming and software systems. If a col-
umn is no longer needed as a structural element, what may be the established essential
aspect of data structures that is no longer needed?

One of the most established ideas associated with structuring application data is that
of information hiding.22 The argument is that one should separate software systems into
components that have a stable public interface and private implementation. If one identi-

7

Figure 4: The Centre Pompidou “inside-out” building, which keeps all the infrastructure (using
green for plumbing, yellow for electricity, blue for climate control, and red for circulation) on the
outside to allow flexible and efficient use of the inside space.

fies suitable stable public interface, it is possible to develop the components in isolation,
change the implementation or replace individual components as needed. But information
hiding has also been criticised.23 The problem is that predicting what part of the interface
should be fixed and what can be hidden is often difficult, especially in the context of soft-
ware systems whose function evolves and changes over time. Clark and Basman24 quote
the example of MIDI SysEx messages that have, by convention, become a mechanism that
exposes the state and can control the operation of musical devices. This enabled MIDI to
become a powerful music control platform in a way that could not have been anticipated
by the designers of the MIDI interface in the 1980s. Arguably, an even more prominent
example would be the web platform, where much of the data structures that the web is
built around (HTML, CSS) are also transparent.25

So far, most ciritiques of information hiding have taken the form of text. To make the
point through the critical language of software, we should design an exemplar piece of
software or programming system that reverses the idea of information hiding. In other
words, we should expose all the underlying data structures of the software in a way that
is akin to how the Centre Pompidou (Figure 4) exposes all the service infrastructure of the
building.

In such hypothetical system,26 all the state of the system would be externalised in a
way that allows anyone to see and modify it. To make the point, the system should do
this to the extent possible. The accessible state should include all information about the
data structures, as well as execution of the system. Depending on the chosen program-
ming paradigm, this may include data of all objects, memory, stack, currently executing
instructions etc. The information should also be exposed in a way that makes it available
not just to the programmer, but also to the end-user.27 The system would have to handle

8

the fact that its state may be modified in inconsistent ways and could either recover as
best as possible (akin to how web browsers recover when encountering invalid HTML) or
break (likely making an interesting point about the fragility of software systems).28 The
color coding used in the Centre Pompidou offers another interesting idea. If we exposed
all data structures of a software system using similar color coding (for different aspects of
the system), the system would increase public awareness about what modern software
consists of. Thus the project can also fulfil an educational function.

There is, of course, a practical issue of the context in which such project can become
reality. It is entirely possible to develop a critical software system only in the form of speci-
fication or description, much like Charles Petzold’s C# ApplicationMarkup Language. How-
ever, to explore the consequences of the design—and see how a system can be used in the
absence of information hiding—an actual non-trivial working implementation is needed.
I will return to this problem later, but architecture has a variety of options. Many archi-
tects explore their theories for houses built for their own use or their family.29 Similarly,
programmers and computer scientists often have their own projects to experiment on.

Architecture also often speaks through non-building objects such as stage sets, public
monuments, pavilions and follies or exhibitions. Those may not (yet) have obvious equiva-
lents in the world of software and the task of developing critical language of software may
involve finding those. Last but not least, new architecture also sometimes emerges in iso-
lated places within a large city, called heterotopias in reference toMichel Foucault.30 Such
isolated spaces, such as prisons, ghettos, amusement parks, or leftover spaces known as
terrain vague.31 I believe we can similarly find a range of atypical pieces of software, which
are often deemed as unimportant, but provide space for experimentation. Ad-hoc scripts,
demos, spreadsheets, and programs created at hackathons or coding competitions are
only a few examples of hterotopias in the world of software.

Formal Grammars of Architecture

In the previous two sections, I focused on ideas that approach architecture from the partic-
ular, specifically the structural element of a column. I will now look at ways of developing
critical language for architecture starting from the general. I look at a number of works,
most notably by Peter Eisenman, that relate architecture to language, art and their formal
structures and grammars (Figure 5).

Themost direct reference to formal grammar in the context of architecture comes from
Peter Eisenman’s PhD thesis, completed in 1963 at University of Cambridge. His thesis,
“The Formal Basis of Modern Architecture” is concerned with formal analysis of form and
formal order inmodern architecture. Eisenman suggests that the architectural form can be
seen as a problem of logical consistency, rooted solely in the properties of basic structures
from which the architectural form arises. The view opposed that of modernists who saw
form as arising from function, as well as Christopher Alexander’s view put forward in his
Notes on the Synthesis of Form.32 In contrast with modernists:

Eisenmann sawmodernist forms not as simple derivatives of functional needs,
but as delineations of the immanent self-referntial properties of architectrue
itself, as searches for objective knowledge that lies outside both the architural
agent’s intentions and the building’s uses, and inside the very materials and
formal operations of architecture.33

9

Figure 5: Five different uses of what can be interpreted as a formal language in architecture.
(1) Modernist Casa del Fascio in Como, Italy built in 1936 and (2) a formal analysis of the build-
ing by Peter Eisenman, (3) model of the House X, also by Eisenman and (4) a diagram illustrating
its formal structure based on the L-shape, (5) model from a 1987 project for a garden in the Parc
de la Villette by Eisenman in collaboration with Jacques Derrida, (6) model of the unbuilt Familian
Residence house by Frank Gehry from 1978, and (7) the Memorial to the Murdered Jews of Europe
designed by Eisenman, completed in 2004.

The time was probably right for this kind of intellectual project. Eisenman was influ-
enced by his reading of the linguist Noam Chomsky,34 who published his first work on for-
mal languages and grammars at the end of the 1950s. The same ideas also contributed to
the development of formal grammars of programming languages at the end of the 1950s.35

Eisenman’s thesis is analytical. He considers the plans of a range of modern buildings,
including those by Le Corbusier, Mies van der Rohe and Alvar Aalto, and explains their
structure in terms of a number of simple formal principles. Those include three basic kinds
of movement systems throughout the building (pinwheel, spiral, echelon), three types of
volumetric systems (horizontal planes, vertical planes, plaid) and various interactions be-
tween them that lead to distortions of and dislocations in the basic structure.

One building analyzed by Eisenman is the modernist Casa del Fascio in Como designed
by Giuseppe Terragni. Eisenman sees the formal structure of the building as the product of
“reconciliation between a centroidal plan and a linear site.”36 The form is a hollowed out
cube. The cube can be seen as a series of planes, which needs to be acknowledged by the
side facades and which imposes a connection between the front and the rear facade. To

10

accommodate access to the inner courtyard, which results from the centroidal plan, the
“negative volume is then dislocated” giving the frontal facade reading of an H-form.

Eisenman’s analysis may seem like a curious theoretical exercise, but architects who
study the structure or the langauge of architecture had a more fundamental objective.
Their aim was to establish autonomous architecture, that is architecture that “opens the
internal processes of architecture to their own internal possibilities.”37 In other words,
they seek architecture that is not created in response to various external forces (of which
there are many), but that is rooted in its own basic (necessary) principles.

Eisenman himself went on to explore various uses of a formal architectural grammar,
not just analytically, but also as the basis for new designs in his numbered series of houses,
some built and some unbuilt. The House X, for instance, is a critique of “the idea of de-
velopment from simple to complex”38 by using the L-shape as the starting point, replacing
the conventional cube. The design questions the humanist ideology by disrupting the cen-
trality that is typical of most houses. Where onemight expect a hearth or a staircase, there
is nothing. The fact that this introduces a degree of disharmony in the project has become
contentious issue. While, Eisenman argued that an importnat role of art and architecture
is reminding people that “everything isn’t all right”, Christopher Alexander in a debate said
that such design makes him “incredibly angry” and he saw projects that introduce dishar-
mony as “fucking up the world”.39

In the 1980s, the experimentswith architectural language, its grammar and the decom-
position of architectural structures took another form. Influenced by the French philoso-
pher Jacques Derrida, architects started to use architectural language to question the basic
structures and their conventional meaning. Eisenman himself collaborated with Derrida
on a project for a garden in the Parc de la Villette. The proposal eventually developed into
a scheme that rescales and overlays a number of different structures including historical
state of the site when it was a part of city walls and other projects by Eisenman and his
collaborators.40

The almost mechanical design method is used to destabilize traditional values of ar-
chitecture such as its human scale and function. The authors propose to do this by making
parts of the park unexpectedly large or small, or by making parts inaccessible. The La
Villette project thus uses the architectural language to question the basic assumptions of
architecture. The project, again, causes the kind of disharmony that would enrage Christo-
pher Alexander.

In a critical commentary on the Parc de la Villette, Jeffrey Kipnis explained that the
point of deconstruction is to “battle with the very meaning of architectural meaning.”41
Because “deconstruction deconstructs the homogeneity, the unity of style“ it cannot, ac-
cording to Jacques Derrida yield to a single architectural style. Yet, this is what, perhaps
somewhat inadvertently, happened in the 1980s when the theoretical works of Eisenman
got jointly exhibitedwithmore literal or pragmaticworks by architects such as FrankGehry,
Zaha Hadid or the Austrian firm Coop Himmelb(l)au.42

An early example of what became known as deconstructivist architecture is the series
of Frank Gehry’s residential designs of the late 1970s and early 1980s. Gehry’s work com-
bines experiments with different materials and spatial dynamics with the rejection of the
modernist grid.43 His formal structures are inspired less by grammars of Chomsky, but by
avant-garde artists. For example, the “mainmasses [of his Familian Residence house] form
a clearly Supermatists grouping, recalling Malevich’s Red Square and Black Square.”44 As
noted by Charles Jencks, “Gehry’s method of Deconstruction can be quite literal at times,

11

Figure 6: Axonometric model of House X, which is a three-dimensional construction, made to pro-
vide the image of a two-dimensional drawing from one particular angle.

since he will smash an existing building into parts, leave elements of his own work unfin-
ished and (...) make an aesthetic virtue of rough, crumbled surfaces.”45 Yet, despite the
different aesthetic and conceptualization of the work, there is a clear connection between
the work of Eisenman and Gehry. In some of their works, they both try to uncover basic
forms that comprise architectural structures and reveal them through distortion.

The formal abstract structure, resulting from the composition of primitive architectural
forms, was also the basis for Eisenman’s design for the Memorial to the Murdered Jews
of Europe, also known as the Holocaust Memorial in Berlin. The same formal mechanisms
that were used as a critique of humanism in architecture are used to create an unnerving
experience for the visitor.46 The abstract form of the memorial, devoid of symbolism and
narrative, “grants no further understanding, since understanding the Holocaust is impossi-
ble.”47 In other words, the Holocaust Memorial is a structure that calls exactly for the kind
of disconcerting disharmony that Eisenman explored in his early house designs. According
to a brief explanation provided by Eisnman:48

This project manifests the instability inherent in what seems to be a system,
here a rational grid, and its potential for dissolution in time. It suggests that
when a supposedly rational and ordered system grows too large and out of
proportion to its intended purpose, it loses touch with human reason. It then
begins to reveal the innate disturbances and potential for chaos in all systems
of apparent order.

The formal architectural language explored by Eisenman since the start of his career
thus finds a new kind of use in the memorial. As with the Facade of Morphed Columns for
the Venice Biennale, the Holocaust Memorial is a different kind of architectural place, or
a heterotopia, where different architectural language can be, and needs to be, explored.

12

Context Strategy

ConcreteStrategyAConcreteStrategyA ConcreteStrategyA

Figure 7: A class diagram illustrating the relationships between classes and interfaces in the case
of the Strategy design pattern. The Context class uses a Strategy to do some work and there is a
number of specific strategies that can be supplied to it.

Questioning the Structure of Software

Architects who probe formal structures of the architectural language may do so to better
understand the language, uncover assumptions that we accept and rarely question and ex-
plore consequences of changing or manipulating the language. As in the previous section,
this is often done using the architectural language itself. Eisenman’s numbered series of
houses, Gehry’s residences and Parc de la Villette were all planned to be built and a num-
ber of them still stand.49 This fact, again, points at the possibility of a critical language
that is not external to the subject matter, but integrated within it. That is, the use of ar-
chitecture to make critical architectural points or, in the case I am interested in, the use of
programming and software to make critical points about software.

In some cases, architects use other formats too. Eisenman’s doctoral work was a text
presenting a formal analysis of existing buildings. The deconstructivist practice can be used
to probe the process of architecture, as well as other artifacts it involves. For example,
Eisenman also criticises humanist ideology of architecture through the axonometricmodel
of the House X (Figure 6), which makes “the ‘normal’ image appear to be an anomaly.”50
Similarly, computer scientists and programmers should include a broader range of mate-
rials in their notion of critical language of software, including formal definitions, software
specifications and demonstrations. Those can, no doubt, be constructed in a similarly illu-
minating distorted manner as Eisenman’s axonometric model.

The analytical way of looking at basic structures of the language of the subject matter
is something that computer scientists are well familiar with. It has been done at multiple
levels. On one level, formal models of computations such as Turing machines and the
lambda calculus have been used to describe the basic structure of computation. Like the
grammar that reduces architecture to relationships between basic shapes, formal models
of computation reduce program execution to a minimal set of operations. That said, there
is a difference between computing and architecture in that formal models of computation
originate in logic and have been conceived to study computability properties, rather than
originating in the analysis of existing programs.

We can interpret software design patterns as another attempt to uncover the basic
structure of software. The influential Gang of Four design patterns book51 identifies and
catalogues some 24 design patterns, which appear repeatedly in past software systems.
The patterns are common structures defined by relationships between classes and inter-
faces in an object-oriented systems and each design pattern captures one particular struc-
ture of relationships (Figure 7). Although the Gang of Four book is a collection of a larger
number of patterns whereas Formal Basis of Modern Architecture is inspired by the struc-

13

static class YCombinator<T, TResult> {
private delegate Func<T, TResult> RecursiveFunc(RecursiveFunc r);
public static Func<Func<Func<T, TResult>, Func<T, TResult>>, Func<T, TResult>> Fix
{ get; } = f => ((RecursiveFunc)(g => f(x => g(g)(x))))(g => f(x => g(g)(x)));

}

static class Program {
static void Main() {
var fac = YCombinator<int, int>.Fix(f => x => x < 2 ? 1 : x * f(x - 1));
var fib = YCombinator<int, int>.Fix(f => x => x < 2 ? x : f(x - 1) + f(x - 2));
Console.WriteLine(fac(10));
Console.WriteLine(fib(10));

}
}

Figure 8: Program that calculates factorial and Fibonacci numbers, unnecessarily overusing the core
concepts of the lambda calculus (fixed point operator) rather than relying on standard capabilities
of the C# programming language.

ture of formal grammars, they are both similar in that they analyze existing systems (soft-
ware or modern architecture) to identify and describe their formal underlying structure.

Linking software patterns to Eisenman’s work is ironic in that Alexander and Eisenman
saw their approaches as being in direct opposition,52 but I believe drawing the connection
may be revealing. Whereas Alexander focused on creating “living structures”, Eisenman
is looking for “formal structures”. The Gang of Four design patterns are sometimes criti-
cised for lacking this essential “living” aspect emphasized by Alexander. The notions that
Alexander has been looking for aremore likely to be found in the work of Richard Gabriel53
than in the widely used Gang of Four patterns. Despite using the name and structure of
Alexander’s design patterns, software patterns may well be more akin to Eisenman’s for-
mal analysis.

On another level, there have been attempts to analyze and describe how software
systems are made of high-level concepts, which are rooted in the specific domain that
the systems are designed for. In a book titled “The Essence of Soware”,54 Daniel Jackson
views software as collection of interacting concepts. As an example, concepts involved in a
social media platform like Facebook include that of a post, comment, like and a friend. The
exact structure and interactions between such concepts then determines how the system
behaves, how it can be used and also its social implications.55

All of those formal structures in software—models of computation, design patterns
and concepts—can be used as analytical tools for understanding and analysing existing
software as well as help programmers in creating new things. You can use models of com-
putations as a basis for a new language, patterns to design an extensible software system
or concepts to create an intelligible application.

An important lesson that post-modern architecture teaches us is that we can use such
formal structures in another way. We can use them to reveal the insufficiencies of our
established practices, question hidden assumptions and reveal the contradictions often
present in software desing and development. To paraphrase Eisenman,56 (admit and)
show that everything is not all right. The discussion in the previous section, alongside
with the illustrations shown in Figure 5, suggest some ways in which this can be done.
We can use formal structures in a more or less distorted way, follow a methodology in an
excessively rigorous way, or start with an atypical arrangement of the basic structures.

14

I doubt there aremany designers of programming languages who have studiedwork of
post-modern and deconstructivist architects and then decided to design a programming
language according to the same principles. But looking at some existing programming
languages, we can imagine what this might look like. If we decide to use the lambda cal-
culus as our primary model of computation, there are multiple ways in which this formal
structure can be turned into a programming language. Taking the core structures of the
formal model (variables, lambda functions and application) and building a programming
language around them involves bridging a large gap. A realistic programming language will
needmuchmore than the three basic primitives. Languages like Haskell resolve any design
concerns that arise from this gap using a reasonable programmer’s intuition—they aim at
building a practically usable system.

It is equally possible to use the same formal model of computation and highlight the
gap—what remains to be added in order to design a practically usable programming lan-
guage is by no means obvious. One illustration of this is the esoteric programming lan-
guage Unlambda57 created by David Madore. The language is based on a combinatory
logic that is related to the lambda calculus and expresses computation in terms of three
primitive combinators written as S, K and I. Unlambda turns the formal model into a pro-
gramming language that makes it possible to write and execute programs, such as the
following Fibonacci number calculator:58

‘‘‘s‘‘s‘‘sii‘ki
‘k.*‘‘s‘‘s‘ks
‘‘s‘k‘s‘ks‘‘s‘‘s‘ks‘‘s‘k‘s‘kr‘‘s‘k‘sikk
‘k‘‘s‘ksk

Unlambda supports a number of further functional programming concepts including
continuations and lazy evaluation, and the .* construct prints the * character and returns
it. Unlambda makes no attempt to be practically useful. As noted by the author “[w]riting
Unlambda programs isn’t really as hard as it might seem; however, reading Unlambda
programs is practically impossible.”59 Unlambda is an ironical demonstration that brings
to light a fact that is not otherwise easy to see. Contrasting Haskell and Unlambda shows
how little of the design of the Haskell language is really determined by its core formal
computational model—an interesting lesson about programming language design!

Last, but not least, we can also explore the case of integrating primitive structures from
multiple formal models of computation. For example, many contemporary programming
languages that are based on different principles (such as imperative, object-oriented lan-
guages) now support the key concept from the lambda calculus, that is a lambda function.
(Incidentally, this replaces the Strategy design pattern illustrated in Figure 7.) Such com-
bination of different formal structures poses a problem both for the language designers
and the language users. The designers have to resolve the contradictions that arise from
the integration of different formal structures. The complexity of the capture clause in C++
lambdas would be one example of this difficulty.60 At the same time, the users of the
language now have to carefuly choose between the multiple available formal structures.
To point out that this is not alway easy, we can use an ironical example such as the two
recursive computations shown in Figure 8.61 A bit like Gehry’s residential projects, the ex-
ample “smashes” together parts of the programming language, making an aesthetic virtue
of “rough, crumbled” lines of code. In both architecture and software, this distortion of
the simple structure is also associated with higher maintenance costs.62

15

Figure 9: Stata Center designed by Frank Gehry for the MIT.

One caveat in my comparison between architecture and structures that appear in pro-
gramming is that source code and programming languages typically remain hidden from
sight. In contrast, the distorted formal structurs of post-modern architects are visible to
their inhabitants. In case of public buildings, the structures can send a message about the
institution it hosts. For example, the appearance of the MIT Stata Center (Figure 9) “is a
metaphor for the freedom, daring, and creativity of the research that’s supposed to occur
inside it.”63 A less charitable reading of the building would be that it is a defensible use of
the desires associated with the Late Capitalism to “make it an interesting test of construc-
tional capability.”64 Either way, the visibility of the structure justifies its existence and its
greater maintenance costs.

Here, the analogy between software and deconstructivist architecture raises another
interesting question. Should the inner structures of programs remain hidden from their
users, or should we strive to make the inner structures visible and comprehensible? Like
architecture, software design is often the result of contradictory forces that arise from
the user needs, physical or virtual environment and financial interests. An inner structure
reflects those forces and, if it was transparent to the user or inhabitant of software, they
would gain greater understanding of the software. (Perhaps, it would not take a massive
security vulnerability like the 2014 Heartbleed bug to see that the core infrastructure of
modern internet is critically underfunded.65) The fact that greater transparency would
then, incidentally, also allow software designers to speak through the structure of their
software would be an additional benefit of the greater transparency. I will return to this
topic and how such transparency could be achieved later in this chapter.

High-level concepts, such as those identified by Daniel Jackson can bemore visible and
understandable to software users, so they have a greater potential as devices for commu-
nication. Seeing the concepts behind software still systems requires careful attention. As
Jackson points out, “to learn about concepts, we need to see what happens when they
go wrong.”66 Similarly, the structures behind architecture become visible when they are
intentionally or accidentally distorted. Some post-modern architects use this fact to their
leverage—using such distortions of the architectural language to speak to their audience.

An engaging and widely relatable project that distorts familiar concepts is the User
Inyerface challenge (Figure 10). The web page shows a familiarly looking user registration

16

Figure 10: User Inyerface is a “worst practice UI experiment” and combines all imaginable poor
practices to make correct completion of a form challenging such as counter-intuitivie highlighting
of buttons, use of flags to select a country, placeholder text that has to be explicitly deleted, dupli-
cation of information (age and date of birth, or inconvenient user interface elements (age slider).

form, but it employs all possible poor design practices to make the completion of the form
as hard as possible. The web page is composed from standard underlying concepts, but
each of those concepts ismapped to a user element that is unsuitable in someway. In some
ways, the example is similar to the case of the esoteric programming language Unlambda
that I discussed earlier. LikeUnlambda, theUser Inyerfacewebpage is basedon reasonable
underlying structures (combinatory logic or concepts of a registration form), but it shows
that turning the reasonable underlying structure into an actual programming language or
an interface requires resolving a number of remaining design problems.

A variety of interesting buildings and software systems emerge from the need or desire
to combinemultiple structures in a single resulting form. One examplewas the plan for the
garden in Parc de la Villete by Eisenman and Derrida which overlaid a number of different
structures on the single site. Similarly, I discussed how some conterporary programming

Figure 11: Hotel Fouquet designed by Edouard François, located in Paris near the Champs Elysées.

17

languages combine multiple models of computation earlier in this section, as well as how
the interaction between those leads to contradictions. We can see the same pattern with
high-level concepts of software.

Before talking about software, I want to look at one more architectural example. The
Hotel Fouquet (Figure 11) was built in a quarter of Paris with strict regulations that require
architects to follow the structure of historical buildings in the area. The concrete facade
mimics the style of a previous building in fine details, but the facade covers a building
with a different internal structure. The internal structure is visible through the windows
and doors that stand out from the facade. The Hotel Foquet is an eye-catching example
of a building that combines two formal structures. On the outside, it follows the style of
buildings of the Haussmann’s 19th century renovation plan for Paris, as required by the
regulations. On the inside, it is a modern hotel building with floors and rooms arranged
according to an internal logic. The windows and doors are the only points of interaction
between the two structures.

If we pay attention, we can see the same interaction between multiple structures in
one of the first examples that Daniel Jackson uses in his conceptual analysis of software.
He looks at a sample screenshot of a Facebook page and notes that “three concepts are
evident: post (represented by the message and the associated image), like (represented
by the emoticons at the bottom left), and comment (represented by the link on the bot-
tom right).”67 Looking at a screenshot is a way of uncovering concepts from the perspec-
tive of the user—the facade of the hotel. But our conceptual analysis can equally focus
on the inside of the hotel. That is, the business model of Facebook, which has been de-
scribed using the term surveillance capitalism.68 As an alternative to screenshot, we can
look at the claim from the litigation by human rights campaigner Tanya O’Carroll who sued
Meta (owner of Facebook) to respect her GDPR “right to object” to being profiled.69 The
concepts that are evident in the claim include direct marketing material (advertisements,
promoted content), personal data (user’s age, gender, location, content interactions), cat-
egories (ad interests, ad topics, your topics). When browsing Facebook, we only see the
front facade. The promoted posts and advertisements we see are hints of a parallel con-
ceptual structure of the system that we can only see if we look harder. The existence of
those structures and the need to look for them and expose them is another useful lesson
that the world of software can take from critical post-modern architecture.

Ways of Achieving Fit

What I hope to achieve in this text is to document theways throughwhich architecture can
convey critical understanding and see if those ways let us talk about important issues con-
cerning software. I moved away from Christopher Alexander, for whom the main question
that matters is whether building (or software) produces living structures in the world.

I think that buildings and software should also raise critical points and much of the
above was exploring some of the ways in which this can be done in software. I would now
like to return to the basic question of how structures achieve good fit. This is a question
that Christopher Alexander studies in detail in his “Notes on the Synthesis of Form,”70 a
book based on his PhD research written before his work on design patterns. This is, inci-
dentally, also the text that infuriated Peter Eisenmanwho than opposed it in his own thesis
on formal analysis of architecture.

18

Figure 12: Seven examples that illustrate different approaches to achieving fit. (1) Vernacular farm-
house in South Bohemia built in the 19th century in the rural baroque style (“selské baroko”), (2)
Church of Our Lady of Sorrows in Dobrá Voda with entrance from the side of the nave, (3) House
VI by Peter Eisenman, bult 1972-75, (4) Bauhaus-inspired Isokon building in London, built 1929-32,
(5) living space of the modernist Villa Tugendhat by Mies van der Rohe, 1928-30, (6) the entrance
room of the Sala House built by Christopher Alexander in 1983-4, and (7) 1966 photo of the Las
Vegas Strip by Denise Scott Brown from “Learning from Las Vegas”.

According to Alexander, “every design problem begins with an effort to achieve fitness
between two entities: the form in question and its context. The form is the solution to
the problem; the context defines the problem.”71 According to Alexander, the problem is
that, in anything but the most simple scenarios, “we cannot give an adequate description
of the context we are dealing with.”72 The real-world is too complex and so an attempt to
logically deduce the form from a description of the context is bound to fail. The different
methods of achieving fit illustrated in Figure 12 approach this problem differently.

The first approach to the problem is used by vernacular architecture, that is building
done locally, in traditional ways and without guidance of professional architects. We do
not need to appropriate “charms of fairy-tale countries”73 to explain this approach. Aside
from theMusgummud huts, Alexander talks about New England barns andmy illustration
is a typical farmhouse in the southern region of Czechia. The way good fit is achieved

19

in vernacular architecture is by gradual adaptation. When building a new farmhouse, the
local builder follows the same style as everyone else in the region. Since the needs of most
farmers are similar, this will result in an adequate solution. When the context changes, the
building style evolves gradually by small adaptations. A change is tried in one farmhouse
and if it is beneficial, it is then replicated by other builders. In this mode of working, little is
demanded from the individual builder. “He need not himself be able to invent forms at all.
(...) All that is required is that he should recognize misfits and respond to them by making
minor changes.”74 Even if the changes are not improvements, it does not matter. They will
simply not be adopted by others in subsequent buildings.

According to Alexander, the professionalization of architecture destroyed this old pro-
cess. However, Alexander also admits that the degree of complexity faced by modern ar-
chitects is greater than that of vernacular builders. You cannot build a skyscraper using the
method that works for a farmhouse. Professional architects thus approach the problem
by analyzing the context and inventing a form to fit. This is the modernist methodology,
rooted in the maxim “forms follows function.”75 Two examples of modernist architecture
that illustrate different variations on the theme above are Villa Tugendhat and Isokon Flats.
Villa Tugendhat was built as a private residence, to create “a complete vision of luxurious
Modernist living.”76 As such, it featured open plan living space, retractable glazed walls
and a floor plan that reflects the needs of the family, including an easy access through
the garage and a separate driver’s appartment. In contrast to the generous space of the
Villa Tugendhat, Isokon Flats were designed as “minimal flats,”77 inspired by the question
of “how much space individuals needed to live in comfortably.”78 The flats were built for
young professional men and women and provided a range of domestic services and meals
made in a central kitchen. The two buildings are daring examples of radical new design
that reflects the changing context. Both of the buildings invent a new form that and aims
to achieve fit by analyzing the context and by emplying technical innovations.

Christopher Alexander developed a range of different approaches to the problem of
achieving fit throughout his career. In “Notes on the Synthesis of Form”, he suggests that
“we should see the process of achieving good fit (...) as a negative process of neutralizing
the incongruities, or irritants, or forces, which cause misfit”79 and he describes an analyt-
ical incremental approach that identifies sub-problems (clusters of interlinked concerns)
and gradually resolves those. His later work describes the problem as the search for what
he calls “quality without a name”, which happens when an environment is free of contra-
dictions. In the writing on design patterns, Alexander and his collaborators replace the
unwritten knowledge of vernacular architecture with an explicit pattern language. A good
pattern language can then be used to design living structures:80

Each living pattern resolves some system of forces, or allows them to resolve
themselves. Each pattern creates an organization which maintains that por-
tion of the world in balance. (...) And finally the quality without a name ap-
pears (...) when an entire system of patterns, interdependent at many levels,
is all stable and alive.

The Sala house designed by Alexander shown in Figure 12 employs numerous patterns
to achieve the quality without a name. Sleeping is organized in alcoves (involving patterns
such as Bed Cluster, Alcove, Marriage Bed), the house relies on natural light (Tapestry of
Light and Dark, Sunny Place), and the inside of the house is in relationship with the out-
side garden (Connection to the Earth). The process relies on an extensive pattern language,

20

which Alexander painstakingly developedwith his co-authors overmultiple years. The pat-
tern language is supposed to capture the shared understanding of the community, which
makes it possible to construct agreeable environment. Alexander’s pattern language, how-
ever, leads to a particular style of buildings and Alexander himself later asked whether
patterns are enough to generate the living structures he desires. Moreover, the buildings
built using his pattern language are pleasant in a specific way and it is not clear whether
the same approach can be used to construct other types of pleasant buildings.81

Christopher Alexander is not the only onewho believes that themodernist rational ap-
proach to achieving fit is bound to fail. Robert Venturi, sometimes referred to as one of the
founding fathers of post-modernism,82 wrote in his 1966 book “Complexity and Contradic-
tion in Architecutre” that Mies van der Rohe “makes wonderful buildings only because he
ignores many aspects of a building. If he solved more problems, his buildings would be far
less potent.”83 Venturi also cites Alexander to highlight that problems faced by architects
“increase in quantity, complexity and they also change faster than before.”84 But rather
than trying to resolve the resulting contradictions, Venturi welcomes them:85

I like complexity and contradiction in architecture. I do not like the incoher-
ence or arbitrariness of incompetent architecture nor the precious intricacies
of picturesqueness of expressionism. Instead, I speak of a complex and con-
tradictory architecture based on the richness and ambiguity of modern expe-
rience, including that experience which is inherent in art.

In his “Complexity and Contradiction in Architecture,” Venturi documents a large num-
ber of examples of architecture that accommodates complexity and contradiction using
both historical examples and his own projects. The church in Dobrá Voda, shown above,
illustrates Venturi’s point that the complexity of a site supports richness lacking in purer
compositions.Venturi (1977, p.28) The church is built in a village on a hill with a steep slope.
Reflecting the site, the Baroque entrance is from the side of the nave and is visible from
the open countryside that it faces—becoming an appealing landmark.

I talk about Venturi in a section focused on achieving fit mainly because of his later
work, “Learning from Las Vegas”86 written with Denise Scott Brown and Steven Izenour.
The book is a study of the commercial strip, “important to architects and urbanists today
as were the studies of medieval Europe and ancient Rome and Greece to earlier genera-
tions.”87 For Venturi and his collaborators, the analysis “is a socially desirable activity to
the extent that it teaches us architects to bemore understanding and less authoritarian.”88

Venturi, Scott Brown and Izenour point out that architects have typically been trying
to change the existing environment rather than enhancing what is already there. The way
of achieving fit with the new complex environment is thus to first understand the existing
environment and its language—and then build with accordance to the language. In the
case of the commercial strip, documented in the book, the language is primarily a language
of signs, billboards, arrows and visual symbols. The “obvious visual order of the street” is in
contrast with the “difficult visual order of buildings and signs.”89 This multi-layered formal
structure is not unlike that of the Hotel Foquet discussed in the previous section.

The authors use the lessons learned as a justification for their own approach to archi-
tecture, which they call the decorated shed. According to this perspective, the architec-
tural form of the building does not matter that much. A decorated shed is designed and
built as a conventional shelter, reflecting “proprietor’s budget.”90 An additional content

21

is added to the building in the form of signs—either as literal signs in the case of Las Ve-
gas strip or as explicit decorations in case of more ordinary buildings. The fact that the
authors look specifically at the commercial strip (and the Levittown suburb in their follow-
up work) for inspiration reflects their acknowledgement of existing American culture—a
position that is shared with the pop art movement. Venturi, Scott Brown and Izenour can
thus be seen as assuming “the role of servant to society” whose task “is to understand
and interpret the wishes of the client.”91 This is in contrast to the modernist tendency “to
elevant client’s value system and/or budget by reference to Art and Metaphysics.”92

The viewof Venturi, Scott Brownand Izenour that architecture is “embedded in a global
ideology from which there is no escape” is also a negation of the perspective of Peter
Eisenman and a group referred to as “the New York Five” who see “architecture as an au-
tonomous discourse.”93 This school of architecture offers yet another perspective on the
problem of achieving fit. As I discussed earlier, Eisenman is interested in developing archi-
tectural forms as formal structures, rooted in a formal architectural language and without
direct reference to humanist ideals. His architecture is “true to its own logic.”94 The prob-
lem of achieving fit is no longer a driving factor behind architecture, but something that
can emerge as its effect. How less likely this is when compared to other approaches likely
depends on the degree to which the complexity of the problem of achieving fit, which
other architects explicitly try to address, is tractable.

The idea that structures emerging from formal manipulation will find their use is not
exclusive to the proponents of autonomous architecture like Eisenman. The architectural
style known as contextualism also disregards functionalist rationales and instead recog-
nizes and replicates elements from the local environment. For “if Americans won’t prom-
enade in urban plazas perhaps they will ice skate in them.”95

Vernacular Software

The essential characteristics of vernacular architecture is that it is produced in traditional
ways, without professional architects and that it achieves fit through gradual adaptation.
It typically only needs to address problems of limited complexity. Vernacular architecture
also develops over long periods of time, so its relevance to the world of software is not
immediately apparent. Yet, there are some connections worth exploring.

The web of the 1990s had many of the characteristics of the vernacular architecture
and this fact has been documented in articles and talks by the internet artist and theorist
Olia Lialina. In her article “A VernacularWeb”,96 Lialina describes theweb of themid-1990s
as “bright, rich, personal, slow and under

construction”, but also documents its vernacular nature and its demise:97

One could say it was the web of the indigenous... or the barbarians. In any
case, it was a web of amateurs soon to bewashed away by dot.com ambitions,
professional authoring tools and guidelines designed by usability experts.

The web pages of the mid-1990s were often hosted on the free web hosting service
GeoCities, which offered a simple template-driven web generator or an advanced editor
for users familiarwithHTML. Pageswere organized in neighborhoods that grouped content
by topic, but also simplified discovery of other content.98 Although the web pages had
widely varying content and graphics, many of them shared a particular style (Figure 13).
They were also often created using the typical methods of vernacular architecture—by

22

Figure 13: Two examples of typical web pages hosted on GeoCities (viewed using a modern web
browser in an archive maintained by restorativland).

copying existing structures. In particular, themodular nature of thewebmeant that “every
line, figure, button and sound was on its own and could easily be extracted, if not directly
from the browser then from looking at the source code to find the URLs of the files.”99 The
reusable components of the 1990s web, such as backgrounds, buttons, music and dividers
were available from collections maintained by other users.

Another area where we can find aspects of vernacular way of working is programming,
as practiced by themembers of the hacker community at theMIT in the 1960s. The hacker
community emerged around the first available interactive computers, TX-0 and PDP-1. It
embraced ideas of openness and sharing as well as individual ingenuity and skill.100 Hack-
ers did not learn programming through formal education, but through practice and by
working with other members of the community. The hacker culture differs from vernac-
ular architecture in that the problems solved by hackers were often very challenging and
required great individual ingenuity. The ways and the tools through which they solved
the particular programming problems were shared by the community and improved by a
process of gradual adaptation.101 There is also a similarity between the largely unwritten
community knowledge of hackers102 and the unwritten community knowledge of vernac-
ular builders. The way of working personified by the 1960s MIT hackers keeps finding its
use in various areas of computer programming to this day. However, as a dominant way of
building software, the methods of early computer hackers were replaced with an orderly
software engineering method.103

Both of the above examples share interesting characteristics with vernacular architec-
ture. They rely on unwritten knowledge shared by a community and also on some notion
of copying and reuse. Whereas in vernacular architecture, it is necessary to copy a form
when constructing newbuildings, vernacularweb creators relied on literal copying of code,
graphics and other media elements. The fate of those vernacular computing practices also
followed the fate of vernacular architecture. As observed byAlexander, “with the invention
of a teachable discipline called ‘architecture,’ the old process of making form was adulter-
ated and its chances of success destroyed.”104 The new “teachable disciplines” that led to
the end of the vernacular web and vernacular hacker programming were professional web
design or user experience design and the discipline of software engineering, respectively.
Both of those replace the unwritten knowledge and the practice of copying and learning

23

Figure 14: The Spacewar! game, created by theMIT hackers, running on a restored PDP-1 computer
in the Computer History Museum

from the community with the analysis of the context and (re)invention of new forms to fit
the context. It is also the case that, likemodern architecture, bothmodern user experience
design and software engineering face problems of a greater scale and complexity.

When Bernard Rudofsky organized the exhibition “Architecture Without Architects”
that popularized the term “vernacular architecture” in 1966, he was one of the first to rec-
ognize that our attitude to traditional architecture “is plainly condescending” and that:105

There is much to learn from architecture before it became an expert’s art. The
untutored builders in space and time (...) demonstrate an admirable talent for
fitting their buildings into the natural surroundings.

Architects and designers have, since then, learned to recognize the value of vernac-
ular and indigenous architecture.106 I believe that computer scientists and programmers
should similarly look to their vernacular past for interesting ideas.107

The vernacular web culture is perhaps closer to the pop signs of the commercial ver-
nacular of Las Vegas than to rural vernacular praised by Alexander. In any case, it devel-
oped into a unique creative culture and the GeoCities service itself hosted over 38 million
pages by the time it was shut down in 2009, most of which were created by enthusiasts
and non-professionals. How exactly this was achieved would be a subject of a fascinating
socio-technical study of the era, but there are some easily identifiable technical factors
that enabled this. First, the GeoCities template-based web page generator made it easy
for users to get started, but it did not restrict them. There was a natural transition from a
novice user to someonewho can fiddle with the HTML source code, modify it and, through
this process, gradually learn more about the technology. Second, the modularity of the
early web made it easy to copy and reuse aspects of other sites. This included graphics
and media, but also parts of the HTML markup and, later, JavaScript code that was often
used to implement “pop” visual effects such as rollover (changing an image when amouse
cursor is over it) or mouse followers (element that follows the mouse cursor).

24

Figure 15: Replica of the Mies van der Rohe pavilion, rebuilt in 1986 after the 1929 orginal.

The technical characteristics that enabled the vernacular web could well be built into
new programming systems. The first requirement is that there should be gradual progres-
sion from an end-user to a novice and, eventually, to an expert. This requires transparency.
When a simple user-friendly tool guides you through the creation of new content, you still
need to be able to see (and interactively engage with) the underlying representation, or
source code, of the result. The same transparency is necessary for sharing of knowledge
in the community. When a user finds some component or behavior interesting, they need
to be able to locate its implementation, copy it (easily extracting only the relevant parts)
and reuse it. The domain where this is perhaps most needed is educational software. And
systems such as Scratch let you explore the gallery of other users’ creations, see inside
them and “remix” them (although extracting and copying components is still challenging).

The programmers of the 1960s MIT hacker culture illustrate another characteristic of
vernacular architecturementioned above—an adminarable talent for fitting their software
into their technical environment. An example that illustrates this is the Spacewar! game
(Figure 15) that was built to showcase the technical capabilities of the PDP-1 computer.
The initial version of the game featured two spaceships with thrust, shooting torpedos at
each other. Additional ideas proved challenging to implement. Adding gravity and realistic
starmap required inventing clever programming tricks such as compiling a special-purpose
program at the start of the game to rotate the spaceship.108

Aside from illustrating a unique degree of fit achieved by the vernacular programming
practices of the hackers, the Spacewar! example lets me illustrate another interesting par-
allel with architecture. In architecture, some of themost radical ideas appear in structures
that are not regular buildings. This includes monumnets and follies, exhibition pavilions
or stage sets. The ironic column in the 1980 Venice Bienale was one example I mentioned
earlier. Another is the German pavilion built by Mies van der Rohe for the 1929 Interna-
tional Exposition in Barcelona, which exhibited the open floor plan and column-supported
roof that we saw just six years later in the Villa Tugendhat.109 In the world of software,
demonstrations are one kind of software that plays a similar role. The special context of
software demonstrationsmakes it possible to use them for playful purposes or to illustrate
specific technical abilities—such as running an interactive game with gravity and realistic
star map on a 730kg computer with a total memory of 4,000 of 18-bit words.

25

It may be interesting to use the lens of vernacular architecture to look at the develop-
ment of programming languages too. As documented by LeoMeyerovich and Ariel Rabkin,
“the original designers of today’s popular languages are typically not experienced in pro-
gramming language design.”110 This alone does not make them vernacular, but the lan-
guages are often created in the software equivalent of “the most complicated configura-
tions in the landscape.”111 In words of Meyerovich and Rabkin, “a common pattern is for
programmers with expertise in other domains to create a language when they perceive
an unmet need.”112 Programming languages not designed by programming language de-
signers often achieve their fit by solving a more specific problem that is initially perceived
as simple. They can even be well-optimized for the initial specific problem. What they
lack, or exhibit only in a limited form, is the gradual adaptation. In case of programming
languages, this is typically prevented by the fact that once a language gains some users, it
becomes impossible to change it.

Perhaps if each software project had to start by creating its ownprogramming language—
just like each farmer needs to build a barn—wewould eventually get a vernacular program-
ming language, highly optimized for its environment!

Modernism of Conceptual Coherence

It would be simplistic to reduce modernist architecture to the problem of achieving fit. As
we sawabove,modernist architectswere interested in finding and supporting newmodern
ways of living. But this often came together with the need to find new architectural forms.

The way of thinking about software that comes the closest to modernist architecture
is the notion of conceptual integrity, developed by Fred Brooks in his influential book
“The Mythical Man-Month”.113 As with modernist architecture, conceptual integrity is not
merely about achieving good fit or developing a system according to its specification. It is
also about internal logic and clarity of the involved structures:

Every part must reflect the same philosophies and the same balancing of de-
siderata. Every part must even use the same techniques in syntax and analo-
gous notions in semantics. Ease of use, then, dictates unity of design, concep-
tual integrity.114

Even though Brooks talks about internal consistency of the design, the motivating fac-
tor is function. It is not—as with architects exploring formal grammars—internal consis-
tency of formal structures detachd from the reality. But for “a given level of function, (...)
that system is best in which one can specify things with the most simplicity and straight-
forwardness.”115 In software, the problem of achieving internal consistency is as tricky as
the problem of achieving fit between the form and the context in architecture. Brooks be-
lieved that it is possible to achieve conceptual integrity if the design proceeds “from one
mind, or from a very small number of agreeing resonant minds.”116

Interestingly, themodernistmethodology in theworld of software also partly responded
to the newly emerging “modern” ways of using software. The Mythical Man-Month was
published in 1975. It reflected the author’s experience of working on the operating system
for the new IBM/360 line of computers. However, it also appeared a couple of years after
other two major developments in the software industry. One was the 1968 NATO confer-
ence on Software Engineering that introduced the very term “software engineering” and

26

is sometimes seen as marking the move from the “black art of programming” to the new
science of “software engineering”.117

Another developmentwas relatedmore to theway computerswere employed by busi-
nesses. The influential McKinsey report “Unlocking the Computer’s Profit Potential”118
published in 1968 argued that many “large companies have successfully mechanized the
bulk of their routine clerical and accounting procedures” using computers. According to
the report, most companies were only slowly realizing that the “second stage of the com-
puter revolution, unlike the first, entails real operational changes.”119 In other words, the
managers responsible for the use of computers need to move from simple automation of
existing processes to finding new ways of utilizing computers in their companies. I would
argue that there is a similar interplay in this development as in the modernist architec-
ture. Just likemodernist architecture reflected and enabled newmodernway of living, new
modernist approach to software development has been interconnected with newmodern
ways of using computers from the 1970s onward.

The software development methodologies of the 1970s are now perhaps more obvi-
ously outdated than the modernist architecture of the 1930s. What followed them—and
to what extent can the different alternatives be related to various post-modern tenden-
cies in architecture—would be an interesting question to explore further. There may be
some interesting analogies. I will look at ideas inspired by formalism of Eisenman and post-
modernism of Venturi later. Concerning development methodologies specifically, many of
the later developments learned to better acknowledge the “complexity and contradiction”
involved in the typical sofware project. Distributed open-source developmentmethodolo-
gies characterized by Raymond in “The Cathedral and the Bazaar”120 emerge from complex
social structures, but are at least as effective as Brooks’ “onemind”; the Agile development
methods aim to achieve fit by gradual adaptation and would be closer to vernacular meth-
ods praised by Alexander.

Critics of modernist architecture and modernist urban planning pointed out a number
of its limitations. Many of those are also relevant for software. One of them has been
pointed out by French architect and theoreticiaan Bernard Tschumi:

While the puritanism of the Modern Movememnt and its followers has often
been pointed out, its refusal to recognize the passing of time has rarely been
noticed. (Not surprisingly, glass and glazed tiles have been among the pre-
ferredmaterials of themovement—for they donot reveal the traces of time).121

Software systems donot decay in the same literalway as thematerials used in buildings
(there is no plaster falling off the concrete blocks of the software equivalent of the Villa
Savoye as discussed in Tschumi’s article). The kind of decay that software faces is more of-
ten caused by changes in its environment, that is the context that initially shaped the form.
In the world of software, the requirements change as the situation in the real world that
the software responds to changes, the technical platforms and systems on which software
runs change, programming languages and styles evolve and components the software is
built from change (npm packages being the most notorious example).

Modernist software is not built to adapt well, just like most modernist buildings are
not built to adapt well. Modernist architecture “made the profound mistake of taking a
snapshot of the high-rate-of-change ‘organic life’ within building and immobilizing it in a
(...) low-rate-of-change structure and skin of the building.”122 Or as Stewart Brand puts
it “The credo ‘form follows function’ was a beautiful lie. Form froze function.”123 The

27

Figure 16: The demolition of the second Pruitt–Igoe building, April 21, 1972.

possibility of designing more adaptable building, as well as more adaptable software, is an
interesting problem that I will return to later. (In particular, I want to see if there could be
a software equivalent of Brand’s “material that looks bad before it goes bad,” i.e., a way of
building software where the material warns us about likely imminent structural faults.)

Whereas the failures of modernist architecture were typically limited to individual
buildings, the failures ofmodernist urban planning—rooted in the same principles of ratio-
nal planning—weremore high-profile. An iconic example has been a large housing project,
built as part of urban renewal projects, often to replace former slums. The demolition of
one such housing project, Pruitt-Igoe in St Louis, in 1972 has been labelled as the day mod-
ern architecture died by architectural critic Charles Jencks (Figure 16). We can see the
housing projects as monumental scale follow-ups to the modernist Isokon building that
I examined earlier—and the monumental scale, as well as very different socio-economic
conditions, is likely why their fate was different.

The foremost critic to oppose the modernist urban planning was Jane Jacobs. In her
1961 book, “The Death and Life of Great American Cities,”124 Jacobs looked closely at the
street life inGreenwichVillage andBoston’s North End neighborhood at the time anddocu-
ments what makes themwork. This includes lively mixed-use, dense population and “eyes
on the street”, as well as diversity of buildings and diverse population. That is, properties
that were mostly absent in modernist housing projects. Jacobs’ analysis raises a number
of questions about software, some of which I explored elsewhere such as:125 If the rational
structure does not produceworking software, what are the characteristics of software and
programming systems that actually do it?

One interesting inquiry into the modernist urban planning came James C. Scott who
identifies modernist patterns—similar to those of modernist urban planning—in a range
of other areas of society including forestry, agriculture and politics. However, many of the
modernist structures that Scott talks about find some way of working. In Scott’s account,
this is often enabled by “dark twins”, that is inofficial structures that exist hidden from the
official modernist view that arise “to perform many of the various needs that the planned

28

// Recursively retrieves a nested value from an object using a path
function getValueByPath(obj: any, path: string[]): any {
if (path.length === 0) return obj;
if (typeof obj !== "object" || obj === null) return undefined;
const [key, ...restPath] = path;
return getValueByPath(obj[key], restPath);

}

// JSON data could come from external source
const sample = ’{ "user": {
"name": "Bup",
"address": { "city": "Prague", "zip": "17000" }

}}’;
const parsed = JSON.parse(sample);

// Access nested object members dynamically
getValueByPath(parsed, ["user", "name"]);
getValueByPath(parsed, ["user", "address", "zip"]);

Figure 17: A TypeScript example using the any type to dynamically process JSON input.

institution fails to fulfill.”126 One personification of the concept of dark twin, documented
by Scott is the East German factoryworker, touring the country in his Trabant auto to secure
keymissing parts not available through official channels, in exchange for valued goods such
as fashionable clothes or champagne, purchased using factory funds.127 (Another example
would be the illegal freelance engineer Archibald Tuttle in Terry Gilliam’s movie Brazil.)

The idea of dark twins raises a question about software design as well. To parphrase
Scott—towhat extent is successful modernist software design parasitic on similar informal
processes that it cannot create or maintain?128

I believe one illustration of the above is the type system of the TypeScript language.
(More specifically, I will consider earlier versions of the language. In later versions, the
understanding of types in TypeScript has evolved.) The type system of early TypeScript
featured many types that are common in type systems of more pure languages: primitive
types, object and interface types, function types, union types and generic types. Those are
useful for much of “modernist” code that operates on clear and well-defined structures.
But not all code is like that. All programs also need to work with some kind of external data
(Figure 17) and this cannot easily be done using purely modernist type system. TypeScript
solved the problem by also including a dark twin—the any type. The type breaks the pure
modernist properties of the type system (the system cannot guarantee any safety), but its
inclusion was likely crucial for the adoption of TypeScript. The system could actually be
used in practice to work with data and interoperate with the JavaScript ecosystem.

The evolution of the TypeScript type system deserves a further analysis. Later ver-
sions continued adding features that reflected typical (non-modernist) coding patterns in
JavaScript. As the number of dark twins in the system grew, they became integrated into
the official structures of the type system—so what started as modernist design with the
necessary supporting dark twins may have evolved into a post-modern assemblage.

29

Figure 18: Additonal floors and other additions on the top of a 19th century palazzo in Naples

Complexity and Contradiction in Software

The TypeScript story that I hinted at in the previous section may serve as an illustration
of an important fact. In the earlier versions, we could read the language as being based
onmodernist design, featuring strong rational type system. There were some unavoidable
dark twins, necessary to make the design practical, but those were only (somewhat) reluc-
tantly admitted. However, the later versions of TypeScript seem to acknowledge and em-
brace the complexities and contradictions inherent in the system, which combines some
aspects of initial rational design with the many complexities of the environment and per-
haps also whims of the most recent JavaScript framework creators.

Should programmers and computer scientists embrace complexity and contradiction
in software, in ways that are similar to those advocated by Robert Venturi for architec-
ture? First, there is a certain honesty in acknowledging complexity and contradiction in
cases where it cannot be avoided. Venturi himself also does not argue for introducing
unnecessary complexity. He says that “abstruse architecture is valid when it reflects the
complexities and contradictions of content and meaning.”129 Venturi praises a number of
benefits of working with this fact.

The fact that contradictions support “richness” in design (as illustrated by the church
in Dobrá Voda above) is perhaps primarily aesthetical and not necessarily of interest for
software designers. Still, working in an atypical contextmay serve as a source of inspiration
for novel design. For example, many of the interesting aspects of the Erlang programming
langauge arise from the fact that it was initially designed for telephony applications, which
are highly concurrent, distributed and must be fault tolerant, supporting change “on the
fly” without a loss of service during update.130

Another interesting observation about complexity made by Venturi is that complexity
is robust. It provides an answer to the criticism of modern design that I mentioned in
the previous section. Whereas “one foreign element casts into doubt the entire effect
of some modern buildings,”131 a “good deal of clutter” and renovations does not destroy

30

Figure 19: Two villas used to illustrate
how contradiction can be manifested.
Contradiction is adapted in Villa Pig-
natelli (above), and juxtaposed in Villa
Palomba (below).

the Italian urban scene of many times adapted and reconstructed palazzi (Figure 18). This
seems to be the case about programming languages too. Consider the C++ language as
an example. “C++ is complicated, too complicated.”132 It also has many “complicating
legacy features.”133 Yet, none of those have destroyed the coherence of the language. The
language embraces the complexity:

Today, some of the most powerful design techniques combine aspects of tra-
ditional object-oriented programming, aspects of generic programming, as-
pects of functional programming, and some traditional imperative techniques.
Such combinations, rather than theoretical purity, are the ideal.134

Although the language designers still strive for coherence, they also acknowledge that
a design “by a 350+member committee is unlikely to produce a coherent result.” But given
the complexity of the ecosystem, there is no way of avoiding this. A “mature language
needs dozens or even hundreds of people working on the huge variety of problems that
must be faced.”135 I believe that the design of C++ has been embracing complexity and
contradiction, perhaps for longer than the designers would admit. But this has made the
langauge robust to additions and extensions that were needed to keep it “thriving in a
crowded and changing world.”136

Venturi also identifies two ways in which contradictions can be manifested (Figure 19).
In case of adapted contradiction, the design finds some compromise between the two
contradicting factors, such as by adapting the window mouldings. In case of juxtaposed
contradiction, there are no compromises and, for example, windows appear where the in-
ner layout needs them. The Hotel Foquet (Figure 11) was an extreme case of this approach.
Venturi contrasts the two options as follows:

Contradiction adapted is tolerant and pliable. It admits improvisation. It in-
volves the disintegration of a prototype—and it ends in approximation and
qualification. On the other hand, contradiction juxtaposed is unbending. It
contains violent contrasts and uncompromising oppositions. Contradiction
adapted ends in a whole which is perhaps impure. Contradiction juxtaposed
ends in a whole which is perhaps unresolved.

I believe that we can, again, find examples of both approaches in the domain of pro-
gramming language design. Take, for example, the problem of integrating functional pro-

31

Figure 20: Headquarters Building, North Penn Visiting Nurse Association, Venturi and SHort, 1960.

gramming languages with the support for side-effects such as performing IO operations.
On the one hand, in languages likeOCaml and F#, the contradiction is adapted. Side-effects
are tolerated as part of normal functional programs at a certain cost—such as the impos-
sibility of making such language lazy. On the other hand, in languages that rely on monads
like Haskell, the contradiction is juxtaposed. Effectful computations are explicit and their
integration is unbending. And whereas the OCaml and F# design is impure, the Haskell
design is unresolved.

Another interesting aspect of acknowledging andworkingwith complexity is that it can
aid transparency. This can be illustrated using one of Venturi’s own projects, documented
in the Complexity and Contradiction book (Figure 20). The contradiction that the design
resolves is between the “complex inside (...) with varieties of spaces and special storage
accommodations” and “bold scale and simple form” of the outside of the building. A trace
of the resolution of the contradiction can be seen in the visible form of the building:

As for the program complexities of the interior, a hint of the storage intricacies
is confirmed in the alternating recessions ofwindows and closets in the front.137

In other words, if we look at the building front (and perhaps knowwhat we are looking
for), we can see traces of the interior storage spaces in the facade. The building is not trying
to hide the fact behind a simple uniform facade. There is, perhaps, a degree of honesty in
the design, but it also allows us to understand the building and its function better.

I believe that embracing a design which leaves a trace of complexities it resolves is an
interesting option for software and programming systems. As software designers, we are
often using abstractions to hide the internals of a system from its users (or other develop-
ers). But such abstractions often hide contradictions that the implementors had to resolve
in some, often imperfect way. If the abstractions do not leave any hint of such complexi-
ties, it is easy to hit their limitations and use them in a way in which they break. Being able
to see through the abstractions—even if through limited hints—may thus be of a practical
value.138 How exactly to achieve this, I leave as an open question for now.

32

(* Define abstract signature of a module
and provide concrete implementation *)

module type MySig = sig
type t = int
val x: int

end
module MyModule: MySig = struct
type t = int
let x = 10

end

/* Define abstract signature of a module
and provide concrete implementation */

module type MySig = {
type t = int;
let x: int;

};
module MyModule: MySig = {
type t = int;
let x = 10;

};

Figure 21: An example from a comparison between OCaml and ReasonML showing the new syntax.

Learning from Software Pop Culture

Venturi’s rejection ofmodernismwas based on finding richnes resulting from the complex-
ity and contradiction in a wide range of historical and vernacular examples of buildings.
Learning from Las Vegas extends the critique, arguing that architects should pay attention
to the commercial vernacular and, generally, the way buildings resulting from the contem-
porary pop culture are structured. The architectural inspiration that Venturi, Scott Brown
and Izenour derive from their study is that of a decorated shed, a building with simple in-
ner form whose meaning is defined by its use of signs. I believe we can use both of these
concepts—learning from the pop culture and the notion of a decorated shed—to critically
examine software and programming systems.

In programming languages and systems, the idea that a programming language can be
seen as a formal mathematical entity was an major invention at the end of the 1950s. It
facilitated the development of many programming languages and concepts, including the
influential Algol language. The consequence of this view was that languages were often
designedmainlywith attention to their formal structure and internal coherence (which can
be seen as a combination of modernist view that I discussed above and formalism that I
return to later).

However, a number of more recent programming languages moved away from the
strictly modernist or formalist designs and embraced interaction with the context in which
they operate—or even learn from the commercial culture and embrace some of their pop
symbols. A programming language that both conceptually and technically fits the notion
of a decorated shed is Reason ML. It was released in 2016 and has been described as:

Reason is not a new language; it’s a new syntax and toolchain powered by the
battle-tested language, OCaml. Reason gives OCaml a familiar syntax geared
toward JavaScript programmers (...).139

The ReasonML provides new syntax and tooling for the existing andmuch older OCaml
language. Despite numerous advanced aspects, OCaml can be seen as a simple and con-
ventional underlying structure. However, to produce a language that is more appealing
to the intended public—JavaScript developers—the shed is decorated with a new syntax
derived from JavaScript. In particular, Reason ML uses curly brackets and JavaScript-like
syntax for comments (Figure 21). Although there are some technical advantages of the
syntax, the main motivation for the syntactic redecoration is familiarity.

33

Figure 22: A highly customizedWordPressweb page for the Hexagon architectural firm. Their build-
ings may not be decorated sheds, but their web site certainly is.

The example of Reason ML shows that the architectural design principle of a deco-
rated shed, conceived of by Venturi, Scott Brown and Izenour can be directly applied in
the world of software too. As with Venturi’s first buildings based on the decorated shed
idea, Reason ML was received with mixed reactions. In particular, some saw it as a super-
ficial step backward. But the example also shows how the design principle lets designers
avoid the modernist reinvention of form. Rather than solving the problem of fit anew, the
designers can leverage an existing adequate solution and make it more appealing for the
context that it now needs to exists in.

The concept of a decorated shed can also be linked to a point made by Fred Brooks in
his essay No Silver Bullet, published in 1986, where he argued that:

There is no single development, in either technology or management tech-
nique, which by itself promises even one order of magnitude improvement in
productivity, in reliability, in simplicity.140

Brooks’ argument was based on the analysis of the complexity of software design. He
sees it as a combination of essential complexity, inherent in the problemm and accidental
complexity arising from the imperfection of our processes and tools. Resolving the essen-
tial complexity in software design amounts to achieving fitness between the form and the
context. Brooks suggest some “promising attacks” on the problem including, most promi-
nently, “buy versus build”:

Themost radical possible solution for constructing software is not to construct
it at all. Every day this becomes easier, as more and more vendors offer more
and better software products for a dizzying variety of applications.141

The development envisioned by Brooks in 1986 has happened inmultiple areas. Brooks
already mentioned database systems and spreadsheets. Nowadays, there is a number

34

of pre-existing packages ranging from e-commerce platforms and accounting software to
content management systems. Many of those systems follow the design principle of a
decorated shed in a very literal sense. For example, content management systems such
as WordPress (Figure 22) make it possible to customize the publicly facing look of the sys-
tem through themes, while the underlying structure remains the same. (Although, the
structure can often also be adapted configured via plugins.) Again, the decorated shed
makes it possible to use an existing adequate strucutre, but decorate it with symbols and
ornaments to communicate thes desired message.

Decorated shed is an intriguing specific design principle that can clearly have implica-
tions for software and programming systems, but we can also consider the more general
point of learning from existing urbanism—or software ecosystems. After all, Learning from
Las Vegaswas intended as “a study ofmethod, not content.”142 Howelse canwe learn from
existing software ecosystems when designing new structures?

I will, again, use TypeScript as my example. Unlike ReasonML, TypeScript is not merely
a decorated shed, but a new language with its own new complexities. As a superset of
JavaScript, the language is derived from an existing structure with complex history. We
could analyze this and, for example, document what kind of richnes emerges from the
complexity and when the complexity is adapted or juxtaposed. (JavaScript and TypeScript
mostly seem to follow a concilliatory approach resulting in adapted complexity.)

However, I want to focus on one aspect of the TypeScript type system design that can
be seen as an example of learning from the pop culture. TypeScript programmers need
to interoperate with a large number of JavaScript libraries. In order to provide type anno-
tations for those libraries, the type system of TypeScript needs to be expressive enough
to cover the scenarios that often appear in existing libraries. The designers thus need to
analyze existing practices and libraries, many of which emerged without much concern for
programming language or type system design. Figure 23 provides two examples. The first
code snippet shows how TypeScript overloading made it possible to provide a typed inter-
face for the createElement function, which returns a different kind of object depending
on the value of the first parameter (and which predates TypeScript by some 15 years). The
snippet combines string literal types (treating a string value as a type) and overloading.143
The second snippet uses template literal types, which make it possible to construct string
literal types through templates. Here, the feature is used to define type for a range of valid
CSS class names that the external library, Tailwind, defines.

To what extent is it fitting to see JavaScript libraries as a commercial pop culture of Las
Vegas may be open to discussion. The more important point here is the design method-
ology that language designers need to use if they are creating a language to fit with an
existing complex and contradictory ecosystem. As noted by Venturi and his co-authors,
“analysis of existing American urbanism (...) teaches us architects to be more understand-
ing and less authoritarians in the plans we make (...).”144 In the same way, understanding
and learning fromwhat exists in existing software ecosystems that programming languages
interact with teaches programming langauge designers to be less authoritarian and and
adapt (or juxtapose!) their designs with respect to this context.

The analysis of existing context and culture can be done in a number of ways and result
in a range of designs. To some extent, the design of JavaScript still aims at the modernist
maxim “less is more”. For example, it resolves the complexity of the createElement typing
using otherwise useful and reusable constructs (overloading and string literals) rather than

35

A type definition for createElement using overloaded function signature (TypeScript 2.0):
interface Document extends Node, GlobalEventHandlers,

NodeSelector, DocumentEvent, ParentNode {

/**
* Creates an instance of the element for the specified tag.
* @param tagName The name of an element.
*/

createElement(tagName: "a"): HTMLAnchorElement;
createElement(tagName: "applet"): HTMLAppletElement;
createElement(tagName: "area"): HTMLAreaElement;

/* 75 lines of code listing other overloads omitted */

createElement(tagName: "video"): HTMLVideoElement;
createElement(tagName: "x-ms-webview"): MSHTMLWebViewElement;
createElement(tagName: "xmp"): HTMLPreElement;
createElement(tagName: string): HTMLElement;

/* 900 lines of code listing other DOM functions omitted */
}

A type definition for Tailwind class names using template string literals (TypeScript 4.1):
type Colors = "red" | "blue" | "green" | "yellow";
type Shades = "100" | "200" | "300" | "400" | "500";

type TailwindTextColor = ‘text-${Colors}-${Shades}‘;

let validClass: TailwindTextColor = "text-red-500";
let invalidClass: TailwindTextColor = "text-purple-900";

Figure 23: Two definitions that use increasingly complex type system features to provide accurate
TypeScript types for external JavaScript libraries.

through ad-hoc mechanism. But the complexity of the ecosystem in which it exists forces
it to often adopt the post-modernist approach “less is a bore”.

An even more modernist approach to learning from the preexisting context can be
illustrated by various attempts to base the design of a programming language on empirical
observations of programmers, or the analysis of existing code in large software repositories
such as GitHub.145 Such over-reliance on facts is the starting point for Peter Eisenman’s
doctoral work. Eisenman presents his objection using a reference to earlier witings of
American historian Carl L. Becker:

Becker describes themodern climate of opinion as factual rather than rational
(...). For Becker, history, the question of facts and how they are related, has
replaced reason and logic, the question of ‘why?’146

In the next section, I will move from the factual approaches—be it the modernist anal-
ysis of context or post-modernist reading of contemporary culture and its symbols—to
software and programming systems designs that employ rational analyses based on rea-
son and logic.

36

Figure 24: The Chicago Federal Center building (Mies van der Rohe, 1964) and Memorial Square
World Trade Center project (Peter Eisenman, 2002).

Emergence from Formal Structures

At the first sight, the formal structures designed by Peter Eisenman seem similar to mod-
ernist architecture (Figure 24) and some of his critics saw his focus on formalism and ab-
straction as a return to outdated modernist ideals. As I illustrated through a number of
examples earlier, Eisenman works with simple formal modernist structures, but he uses
them for a different purpose than modernist architects. His project for the World Trade
Center memorial, for example, turns the horizontal Manhattan grid into a vertical one,
using a rational modernist structure as a formal entity.

Eisenman’s approach, apparent already in The Formal Basis of Modern Architecture is
to work with basic geometric structures such as the grid, mass, volumes and surfaces—
and to see how they interact in order to form a building. A computer scientist reading
his thesis can easily read the work as defining a domain-specific langauge for describing
architectural structures. The language is formed of primitives and combinators that can
be used to put the primitives together. The important point, however, is that the basic
structures are geometrical and rooted in analysis of abstract architectural forms. They do
not arise from analysis of function.

As discussed earlier, I believe the most direct software counterparts to basic architec-
tural structures are formal models of computation such as the lambda calculus and Turing
machines. It is also fitting that these two specific models existed in the domain of formal
logic before the first digital electronic computers and programming languages. They are
thus not modernist abstractions, resulting from the analysis of the function of software,
but a priori structures of computation. The two models can be contrasted with formal
models of parallel and concurrent systems such as Hoare’s Communicating Sequential Pro-
cesses (CSP) developed in the 1970s,147. For a broader historical context and origins of the
work, see the history documented by Baeten (2005). which were derived from existing
programming patterns. For example, Hoare explicitly notes that his notion of a process
“may constitute a synthesis of a number of familiar and new programming ideas.”148

To keep the software examples as close to the architectural ones, we can look for for-
mal structures that describe some aspect of computation or program structure, but are not
conceived as models of existing practical programming languages. An interesting question
to ask is how those structures resolve the problem of achieving fit between the form and
the context. Does the fit emerge as (perhaps) an accidental effect of the use of formal

37

import Control.Monad (forM_, forM)

main :: IO ()
main = do

-- Get a number of words and then read them
putStrLn "How many words will you enter?"
count <- readLn
words <- forM [1..count] $ \i -> do

putStrLn $ "Enter word " ++ show i ++ ":"
getLine

-- Print the words back to the output
putStrLn "You entered:"
forM_ (zip [1..] words) $ \(i, word) -> do

putStrLn $ show i ++ ". " ++ word

Figure 25: A Haskell program that echoes a list of words read from the user.

structures? Or does the use of autonomous formal structures result in “unlivable” build-
ings, as critics of Eisenman occasionally like to point out?

If we see the lambda calculus as the formal structure that underpins functional pro-
gramming languages, then there are certainlymany domainswhere the emergent formfits
with a context. Functional list processing, which inspired LINQ and Java Streams, would be
only one such example. This claim necessitates some caution, though. The Lisp language,
often regarded as the first functional programming language was not directly based on the
lambda calculus. Its author, John McCarthy “was aware of [the lambda calculus] but had
not studied it.”149 The specific example of functional list processing also does not require
nearly the full power (or even the key structures) of the lambda calculus.150

Later functional programming languages, including most notably Haskell, have the
lambda calculus as a more direct predecessor. The popularity and non-negligible indus-
trial adoption of Haskell shows that a formal structure can give rise to a well-fitting form.
But again, some caution is needed. As the earlier analysis of the esoteric programming lan-
guage Unlambda suggests, the good fit may not necessarily be the result of the underlying
formal structure, but a result of a pragmatic resolution of the remaining design problems.

Another source of formal structures that have been used as the basis for program-
ming abstractions, especially within functional programming, is category theory. Category
theory is a branch of abstract mathematics concerned with general structures and their
relations. As such, it perfectly fits the bill of being a source of generic forms that can be
applied to understand and design software structures.

Themost prominent categorical structure that found its use in programming is amonad.
Initially used to formally model the semantics of effectful computations in a functional lan-
guage, monadswere later implemented in Haskell alongsidewith the do notation for work-
ing with them. The abstraction was adopted for a number of use cases, including handling
of input and output, which “has always appeared to be one of the less satisfactory fea-
tures of purely functional languages.”151 A quote from the paper that introduces monadic
input/output recognizes the good fit that emerged from the use of the formal structure:

This paper outlines a new approach [for input/output in lazy functional lan-
guages] based on monads (...). We do not claim any fundamental expressive-
ness or efficiencywhich is not obtainable through existing systems (...). Never-
theless we feel that the entire systemworks particularly smoothly as a whole,
from the standpoint of both programmer and implementor.152

38

Figure 26: Eisenman’s House VI (1975) is generated using a small number of formal operations.

The example shown in Figure 25 uses monads and the do notation to implement a sim-
ple program that reads a number of lines from the input and prints them back to the user.
The example is intentionally chosen to require a number of monadic structures. It uses
the forM function to iteratively execute function that reads input, forM_ to print outputs
(a version with underscore ignores the results), and it uses three do blocks to sequence
imperative operations. In this particular example, the formal structure of a monad perme-
ates the entire program. (Contrast the example with more recent approach to handling
input/output effects based on algebraic effect handlers where constructs such as iteration
are not affected by the effects.)

To question the design of monadic input/output, we can compare the computer pro-
gram design generated through a formal structure (monads) with architecture generated
through a formal structure. Consider the House VI designed by Peter Eisenman:

House VI was in fact the result of the application of a few limited rules (dis-
placement, rotation, compression and extension), to a restricted number of
elements (volume, vertical layers and the nine square grid). All these oper-
ations produced several diagrams, whose relevance replaced the notions of
materiality, function, and meaning.153

The consequences of the design methodology are apparent in Figure 26. Some of the
beams in the house play no structural role, but are present for merely formal reasons.
This includes the column hanging over a dining table. Another artifact generated by the
designmethod is the inverted red staircase, which hints at the fact that the housemaywell
continue to function if it was flipped upside down. Rather than achieving a fit between the
form and the context, the house sends a message:

As annoying as the house was to inhabit, Eisenman was able to constantly re-
mind theusers of the architecture around themandhow it affects their lives.154

The use of monads for input/output in Haskell is certainly not as annoying. After all,
the authors praised the system for working “particularly smoothly” when introducing the
idea. However, the use of monads as a formal structure to generate library designs in

39

functional programming languages has also found its critics, myself included. In “What
we talk about when we talk about monads”155 I pointed out that “there are a number
of cases where monads were used in an academic paper and their use was later revised
or avoided.” Interestingly, some of those undesirable uses of monads are not unlike the
undesirable effects that the use of formal structures generates in Eisenman’s House VI.

The first example is that of monadic parser combinators. Parser combinators emerged
as a functional and compositional way to construct parsers. When it turned out that
parsers can match the structure of a monad, most implementations of parser combina-
tors started to follow this formal structure. However, the structure implied by monads
was often not practically necessary—it was the result of formal decision, rather than a de-
cision arising from the required functionality. In contrast to parser combinators that were
not based on monads, monadic parser combinators were also less efficient and had poor
error reporting. In some way, monadic parser combinators are not unlike the formally
appealing, but practically unnecessary columns in Eisenman’s House IV.

The second example is the use of monads for capturing dataflow computations. As
pointed out by Dominic Orchard,156 computer scientists initially tried to model dataflow
computations using the formal structure of a monad. Later work argued that this cannot
be done and instead proposed to use a formally dual structure of a comonad. Although the
desired implementation could, to some extent, fit both of the structures, it later turned
out that other aspects of the model (such as how easy it is to use it in formal reasoning)
are easier to achieve with the dual structure. What the example suggests is that there
are unexpected properties of formal structures whose practical implications may remain
ununderstood. Perhaps Eisenman’s House IV would, indeed, work better if it was flipped
upside-down, as eventually happened with formal models of dataflow computations?

The conclusion we can draw from these examples is the same for architecture and
for computer science and programming. In the case of modernism, the problem was the
difficulty of fully understanding the context. In the case of formalism, we instead opt for
a design methodology taht disregards the context. Formal structures have a great appeal
and many useful structures can emerge as the result of formal manipulation. But there is
no guarantee that they will result in a good fit between the form and the context.

NewModes of Criticism

I opened this text with a reference to Christopher Alexander’s OOPSLA 1996 keynotewhere
he wondered if programmers and computer scientists are willing to act as “guns for hire”.
He continued his presentations with an invitation:

What I am proposing here is something a little bit different from that. It is
a view of programming as the natural genetic infrastructure of a living world
which you/we are capable of creating, managing, making available, andwhich
could then have the result that a living structure in our towns, houses, work
places, cities, becomes an attainable thing.

In the (almost) 30 years since his presentation, software has indeed became a kind of
genetic infrastructure of a livingworld, although not always in themost desirableways—to
use Alexander’s terminology, software has not always provided us with living structures.
Alexander’s lifetime work has been concerned with understanding living structures and
finding ways of creating them. My own interest in this text is way more modest.

40

Figure 27: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter

I think we need a richer critical language for thinking about software. When we crit-
ically examine software today, we most frequently approach it from one of two perspec-
tives. The first perspective is technical. Does the software work as it was intended to?
Even if most software built today is not developed according to an up-front specification,
the technical perspective is still concerned with its functionality. In the case of more ab-
stract systems like programming languages, we still ask technical questions, such as how
effectively they support different use cases. The second perspective is social. What is the
effect that the software has on the society and individuals? In response, much has been
written about algorithmic bias, exploitation of personal data or the role of social media.157

I believe that the two disconnected perspectives are insufficient for critical thinking
about software. To put it bluntly, the technical perspective asks the wrong questions,
whereas the social perspective glosses over too many crucial details. The gap is appar-
ent if we look at the 2015 open letter “Research Priorities for Robust and Beneficial Ar-
tificial Intelligence”158 (Figure 27). The introduction of the letter talks about the impact
of AI on society and the letter lists multiple social science questions (policy, economics,
ethics). The computer science priorities are highly technical problems like security, control
and the classic problem of “how to prove that a system satisfies certain desired formal
properties”. Notably absent from the letter is a call for closer integration between the two
perspectives of looking at the system. What I am interested in is finding ways of engaging
with the technical structure of software, but not through technical questions.

I have been using architectural theory as an inspiration for ideas on the critical lan-
guage of software—partly because of the existing connection between the disciplines, but
also because of the rich literature concerned with critical reading of architecture. In 1977,
Jorge Silvetti described an emerging critical discourse within architectural theory that he
calls “criticism from within” and which complements existing approaches:159

[The] “realm” of criticism has traditionally been divided between two oppos-
ing modes: one that tries to evaluate the degree of “fitness” or “‘non-fitness”
of a solution to a particular architectural question and another that attempts
to see both the question and that solution as parts of a larger historical, cul-
tural, or ideological process.

41

Figure 28: Vanna Venturi house (1964). Robert Venturi reintroduces elements traditionally associ-
ated with houses, but in a minimal form and stripped of their original functions.

The two opposing modes of criticism identified by Silvetti are remarkably like the two
critical ways of looking at software. Post-modern architecture that emerged in the late
1960s brought with it a new critical discourse. The new “criticism fromwithin” had a range
of forms and aspects, many of which were discussed in detail by Silvetti in 1977. Those
include the idea of treating architecture as a language that can be subjected to analysis
and manipulation. Inspired by Chomsky, we can study the syntax of the language; inspired
by French structuralists, we can study the systems of signs employed by the architectural
language. Using figures of classical rhetoric, Silvetti gives examples of buildings that “all
operate with known architectural codes, and they all redeploy these codes by effecting
some easily perceivable changes.”160 The changes introduce figures such as hyperboles,
paradoxes, ironies and ellipses (Figure 28).

Silvetti analyses the new“criticism fromwithin” in termsof ametalanguage that is used
to talk about the language of architecture. A text that comments on a building would be
an example of such metalanguage. What the new “criticism from within” brought is “the
very special case of metalanguage in which both discourses belong to the same practice;
architecture commenting on architecture, architecture ‘speaking’ of itself.”161 This is the
idea that I developed in the first two parts of this text—the possibility of using software and
programming systems as a metalanguage for commenting on software and programming
systems. The different critiques that Silvetti discusses in his analysis differ based on what
codes of the underlying architectural langauge they refer to, including formal, functional
and moral codes. I believe we can imagine similar critique of software that highlights one
of those aspects of the system it comments on.

Possibility of a Critical Language

Many of the ideas presented in this text are the result of my search for a critical language
of software. In the preceding pages, I regularly discussed an architectural idea and looked
for ways in which a similar point can be (or has been) made about software. To translate
critical ideas into the world of software, it is useful to reflect on the general mechanism
through which the critical langauge of architecture works. To what extent are software
and programming systems like architecture—and can be subjected to the same kind of
criticism—and to what extent do they differ?

42

Figure 29: Addition to Neue Staatsgalerie Stuttgart, James Stirling (1984)

Charles Jencks opens his book “The Story of Post-Modernism”162 with an answer to a
question asking what is a typical post-modern building. It is useful to quote the answer at
length, because it illustrates two key mechanisms at work in post-modern buildings:

[Typical post-modern building is one] that is hybrid, one that dramatizes the
mixture of opposing periods—the past, present and future—to create aminia-
ture ‘time-city’. Hence it is based on multiple codes, combing Modern univer-
sal technology and local culture, in a recognizable ‘double-coding’, its char-
acteristic style. The typical Post-Modern building speaks on several levels at
once, to high and low culture, and acknowledges the global situation where
no single culture can speak for the entire world.

Jencks then illustrates the idea using James Stirling’s post-modern addition to theNeue
Staatsgalerie in Stuttgart (Figure 29):

Its double-codingmixesModern elementswith traditional and vernacular ones,
three styles sometimes compete on one facade. But the irony is that Stirling
uses High-Tech decoratively, to tell the visitor how to move through this com-
plex site. Brightly coloured steel is thus used as symbolic ornament while tra-
ditional masonry works best as temperature control: such inversions in Post-
Modernism always make you smile with their knowing irony.

What is needed of software or programming system to read themultiple codes present
in a post-modern system andmake you smile with knowing irony? The key difficulty is that
buildings havemanyways throughwhich they can expressmeaning that is immediately vis-
ible to anyone who encounters the building. Three styles on one facade, brightly coloured
steel, false arches, upside-down stairs or broken columns are all visible external features
of a building that you can see when you visit a museum or enter a house.

In contrast to architecture, most software is opaque. When you encounter it, you are
typically exposed only to its functional aspects. Software systems have user interface that
can be styled in various ways. Such styling can be used to make some ironical statements,
such as by rendering a serious web site in a style resembling the typical Geocities design

43

Figure 30: The CNN homepage, transformed using “The Geocities-izer” created by Mike Lacher

(Figure 30), but this use is typically limited to toy projects and has only limited expressive
power. A contemporary art gallery would not likely comission a software artist to create a
contradictory, critical or ironic web page for it. (Though, perhaps it should do exactly this!)

It is worth noting that user interface is not just the visual aspect (styling) of the soft-
ware system, but also the patterns of interaction that it supports. The “worst practice UI
experiment” User Inyerface (Figure 10) discussed earlier consists mostly of components
with a standard look, but uses them in distorted ways. More generally, the double coding
can leverage the fact that there are certain established user interface patterns for certain
kinds of services. Social media use a timeline, online shopping sites use a catalog with fea-
tures such as filtering, a search engine prompts for a query, a file browser displays folders
and documents, and so on. Using an established user interface pattern for a task it was
not inteded or designed for can thus be used as a form of double coding. (Digital plat-
forms for child adoption in the US studied by Isabelle Higgins are an alarming inadvertent
example of this. The fact that the platforms adopt the structure of online shopping sites
leads to a “bizarre and depressing process of catalogue shopping” for children eligible for
adoption.163 Perhaps the same double coding mechanism can be used intentionally and in
a beneficial way.

The opposite extreme, in contrast to looking at the user interface, is to look at the
software source code. This view is typically only accessible to experts, but it offers other
interesting possibilities of employing double coding. On the one hand, the program source
code is understood by the computer, which can execute the instructions (or, more pre-
cisely, the compiler or an interpreter). On the other hand, the source code can be read by
a human, who interprets it, often through broader cultural associations.

There are multiple ways through which source code can express meaning to a human
that is inaccessible to the computer. This includes aspects such as code formatting, vari-
able naming and comments. Software engineers typically use those devices to aid pro-
gram comprehension – and so the meaning intended for the human reader matches the
meaning intended for the computer, possibly providing additional motivation or context.
However, it can also be used in ironical ways to confuse the reader (Figure 31) or for artistic
purposes.164 The semantic flexibility also gives code aesthetical qualities that have been
used for different purposes and are judged differently by different readers.165

44

char
_3141592654[3141

],__3141[3141];_314159[31415],_3141[31415];main(){register char*
_3_141,*_3_1415, *_3__1415; register int _314,_31415,__31415,*_31,

_3_14159,__3_1415;*_3141592654=__31415=2,_3141592654[0][_3141592654
-1]=1[__3141]=5;__3_1415=1;do{_3_14159=_314=0,__31415++;for(_31415
=0;_31415<(3,14-4)*__31415;_31415++)_31415[_3141]=_314159[_31415]= -

1;_3141[*_314159=_3_14159]=_314;_3_141=_3141592654+__3_1415;_3_1415=
__3_1415 +__3141;for (_31415 = 3141-

__3_1415 ; _31415;_31415--
,_3_141 ++, _3_1415++){_314
+=_314<<2 ; _314<<=1;_314+=
*_3_1415;_31 =_314159+_314;
if(!(*_31+1))* _31 =_314 /
__31415,_314 [_3141]=_314 %
__31415 ;* (_3__1415=_3_141
)+= *_3_1415 = *_31;while(*
_3__1415 >= 31415/3141) *
_3__1415+= - 10,(*--_3__1415
)++;_314=_314 [_3141]; if (!
_3_14159 && * _3_1415)_3_14159
=1,__3_1415 = 3141-_31415;}if(
_314+(__31415 >>1)>=__31415)
while (++ * _3_141==3141/314

)*_3_141--=0 ;}while(_3_14159
) ; { char * __3_14= "3.1415";
write((3,1), (--*__3_14,__3_14
),(_3_14159 ++,++_3_14159))+
3.1415926; } for (_31415 = 1;
_31415<3141- 1;_31415++)write(
31415% 314-(3,14),_3141592654[

_31415] + "0123456789","314"
[3]+1)-_314; puts((*_3141592654=0

,_3141592654)) ;_314= *"3.141592";}

Figure 31: The International Obfuscated C Code Contest entry by Roemer B. Lievaart from 1989.

At a higher-level of abstraction, we may be able to find double-coding in the inter-
nal structure of software. Here, I refer to software aspects such as architecture (is it
microservice-based, monolithic, composed of different layers and components), as well
as data structures used (to what degree is there a fixed structure for the data and rela-
tionships).166 Those aspects are typically hidden from the user and are not always easy
to reconstruct even for a programmer. However, a system that would make such struc-
ture more apparent (just like Centre Pompidou exposes its infrastructure) could use it to
express meaning.

It may be that our ability to use double coding and irony in the design of typical soft-
ware systems is limited. There is only so much that we can say through the user interface
and interaction patterns and there are only somany people whowill venture to investigate
the source code. However, there certainly are kinds of software systems that have greater
expressive powers. This is why the focus of this text has often been on programming lan-
guages and systems. As we have seen, a programming language can exhibit double coding
and irony in a range of ways, ranging from the choice of features (combining contradictory
formal structures) to the use of syntax with particular association (adding a popular syntax
to a non-mainstream language).

Transparency and Methodological Freedom

To provide a tentative conclusion, I believe that the world of software and programming
systems desparately needs two things. The first is a greater transparency. It should be
possible to see inside software systems to a much greater degree. This will let users un-
derstand (and perhaps even change) how software works, but it would also enable more
active critical discourse about software. The second is methodological freedom. Many in-
teresting architectural ideas first emerged in more experimental contexts and, perhaps, if
we were building software not only for immediate practical commercial use, we would be
able to come up with innovative software structures.

45

There are already systems that hint at how the greater transparency may look, but for
one reason or another, they have not achieved their ultimate objectives. The free software
manifesto argues for the “freedom to study how the program works, and change it so it
does your computing as you wish”.167 This may have been the case about free software
in the 1980s when most users were also C programmers. Today, in practice, even if you
are using free software, you have a little chance of understanding how it works, much less
changing it, due to its complexity.

Programming systems and environments based on Smalltalk provide greater trans-
parency thanks to the fact that program execution is not distinct from the programming
environment. As such, the user of an application can inspect the structure of the system
and navigate to the source code. The Smalltalk designers imagined that users would start
by using existing applications, but then gradually learn how to tweak and adapt them, cre-
ate new ones and even modify the system itself.168 Although Smalltalk inspired virtually
all modern object-oriented langugages, very few of them retained this ability.

Finally, the 1990s era of web also afforded greater transparency. As discussed above,
it was possible to view source code of existing web pages, extract interesting JavaScript
snippets and reuse them. This supported the rise of the creative vernacular web. However,
modern web applications are nothing like this. Their source code and internal structure is
hidden—partly to protect intellectual property and partly for engineering reasons (large
modern web applications are composed of components that are compiled together and
minimized for efficiency).

I do not know how tomakemodern software development transparent in the sense in
which it was transparent in the early days of free software, object-oriented programming
and the web, but I’m convinced that this is something that we need in order to create
software that serves its users—and also to create software that supports self-reflective
critical discourse about software.

The second thing that I argued for is greater methodological freedom. If we try to
express software critique only through regular, commercial software systems built with a
tight budget, we are inevitably bound to fail. Or, rather, what we can “say” through such
software will be very limited. It seems that buildings have greater potential for double-
coding and expressivity than software, but it is not an accident that many of the examples
I mentioned throughout this text were not ordinary commercial buildings with tight bud-
get. (An exception from the rule would be Venturi’s Guild House, which combined ordinary
form with decorative historical references. The economy of the project, built as a “deco-
rated shed”, was a notable part of Venturi’s critique of modernist architecture.)

The examples that were featured prominently as my references included museums,
public buildings, pavilions, parks, monuments, luxurious villas, but also unrealized plans
for buildings and, notably, projects that had the structure of an architectural plan, but
were never intended to be realized. All of those provided additional room for criticism
than an ordinary commercial building would. Perhaps, if we want to express critical ideas
through software, we also need to do so through special kinds of software.

What if the critique of the closed nature of software came in the form of a radically
open and accessible public service software? What if technical documentation for a fic-
tional operating system illustrated an alternative to the system consisting of isolated in-
flexible apps? What if we celebrated landmark programming systems and their creators
by questioning their design decisions, say by creating an irregular freeform spreadsheets?

46

Notes
1The idea of design patterns has been adapted for software by Gamma et al. (1994), while Gabriel (1996)

explores the link at amore fundamental level. Steenson (2017) discusses the connection between architecture
and software more broadly.

2Alexander (1999)
3Jencks (2012, p.26)
4Alexander expressed disagreement with some of the ideas that I take inspiration from clearly in the 1982

debate with Peter Eisenman (Alexander and Eisenman, 1983).
5In the debate (Alexander and Eisenman, 1983), Alexander argues that architects are “entrusted with the

creation of (. . .) harmony” whereas Eisenman points out that “disharmony might be part of the cosmology
that we exist in”. I agree with Eisenman that it is worth to explore this disharmony.

6Frampton (1998, p.55)
7The discussion on columns is inspired by Silvetti (1998) and also the review by Korman (2023).
8Aureli (2011). Before the scientific revolution, ancient philosophers were seen as the source of truth that

was partly lost butwas already fully known to the ancients (Wootton, 2015). The focus on classical architecture
in the 16th century is thus not unexpected. The interpretation changed gradually in the 17th century, adding
early empirical studies of ancient ruins, but the interest remained.

9The conservative connotations of neoclassical architecture can be also illustrated by the “Executive Order
on Promoting Beautiful Federal Civic Architecture” issued by the Trump administration (Trump, 2020).

10Unwin (2024)
11Krul (2011)
12Jencks (2012, p.183)
13Branscome (2020)
14Colquhoun (1998, p.182)
15Venturi (1977, p.13) writes as an “architect who employs criticism rather than a critic”, while Silvetti (1998,

p.377) describes a mode of criticism he calls “criticism from within”.
16Jencks (2012, p.56)
17As McCullough (1996, p.96) points out, “data structures characterize software”. As noted by Jakubovic

and Petricek (2022), another element is how change to the state is specified.
18Memory models that underlie different programming languages are discussed by Sitaker (2016).
19Maharry (2013)
20Petzold (2006)
21The mechanism through which esoteric programming languages express critical meaning has been ex-

plored by Cox and McLean (2012).
22Introduced by Parnas (1972), who also later reflected on the development of the notion (Parnas, 2002)
23For example, by Kell (2020), Steimann (2018), Petricek (2021a) and Clark and Basman (2017).
24Clark and Basman (2017)
25But even in the context of the web, the transparency has limits (Petricek, 2021b).
26Such as the GPII Nexus presented by Clark and Basman (2017).
27Systems that provide programmer access to internal information include image-based programming sys-

tems and systems that support reflection such as Smalltalk and CLOS (Goldberg and Robson, 1983; Kiczales
et al., 1991), but this is often accessible only in a highly technical way.

28Possibly exploring ideas hinted at in the work on antifragile software by Monperrus (2017)
29Two prominent examples include the The Gehry Residence by Frank Gehry and the Vanna Venturi House

built by Robert Venturi.
30Jencks (2012, p.119)
31Haluzík (2020)
32The contrast between the perspectives is illustrated by the debate between Eisenman and Alexander

(Alexander and Eisenman, 1983)
33Hays (1998, p.x)
34Corbo (2014)
35Nofre et al. (2014)
36Eisenman (2006)
37Eisenman (2000)
38Gandelsonas (1998, p.219)
39Alexander and Eisenman (1983)

47

40The project is documented in a book “Chora LWorks”, which is a collection of essays and design materials
by Peter Eisenman and Jacques Derrida (Kipnis and Leeser, 1997)

41Kipnis and Leeser (1997, p.137)
42Two exhibitions presented the newmovement almost at the same time in 1988: Deconstruction in Archi-

tecture at the Tate Gallery in London (Papadakis, 1988) and Deconstructivist Architecture at The Museum of
Modern Art in New York) (Johnson and Wigley, 1988).

43The work is documented, for example, by the catalogue of the “Frank Gehry: Architect” exhibition at the
Guggenheim Museum Ragheb (2001)

44Macrae-Gibson (1988, p.25)
45Papadakis (1988, p.18)
46Callaghan, M. (2020). Empathetic Memorials. Palgrave Macmillan Memory Studies.
47Eisenman Architects (2005)
48Eisenman Architects (2005)
49And even houses built to question the humanist focus of architecture sometimes found their satisfied

owner (Blair, 2002).
50Gandelsonas (1998, p.219)
51Gamma et al. (1994)
52As illustrated by the 1983 debate between the two architects (Alexander and Eisenman, 1983).
53Gabriel (1996)
54Jackson (2023)
55Tufekci (2017) describes how different architectures of social media platforms support different kinds of

social structures and interactions.
56Alexander and Eisenman (1983)
57Madore (2003)
58Adapted from an example by Madore (2003)
59Madore (2003)
60Whitney and contributors (2023)
61The code snippet shows the Z combinator, based on a version shared at Rosetta Code (2025).
62For example, the maintenance costs of Frank Gehry’s Stata Center have been a subject to a lawsuit by

MIT (Pogrebin and Zezima, 2007).
63Campbell (2004)
64A point made by Jencks (2012, p.172) about The New Milan Trade Fair designed by Massimiliano and

Doriana Fuksas.
65Perlroth (2014)
66Jackson (2023, p.15)
67Jackson (2023, p.30)
68Zuboff (2019)
69O’Carroll (2022)
70Alexander (1964)
71Alexander (1964, p.15)
72Alexander (1964, p.20)
73A condescending narrative criticised by Rudofsky (1964, p.3).
74Alexander (1964, p.58)
75A design principle coined by the architect Louis Sullivan.
76Jamrozik and Kempster (2021, p.83); The history and architecture of the villa is documented in a book by

Tostões (2022), which documents its restoration.
77Daybelge and Englund (2019, p.60); the concept was influenced by the 1929 CIAM (Congrès Interna-

tionaux d’Architecture Moderne) congress, which had “The Minimum Dwelling” as its theme.
78Daybelge and Englund (2019, p.59)
79Alexander (1964, p.24)
80Alexander (1964, p.134)
81Petricek (2022)
82Venturi himself does not agree with this label, which also ignores the fact that his work was in close

collaboration with Denise Scott Brown.
83Venturi (1977, p.16)
84Venturi (1977, p.16), citing Alexander (1964)
85Venturi (1977, p.16)
86Venturi et al. (1972)

48

87Venturi et al. (1972, p.xi)
88Venturi et al. (1972, p.6)
89Venturi et al. (1972, p.20)
90Venturi et al. (1972, p.13)
91Colquhoun (1998, p.178)
92Venturi et al. (1972, p.102)
93Colquhoun (1998, p.186)
94Eisenman Architects (1983)
95Cohen (1998, p.67)
96Lialina (2005)
97Lialina and Espenschied (2009, p.19)
98The early years of the GeoCities community have been documented by Milligan (2017).
99Lialina and Espenschied (2009, p.24)
100The complex history and narratives about the history of hackers has been pointed out by Haigh (2021),

who also notes that the movement was associated with a distinctive new form of masculinity.
101Petricek (2025)
102Beeler et al. (1972)
103I documented the history in my work on cultures of programming (Petricek, 2025).
104Alexander (1964, p.58)
105Rudofsky (1964, p.3–4)
106For example, “Lo-TEK” (Watson, 2019) embraces vernacular architecture to look for sustainable, resilient,

nature-based technology.
107More generally, Chang (2004) introduces the idea of complementary science, arguing that it is worthwhile

to recover ideas from our scientific past. Work by Rankin (2018); Ankerson (2018) can be seen as going in the
outlined direction, although focusing more on the social context. My reconstruction of Commodore 64 BASIC
is also an attempt to go in this direction (Petricek, 2020a).

108Rotation is briefly mentioned in the “Spacewar” article by Brand (1972). A more detailed discussion of the
game has been written by Daemmrich (2020)

109Neumann (2020) docments the history of the Barcelona Pavillion.
110Meyerovich and Rabkin (2012)
111Rudofsky (1964, p.4)
112Meyerovich and Rabkin (2012)
113Brooks (1975)
114Brooks (1975, p.44)
115Brooks (1975, p.44)
116Brooks (1975, p.44)
117documented in cultures; ensmenger etc.
118McKinsey and Company, Inc (1969)
119McKinsey and Company, Inc (1969, p.30)
120Raymond (1999)
121Tschumi (1998, p.360)
122Brand (1994, p.157)
123Brand (1994, p.157)
124Jacobs (1961)
125Petricek (2021a)
126Scott (1998, p.261)
127Scott (1998, p.350)
128Scott (1998, p.6)
129Venturi (1977, p.25)
130The motivation behind the design of Erlang and its history has been documented by Armstrong (2007).
131Venturi (1977, p.42)
132Hinnant et al. (2019, p.5)
133Hinnant et al. (2019, p.5)
134Hinnant et al. (2019)
135Stroustrup (2020)
136Quoting the title of the paper about the history of C++ between 2006 and 2020 (Stroustrup, 2020).
137Venturi (1977, p.109)

49

138The need for constructing abstractions that can be seen through has been articulated, for example, by
Agaram (2020)

139Vetter and contributors (2017)
140Brooks (1987)
141Brooks (1987)
142Venturi et al. (1972, p.6)
143The specific snippet comes from the source code of TypeScript 2.0, but the features existed in earlier

version. In later versions of TypeScript, the same is achieved using keyof HTMLElementTagNameMap instead.
144Venturi et al. (1972, p.6)
145An example that also illustrates the difficulty of this endeavor is thework by Berger et al. (2019). A broader

discussion on research methodology by Church and Blackwell (2023) can be seen as a criticism of modernist
approaches to the design of programming languages.

146Eisenman (2006, p.11)
147Hoare (1978)
148Hoare (1978)
149Turner (2013)
150The data exploration calculus (Petricek, 2020b) is an example of a very limited language that still supports

functional collection processing.
151Peyton Jones and Wadler (1993)
152Peyton Jones and Wadler (1993)
153Corbo (2020, p.33)
154Perez (2010)
155Petricek (2018)
156Orchard (2011)
157O’Neil (2016); Noble (2018); Zuboff (2019); Tufekci (2017)
158Russell et al. (2015)
159Silvetti (1998, p.372)
160Silvetti (1998, p.376)
161Silvetti (1998, p.376)
162Jencks (2012)
163Higgins (2024)
164As an example, see the ./code –poetry book (Holden and Kerr, 2023).
165Explored in a PhD thesis by Depaz (2023). The topic is a subject of other critical code studies works

(Montfort et al., 2012; Marino, 2020; Lennon, 2021).
166An example given by Jakubovic (2023): “Consider a game in which the class Goblin is a sub-class of Enemy.

In a language like C++, class relationships are statically enforced. This prevents the player from befriending
Goblins later in the game, as we cannot write code to change a Goblin instance to inherit from Friend at an
appropriate point during run time.”

167Stallman (1984)
168Reenskaug (1981)

50

Bibliography

Kartik Agaram. Bicycles for the mind have to be see-through. In Companion Proceedings
of the 4th International Conference on Art, Science, and Engineering of Programming,
Programming ’20, page 173–186, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450375078. doi: 10.1145/3397537.3397547.

Christopher Alexander. Notes on the Synthesis of Form. Harvard University Press, Cam-
bridge, MA, 1964. ISBN 978-0674627512.

Christopher Alexander. The origins of pattern theory: the future of the theory, and the gen-
eration of a living world. IEEE Software, 16(5):71–82, 1999. doi: 10.1109/52.795104.
Originally presented as a keynote at the 1996 ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA).

Christopher Alexander and Peter Eisenman. Contrasting concepts of harmony in architec-
ture. Lotus International, 40:60–68, 1983.

Megan Sapnar Ankerson. Dot-Com Design: The Rise of a Usable, Social, Commercial Web.
NYU Press, 2018. ISBN 9781479892907.

Joe Armstrong. A history of erlang. In Proceedings of the Third ACM SIGPLAN Conference
on History of Programming Languages, HOPL III, New York, NY, USA, 2007. Association
for Computing Machinery. ISBN 9781595937667. doi: 10.1145/1238844.1238850.

Pier Vittorio Aureli. The Possibility of an Absolute Architecture. MIT Press, Cambridge, MA,
2011. ISBN 9780262515795.

J.C.M. Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2):
131–146, 2005. ISSN 0304-3975. doi: 10.1016/j.tcs.2004.07.036. Process Algebra.

M. Beeler, R.W. Gosper, and R. Schroeppel. HAKMEM. Technical Report AIM-239, MIT,
Cambridge, MA, 1972.

Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. On the impact of
programming languages on code quality: A reproduction study. ACM Trans. Program.
Lang. Syst., 41(4), October 2019. ISSN 0164-0925. doi: 10.1145/3340571.

Gwenda Blair. House proud; a white elephant reincarnated. The New
York Times, October 2002. URL https://www.nytimes.com/2002/10/10/garden/
house-proud-a-white-elephant-reincarnated.html. Accessed April 22, 2025.

Stewart Brand. Spacewar: Fanatic life and symbolic death among the computer bums.
Rolling Stone, 7:50–58, 1972.

51

https://www.nytimes.com/2002/10/10/garden/house-proud-a-white-elephant-reincarnated.html
https://www.nytimes.com/2002/10/10/garden/house-proud-a-white-elephant-reincarnated.html

Stewart Brand. HowBuildings Learn: What Happens After They’re Built. Viking Press, 1994.
ISBN 978-0-670-83515-7.

Eva Branscome. Hans Hollein and Postmodernism: Art and Architecture in Austria, 1958–
1985. Routledge, New York, 1st edition, March 2020. ISBN 9780367502089.

Fred P. Brooks. No silver bullet essence and accidents of software engineering. Computer,
20(4):10–19, 1987. doi: 10.1109/MC.1987.1663532.

Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, 1975. ISBN 978-0-201-00650-6.

Robert Campbell. Dizzying heights. The Boston Globe, April 2004. URL
https://web.archive.org/web/20041204230200/http://www.boston.com/ae/theater_arts/
articles/2004/04/25/dizzying_heights/. Accessed April 24, 2025.

Hasok Chang. Complementary science—history and philosophy of science as a contin-
uation of science by other means. In Inventing Temperature: Measurement and Sci-
entific Progress. Oxford University Press, 2004. ISBN 9780195171273. doi: 10.1093/
0195171276.003.0006.

Luke Church and Alan F. Blackwell. A brief history of the human centric study of pro-
gramming languages. In Proceedings of the 34th Annual Workshop of the Psychology of
Programming Interest Group, PPIG, 2023.

Colin Clark and Antranig Basman. Tracing a paradigm for externalization: Avatars and the
gpii nexus. In Companion Proceedings of the 1st International Conference on the Art,
Science, and Engineering of Programming, Programming ’17, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450348362. doi: 10.1145/3079368.
3079410.

Stuart Cohen. Physical context/cultural context: Including it all. In K. Michael Hays, editor,
Oppositions Reader: Selected Essays 1973–1984, pages 65–104. Princeton Architectural
Press, 1998. ISBN 9781568981536.

Alan Colquhoun. Sign and substance: Reflections on complexity, las vegas, and oberlin. In
K. Michael Hays, editor, Oppositions Reader: Selected Essays 1973–1984, pages 176–187.
Princeton Architectural Press, 1998. ISBN 9781568981536.

Stefano Corbo. From Formalism to Weak Form: The Architecture and Philosophy of Peter
Eisenman. Routledge, 1st edition, 2014. doi: 10.4324/9781315583341.

Stefano Corbo. From Formalism to Weak Form: The Architecture and Philosophy of Peter
Eisenman. Routledge, 2020. ISBN 9780367738570.

Geoff Cox and Alex McLean. Speaking Code: Coding as Aesthetic and Political Expression.
The MIT Press, 11 2012. ISBN 9780262305228. doi: 10.7551/mitpress/8193.001.
0001.

Arthur Daemmrich. Spacewar: Collaborative coding and the rise of gaming culture.
In Torie Bosch, editor, “You Are Not Expected to Understand This”: How 26 Lines
of Code Changed the World, pages 31–38. Princeton University Press, 2020. ISBN
9780691208480.

52

https://web.archive.org/web/20041204230200/http://www.boston.com/ae/theater_arts/articles/2004/04/25/dizzying_heights/
https://web.archive.org/web/20041204230200/http://www.boston.com/ae/theater_arts/articles/2004/04/25/dizzying_heights/

Leyla Daybelge andMagnus Englund. Isokon and the Bauhaus in Britain. Batsford, London,
2019. ISBN 9781849944915.

Pierre Depaz. The role of aesthetics in understanding source code. PhD thesis, Université
Sorbonne Nouvelle, ED120 - THALIM, 2023.

Peter Eisenman. Autonomy and the will to the critical. Assemblage, (41):90–91, 2000.
ISSN 08893012. URL http://www.jstor.org/stable/3171348.

Peter Eisenman. The formal basis of modern architecture, 2006. Originally published as a
PhD thesis at the University of Cambridge, 1963.

Eisenman Architects. Fin d’Ou T Hou S. https://eisenmanarchitects.com/
Fin-D-Ou-T-Hou-S-1983, 1983. Accessed April 22, 2025.

Eisenman Architects. Berlin memorial to the murdered jews of europe. https://
eisenmanarchitects.com/Berlin-Memorial-to-the-Murdered-Jews-of-Europe-2005, 2005. Ac-
cessed April 22, 2025.

Kenneth Frampton. Industrialization and the crises in architecture. In K. Michael Hays,
editor, Oppositions Reader: Selected Essays 1973–1984, pages 39–64. Princeton Archi-
tectural Press, 1998. ISBN 9781568981536.

Richard P. Gabriel. Patterns of software: tales from the software community. Oxford Uni-
versity Press, Inc., USA, 1996. ISBN 019510269X.

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1 edition,
1994. ISBN 0201633612.

MarioGandelsonas. From structure to subject: The formation of an architectural language.
In K. Michael Hays, editor, Oppositions Reader: Selected Essays 1973–1984, pages 200–
224. Princeton Architectural Press, 1998. ISBN 9781568981536.

Adele Goldberg and David Robson. Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., USA, 1983. ISBN 0201113716.

Thomas Haigh. When hackers were heroes. Commun. ACM, 64(4):28–34, 2021. ISSN
0001-0782. doi: 10.1145/3451227.

Radan Haluzík, editor. Město naruby: Vágní terén, vnitřní periferie a místa mezi místy.
Academia, Prague, 2020. ISBN 978-80-200-3041-2.

K. Michael Hays. The oppositions of autonomy and history. In K. Michael Hays, editor, Op-
positions Reader: Selected Essays 1973–1984, pages ix–xv. Princeton Architectural Press,
1998. ISBN 9781568981536.

Isabelle Higgins. Classified children: A critical analysis of the digital interfaces and rep-
resentations that mediate adoption in the united states. New Media & Society, 26(11):
6597–6614, 2024. doi: 10.1177/14614448231156852.

53

http://www.jstor.org/stable/3171348
https://eisenmanarchitects.com/Fin-D-Ou-T-Hou-S-1983
https://eisenmanarchitects.com/Fin-D-Ou-T-Hou-S-1983
https://eisenmanarchitects.com/Berlin-Memorial-to-the-Murdered-Jews-of-Europe-2005
https://eisenmanarchitects.com/Berlin-Memorial-to-the-Murdered-Jews-of-Europe-2005

Howard Hinnant, Roger Orr, Bjarne Stroustrup, Daveed Vandevoorde, and Michael Wong.
Directions for iso c++. Technical Report P0939R2, ISO C++ Working Group (WG21), Jan-
uary 2019.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, Au-
gust 1978. ISSN 0001-0782. doi: 10.1145/359576.359585.

Daniel Holden and Chris Kerr. ./code –poetry. Broken Sleep Books, 2023.

Daniel Jackson. The Essence of Software: Why ConceptsMatter for Great Design. Princeton
University Press, Princeton, NJ, 2023. ISBN 978-0691230832.

Jane Jacobs. The Death and Life of Great American Cities. Random House, New York City,
1961. ISBN 0-679-74195-X.

Joel Jakubovic. Achieving Self-Sustainability in Interactive Graphical Programming Sys-
tems. PhD thesis, University of Kent, 2023.

Joel Jakubovic and Tomas Petricek. Ascending the ladder to self-sustainability: Achiev-
ing open evolution in an interactive graphical system. In Proceedings of the 2022 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Onward! 2022, page 240–258, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450399098. doi: 10.1145/3563835.
3568736.

Julia Jamrozik and Coryn Kempster. Growing Up Modern: Childhoods in Iconic Homes.
Birkhäuser, Basel, 2021. ISBN 978-3-0356-1905-8.

Charles Jencks. The Story of Post-Modernism: Five Decades of the Ironic, Iconic and Critical
in Architecture. Wiley, 2012. ISBN 978-1-119-96009-6.

Philip Johnson and Mark Wigley. Deconstructivist Architecture. The Museum of Modern
Art, New York, 1988. ISBN 978-0870702983.

Stephen Kell. Convivial design heuristics for software systems. In Companion Proceedings
of the 4th International Conference on Art, Science, and Engineering of Programming,
Programming ’20, page 144–148, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450375078. doi: 10.1145/3397537.3397543.

Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The art of metaobject protocol.
MIT Press, Cambridge, MA, USA, 1991. ISBN 0262610744.

Jeffrey Kipnis and Thomas Leeser, editors. Chora LWorks: Jacques Derrida and Peter Eisen-
man. The Monacelli Press, New York, 1997. ISBN 978-1885254405.

Randall Korman. The Architecture of the Facade. Routledge, New York, 2023. ISBN
9781138851719.

Wessel Krul. Adolf Loos and the Doric Order, pages 123–143. Berghahn Books, New York,
Oxford, 2011. ISBN 9781845459871. doi: 10.1515/9781845459871-011.

54

Brian Lennon. Foo, bar, baz. . . : Themetasyntactic variable and the programming language
hierarchy. Philosophy & Technology, 34(1):13–32, Mar 2021. ISSN 2210-5441. doi: 10.
1007/s13347-019-00387-2.

Olia Lialina. A vernacular web: The indigenous and the barbarians. https://art.teleportacia.
org/observation/vernacular/, 2005. Accessed April 25, 2025.

Olia Lialina and Dragan Espenschied, editors. Digital Folklore Reader. merz & solitude,
2009. ISBN 978-3937982250.

Gavin Macrae-Gibson. The Secret Life of Buildings: An American Mythology for Modern
Architecture. The MIT Press, Cambridge, MA, 1988. ISBN 9780262631181.

David Madore. Unlambda: Your functional programming language nightmares come true.
http://www.madore.org/~david/programs/unlambda/, 2003. Accessed April 24, 2025.

Dan Maharry. TypeScript Revealed. Apress, New York, 2013. ISBN 1430257253.

Mark C Marino. Critical code studies. MIT Press, 2020.

Malcolm McCullough. Abstracting Craft: The Practiced Digital Hand. MIT Press, Cam-
bridge, MA, USA, 1996. ISBN 0262133261.

McKinsey and Company, Inc. Unlocking the computer’s profit potential. Computers
and Automation, pages 24–34, April 1969. URL http://www.bitsavers.org/magazines/
Computers_And_Automation/196904.pdf.

Leo A. Meyerovich and Ariel S. Rabkin. Socio-plt: principles for programming language
adoption. In Proceedings of the ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Onward! 2012, page 39–54,
New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450315623.
doi: 10.1145/2384592.2384597.

Ian Milligan. Welcome to the web: The online community of geocities during the early
years of the world wide web. In Ralph Brügger, Niels;Schroeder, editor, The Web as
History. Using Web Archives to Understand the Past and the Present, pages 137–158.
UCL Press, London, 2017. doi: 10.25969/mediarep/1252.

Martin Monperrus. Principles of antifragile software. In Companion Proceedings of
the 1st International Conference on the Art, Science, and Engineering of Program-
ming, Programming ’17, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450348362. doi: 10.1145/3079368.3079412. URL https://doi.org/10.1145/
3079368.3079412.

Nick Montfort, Patsy Baudoin, John Bell, Ian Bogost, Jeremy Douglass, Mark C.
Marino, Michael Mateas, Casey Reas, Mark Sample, and Noah Vawter. 10 PRINT
CHR$(205.5+RND(1)); : GOTO 10. The MIT Press, 2012. ISBN 9780262305501. doi:
10.7551/mitpress/9040.001.0001.

Dietrich Neumann. An Accidental Masterpiece: Mies van der Rohe’s Barcelona Pavilion.
Birkhäuser, Basel, 2020. ISBN 9783035619867.

55

https://art.teleportacia.org/observation/vernacular/
https://art.teleportacia.org/observation/vernacular/
http://www.madore.org/~david/programs/unlambda/
http://www.bitsavers.org/magazines/Computers_And_Automation/196904.pdf
http://www.bitsavers.org/magazines/Computers_And_Automation/196904.pdf
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1145/3079368.3079412

Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce Racism.
NYU Press, 2018. ISBN 9781479837243.

David Nofre, Mark Priestley, and Gerard Alberts. When technology became language: the
origins of the linguistic conception of computer programming, 1950-1960. Technol Cult,
55(1):40–75, 2014.

Tanya O’Carroll. Tanya o’carroll v meta; landmark case to stop facebook spy-
ing on us. https://web.archive.org/web/20241206045018/https://www.awo.agency/blog/
tanya-o-carroll-v-meta-landmark-case-to-stop-facebook-spying-on-us/, 2022. Accessed
April 24, 2025.

Cathy O’Neil. Weapons of Math Destruction. Crown Books, 2016. ISBN 0553418815.

Dominic Orchard. Should i use a monad or a comonad? 2011.

Andreas C. Papadakis, editor. Deconstruction in Architecture. Academy Editions, London,
1988. ISBN 0-85670-941-7.

D. L. Parnas. On the criteria to be used in decomposing systems into modules. Commun.
ACM, 15(12):1053–1058, 1972. ISSN 0001-0782. doi: 10.1145/361598.361623.

David L. Parnas. The Secret History of Information Hiding, pages 398–409. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-642-59412-0. doi: 10.1007/
978-3-642-59412-0_25.

Adelyn Perez. Ad classics: House vi / peter eisenman. https://www.archdaily.com/63267/
ad-classics-house-vi-peter-eisenman, June 2010. ISSN0719-8884. Accessed April 25, 2025.

Nicole Perlroth. Heartbleed highlights a contradiction in the web. The New
York Times, April 2014. URL http://www.nytimes.com/2014/04/19/technology/
heartbleed-highlights-a-contradiction-in-the-web.html. Accessed April 24, 2025.

Tomas Petricek. What we talk about when we talk about monads. The Art, Science, and
Engineering of Programming, 2(3):12:1–12:27, 2018. ISSN 2473-7321. doi: 10.22152/
programming-journal.org/2018/2/12.

Tomas Petricek. The lost ways of programming: Commodore 64 BASIC. https://tomasp.net/
commodore64/, 2020a. Accessed April 24, 2025.

Tomas Petricek. Foundations of a live data exploration environment. Art Sci. Eng. Program.,
4(3):8, 2020b. doi: 10.22152/programming-journal.org/2020/4/8.

Tomas Petricek. Programming as architecture, design, and urban planning. In Proceedings
of the 2021 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2021, page 114–124, New York, NY,
USA, 2021a. Association for ComputingMachinery. ISBN 9781450391108. doi: 10.1145/
3486607.3486770.

Tomas Petricek. Pop-up fromhell: On the growing opacity ofweb programs. https://tomasp.
net/blog/2021/popup-from-hell/, 2021b. Accessed April 24, 2025.

56

https://web.archive.org/web/20241206045018/https://www.awo.agency/blog/tanya-o-carroll-v-meta-landmark-case-to-stop-facebook-spying-on-us/
https://web.archive.org/web/20241206045018/https://www.awo.agency/blog/tanya-o-carroll-v-meta-landmark-case-to-stop-facebook-spying-on-us/
https://www.archdaily.com/63267/ad-classics-house-vi-peter-eisenman
https://www.archdaily.com/63267/ad-classics-house-vi-peter-eisenman
http://www.nytimes.com/2014/04/19/technology/heartbleed-highlights-a-contradiction-in-the-web.html
http://www.nytimes.com/2014/04/19/technology/heartbleed-highlights-a-contradiction-in-the-web.html
https://tomasp.net/commodore64/
https://tomasp.net/commodore64/
https://tomasp.net/blog/2021/popup-from-hell/
https://tomasp.net/blog/2021/popup-from-hell/

Tomas Petricek. The timeless way of programming. https://tomasp.net/blog/2022/
timeless-way/, 2022. Accessed April 24, 2025.

Tomas Petricek, editor. Cultures of Programming. Cambridge University Press, 2025. To
appear.

Charles Petzold. C# application markup language (csaml): An evolutionary leap. http:
//www.charlespetzold.com/etc/CSAML.html, 2006. Accessed April 22, 2025.

Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In Pro-
ceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’93, page 71–84, New York, NY, USA, 1993. Association for Computing
Machinery. ISBN 0897915607. doi: 10.1145/158511.158524.

Robin Pogrebin and Katie Zezima. M.i.t. sues frank gehry, citing flaws in center he designed.
The New York Times, November 2007. URL https://www.nytimes.com/2007/11/07/us/07mit.
html. Accessed April 24, 2025.

J. Fiona Ragheb, editor. Frank O. Gehry: The Art of Architecture. Guggenheim Museum
Publications, New York, 2001. ISBN 978-0810969292.

Joy Lisi Rankin. A People’s History of Computing in the United States. Harvard University
Press, Cambridge, MA, 2018. ISBN 9780674970977.

Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly Media, 1999. ISBN 1-565-92724-9.

Trygve Reenskaug. User-oriented descriptions of smalltalk. BYTE, 6(8), August 1981. URL
https://folk.universitetetioslo.no/trygver/1981/byte/userorienteddescriptions.pdf.

Rosetta Code. Y combinator. https://rosettacode.org/wiki/Y_combinator, 2025. Accessed
April 24, 2025.

Bernard Rudofsky. ArchitectureWithout Architects: A Short Introduction to Non-Pedigreed
Architecture. The Museum of Modern Art, New York, 1964. ISBN 978-0385074872.

Stuart Russell, Daniel Dewey, and Max Tegmark. Research priorities for robust and ben-
eficial artificial intelligence. AI Magazine, 36(4):105–114, 2015. doi: 10.1609/aimag.
v36i4.2577.

James C. Scott. Seeing Like a State: How Certain Schemes to Improve the Human Condition
Have Failed. Yale University Press, 1998. ISBN 9780300078152.

Jorge Silvetti. The beauty of shadows. In K. Michael Hays, editor, Oppositions Reader:
Selected Essays 1973–1984, pages 365–389. Princeton Architectural Press, 1998. ISBN
9781568981536.

Kragen Javier Sitaker. The memory models that underlie programming languages. http:
//canonical.org/~kragen/memory-models/, 2016. Accessed 2023-02-09.

Richard Stallman. The free software definition. GNU’s Bulletin, 1(1), 1984. URL https:
//www.gnu.org/bulletins/bull1.txt.

57

https://tomasp.net/blog/2022/timeless-way/
https://tomasp.net/blog/2022/timeless-way/
http://www.charlespetzold.com/etc/CSAML.html
http://www.charlespetzold.com/etc/CSAML.html
https://www.nytimes.com/2007/11/07/us/07mit.html
https://www.nytimes.com/2007/11/07/us/07mit.html
https://folk.universitetetioslo.no/trygver/1981/byte/userorienteddescriptions.pdf
https://rosettacode.org/wiki/Y_combinator
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
https://www.gnu.org/bulletins/bull1.txt
https://www.gnu.org/bulletins/bull1.txt

Molly Wright Steenson. Architectural Intelligence: How Designers and Architects Created
the Digital Landscape. The MIT Press, 12 2017. ISBN 9780262343428. doi: 10.7551/
mitpress/10971.001.0001.

Friedrich Steimann. Fatal abstraction. In Proceedings of the 2018 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2018, page 125–130, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450360319. doi: 10.1145/3276954.3276966.

Bjarne Stroustrup. Thriving in a crowded and changing world: C++ 2006–2020. Proc. ACM
Program. Lang., 4(HOPL), 2020. doi: 10.1145/3386320.

Ana Tostões, editor. Modern Heritage: Reuse. Renovation. Restoration. Birkhäuser, Basel,
2022. ISBN 978-3-0356-2508-0.

Donald J. Trump. Executive order on promoting beautiful federal civic architecture. https:
//www.govinfo.gov/app/details/DCPD-202000900, December 2020. Executive Order 13967.

Bernard Tschumi. Architecture and transgression. In K. Michael Hays, editor, Oppositions
Reader: Selected Essays 1973–1984, pages 355–364. Princeton Architectural Press, 1998.
ISBN 9781568981536.

Zeynep Tufekci. Twitter and tear gas: the power and fragility of networked protest. Yale
University Press, New Haven; London, 2017. ISBN 978-0-300-23417-6.

D. A. Turner. Some history of functional programming languages. In Hans-Wolfgang Loidl
and Ricardo Peña, editors, Trends in Functional Programming, pages 1–20, Berlin, Hei-
delberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-40447-4.

Simon Unwin. Twenty-Five+ Buildings Every Architect Should Understand: Revised
and Expanded Edition. Routledge, New York, 3rd edition, November 2024. ISBN
9781032532356.

Robert Venturi. Complexity and Contradiction in Architecture. The Museum of Modern
Art, New York, 2nd edition, 1977. ISBN 9780870702822. First published in 1966.

Robert Venturi, Denise Scott Brown, and Steven Izenour. Learning from Las Vegas. The
MIT Press, Cambridge, MA, 1972. ISBN 978-0-262-22015-6.

Ricky Vetter and contributors. What and why – reasonml. https://reasonml-old.github.io/
guide/what-and-why, 2017. Accessed April 24, 2025.

Julia Watson. Lo-TEK: design by radical indigenism. Taschen, Cologne, 2019. ISBN
9783836578189.

Tyler Whitney and contributors. Lambda expressions in c++. https://learn.microsoft.com/
en-us/cpp/cpp/lambda-expressions-in-cpp, 2023. Accessed April 24, 2025.

David Wootton. The Invention of Science: A New History of the Scientific Revolution. Pen-
guin Books Limited, 2015. ISBN 9780141916774.

Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for a Human Future at the
New Frontier of Power. PublicAffairs, New York, 2019. ISBN 978-1610395694.

58

https://www.govinfo.gov/app/details/DCPD-202000900
https://www.govinfo.gov/app/details/DCPD-202000900
https://reasonml-old.github.io/guide/what-and-why
https://reasonml-old.github.io/guide/what-and-why
https://learn.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp
https://learn.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp

	Critical Language for Software
	The Ironical Column
	Towards Critical Software
	Formal Grammars of Architecture
	Questioning the Structure of Software
	Ways of Achieving Fit
	Vernacular Software
	Modernism of Conceptual Coherence
	Complexity and Contradiction in Software
	Learning from Software Pop Culture
	Emergence from Formal Structures
	New Modes of Criticism
	Possibility of a Critical Language
	Transparency and Methodological Freedom

