

Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Tomáš Petříček

Client side scripting using
meta-programming

Department of Software Engineering

Advisor: RNDr. David Bednárek

Study program: Computer Science, Programming

2007

1

Thanks to Don Syme for his enormous support of this project and also for his
work on F# that made the project possible in a form in which it is presented in
this thesis. Also thanks to members of the Links project: Ezra Cooper, Philip
Wadler and Jeremy Yallop for an insightful discussion and to James Margetson
and Simon Peyton Jones for their useful comments and suggestions. Finally,
thanks to my advisor RNDr. David Bednárek, for his patience and for
supervising of this work.

I hereby certify that I wrote the thesis myself using only the referenced sources.
I agree with lending the thesis.

Prague, 2 August, 2007 Tomáš Petříček

2

Contents

Chapter 1: Introduction .. 5

1.1 What Makes Web Applications Hard .. 6

Chapter 2: Background .. 9

2.1 F# Language and Runtime .. 9

2.2 Web Development ..20

2.3 Web Development and Frameworks...21

Chapter 3: Problem description .. 25

3.1 Language Impedance Mismatch ..25

3.2 Richer Client-Side Environment ...25

3.3 Bridging the Client/Server Gap ...26

3.4 Client/Server Components ...28

Chapter 4: Case Studies .. 29

4.1 Case Study: Windows Scripting using WSH..29

4.2 Case Study: Web Symbolic Manipulation ..31

4.3 Case Study: Lecture Organizer...37

Chapter 5: Discussion of Alternatives ... 41

5.1 Language and Runtime ...41

5.2 Control Flow Model ..42

5.3 Client-Server Integration ...43

5.4 State Management ..44

5.5 Security ...45

Chapter 6: Implementation... 46

6.1 F# to JavaScript Translation ...46

6.2 Rich Client-Side Environment ..49

6.3 Client-Server Integration ...52

6.4 Serialization and Mixed Types ...61

6.5 Composable Components ..67

Chapter 7: Key Language Features Used .. 69

7.1 Heterogeneous Execution..69

7.2 Non-Standard Computations..70

7.3 Members as a Symbols..71

Chapter 8: Conclusion and Related Work .. 72

8.1 Related Work ..72

8.2 Future Work..75

8.3 Conclusion ...76

References .. 78

Appendix A: Contents of the Attached CD .. 80

3

Title: Client side scripting using meta-programming
Author: Tomáš Petříček
Department: Department of Software Engineering
Supervisor: RNDr. David Bednárek
Supervisor's e-mail address: david.bednarek@mff.cuni.cz

Abstract: “Ajax” programming is becoming a de-facto standard for certain types of web
applications, but unfortunately developing this kind of application is a difficult task.
Developers have to deal with problems like a language impedance mismatch, limited
execution runtime in web browser on the client-side and no integration between client
and server-side parts that are developed as a two independent applications, but
typically form a single and homogenous application. In this work we present the first
project that deals with all three mentioned problems but which still integrates with
existing web technologies such as ASP.NET on the server and JavaScript on the client.
We use the F# language for writing both client and server-side part of the web
application, which makes it possible to develop client-side code in a type-safe
programming language using a subset of the F# library, and we provide a way to write
both server-side and client-side code as a part of single homogeneous type defining the
web page logic. The code is executed heterogeneously, part as JavaScript on the client,
and part as native code on the server. Finally we use monadic syntax for the separation
of client and server-side code, tracking this separation through the F# type system.

Keywords: ML; F#; Meta-programming; Ajax; Web Development; Language
Impedance Mismatch

Název práce: Client side scripting using meta-programming
Autor: Tomáš Petříček
Katedra (ústav): Katedra Softwarového Inženýrství
Vedoucí bakalářské práce: RNDr. David Bednárek
e-mail vedoucího: david.bednarek@mff.cuni.cz

Abstrakt: Webové aplikace založené na principech souhrnně označovaných zkratkou
„Ajax“ se dnes stávají de-facto standardem, ale vývoj takovýchto aplikací je naneštěstí
velmi náročný. Vývojáři musí čelit problémům, jako je nesourodost programovacích
jazyků v různých vrstvách aplikace, omezené běhové prostředí v prohlížeči a chybějící
integrace mezi serverovou a klientskou částí aplikace, které musí být psány jako dvě
nezávislé části, ale obvykle tvoří jednu homogenní aplikaci. V této práci představujeme
první projekt, který usiluje o řešení všech tří zmíněných problémů a současně
umožňuje použití stávajících technologií jako je ASP.NET na straně serveru a JavaScript
na straně klienta. Používáme jazyk F# pro psaní obou částí aplikace, což umožňuje
vyvíjet klientskou část typově bezpečným způsobem s použitím části F# knihoven, dále
umožňujeme propojení obou částí aplikace v jednom homogenním typu, který určuje
logiku aplikace. Při spuštění je aplikace vykonávána různorodě, část pomocí JavaScriptu
v prohlížeči a část jako nativní kód na serveru. K oddělení serverového a klientského
kódu používáme monadický zápis jazyka F# a tím se toto rozlišení stává vlastností
typového systému.

Klíčová slova: ML; F#; Meta-programování; Ajax; Webový vývoj; Language
Impedance Mismatch

4

Preface

During early phase of this work I had a chance to discuss a design of the project
with Don Syme from Microsoft Research, who first suggested using the F#
language designed by him and its meta-programming capabilities for solving
one of the issues targeted by this work.

This collaboration led to my internship in Microsoft Research in Cambridge,
where I worked under the mentorship of Don Syme on an integrated
client/server framework for web development, which is now released as F#
Web Toolkit1 under the Microsoft Permissive License.

The original intention of this work was to prove that the meta-programming
approach is sensible however thanks to the increasing quality and importance
of the F# language it was possible to implement a solution useful in practice. In
addition the recent enhancements in the F# language allowed solving many
interesting related problems of web development that are presented in this
thesis.

Finally, the project was presented to the Links team at University of Edinburgh
and to the Programming Principles and Tools group at Microsoft Research who
both provided many useful comments and suggestions and some of them are
mentioned in future work section of this thesis.

1 The project is available at: http://www.codeplex.com/fswebtools

5

Chapter 1

Introduction

Our goal in this work is to build a framework for developing interactive web
applications, which is a task that occupy the lives of the thousands of
programmers who currently write web applications in JavaScript (on the client-
side) and PHP/C#/VB.NET/Java/Ruby (on the server-side). This class of web
applications can, broadly speaking, be called Ajax2 applications. This work
shows how the F# language [8] can be used to build homogeneous (i.e. single-
language) type-checked client/server Ajax applications that are executed
heterogeneously, as JavaScript in the browser and as native code on the server.
The use of F# for developing both sides of the application also makes it possible
to develop richer client-side code, possibly leveraging of the functional language
constructs available in the F# language.

As first summarized in [1] and later clarified in [2], Ajax applications typically
perform the following tasks: they present data using (X)HTML and CSS in a web
browser, they use asynchronous requests back to the server to dynamically load
data on demand, and they update the displayed data using JavaScript code
running in the browser. One important observation made in [2] is that this
definition discusses only the client-side part of the application (running in a
web browser), but ignores the code running on the server-side, while in most of
the situations these two parts are actually inseparable parts of a single
application. While an interaction with the Ajax application is driven by the
client-side, the application is authored on the server and served to the client in
response to the initial HTTP request. Hence a program written in one language
(the server-side program) must serve and interoperate with a program writer
in another (the JavaScript client-side program). This somewhat confused mix of
multiple languages, staged computation and program generation means there is
a real need for tools, languages and frameworks that make the development of
these applications easier.

We show how to solve three of the fundamental difficulties of the web
programming: the heterogeneous nature of execution, the discontinuity
between client and server parts of execution and the lack of type-checked
execution on the client side. The work is built in the F# language [24], making
use of recent additions including meta-programming via “quotations” [10],
simpler manipulations of quotations via active patterns [11], the combination of
object-oriented programming with functional programming [23, 24], and a
monadic syntax [24] akin to that of Haskell. On the server side we use ASP.NET
framework [9], because it is easily accessible from F#, though we believe that
the presented approach could be easily adapted to be used with many other
web development tools. We also discuss what language features are crucial for
supporting particular features of the presented work.

2 Ajax stands for Asynchronous JavaScript and XML, The Ajax name first appeared in [1].

6

From a language point of view, we present the following interesting aspects:

 We use meta-programming to write a code that is executed across
heterogeneous environments using a single homogenous language. As far as
we are aware, we are the first to use this approach for a web development
scenario.

 We present the first translator from F# (an ML-family functional language
in general) to JavaScript, including the translation of the F# core language
constructs as well as a subset of the F# and .NET libraries. We also show
how native JavaScript components3 can be accessed from the source
language in a type-safe way.

 We also discuss approaches for verifying that the part of the code which is
intended to run on the client-side (and so will be translated to JavaScript)
uses only functions and types that have a corresponding JavaScript
implementation.

The use of F# for developing both client-side and server-side parts of the
application together with the fact that both parts can be written in a single file
(and in the case of user interface components even in a single class) allows us to
achieve many interesting things from a web-development point of view as well.
The contributions of this work from the web-development perspective are:

 We allow using F# “asynchronous workflows” in the client side code, which
makes it very easy to write non-blocking code (for example repeated
server-side polling) that would be otherwise be written explicitly using
events.

 We present the mechanism for managing client-side state changes
performed by server-side components during asynchronous callbacks to
the server.

 We also show possible ways for developing a component based web
development framework where interactions between components can be
defined for both server and client side code in a uniform way.

1.1 What Makes Web Applications Hard

The first reason that makes developing web applications a difficult task is that
the environment available on the client-side is limited in many ways – for better
or for worse, the only language available in web browsers is JavaScript, which is
not suitable for solving many of the problems that arise when developing
complex web applications. There are also many incompatibilities between
different JavaScript language and client-side library implementations. For these
reasons some people (e.g., Meijer [4]) view JavaScript and related libraries only
as an assembly language and runtime for compiling more complex languages
and applications. This is also a view adopted in our work.

3 By native JavaScript components we mean JavaScript libraries that don’t have corresponding
representation in the source library (in our case F# and .NET class libraries)

7

In general, the ability to execute homogenous application in a heterogeneous
environment is becoming more and more important, not only in the web
development scenario – there are several projects that integrate data-access in
the language [18-20, 10], there is a number of attempts to integrate the writing
of general purpose GPU programs [27, 10] and finally in the web development
scenario, the heterogeneous execution is to some extent used in [3, 4]. We
believe that this observation changes the whole way we should think about
designing compilation hierarchies and tool support for programming languages.
Fortunately, the fundamental need to embrace heterogeneous execution has
already been tackled in the context of F# [10]. 4

The second problem is the discontinuity between server and client-side parts of
the application – even for very simple applications both parts have to be written
separately, in different languages and with explicit way of communicating
between both sides. There are several projects that deal with language
impedance mismatch (in the web development scenario for example [4, 5, 6,
30]), but only a few projects go beyond this and deal also with the separation of
client and server-side code (mainly Links [3] and partially also [4]).

Another problem appears when using server-side frameworks such as ASP.NET,
Ruby on Rails or PHP. In these frameworks components (e.g. a calendar control
or a data list) exist only in the server-side code and interactions between these
are executed only when processing whole page requests on the server. Reusable
components (as available for example in ASP.NET) can hide complex client-side
functionality (for example the calendar control can update itself on the client-
side using JavaScript to display different month), however on the client-side
every component behaves like a black-box and there is no way to specify client-
side interactions, which are an important aspect of any interactive web
application. For example, a calendar control may need to interact with a data list
control to filter information (already loaded on the client-side) according to the
selected date, which is an interaction that should not involve “going back to the
server” to rebuild the entire page, as is required by ASP.NET. Achieving this kind
of “smoothness” is partly a reason why people resort to Ajax-style programming
in JavaScript. Some component-based frameworks make it possible to define
client-side components as well (for example [7]), but even with these extensions
it is still impossible to define both server and client-side properties of a
component using a single interface, which is the goal of our work.

The rest of the work is structured as follows – In the 0 we introduce the F#
language, especially focusing on parts that are relevant for our F# to JavaScript
translator and language features that are frequently used when writing code
using the F# Web Toolkit. This chapter also contains quick overview of the state
of the art in the web development. Then in Chapter 3 we identify key problems
of existing web development technologies that we approach in this work. In
Chapter 4 we briefly demonstrate our solution to these problems in case-studies
presenting three real-world sample applications developed using our project.

4 At some point another execution technology may replace JavaScript as the ubiquitous,
“baseline” execution machinery on the client side of web applications. However, even if that
happens it is likely that the overall client/server application will still be heterogeneous, hence
the lesson still remains.

8

After this short overview, the following Chapter 5 discusses possible alternative
solutions to several problems and also explains reasons for choosing the
solution we implemented. In Chapter 6 we discuss our implementation in a
larger detail. This discussion includes the translator from the F# language to
JavaScript (•6.1), a way for building richer client-side environment (•6.2), our
solution for integrating client and server-side code (•6.3), the support for data
types that can be used in both execution environments (•6.4) and finally our
approach for writing component-based composable code (•6.5). Since our
solution is based on a general purpose programming language we believe it is
important to discuss what language constructs (especially those not common in
many mainstream languages) enable implementing a solution like ours and so
this discussion is presented in Chapter 7. Finally, Chapter 8 gives overview of
related work, possible extensions to our project that we would like to
implement in the future and a conclusion.

9

Chapter 2

Background

In this section we first briefly discuss the F# language [8]. In order to make this
thesis self contained, we also give a brief overview of the core F# types, F#
language constructs that support several programming paradigms (functional,
imperative and object-oriented) and also the interoperability with the .NET
platform – since the translator from the F# language to JavaScript will be
presented later in this work, we find it important to describe at least informally
what does the F# language consist of and what has to be considered when
working on such translator.

We also discuss the F# language features that are intensively used when
developing applications using the F# Web Toolkit, especially its support for
meta-programming including differences from a version described in [10], along
with F# active patterns [11], used when manipulating F# meta-programs and
we also informally describe a recent addition to F#: the monadic syntax akin to
that of Haskell, which is very important for our work.

Finally, we introduce a web development problem in general and changes in the
understanding of web caused by a rise of Ajax based interactive web
applications, together with a brief overview of the existing web development
frameworks relevant to the presented work.

2.1 F# Language and Runtime

The F# language is documented on the F# web site [8] and in two books [23,
24]. In [10] the following description is given: “F# is a multi-paradigm .NET
language explicitly designed to be an ML suited to the .NET environment. It is
rooted in the Core ML design and in particular has a core language largely
compatible with OCaml.”

2.1.1 Functional programming in F#

F# is a typed language, by which we mean that types of all values are known
during the compile-time. Thanks to the use a type inference, the types are
explicitly specified in the code very rarely. Basic data types (aside from a
standard set of primitive numeric and textual types) available in F# are tuple,
discriminated union, record, array, list, function and object. In the following
quick overview, we use F# interactive, which is a tool that compiles and
executes the entered text on the fly.

Overview of F# Data Types
The first example demonstrates constructing and deconstructing tuple type:

10

> let tuple = (42, "Hello world!");;
val tuple : int * string

> let (num, str) = tuple;;
val num : int
val str : string

The syntax used for deconstructing the value into variables num and str is in
general called pattern matching and it is used very often in the F# language –
the aim of pattern matching is to allow matching value against a pattern that
specifies different view of the data type – in case of tuple, one view is a single
value (of type tuple) and the second view is pair of two values (of different
types). F# also supports generalized pattern matching constructs called active
patterns, which are discussed later in this overview. In the next sample we
demonstrate working with the discriminated union type:

> type Expr =
 | Binary of string * Expr * Expr
 | Variable of string
 | Constant of int;;
(...)

> let v = Binary("+", Variable "x", Constant 10);;
val v : Expr

To work with the values of a discriminated union type, we use pattern matching
again. In this case we use the match language construct, which can be used for
testing a value against several possible patterns – in case of the Expr type, the
possible options are Binary, Variable or Constant expressions. The following
example declares function eval, which evaluates the given expression:

> let rec eval x =
 match x with
 | Binary(op, l, r) ->
 let (lv, rv) = (eval l, eval r)
 if (op = "+") then lv + rv
 else failwith "Unknonw operator!"
 | Variable(var) ->
 getVariableValue var
 | Constant(n) ->
 n;;
val eval : Expr -> int

Further, the record type can be viewed as a tuple with named members, which
can be accessed using a dot-notation:

> type Product =
 { Name:string;
 Price:int; };;
(...)

> let p = { Name="Test"; Price=42; };;
val p : Product

> p.Name;;
val it : string = "Test"

11

The types used for storing collections of values are list and array. F# list is a
typical linked-list type known from many functional languages – it can be either
an empty list (written as []) or a cell containing a value and a reference to the
tail (written as value::tail). Array is a .NET compatible mutable array type,
which is stored in a continuous memory location and is therefore very efficient
– being a mutable type, array is often used in imperative programming style,
which is discussed later. The following example shows declaration of a list value
and an implementation of a recursive function that adds all members of the list:

> let nums = [1; 2; 3; 4; 5];;
val nums : list<int>

> let rec sum list =
 match list with
 | h::tail -> (sum tail) + h
 | [] -> 0
val sum : list<int> -> int

The important feature when writing recursive functions in F# is the support for
tailcalls – meaning that when a last operation performed by the function is a call
to a function (including a recursive call), it drops the current stack frame and
minimizes a chance for getting a stack overflow exception. The sum function
from the previous example can be written using a tail recursion as following:

> let rec sumAux acc list =
 match list with
 | h::tail -> sumAux (acc + h) tail
 | [] -> acc
val sum : int -> list<int> -> int

> let sum list = sumAux 0 list
val sum : list<int> -> int

The next F# type is a function – in F#, as in many other functional languages,
functions are first-class values, meaning that the function can be given as an
argument to other functions and also returned from a function (a function that
takes function as an argument or returns function as a result is called high-order
function). The important aspect of working with functions in functional
languages is the ability to create closures – creating a function that captures
some values available in the current stack frame. The following example
demonstrates a function that creates a function for adding specified number to
an integer:

> let createAdder n =
 (fun arg -> n + arg);;
val createAdder : int -> int -> int

> let add10 = createAdder 10;;
val add10 : int -> int

> add10 32;;
val it : int = 42

The type of the result (int -> int -> int) denotes that when the function is
called with int as an argument, it produces a value of type function (which takes

12

integer as a parameter and produces integer as a result). In fact, the previous
example could be simplified, because any function taking more arguments is
treated as a function that produces a function value when it is given the first
argument, which means that the following code snippet has the same behavior
(note that the types of the function createAdder declared earlier and the type of
the function add are the same):

> let add a b = a + b;;
val add : int -> int -> int

> let add10 = add 10;;
val add10 : int -> int

Many functions in the F# library are implemented as high-order functions. For
example standard set of functions for manipulating with list values is
demonstrated in the following example:

> let odds = List.filter (fun n -> n%2 = 0) [1; 2; 3; 4; 5];;
val odds : list<int> = [1; 3; 5]

> let squares = List.map (fun n -> n * n) odds;;
val squares : list<int> = [1; 9; 25]

Expressions and Variable Scoping
The F# language doesn’t have a different notion of a statement and an
expression, which means that every language construct is an expression with a
known return type. If the construct performs only a side effect and doesn’t
return any value, the type of the construct is unit, which is a type with one
possible value (written as “()”). The semicolon symbol (;) is used for
sequencing multiple expressions, but the first expression in the sequence is
required to have a unit as a result type. The following example demonstrates
how the if construct can be used as an expression in F# (however in the
optional F# lightweight syntax, which makes whitespace significant, the
semicolon symbol can be omitted):

> let n = 1
 let res =
 if n = 1 then
 printfn "n is one";
 "one"
 else
 "something else";;
n is one
val res : string = "one"

Unlike some languages that allow one variable name to appear only once in the
entire function body (e.g. C#) or even treat all variables declared inside the body
of a function as a variable with scope of the whole function (e.g. Visual Basic or
JavaScript), the scope of F# values (the name value is used instead of a variable,
because F# variables are immutable by default) is determined by the let
binding and it is allowed to hide a variable by declaring a value with the same
name:

13

> let n = 21
 let f =
 if n < 10 then
 let n = n * 2
 (fun () -> print_int n)
 else
 let n = n / 2
 (fun () -> print_int n)
 let n = 0
 f ();;
42
val it : unit

In this example, the value n declared inside a branch of the if expression is
captured by a lambda function, which is returned from the if expression and
bound to the value named f. When the f is invoked it indeed uses the value from
the scope where it was created (in languages, where the variable named n would
refer to a value stored globally, it would be rather problematic to write a sample
like this).

2.1.2 Imperative programming in F#

Similarly as ML and OCaml, F# adopts eager evaluation mechanism, which
makes it semantically reasonable to support imperative programming features
in a functional language. By default, F# value bindings are immutable, so to
make them mutable the mutable keyword has to be used. Additionally F#
supports a few imperative language constructs (like for and while), which are
expressions of type unit:

> let n = 10
 let mutable res = 1
 for n = 2 to n do
 res <- res * n
 res;;
val it : int = 3628800

The use of the eager evaluation and the ability to use mutable values makes it
very easy to interoperate with other .NET languages, which is an important
aspect of the F# language.

2.1.3 .NET interoperability

The .NET BCL5 is built in an object oriented way, so the ability to work with
existing classes is essential for the interoperability. Many (in fact almost all) of
the classes are also mutable, so the eager evaluation and the support for side-
effects are next two key features when working with the .NET library. The
following example demonstrates working with the mutable generic List<T> type
from the BCL (note that we use underscore as a type argument, which is
possible when the type inference can deduce the type argument automatically):

5 BCL stands for “Base Class Library” and includes all classes available in the default installation
of the .NET Framework.

14

> open System.Collections.Generic
 let list = new List<_>()
 list.Add("hello")
 list.Add("world")
 list |> Seq.to_list;;
val it : string list = ["hello"; "world"]

As a fully compatible .NET language, F# also provides a way for declaring its
own classes, which are compiled to .NET compatible class types and therefore
the types can be accessed from any other .NET language as well as extend
classes written in other languages. This is an important feature when we want
to access .NET libraries like ASP.NET.

2.1.4 Object oriented programming

Object oriented constructs in F# are compatible with OO support in the .NET
CLR, which means that F# supports single implementation inheritance, multiple
interface inheritance and subtyping. F# object types can have fields,
constructors, methods and properties (a property is just a syntactic sugar for
getter and setter methods). The following example introduces the F# syntax for
object types:

type MyCell(n:int) =
 let mutable data = n + 1

 member x.Data
 with get() = data
 and set(v) = data <- v

 member x.Print() =
 printf "Data: %d" data

 static member FromInt(n) =
 MyCell(n)

The object type MyCell has a field called data, property called Data, an instance
method Print, a static method FromInt and an implicit constructor that
initializes the value of the field. The declaration of an interface (called abstract
object type in F#) is similar:

type AnyCell =
 abstract Value : int with get, set
 abstract Print : unit -> unit

The interesting concept in the F# object oriented support is that it is not needed
to specify explicitly whether the object type is abstract (interface), concrete
(class) or partially implemented (class with abstract methods), because the F#
infers this automatically depending on the members of the type.

F# also supports type upcasts (o :> TargetType), downcasts (o :?> TargetType)
and dynamic type tests (o :?> TargetType), which tests whether a value can be
casted to specified type. Additionally, all F# data types are subtypes of the obj
type, which is equivalent to the .NET Object type.

15

2.1.5 F# Intensional Meta-Programming

The meta-programming capabilities of F# and .NET runtime can be viewed as a
two separate and orthogonal parts. The .NET runtime provides a way for
discovering all the types and top-level method definitions in a running program:
this API is called System.Reflection and is akin to reflection in Java. F#
“quotations” [10] provide a way for working with selected F# expressions in a
similar way and can be also used to extract abstract syntax trees of a members
discovered using System.Reflection (note that the F# “quotations” are a feature
of the F# compiler and as such can’t be used with programs produced from C#
or VB).

F# and .NET Reflection Library
The F# library also extends the .NET System.Reflection to give additional
information about F# data types – for example we can use the reflection library
to examine possible values of the Expr type (discriminated union) declared
earlier:

> let exprTy = typeof<Expr>
 match Type.GetInfo(exprTy) with
 | SumType(opts) -> List.map fst opts
 | _ -> [];;
val it : string list = ["Binary"; "Variable"; "Constant"]

An important part of the .NET reflection mechanism is the use of custom
attributes, which can be used to annotate any program construct accessible via
reflection with additional metadata. The following example demonstrates the
syntax for attributes in F# by declaring Documentation attribute (simply by
inheriting from the System.Attribute base class) and adding it to a static method
in a class:

type DocumentationAttribute(doc:string) =
 inherit System.Attribute()
 member x.Doc = doc

type Demo =
 [<Documentation("Adds one to a given number")>]
 static member AddOne x = x + 1

Using the .NET System.Reflection library it is possible to examine members of
the Demo type including reading of the associated attributes (which are stored in
the compiled DLL and are available at run-time):

> let ty = typeof<Demo>
 let mi = ty.GetMethod("AddOne")
 let at = mi.GetCustomAttributes
 (typeof<DocumentationAttribute>, false)
 (at.[0] :?> DocumentationAttribute).Doc;;
val it : string = "Adds one to a given number"

F# Quotations
F# quotations form the second part of the meta-programming mechanism, by
allowing the capture of type-checked F# expressions as structured terms. There
are two ways for capturing quotations – the first way is to use quotation literals
and explicitly mark piece of code as a quotation and the second way is to use

16

ReflectedDefinition attribute, which instructs the compiler to store quotation
data for a specified top-level member. The following example demonstrates a
few simple quoted F# expressions – the quoted expressions are ordinary type-
checked F# expressions wrapped between the Unicode symbols « and »6:

> « 1 + 1 »
val it : Expr<int>

> « (fun x -> x + 1) »
val it : Expr<int -> int>

Quotation processing is usually done on the raw representation of the
quotations, which is represented by the non-generic Expr type (however the
type information about the quoted expression is still available dynamically via
the Type property). The following example implements a trivial evaluator for the
quotations (GenericTopDefnApp pattern matches with the use of the plus
operator, the Int32 pattern recognizes a constant of type int):

> let plusOp = « (+) »
 let rec eval x =
 match x with
 | GenericTopDefnApp plusOp.Raw (_, [l; r]) ->
 (eval l) + (eval r)
 | Int32(n) ->
 n
 | _ ->
 failwith "unknonw construct"
val eval : Expr -> int

> let tst = « (1+2) + (3+4) »
 eval tst.Raw
val it : int = 10

Figure 1. Using pattern matching for quotation processing

The F# quotations also provide mechanism for splicing values into the
quotation tree, which is useful mechanism for providing input data for further
quotation processing. The operator for splicing values is the Unicode symbol (•)
as demonstrated in the following example, where we use it for embedding a
value that represents a database table7 (the |> is a pipelining operator, which
applies the argument on the left hand side to the function on the right hand
side):

> « §db.Customers
 |> filter (fun x -> x.City = "London")
 |> map (fun x -> x.Name) »
val it : Expr<Seq<string>>

In the raw representation, the spliced value can be recognized using the
LiftedValue pattern, which returns a value of type obj, which can contain any F#
value.

6 Alternatively, it is also possible to use <@ and @> symbols.
7 This example is based on the FLinq project, which integrates data-access to the F# language
using meta-programming. The FLinq project is presented in [10].

17

The second option for quoting F# code (which is used more often in our work)
is by explicitly marking top-level definitions with an attribute that instructs the
compiler to capture the quotation of the entire definition body. We refer to this
option as a non-intrusive meta-programming, because it allows processing of
the member body (e.g. translating it to JavaScript), but doesn’t require any deep
understanding of meta-programming from the user of the library. The following
code gives a simple example:

[<ReflectedDefinition>]
let addOne x =
 x + 1

The quotation of a top-level definition (which can be either a function or a class
member) annotated using the ReflectedDefinition attribute is then made
available through the F# quotation library at runtime using the reflection
mechanism described earlier, but the member is still available as a compiled
code and can be executed.

Extensible Pattern Matching via Active Patterns
Programmatic access to F# quotation trees uses F# active patterns [11], which
allow the internal representation of quotation trees to be hidden while still
allowing the use of pattern matching as a convenient way to decompose and
analyze F# quotation terms. We already used one variant of active patterns in
earlier example in Figure 1, where Int32 and GenericTopDefnApp were both
active patters.

Active patterns are just functions which a special name and are extremely useful
when implementing a quotation processing code, because active patterns can be
used to group similar cases together. In the following example we declare active
pattern that recognizes two binary operations:

let (|BinaryOp|_|) x =
 match x with
 | GenericTopDefnApp plusOp.Raw (_, [l; r]) -> Some("+", l, r)
 | GenericTopDefnApp minusOp.Raw (_, [l; r]) -> Some("-", l, r)
 | _ -> None

let rec eval x =
 match x with
 | BinaryOp (op, l, r) ->
 if (op = "+") then
 (eval l) + (eval r)
 else
 (eval l) - (eval r)
 (* ... *)

The name (|abc|_|) indicates that the matching may succeed and return a
value denoted by the pattern abc or may fail. Other types of active pattern can
be found in [11].

18

2.1.6 F# Computation Expression

The last feature of F# that is important for our work is the F# monadic syntax
(also called computation expressions), which was introduced recently and hasn’t
been described in the literature before. Since it is not part of our work, we will
not describe it fully, but we need to introduce it at least informally, because we
rely on it in some parts of our project.

Properties of a monadic type are defined by a builder type which specifies a
type of a monadic value and behavior of the bind and the return operators. The
following code shows signature of an example type MBuilder, which builds a
monad of type M:

// Signature of the builder for monad M
type MBuilder with
 member Bind : M<'a> * ('a -> M<'b>) -> M<'b>
 member Return : 'a -> M<'a>
 member Delay : (unit -> M<'a>) -> M<'a>
 member Let : 'a * ('a -> M<'b>) -> M<'b>

The Bind and Return members specifies standard monadic operators, the Let
operation is used when binding value of ordinary type in a monad (in most
situations it could be expressed using Bind and Result, but F# defines it as a
separate operation to give more control over binding). The Delay member
allows building monads that are executed lazily.

Having a monadic builder, we can now use a syntactic extension that makes it
possible to write a code that uses the monadic operations in a similar way as we
would write ordinary F# code, as demonstrated in the following example:

mb { let ordinary = 5
 let! bound = mFunc()
 return ordinary + bound }

Figure 2. Sample computation written using monadic builder mb.

Here, mb is an instance of type MBuilder8 and mFunc is a function with signature
unit -> M<int>. When using an ordinary value, the let or do keywords are used
(and these will be translated to a call to the Let operator), to bind a monadic
value, we can use let! and do! keywords. The code de-sugars to explicit calls to
the monadic builder:

mb.Delay(fun () ->
 mb.Let(5, fun ordinary ->
 mb.Bind(mFunc(), fun bound ->
 mb.Return(ordinary + bound))))

Monadic syntax in F# allows embedding of “non-standard” computations in the
language, for example the continuation monad can be used for writing programs
that execute asynchronously (possibly without blocking the main application
thread). The computation written using the monadic syntax has a type
determined by the monadic builder (e.g. the type of the expression on a Figure 2

8 The main reason why the instance needs to be specified is that it gives the F# compiler
knowledge about the monadic builder that should be used in the monadic expression.

19

is M<int>), which prevents the user from mixing computations in an incorrect
way. It is however possible to “lift” an ordinary F# computation to a monad
using the let and do binders. In the following example we give a sample
implementation of the builder for a continuation monad (the value in the
continuation monad is a function, which when receives a continuation as an
argument, calculates the value and executes the continuation with the result of
the computation as an argument):

type Cont<'a> = ('a -> unit) -> unit

let bind v d = fun cont -> v (fun res -> (d res) cont)
let result v = fun cont -> cont v
let delay f = fun cont -> (f ()) cont

type ContinuationBuilder() =
 member x.Bind(v, d) = bind v d
 member x.Return(v) = result v
 member x.Delay(f) = delay f
 member x.Let(v, f) = bind (result v) f

let cont = ContinuationBuilder()

In the presented work we make use of the following constructs from the
monadic syntax (the syntax of the expression in the monadic block (cexp) is
similar to the ordinary F# expressions (exp) and it also provides similar
language constructs):

exp =
 | ident { cexp }
 | ...

cexp =
 | let! pat = exp in cexp monadic bind (mb.Bind)
 | let pat = exp in cexp regular bind (mb.Let)
 | do! exp monadic ‚unit‛ bind (mb.Bind)
 | do exp regular ‚unit‛ bind (mb.Let)
 | return! exp monadic return (expr)
 | return exp regular return (mb.Return)
 | if exp then cexp1 else cexp2 conditional (if)
 | if exp then cexp ‚unit‛ conditional (if)
 | match exp with (pat -> cexp)+ pattern match
 | for pat in exp do cexp for-each loop over expr
 | while exp do cexp while loop
 | try cexp finally cexp try-finally block
 | try cexp with (pat -> cexp)+ try-catch with exception match

F# monads differ from Haskell monads partly in that it is not possible to write
code that is generic over the kind of monad being used. We haven’t found that a
problem in practice, mainly because monads are used less frequently in F#
programming than in Haskell.

20

2.2 Web Development

In the recent years, the use and understanding of the World Wide Web has
changed and applications that work on principles different to those originally
envisaged for the web are appearing [13]. These applications are based on the
immediate interaction with the user and combine the behavior of desktop
applications and traditional web applications.

Developing highly interactive applications is a difficult task, partly because this
requirement wasn’t considered in the original web standards, e.g., many
problems are caused by the stateless nature of the HTTP protocol. The use of the
page as a unit of display also results in awkward techniques where reloads of an
entire application in the web browser are required to update simple elements of
the client-side display.

Many of the frameworks that are currently used for web development try to
abstract from the underlying technologies. A very common abstraction is
composing pages from reusable server-side components that hide the
complexity of building complex user interfaces. The application then defines
only interactions between the components. In the presented work we use some
parts of ASP.NET, which follows this model, however we use only the
component model and only in one part of our work, so most of the presented
project is independent to this specific technology and it could be easily adapted
to use a different model.

2.2.1 Control-flow in Web Applications

Ajax was introduced [1] as a name for a set of technologies that allow writing
interactive web applications that share some common aspects with desktop
applications. Most of the technologies that form Ajax were available before the
name appeared and now the name is used more to describe the control flow of a
class of applications than the particular technology that is used to implement
that control flow.

The differences between control flows are demonstrated at the following two
diagrams, which represent initial request and one page update in a traditional
web and Ajax based applications.

client server
Initial HTTP request

HTTP response

HTTP request

HTTP response

Diagram 1. Control flow of traditional web application

21

In a traditional web application (Diagram 1) the client first requests a page
(using HTTP request), the server code is executed and response, which consists
only of data (HTML markup, images, etc.) is sent to the client. When the client
wants to view other data or wants any update from server, it needs to send
another HTTP request and refreshes the entire page.

client server
Initial HTTP request

HTTP response

Asynchronous HTTP request

Asynchronous HTTP response

Diagram 2. Control flow of interactive "Ajax" application

In an Ajax application (Diagram 2), the client initiates with a request to the
server, but the answer from server consists of data and also a client-side
JavaScript code, which will start executing on the client side as soon as it is
received. When the user wants to display different data or perform any
interaction with server, the client-side code sends an asynchronous request to
the server, which generates a response and sends it back to the client. The client
than processes the response (using JavaScript) and updates the displayed
content according to the data it received.

The previous section shows that in Ajax based applications, the client-side part
of the application is getting more important and more complex as well, because
it is responsible for sending asynchronous requests to the server and processing
the responses, updating the user interface on the client and also performing
possible computations to minimize server workload.

2.3 Web Development and Frameworks

In this section we give a brief overview of existing web development platforms
used in practice as well as interesting research projects. We discuss possibilities
for building richer client-side environment, frameworks used to build client-
side Ajax applications and technologies that are used to build the server-side
code. In general the web development tools can be divided into the following
groups:

 The application is primarily a server-side application and generates HTML
with embedded client-side code that is executed to perform the client-side
behavior.

 The application is primarily a client-side application and accesses the
server-side functionality via web services.

 Frameworks that go beyond the traditional client/server separation and
provide integrated development environment to some point.

22

Indeed, the first type of applications is currently the most frequent; however the
separation between these groups is often very blurry, because several
approaches are often mixed in somewhat confusing ways.

2.3.1 Client-Side Languages

A typical requirement for a web application is to work correctly in all frequently
used web browsers and platforms, which limits the choice of a client-side
programming languages to JavaScript9. JavaScript is an interpreted language
with runtime type-checking and a support for prototype based object-oriented
programming. However with the increasing importance of the complex client-
side applications, there is a need for supporting other programming paradigms
than those adopted by JavaScript.

There are essentially three different ways for dealing with this need. First way is
extending the JavaScript runtime by implementing an emulation layer for
different paradigms in JavaScript (e.g. class-based object oriented programming
in [7] or functional reactive programming in a part of [26]). The second way is
compiling different language to JavaScript, be it a high level language (for
example in [3, 5, 6, 26]) or a low level bytecode in [4]. Finally, the third
approach is abandoning JavaScript altogether and replace it by a different,
richer client-side runtime environment, as for example project Silverlight [15].

We believe that JavaScript is important as a target runtime, and we adopt the
earlier mentioned view of JavaScript as an “assembly language” for the web,
however we keep in mind that in the future different client-side runtime
environment may become important, so in the presented work, JavaScript is
used as one of the possible targets.

2.3.2 Client-Side Frameworks

The limitations of the client-side code mentioned earlier make it difficult to
define reasonable abstractions for client-side frameworks. Some of the
commercially used frameworks like ASP.NET AJAX [7] or Backbase [12] provide
way for declarative description of the interactions using XML that is processed
by a JavaScript engine which is part of the framework. Declarative definitions
are easier however allow expressing only limited set of interactions and are
hardly extensible.

To allow richer interactions on the client-side ASP.NET AJAX [7] allows
developers to write interaction code also in JavaScript (aside from the
declarative XML language). Since this framework is focused on .NET developers,
it provides set of objects and functions that emulate class-based OOP in
JavaScript with stronger runtime type checking based on class-based properties
of the objects. This makes the code to some extent less fragile, but requires
learning of JavaScript with specific language extensions that may sometimes feel
inhomogeneous.

9 By JavaScript we mean implementation corresponding to the ECMA-262, edition 3 [14]
standard published in 1999, which is supported in most of the web browsers. The draft for
JavaScript 2.0 (edition 4 of the ECMA standard) was recently published, but it is unlikely that it
will be supported by all main-stream web browsers soon.

23

Promising approach is used in Flapjax [26], which provides a client-side
functional reactive programming model, where the code can be either written in
JavaScript or in a Flapjax language that is compiled to JavaScript. The advantage
of functional reactive programming is that it provides a declarative, but fully
extensible way for writing the client-side code, meaning that there are no
limitations of the expressiveness as in XML based approaches.

2.3.3 Server-Side Languages and Frameworks

The traditional approach for writing a server-side code allowed embedding
short scripts that were executed on the server-side when serving the HTML
documents. This programming style has many problematic aspects (the most
important is difficult maintainability and reusability of the code) and is not
suitable for building complex applications. It is important to note that in any
server-side framework, the goal of the server-side application is to produce
HTML (possibly with JavaScript code to define client-side functionality) that will
be sent to the client as a response.

In general there are two orthogonal aspects of the server-side development. The
first is providing a way for writing server-side applications using a hierarchical
structuring of the code and the second specifies the way interactions are
encoded.

The first aspect determines how the developers create assets that can be re-
used in multiple applications and how these assets are composed. For example
the page (which is usually the top-level unit) is responsible for overall page-
related properties of the application and it delegates specific parts of the
application (e.g. menu, controls for modifying the view properties or the part
that presents the data) to a specific asset, be it a control in object-oriented
frameworks or a function or set of functions in tools based on functional
programming style. To give a few examples, the functional style is used in [21]
and the object oriented style in [9, 29, 36]. The asset has to expose some way for
controlling its properties, and is also responsible for interactions inside the
asset (e.g. calendar is responsible for highlighting the selected date) and for
generating the part of the response (HTML and JavaScript output of the asset).

The second aspect is a way for specifying the interaction between the
components (e.g. when a user selects a date in the calendar, display the data
according to the selected date). In the OO world, the event-driven paradigm is
very common and is usually implemented by some form of MVC (model-view-
controller) design pattern (this approach is adopted in Ruby on Rails [29] and in
a less pure form also in ASP.NET [9]). We believe that more declarative way for
solving this problem would be useful, however as far as we are aware this is
possible only in a very limited form in ASP.NET data-view controls.

The most interesting contribution to the second aspect from the world of
functional programming is a concept of continuation based web frameworks
(e.g. [31]). In these frameworks the applications can be written without the
inversion of control [28], which means that the control flow that specifies the
interactions is encoded in the code in a linear way and the code is executed as a
long-running application whose state is serialized to some permanent store

24

when the page is sent to the client. This way of programming has some
appealing properties (e.g. the code is more readable), but has several
problematic aspects (e.g. requires complex session handling and it loses the
notion of addressability, which is very important for web applications).

2.3.4 Integrated Web Development Tools

The first step in integrating client and server sides is to allow writing both sides
in a single language (this includes using some of the approaches for extending
client-side runtime environment described earlier in 2.3.1), but without the
tight integration between the sides, which means that the calls from the client to
the server are made explicitly using some form of remote procedure calls
(usually using the XmlHttpRequest object in JavaScript). This approach is used in
Google Web Toolkit [5], which uses Java language and in haXe [30], which has
its own language.

Volta [4] goes slightly further, because it provides two execution modes – in the
debug mode, the entire application executes in the Volta browser as a single
desktop-like application, to produce a release version of the application (which
is executed heterogeneously, part on the client as a JavaScript and part on the
server), the application has to be modified by adding explicit cross-side calls,
though this process is partly automatic via refactoring tools. Volta also allows
developers to use in theory10 any .NET language, because it translates low-level
.NET IL code.

Finally the Links project [3] provides a way for writing fully integrated client-
server code in the functional Links language. The project focuses on the
language impedance mismatch and also provides data-access constructs directly
in the language. It uses the continuation based model, in a way that the Links
language compiler compiles the entire application using a continuation passing
style, which makes it possible to perform calls between the server and client in
both directions11.

10 „In theory”, because the .NET IL is fairly complex and some .NET languages rely on a features
that may not be supported by Volta or on a language-specific libraries that may not be
translatable to the JavaScript. Anyway it supports at least mainstream .NET languages including
C# and VB.NET.
11 The call from server to client is possible because if the code is translated to a continuation
passing style, the call is wrapped in to a continuation and is sent to the client as a response.

25

Chapter 3

Problem description

3.1 Language Impedance Mismatch

The typical web application consist of code that works with database (typically
SQL), code that runs on the server side and generates the web page (C#, Java,
PHP...) and script that runs on client-side and performs asynchronous callbacks
and page updates (JavaScript). This means that the single developer needs to be
able to write code in 3 significantly different programming languages. If we also
count HTML (markup language describing the content) and CSS (language that
describes the web page design) than we get even 5 different languages. For
developing AJAX applications a very good knowledge of at least a language for
writing server side code (C#, Java, PHP…) and the client side scripting language
(JavaScript) is needed, but JavaScript is a dynamically typed language with
prototype-based OOP features, while C# and Java are statically typed with class-
based OOP12, which means that the languages differ in the two most basic
concepts and so mastering both of them is extremely difficult task.

For that reason the first goal of our project is to solve the language impedance
mismatch by allowing writing the entire application in a single language (in our
case F#). Fortunately, we don’t have to have to cover the data-access integration
in our work, because this is already available in [10] (building on top of the
earlier work done in this area [20, 19, 18]), so our project focuses on providing
a way for executing F# code on client-side using JavaScript.

3.2 Richer Client-Side Environment

This section could be also called “Framework impedance mismatch” akin to the
name used in the previous one, because this term would summarize the essence
of the second goal of our work. Broadly speaking, there are two problems that
have to be solved, once we use the F# language for writing the client-side code.
The first is how we can make the native JavaScript components accessible to the
F# code and the second problem is how we can make the F# core functionality
available on the client-side.

Both of the problems are very important – the first one because the client-side
library is relatively complex and we need a simple way for accessing it, with the
possibility to adjust parts of the library so the functionality visible to the F# user
follows common F# programming practices. Part of this problem is also the fact
that there are several differences between JavaScript library implementations,

12As described in [34]

26

especially in the DOM13 objects. This problem can be either ignored (by giving
access only to the compatible subset of features) solved by our framework (it
would automatically decide what version of the code to use), or solved at the
library layer (the library would dynamically switch between implementations,
depending on the available functionality).

The second problem is important for the users of our toolset – we don’t want to
make it difficult to use our tools and thus we want to allow users to leverage of
the F# and .NET knowledge that they already have, which also includes using
basic F# functions and .NET types. This means that our solution has to provide a
way for giving client-side implementation to the existing F# modules
(containing basic functions) and .NET classes from the BCL.

3.2.1 Asynchronous Client-Side Programming

Another goal of allowing richer client-side environment is to provide a simple
way for writing client-side code that is executed asynchronously, meaning that
it can be executed without blocking the browser user interface or possibly other
executing “thread”. JavaScript doesn’t support threads (as known from .NET or
Java), but some operations are by nature non-blocking and are used very often
in the client-side programming, which makes it important to support easy
sequencing of these operations (examples of such operations are asynchronous
call to the server, waiting using a timer or waiting for a specified event).

In the F# language, asynchronous operations can be written using the monadic
syntax described earlier in •2.1.6. The following example (adopted from [24])
demonstrates the use of async monad for doing asynchronous I/O operations
(the use! operator has the same meaning as let!, but is used for working with
resources that have to be explicitly freed):

async
 { use! inStream = File.OpenRead("Image.tmp")
 let! pixels = inStream.ReadAsync(numPixels)
 let pixels' = TransformImage(pixels)
 use! outStream = File.OpenWrite("Image.done")
 do! outStream.WriteAsync(pixels') }

This programming style is very appealing and is much more compact than the
usual style using callback functions, so allowing similar style on the client-side is
a very appealing goal.

3.3 Bridging the Client/Server Gap

In the problem description we so far focused on the development of the client-
side part. Our project doesn’t aspire to make any significant changes in the way
the server-side part is written, so our next goal is to bridge the huge gap
between the code that runs on the server and code that runs on the client.

13 DOM stands for Document Object Model and is standard way for manipulating with the user
interface elements displayed in the web browser, unfortunately not all browsers follow the W3C
standards and some of the features that are provided by most of the browsers aren’t specified
by the standards.

27

Let us quickly recapitulate the situations where the gap is crossed in typical
Ajax application – during the initial request the server-side code is executed and
as a result, web site with the script representing the client-side code is sent back
to the client and executed on the client-side. The client code can asynchronously
invoke the server while still running on the client-side, wait for the results and
update the client-side state (we’ll refer to this as a callback), or it can force the
browser to request other web page, which means that the execution of the
client-side script will be stopped and control will be transferred to the server,
with possibly sending a data representing the state produced on the client-side
(we’ll refer to this as a postback).

In server-side frameworks that represent page using controls, like in ASP.NET
the control tree is recreated during every postback, so during initial request or
every postback, the tree is built on the server, updated by the server-side code
and then used to generate the response including the serialized state
information14. Callbacks are typically done as static method invocations, which
means that the method can’t access, nor modify the page state, so it is not
needed to rebuild the control tree during a callback. Handling of a callback
therefore requires complex client-side code that processes the result from the
server call and modifies objects representing the page state and visual
representation on the client-side.

Client Server

initial request

(2) update page state

using data from server

(1) initial web site request

(browser is loading the page)

(3) request that requires loading

data from server - before sending

the request updates web page state
callback

(4) loads data from database, encodes them

in XML/JSON and sends them back

(5) when response is received,

decodes the data and

updates page state

(6) does not require loading data from

server - everything is on the client side,

so just updates the page

(7) request that requires reloading

the whole page - postback postback

(8) process data from HTTP postback,

raises events and updates the page state

Diagram 3 – Workflow of example “AJAX” web application

Sample workflow showing interaction between user and “AJAX” based web
application is displayed at the Diagram 3. The diagram shows 4 different kinds
of situations. During the initial request (1) the whole page is generated at the

14 In ASP.NET the serialized state is called “ViewState” and is stored in a hidden HTML input.

28

server side, then a request (3) requires loading data from server, so the client
updates the page to notify the user that it is processing the request and invokes
callback to the server. The server encodes data in JSON or XML format15 and
sends the response to the client, which needs to parse the encoded data and
update the page state (again on the client side), later client requires displaying
the data that were already downloaded to the client (6) so the client-side script
just updates the page to display the data. Finally, the client requires loading of
significantly different content (7), so the client invokes postback. After
processing the HTTP request, rising of appropriate events on the server-side
and updating the state on the server side, the page is rendered to (X)HTML and
sent back to the client.

From the description above, you can see that workflow of Ajax based web
applications can be very complex – indeed, everything could be processed
uniformly on the server-side using postbacks, but this means reloading the page
after every user’s action, so the user experience would be really bad.

The biggest issue arising from the described workflow is the need to update the
displayed page and its state after performing a callback, mainly because the
code performing the update has to be very often duplicated in a server and a
client-side code. In the presented project the aim is to make this duplication
only at the lowest possible level (e.g. it is obvious that when changing the text
displayed by a label, different code has to be executed on the client and server
side, but a code in a page that sets the text can be essentially the same). Also we
want to avoid the need for writing explicit updates of the client-side state after
performing a callback. Some effort is also needed to develop the encoding and
decoding of the data during callbacks and to define what data types can be
safely sent across the client-server border.

3.4 Client/Server Components

Finally, since we’re building our toolkit on top of ASP.NET it is essential to
provide seamless integration with the ASP.NET control-based composition
model. Currently, the control wraps the server-side behavior of some reusable
building block and exposes properties that allow configuration of such control
as well as events that are used for notifying the users of the control about a
change in the control caused usually by an interaction with the user. Our goal is
to extend this model and enable a development of controls that wrap both
server and client-side behavior and expose both server and client-side
properties and events. This essentially mixes two different aspects of the
control in one self-contained asset and as far as we are aware this integration is
not possible in any web framework available currently.

15 In fact there are no limitations of the format that can be used, however XML (extensible
markup language) and JSON (JavaScript object notation) are the most common, mainly because
they can be relatively easily generated and processed on the client-side.

29

Chapter 4

Case Studies

The first overall decision that has to be made is whether the work should focus
on building a project that can be easily used in practice, for instance by
extending existing well-established technology and by allowing some non-
verifiable, but practically useful constructs in the code, or a project that gives a
pure, verifiable solution, but doesn’t integrate with existing solutions or limits
user from using certain problematic techniques, which may be useful in some
situations.

We believe that the web development world gives more attention to projects
that present a “proof by example” than a formal proof and so our goal is to find a
reasonable trade-off and build a project that is as pure as possible, but still
integrated with existing technologies, so it can be used to easily build non-trivial
applications by using the existing developer knowledge of the platform and also
by accessing some existing components. Let us therefore give a brief “proof by
example” which will also introduce all important aspects of our work in this
chapter.

In the first example (Windows Scripting using WSH) we will demonstrates the
JavaScript translation including accessing native JavaScript functionality and
allowing the use of .NET BCL classes in the JavaScript code. The second example
(Web Symbolic Manipulation) introduces the web development framework by
developing a rich client-side applications and also demonstrates integration
between the client and server side. Finally, the last example (Lecture Organizer)
demonstrates development of a typical control-based data-driven web
application.

4.1 Case Study: Windows Scripting using WSH

Windows Script Host (WSH) is a scripting infrastructure for Windows that use
JavaScript (or VBScript) for writing scripts that manipulate with Windows
registry, file system, etc. The Figure 3 demonstrates an example code that can be
written using our tools to write an F# script that asks user to enter an
executable name and executes the executable. The F# code is indeed never
executed – it is translated to JavaScript and executed using a WSH execution
engine (cscript.exe).

The code is interesting for two reasons. First it manipulates with a shell objects
that are available from WSH (Shell for launching a process and the ShellProcess
for reading status of the process) as with ordinary F# types and second, it uses
Console class (namely ReadLine and WriteLine methods), which is a .NET BCL
type and so isn’t available in the WSH, which provides its own I/O functions.

30

open System
open WshMappings

[<ClientSide>]
type SampleClass =

 [<ReflectedDefinition>]
 member this.Read () =
 let pn = Console.ReadLine()
 if pn <> "" then Some(pn) else None

 [<ReflectedDefinition>]
 member this.Main () =
 Console.WriteLine("Enter an executable name:")
 match this.Read() with
 | Some(name) ->
 Console.WriteLine("Starting '" + name + "' ...")
 let proc = Shell.Current.Exec(name)
 while (proc.Status = 0) do
 Script.Sleep(100)
 Console.WriteLine("Process completed with code: " +
 proc.Status.ToString())
 | _ ->
 Console.WriteLine("No name entered!")

Figure 3. WSH script written in F# that demonstrates using BCL classes, accessing
native functionality and a few basic F# language constructs and types.

To support the first case, where it is needed to provide mappings for a type that
doesn’t correspond to any existing BCL type we define a new mock type with
the corresponding F# signature, but with no implementation and use a .NET
attributes to give annotations that specify native code that implements the
functionality (we refer to this type of mapping as an internal mapping).

type ShellProcess =
 [<Mapping("Status", MappingScope.Member, MappingType.Field)>]
 member x.Status : int =
 raise NativeCode

type Shell =
 [<Mapping("Exec", MappingScope.Member, MappingType.Method)>]
 member x.Exec(s:string) : ShellProcess =
 raise NativeCode

 [<Mapping("WScript.CreateObject(\"WScript.Shell\")",
 MappingScope.Global, MappingType.Inline)>]
 static member Current : Shell =
 raise NativeCode

Figure 4. Declaration of type-safe mappings for WSH objects. In this sample we define
type Script with static members In and Out and the type that represents input
stream.

In the Figure 4 we used an F# class to describe interfaces of two native
JavaScript objects that were used earlier in the example in Figure 3. The
purpose of this type is just to provide a type-safe specification that can be used
from the F# code. The code will never execute, so the body only raises an
exception. In this example, it is easy to ensure that the code is never executed

31

(since the entire code is translated to JavaScript), but in a web scenario where
translated code is mixed with the executed code, this problem becomes more
important. Possible solutions are discussed later in •6.3.3.

The second type of mapping (called external mappings) is used when we want to
allow working with a type that exists in the F# or .NET library, but doesn’t
define internal mappings using attributes. External mappings can be defined for
types and modules from the standard F# and .NET libraries and are simply
types/modules that have the same structure as the original types/modules, but
are useable on client-side, meaning that they can consist of client-side F# code
(when we need to re-implement the functionality) or internal mappings to
native JavaScript components (when the same functionality already exists in
JavaScript).

The example in Figure 5 demonstrates mappings for the .NET Console type, as
we used it in the previous example. The methods of the Console type are in this
case reimplemented using native types (declared using internal mappings).

[<ClientSide; ExternalType(type System.Console)>]
type Console =
 [<ReflectedDefinition>]
 static member WriteLine(s) =
 Script.Out.WriteLine(s)

 [<ReflectedDefinition>]
 static member ReadLine() =
 Script.In.ReadLine()

Figure 5. Mapping for .NET type System.Console.

We found that the combination of client-side code translated to JavaScript,
mappings to native JavaScript functionality and mappings to re-implemented
functionality is a very powerful combination that allows us to define an entire
client-side library for our project in a type-safe way using F# alone. Even
advanced functional programming such as the monadic constructs discussed in
•6.3.2 are written purely in F#.

4.2 Case Study: Web Symbolic Manipulation

In the second example we use F# to develop an application running as a
JavaScript code in a web browser, which performs tasks that are traditionally
easy to solve in functional languages. The presented application performs
tokenization and parsing of the entered text and produces an AST representing
elementary mathematical expressions. Further, the application performs
symbolic differentiation and simplification of the expression, everything
running “live” in the web browser, despite the fact that the application is
originally authored as a server-side program. The complete source code of the
application is available in the Appendix and also at our web site [16], which also
shows the running application. Figure 6 presents a screen-shot of the running
application.

32

Figure 6. Symbolic manipulation code written in F# and
running as a JavaScript code in the web browser

4.2.1 Symbolic Manipulation Functions

The parser and symbolic manipulation functionality is implemented as a set of
functions in a single F# module. The signatures of exported functions as well as
a type used to represent AST tree are shown in Figure 7.

type AstNode =
 | Number of float
 | Var of string
 | Binary of char * AstNode * AstNode
 | Unary of char * AstNode
 | Function of string * (AstNode list)

[<NeutralSide>]
module Parsing =
 val tokenize : string -> Token list
 val simplify : AstNode -> AstNode
 val prettyPrint : AstNode -> string
 val parse : Token list -> AstNode
 val getVars : AstNode -> ResizeArray<string>
 val eval : AstNode * (string -> float) -> float
 val differentiate : AstNode * string -> AstNode

Figure 7. Signatures of functions implementing the tokenization, parsing and
symbolic manipulation in the sample as well as types used for representing the AST.

33

The module is marked using the NeutralSide attribute, which means that
functions contained in it are implemented only using library functions and types
that are available in both client and server execution environments – it is not
using any types or functions that could be executed only at client-side (like
displaying browser dialog box) and no server-side only code (for example
performing an I/O operations).

The following example shows a simple evaluation function (it is a simplified
version of the function used in the actual example) written in F#:

let evaluate(nd, varfunc:string -> float) =
 let rec eval = function
 | Number(n) -> n
 | Var(v) -> varfunc v
 | Binary('+', a, b) ->
 let (ea, eb) = (eval a, eval b) in ea + eb
 | _ -> failwith "unknown"
 eval nd

The code has a few interesting aspects from the translator point of view – it uses
higher order functions to read values of variables in the expression, it defines an
inner recursive function and it is written using pattern matching on algebraic
data type representing the AST. Our translator produces following code16:

function evaluate(nd, varfunc) {
 var eval = (function (matchval) {
 if (true == matchval.IsTag('Number'))
 return matchval.Get('Number', 0);
 else {
 if (true == matchval.IsTag('Var'))
 return matchval.Get('Var', 0);
 else {
 if (true == (matchval.IsTag('Binary') &&
 createDelegate(this, function() {
 var t = matchval.Get('Binary', 0);
 return t = '+';
 })())) {
 var c = matchval.Get('Binary', 0);
 var a = matchval.Get('Binary', 1);
 var b = matchval.Get('Binary', 2);
 var t = CreateObject(new Tuple(), [a,b]);
 var ea = t.Get(0);
 var eb = t.Get(1);
 return ea + eb
 } else {
 return Lib.Utils.FailWith("unknown");
 } } }
 })
 return eval(nd);
}

Figure 8. JavaScript code generated from the F# evaluate function.

16 In our current implementation, the generated code is more complex, due to the use of the if
as an expression in functional languages (conditional expressions in the example were changed
to an imperative return); however we plan to implement this simplification as it is a very
common special case.

34

The technique used for translating F# to JavaScript is further described in
section •6.1, where we mention all the problematic topics, like difference
between expression and statement in JavaScript, different variable scoping etc.

4.2.2 Integrating Client and Server Code

As already mentioned, we wanted to permit writing a single class representing
the behavior of a web application for both sides, where portions of the code run
in multiple different environments. In this example, the page uses functions
from the Parsing module described above and implements the following
functionality:

 The entered expression is visualized using HTML (the visualization is
being updated “live” as the expression is entered).

 The expression is simplified and symbolic differentiation is calculated as
the expression is entered (updated “live” as well).

 When expression changes, it is sent to the server-side, which renders a
graph of the function and sends response with the generated image URL
back to the client, which then displays the image.

First two operations involve executing only client-side code, but for the third
operation, the client-side code needs to collaborate with the server side-code (a
server-side function draws a graph and sends its address back to the client). The
following code shows initial portions of three F# functions: TextChanged and
Process are executed on the client side and a function GenerateImg (which draws
a graph of the function) is executed on the server-side. The functions are all
members of the same object representing the page. Calls between the client and
the server-side will be discussed shortly.

member this.TextChanged (s:obj, e:EventArgs) =
 client
 { let tok = Parsing.Tokenize(this.txtInp.Text)
 let ast = Parsing.Parse(tok)
 do! this.Process(ast) }

member this.Process (ast:AstNode) =
 client
 { ... }

member this.GenerateImg (expr:string) =
 server
 { ... }

Figure 9. Example shows subset of page interaction logic of the symbolic
manipulation application. It contains one server and two client-side functions.

In this code, each function body is wrapped inside an F# computation
expression, using either server or client to identify type of the monad, ClientM or
ServerM respectively (monadic types are more precisely described in •6.3).
Using a typed solution is very appealing – thanks to the monadic syntax, the
type of the server-side code is not compatible with the client-side code and vice-
versa.

35

Note that monadic typing is not being used to write pure programs (as in
Haskell) and both sides can use regular F# programming with side effects using
the do and do! constructs of the monadic syntax discussed in •2.1.6. We also
allow using the let and do constructs (regular non-monadic bind operators) for
lifting non-monadic computations in the monad, because this allows developers
to access standard .NET and F# functionality and also use code which isn’t
written using the monadic syntax (e.g. using the Parsing module presented
earlier).

The types of the three functions defined in Figure 9 are following:

TextChanged : obj * EventArgs -> ClientM<unit>
Process : AstNode -> ClientM<unit>
GenerateImg : string -> ServerM<string>

Using the monadic bind operator (do! or let! in F#), it is possible to call client-
side function from other client-side functions – as demonstrated in Figure 9,
where function TextChanged calls function Process using the do! operator.
Nevertheless writing a code that tries to call client-side code from a server-side
code causes a type mismatch, because in such code, the do! operator expects a
value of type ClientM<unit>, but is given a value of ServerM<unit>. Therefore the
following code fails to type-check:

member this.ClientCode () =
 client
 { ... }

member this.ServerCode () =
 server
 { do! this.ClientCode() }

If the code is written in this way, the type system ensures that the calls between
modal functions are correct.

4.2.3 Asynchronous Server Calls

Asynchronous calls to the server from the client-side code are key aspects of
Ajax applications. Traditionally in JavaScript these are implemented using
events (which can be used from our project as well), but we tend to prefer a
higher abstraction using F# monadic syntax and the async monad where
possible.

In the symbolic manipulation example we use asynchronous code to refresh the
graph of the function. We want to implement the behavior so that the program
checks for changes in the expression periodically, but never sends more than
one request to the server and performs checking for the change with some delay
(to prevent server overloading when typing an expression).

member this.Client_Load(sender, e) =
 client
 { do! asyncExecute(this.RefreshImage("")); }

Figure 10. Function that starts the refresh loop (using the asyncExecute primitive)
when the page is loaded on the client-side.

36

member this.RefreshImage(lastExpr) =
 client_async
 { do! Timer.SleepAsync(1000)
 let newExpr = this.txtExpr.Text
 if (lastExpr <> newExpr) then
 let! url = serverExecute(this.GenerateImg(newExpr))
 match url with
 | Some(u) ->
 do this.lDrawMsg.Text <- "Success"
 do this.imgGraph.ImageUrl <- u;
 | _ ->
 do this.lDrawMsg.Text <- "Failed!"
 do! this.RefreshImage(currentExpr); }

Figure 11. The recursive function that checks for changes in the entered expression
and refreshes the displayed function graph.

Figure 11 shows a function that checks for the changes in the input field
(accessed via this.txtExpr), updates URL of image element on the page
(this.imgGraph) and updates status label (this.lDrawMsg). To denote that the
code is executed asynchronously, it is defined in a different monad type,
identified by the client_async value. This monadic type cannot be directly called
from the ClientM<'a> type (denoted by client value) mentioned earlier and so
we need an explicit function call to execute it as demonstrated in Figure 10.

The call to a server-side code also has to be done using an explicit function call
which transforms monadic type. The two functions that are used in this example
have following signatures:

asyncExecute : ClientAsyncM<'a> -> ClientM<'a>
serverExecute : ServerM<'a> -> ClientM<'a>

The do! and let! operators in the client_aysnc block of course accept other
ClientAsyncM<'a> code, which allows us to write a recursive call at the end of the
function (which itself has a signature string -> ClientAsyncM<unit>). This
typing property also prevents users from writing a code that would block the
browser user interface, because calls back to the server can be done only from
an asynchronous modality.

The conversion and explicit calls between monads raise several interesting
questions; some of them are further discussed in •6.3. Also the implementation
of the asynchronous operations (e.g. Timer.SleepAsync) is worth further
discussion, because it is implemented purely in F# and such can be easily
extended to support other primitive asynchronous operations (•0). Finally,
when calling a server-side function with arguments, or when the server-side
function returns a value, the data needs to be serialized and sent over the
network. Aside from core F# types (tuples, records, lists, arrays, and algebraic
data types) we also need to provide mechanisms for using certain types of
objects that are used often in F# programming. This topic is further discussed in
section •6.5.

37

4.3 Case Study: Lecture Organizer

In the last example we focus on data driven web applications, by which we
mean applications that display some data from the database using different
views, allow users to edit the data and so on. We use our project to develop an
application for planning lectures with the following behavior:

 The web site contains a calendar where user can select a date and a list of
lectures for the selected date. If the list contains more than specified
number of lectures, the data spans across multiple pages.

 When the user selects a different date in the calendar the first page with
lectures for the selected date is loaded, without reloading the entire page.

 When user clicks on the “next” or “previous” button, the displayed data
change (without reloading the page) and the label with information about
current page is updated.

Figure 12. Screenshot of the lecture organizer sample application.

The page is composed from two parts. HTML markup defines the overall look of
the page and instantiates controls from which the page is composed (calendar,
data listing, etc…). The second part is the F# source code that defines page logic
and interaction between the controls. Part of the F# source for the lecture
organizer example is displayed in Figure 13. Some important aspects of the
HTML markup will be discussed later.

38

[<MixedSide>]
type Meetings =
 inherit ClientPage

 [<DuplexField>]
 val mutable selPage : int
 val calDate : Calendar
 val listLectures : Repeater
 val imgWait : Image

 member this.UpdateData () =
 server
 { let dt = this.calDate.SelectedDate
 let ds = Db.LoadPage(dt, this.selPage)
 do! this.listLectures.SetData(ds) }

 member this.NextPage (sender, e) =
 client
 { do this.selPage <- this.selPage + 1;
 do this.imgWait.Visible <- true;
 do! asyncExecute
 (client_async
 { do! serverExecute(this.UpdateData())
 do this.imgWait.Visible <- false }}
 ...

Figure 13. Code that loads lectures for the next page.

4.3.1 State Management

In this section we explain how the code presented in Figure 13 executes, but
first let us shortly explain what motivates the implementation. One of the goals
of our work is to make it possible to compose the application from several
independent components, because it allows users to develop controls that can
be easily reused in multiple applications. The developers of the controls will
typically want to expose some functionality that can be limited to a specific
environment (server or client side).

In the earlier example with symbolic manipulations, the integration between
client-side and server-side was implemented explicitly – the client-side code
called a function on the server-side and processed the returned results, but for
developing controls we require a slightly different semantics. When some
functionality of the control is invoked from the server-side code of the page, we
want it to behave like a self-contained operation, but in the case of pure
functions we would have to collect all results and invoke controls after
returning to the client-side again to update its visual representation.
Alternatively the execution control could be transferred between server and
client-side during the execution, but in the case of complex server-side code
involving updates of many controls, this would lead to poor performance.

In the presented implementation, state management is another aspect of the
server monad, which allows controls to record state changes that should be
performed on the client-side. We can see where this occurs in the Figure 13,
when we look for uses of the do! operator, which represents the monadic bind
operation and so can be used for accumulating state changes that will be sent to

39

the client-side. In the sample code it is used only when calling the SetData
function to set the displayed list of lectures and indeed this is the only place
where state needs to be collected in this example.

When the NextPage function calls a server-side instance method of the page
(UpdateData) using serverExecute, the object that represents page is created on
the server-side including all members that represent controls (for example
calDate for the calendar) and values of all fields marked using DuplexField
attribute are sent from the client as well (in this example we need to access
index of the selected page from both server and client sides). Than the code in
the server monad is executed, collecting all changes to the state of particular
controls and finally the state changes together with the function return value
are sent as a response back to the client, which applies all the collected state
changes to the client-side state.

The use of a primitive operation that collects a single state change, which is used
in the implementation of the Repeater control is shown in Figure 14.

member this.SetData(data) =
 server
 { do! „(§this).set_ClientData(§data)‚ }

member this.set_ClientData(data) =
 client
 { let html = (* ... generate html ... *)
 do this.InnerHtml <- html; }

Figure 14. Implementation of the SetData member in the Repeater control.

The implementation of the Unicode double quotation mark operator („ … ‚)17
uses a quotation template literal (the compiled representation of the F#
quotations as described in [10]) with spliced values to capture the essence of
the operation to be performed. As we already described in •2.1.5, the operator
(§) splices a value of the expression in the quotation tree, which means that in
the example in Figure 14 we get a tree representing a call to the set_ClientData
function with a spliced value referencing the control and a spliced value
referencing the data as an argument. Using this information the operator
produces a server monad value which represents the invocation and when the
execution of the server side code completes, the client side function
set_ClientData is called. This topic is further discussed in •6.5.

4.3.2 Data binding

Displaying data in ASP.NET uses a technique called data-binding. Using this
technique it is possible to write a template (or several different templates) for
displaying the data in the markup file and then instantiate the template by
setting a data source. In ASP.NET this is indeed possible only on the server-side,
so we provide an extension that enables using the same technique on both sides,
which means that the setting data source of a control (e.g. Repeater) can be done
from the server-side code (during the initial request) as well as from the client-
side code after loading data using asynchronous call to the server.

17 Alternatively we also allow using the ASCII (<@! … !@>) operator.

40

The syntax for writing templates is demonstrated in Figure 15. The sample
shows markup declaring the Repeater control with the template for displaying
one lecture (from the list of lectures that is displayed on the page). The code
enclosed in the data binding markup tags (<%# … %>) accesses properties of the
data type, which stores information about the lecture.

<fwc:Repeater id="listMeetings" runat="server">
<ItemTemplate>

 <h2><%# Container.RecdGet("Title") %></h2>
 <p><%# Container.RecdGet("Description") %></p>
 <p>
 Starting time:
 <%# Container.RecdGetFormat("DateAndTime", "hh:mm") %>
 Place:
 <%# Container.RecdGet("Place") %>

 Organized by:
 <%# Container.RecdGet("University") %>,
 <%# Container.RecdGet("Country") %></p>

</ItemTemplate>
</fwc:Repeater>

Figure 15. Declaration of the data binding template for the Repeater control.

41

Chapter 5

Discussion of Alternatives

In this chapter we discuss possible approaches to several aspects of our work as
well as reasons for choosing the approaches that we implemented. We will first
discuss the choice of the F# language and the use of JavaScript as a client-side
execution environment together with alternative options for producing
JavaScript code from a different language. We also discuss how the control flow
can be controlled in an application like this and a few possible ways for
integrating the client and the server-side code. Finally, we discuss the way the
state is managed in our solution with a few other possible alternatives
examined in the related work.

5.1 Language and Runtime

First of all, our goal was to use existing programming language, which has many
practical advantages, though it requires having some non-standard way for
distributing the code between the client-side and the server-side. Probably all
languages can produce a native code that can be executed on the server-side,
but the answer to a question what approach could be used for generating the
client-side program, is an interesting problem.

The first concern regarding the client-side is what the target environment for
executing the client-side code should be. Developing a custom plugin is not a
choice for us, because we want to support as many platforms as possible. The
remaining options are using JavaScript or using some existing, widespread
plugin (for executing .NET code, the interesting option is the Silverlight
platform). We believe that JavaScript is currently still the most important
platform, but having in mind that this may eventually change, we try to design
our work in a way that it could be easily adapted to target other platforms.

The decision to use JavaScript brings a question, how can we produce JavaScript
from the language we want to use for writing the code (and how do we solve the
language impedance mismatch)?

 First option is obviously writing a compiler from the selected language to
JavaScript, but this is problematic because it duplicates many non-trivial
tasks (e.g. type checking and type inference in a language like F#).

 The second option is to use low-level language as a source for the compiler,
like Java bytecode or .NET IL code. This option is far more appealing,
because it in theory allows using any language compiled to the chosen low-
level code, however implementing translator is far more complicated
(especially when the goal is to support any language producing the code)

42

and using this way we also lose many useful information about the code
that could be used by the translator18.

 The next option is using a DSEL (domain specific embedded language),
which is a language expressed in terms of the host language. This approach
was successfully used in several Haskell projects, because it requires using
a language that allows overriding the semantics of many basic constructs,
but even in such language it is more suitable for modeling languages of
limited size than for providing an alternative execution model of the entire
language.

 Finally, the last option, which we decided to adopt in our work, is using
intensional meta-programming19. The advantage of this approach is that it
is relatively easy to implement and it gives us a consistent way for writing
meta-programs (all properties of the ordinary F# programs at the source
code level also hold for the meta-programs). On the other side, the
drawback is that this option relies on the meta-programming support in the
language that we use – in case of F# this is possible thanks to non-intrusive
meta-programming described in •2.1.5.

The main reason for using F# as a language is that it provides very good support
for non-intrusive meta-programming, which is a key feature that allows us to
use the same general purpose language for writing both a code that is executed
natively and a code that is executed as a meta-program. As a .NET language, F#
also nicely integrates with existing .NET web development technology
(ASP.NET), which allows us to build a toolkit in a way that it will be familiar to
many web developers and finally the recent addition of monadic syntax gives us
a very interesting way for integrating the client-side and the server-side code as
well as for expressing other non-standard computations (namely the
asynchronous client-side code).

5.2 Control Flow Model

A fundamental design decision is what control flow model will be used in the
framework. By a control flow, we mean how the application will react to
external events and how we will encode the transition between client and the
server when integrating both sides of the application.

 The event-based model is used in many object-oriented frameworks
including ASP.NET. It provides very good control over how things are
executed and is also familiar to many developers. It can be however
criticized for its “inversion of control” and the need to maintain a global
state in many situations.

18 In case of IL and the F# language we couldn’t translate F# lambda functions to JavaScript
functions, because IL doesn’t have notion of lambda function. Also the use of monadic syntax
would be problematic, because we translate monadic syntax used in the client-side code to
ordinary (non-monadic) JavaScript code.
19 The term „intensional meta-programming“ is defined in [10] as “systems where the
equational properties of the program are not preserved through meta-programming”, which is
also our case where the code is executed in different environment.

43

 An alternative used in functional languages (e.g. [28]) is using the
continuation passing style. This approach unfortunately hides some
important aspects of the code and also limits the programming model (for
example there is only one logical thread of execution, while in web
application we often need to perform some action on the client-side while
executing asynchronous call to the server).

 Functional reactive programming (for example [33]) gives a very appealing
way for writing reactive programs, which web applications indeed are. FRP
was also successfully applied to client-side web programming in [26]. The
reason for not using FRP-based approach in our work is that we want to
give a system that will be familiar to existing web developers, in particular
to ASP.NET developers. Nevertheless we would like to examine possibilities
for using FRP-based techniques in the future •7.5.3.

In our work we use primary the event-based model, although the asynchronous
client-side code written using the client_async monad (a continuation monad)
makes it possible to go a bit further and adopt, at least on the client-side,
programming styles similar to processes from Links [3] and Actor based models
described in [32]. These models use essentially a recursive function which
receives messages representing the monitored event and calls itself with the
accordingly modified state.

5.3 Client-Server Integration

The integration between the client-side and the server-side code in general
purpose language is to some point innovative, because integrating two equally
important execution environments in a single general purpose language is not
common, thus the problem how we could represent the separation arises.

Aside from the use of monads which was demonstrated earlier in Figure 9 we
also considered using .NET attributes as can be seen in Figure 16.

[<RunAt(Side.Client)>]
member this.TextChanged (s:obj, e:EventArgs) =
 let tok = Parsing.Tokenize(this.txtInp.Text)
 let ast = Parsing.Parse(tok)
 do this.Process(ast)

[<RunAt(Side.Client)>]
member this.Process (ast:AstNode) =
 ...

[<RunAt(Side.Server)>]
member this.GenerateImg (expr:string) =
 ...

Figure 16. Modalities represented using .NET attributes.

The use of .NET attributes would be interesting if we could extend our work to
support multiple .NET languages, but since this isn’t our goal we decided to use
monadic syntax which has very useful typing properties and also allows us to
implement state management in the server monad as already mentioned. Also,

44

the use of monads makes it syntactically easier to distinguish between the
client-side and the server-side code. The only disadvantage of using monadic
syntax is that it has some syntactical limitations (e.g. calling other function with
the same modality has to be done using let! or do! and can’t be done inside an
expression).

The next consideration is whether we should allow lifting of an ordinary
expression (with a non-monadic type) into a monad or not. Allowing this leads
to a possibility of writing incorrect code (e.g. by using a function that is not
available on the client-side), but on the other side this limitation would make it
impossible to use many existing F#/.NET functions and types on the client-side
without declaring a wrapper type. Bearing in mind that our goal is to allow
writing the program as easily as possible, we decided to allow this and consider
alternative approaches for verifying the correctness of the code (further
discussed in •7.5.1).

5.4 State Management

Handling of the state in applications generally requires a big attention. In fact,
the web application can be viewed as a concurrent system (with some code
executing on the server and some on the client, possibly in parallel), where a
state management is traditionally difficult. In addition in our web development
scenario we have two environments that could possibly keep the state (client
and server).

First of all, there is always a global state on the client-side, which is represented
by the DOM tree and is partly managed by the web browser (e.g. it is modified
when the user types a text into a textbox). The state handling on the server-side
depends on the concrete application. There is usually some global state stored
in the database (for the entire application) and sometimes also a global state for
every user working with the application (usually called session state in web
frameworks) however relying heavily on the per-user state is inadvisable20.

The main reasons that influenced our design of the state management are:

 The ability to store global (per-user) state on the server is required in some
situations (e.g. when storing large chunks of information generated during
working with the application).

 We don’t want to force storing state on the server-side (for reasons
explained earlier) unless the user of our framework decides to do so.

 Since the goal is to build a system that will be easy to use for ASP.NET
developers we want to choose a solution compatible with the ASP.NET
programming model.

20 There are several reasons for this – due to the stateless nature of the HTTP protocol, it is
difficult to implement sessions reliably and also sessions limit either scalability (when the state
is kept in memory) or efficiency (when the state is kept in database) of the server-side code.

45

In the presented work the state can be stored on the client-side as a field (class
member) of a page or a control on the page, in addition it is possible to mark a
field that should be available on the server-side when executing calls to the
server. This creates a local copy of the state on the client-side and tracks
changes to the state when executing code on the server, so that the changes can
be performed on the client-side state after call to the server completes. The
implementation is further discussed in section •6.5.

There are several alternative options, first is using the continuation passing
style (where the state could be kept as an argument of a recursive function), but
unfortunately there are no good ways for encoding concurrency using this
model. More promising solution seems to be using some variant of the actor-
based model (e.g. [32]) with message-based communication between the actors,
partly extending the Links project [3] model, where messages are used for event
handling. A few possible options for evolving the state-management in this work
are discussed in •7.5.3.

5.5 Security

Security is an important aspect of any application and so we find it important to
mention a few security implications of our project. In general in Ajax
applications it is important to understand that any input from the client-side
may be bogus – this is because the execution of the JavaScript code on the client-
side is controlled by the client-side and the client can for example modify the
JavaScript in any way he wants before executing it. This can cause many
problems to an Ajax web application that for example verifies some input on the
client-side and then uses the data on the server-side without verifying it again
on the server-side (which is essential, because the client-side verification can be
altered). It is however possible to secure data that come from the server-side,
are not intended to be modified on the client-side and are sent back to the
server, because the information is never modified on the client and so it can be
sent encrypted using a key private to the server.

In context of our project this means following:

 For calling a server-side method from the client-side the identificator of the
method is stored in an encrypted form generated on the server-side, which
means that the client-side (even when altered by the user) can make calls
only to methods called explicitly from the client-side code.

 The data sent to the server-side methods are not automatically verified in
any way, which means that the argument to the server-side may be bogus
and may not satisfy properties that were checked on the client-side.

This possibility to send a bogus data to a server-side method is indeed a
problem however there are no standard ways for preventing this behavior. If
the developer is aware of this problem, than the fact that calls between the
server-side and the client-side are explicit makes it easy to see this in the code,
so it is recommended to follow similar rules as when writing ordinary Ajax
applications.

46

Chapter 6

Implementation

6.1 F# to JavaScript Translation

The presented translator understands with a few exceptions all F# language
constructs and also allows the use of standard F# types (discriminated unions,
records, tuples, lists and arrays). Implementing support for most of the
functional programming constructs used in F# in JavaScript is relatively easy
task, because JavaScript supports first-class functions and emulating basic
discriminated unions and tuples using objects is straightforward. Additionally,
no special care is needed to support list types, because F# lists are represented
in terms of decimated unions. Additionally, to support sending of types from
client-side code back to the server-side we need to preserve type information
for all values, so we can deserialize the type correctly on the server-side. The
asynchronous programming on the client-side is not explicitly supported by the
F# to JavaScript translator and so is discussed further in a separate section (•0).

6.1.1 Functional Programming in JavaScript

There are however a few difficulties with the JavaScript language that we find
interesting and that could be helpful for future “JavaScript” generators as well.
First difficulty with JavaScript is that it distinguishes between statements and
expressions and so we need to find a way for generating JavaScript expressions
from a code that produces JavaScript statement. Typical example of code that
produces a statement is sequence of expressions (“a; b‛). We also need to treat
differently conditional expression with unit return type and conditional
expression that returns a value. JavaScript supports the following language
constructs:

Conditional statement:
 if (<expr>) <stmt> else <stmt>
Conditional expression:
 <expr> ? <expr> : <expr>

When generating code for an if construct that returns a value, we need to
generate JavaScript conditional expression and wrap statements that can be in a
body into an expression as demonstrated in the following example:

// F#
if (a = 1) then sideEffect(); 1 else 5

// JavaScript
(a == 1) ? (function() { sideEffect(); return 1; })() : 5

Second problem that we encountered is a different variable scoping in
JavaScript. According to the specification, scope of any variable is the entire
function where the variable was defined. This can cause problems when
translating a code where one variable is reused during the execution, for

47

example the index variable in a for loop. The following code creates an array of
lambda functions in a for loop:

var f = [];
for(var i=0; i<10; i++) {
 var x = i;
 f.push(function() { document.writeln(x); });
}
for(var j=0; j<10; j++) f[j]();

In JavaScript the ‚i‛ variable is mutable, so in the previous code, we already did
one obvious workaround and copied the value of the variable to temporary
variable ‚x‛, because using ‚i‛ in the lambda function created in the loop would
create a reference to a mutable variable. This workaround however isn’t
enough, since the scope of ‚x‛ is the entire function body and so it exists only
once and it is mutated during the execution of the loop (the created lambda
functions again contain just a reference to a single mutable variable). Our
translator resolves this issue by generating a new JavaScript function to
produce a variable with the same scope as it would have in the F# code:

var f = [];
for(var i=0; i<10; i++) (function() {
 var x = i;
 f.push(function() { document.writeln(x); });
})();
for(var j=0; j<10; j++) f[j]();

Next issue is that JavaScript doesn’t support tailcalls. Two possible ways for
supporting this are mentioned in [3]. One option to overcome this issue is to use
JavaScript setInterval function which executes given continuation in newly
created context (after specified time), the second option is to generate a
trampoline (wrap a call in a loop and throw exception with continuation when
depth reaches some level). In our current implementation we don’t
automatically generate any of the two outlined options, mainly because we
didn’t find any convincing example where it would be required. For example the
(infinitely running) recursive function in Figure 11 uses a Timer.AsyncSleep,
which is internally using a setInterval, so it doesn’t suffer from this problem
and writing it without this primitive would be erroneous, because without any
interruption it would block the web browser.

6.1.2 F# Core Types

The translator supports all F# types (tuples, discriminated unions, records,
arrays and objects), with an exception that member augmentations21 (for
unions and records) are not supported. Object types are more complex and will
be discussed later, for the other types we need to store the type of the value,
because it is allowed to send values of standard F# types from client to the
server (and vice versa), so the information about the type has to be maintained
even on the client-side. The following table gives an overview of JavaScript
representations of common F# types:

21 Member augmentations allow adding object-like members (methods and properties) to
record and discriminated union types. These members can be later accessed using the dot-
notation, as members of object types.

48

F# type JavaScript representation
tuple Object type with signature shown in Figure 17
union Object type with signature shown in Figure 18
record JavaScript object
array JavaScript array

In general, we store two additional fields for every object. These two fields are
attached to every value, thanks to the fact that it is possible to dynamically
append fields to any JavaScript value. These fields are used when serializing the
JavaScript value and deserializing it on the server-side in order to build a F#
value of the right type:

Field Description
__net_type__ String representation of the .NET type
__js_special__ Determines kind of other than object type

The two types that require additional handling (tuple and union) are stored
using types written in F# and translated to JavaScript. The elementary
operations that can be done on the F# tuple type are creating a tuple using array
of values and reading a value at specified index. Of course, in F# this is done in a
type safe way, but on the JavaScript side we can use just an array of objects,
because there are no static type checks.

type Tuple =
 new : obj[] -> Tuple
 member Get : int -> obj

Figure 17. Signature of the Tuple type, which represents an F# tuple in JavaScript

The elementary operations provided by discriminating union are creating a
union value using the “tag” name and array of values, testing whether the union
was created using the specified “tag” and finally reading a value at specified
index (which also verifies the “tag”).

type DiscriminatedUnion =
 new : string * obj[] -> DiscriminatedUnion
 member IsTag : string -> bool
 member this.Get : string * int -> obj

Figure 18. Signature of the DiscriminatedUnion type, which represents an F#
discriminated union value in JavaScript

6.1.3 Class-Based OOP in JavaScript

Since part of this work requires compiling (class-based) F# objects to the
JavaScript, we also have to face a question how to simulate class-based OOP in
JavaScript. There already exist well tested JavaScript libraries to do this, so in
the presented work we use one of them, namely ASP.NET AJAX JavaScript
framework for class-based OOP simulation [7].

To give just a quick overview of the OOP framework, the following example
demonstrates the type from the F# introduction (•2.1.4) written in JavaScript
using the ASP.NET AJAX library:

49

MyCell = function (n) {
 this.data = n + 1;
};

MyCell.prototype = {
 get_Data : function () {
 return this.data;
 },
 set_Data : function (v) {
 this.data = v;
 },
 Print : function (v) {
 window.alert("Data: " + v);
 }
};
MyCell.registerClass("MyCell");

MyCell.FromInt = function(n) {
 return new MyCell(n);
}

Our translator follows this pattern, so the objects generated by our translator
can be used from other client-side code written directly in JavaScript, though we
make two important changes.

First we want to allow classes with more than one constructor, which is possible
in F# thanks to the overload resolution). To allow this, our translator moves
constructor code into function with special name and all calls that create
instance of an object are modified accordingly to explicitly call the correct
constructor. For types that can be used from both server-side and client-side,
there are also a few extensions to allow serialization of such types. These
extensions are discussed below in •6.5.

6.2 Rich Client-Side Environment

6.2.1 Internal Mappings

As already demonstrated in •4.1, internal mappings are used for accessing
native JavaScript functions from the code written in F#. The mapping is
implemented using the Mapping attribute, which defines the name of the native
function and also its scope and a way in which it is called. The first parameter
(value of MappingType enumeration) specifies target language construct in
JavaScript:

Type Use in F# JavaScript code
Method any [<inst>.]Foo(<args>)
Property get [<inst>.]get_Foo(<args>)
Property set [<inst>.]set_Foo(<args>)
Field get [<inst>.]Foo
Field set [<inst>.]Foo = <arg>
Object any new Foo(<args>)
Inline empty <args> Foo
Inline with <args> Foo(<args>)

50

The “use in F#” column specifies what F# language constructs are compatible
with the specified type of mapping – this for example allows declaring mapping
to JavaScript properties or fields only as an F# property, because otherwise it
wouldn’t be clear when it is used for reading and when for writing a value. In
cases where the instance is optional, it is possible to specify whether the target
JavaScript construct expects the instance or not. This can be done using the
second parameter (value of MappingScope) which has the following values:

Type JavaScript code Arguments
Global Foo <inst>::<args>
Member <inst>.Foo <args>

When mapping an instance call from F# to a JavaScript call with global scope
(MappingScope.Global), the instance argument is given as a first argument to a
call followed by remaining arguments, conversely when mapping F# static call
to a JavaScript instance call, the first argument is used as an instance.

The following code demonstrates a way for accessing JavaScript alert function,
which is a member of the global window object via static method call in F#:

[<Mapping("window", MappingScope.Global, MappingType.Field)>]
type Window =
 [<Mapping("alert", MappingScope.Member, MappingType.Method)>]
 static member Alert (message:string) =
 (raise ClientSideScript:unit);

Figure 19. Mapping for the window.alert function.

Since the mapping to an alert function requires an instance (its scope is set to
MappingScope.Global), the translator finds a mapping for the Window type, which
is a global field (field accessed without specifying an instance) and it produces
the expected JavaScript code (window.alert(arg)).

6.2.2 External Types and Modules

The external mappings can be defined for classes and modules from the
standard F# and .NET libraries and are simply types/modules that have the
same structure as the original types/modules, but can be used in client-side,
which means that they can consist only of client-side F# code or internal
mappings. The possibility to combine both types of mappings in a single type is
very powerful as it is often possible to map some functionality to existing
JavaScript functions, but some of the more advanced functions have to be
reimplemented. The combination is demonstrated in Figure 20.

[<ClientSide; ExternalType(type System.Int32)>]
type Int32 =
 [<Mapping("tostr", MappingScope.Global, MappingType.Method)>]
 override x.ToString() : string = (raise ClientSideScript)

 [<ReflectedDefinition>]
 static member Parse(s:string) =
 // ...

Figure 20. A demonstration of using combination of internal and external mappings.

51

6.2.3 Client-side DOM framework

An important part of the client-side environment is a library for manipulating
with the DOM (document object model), which is a standard way that browsers
expose for working with the displayed HTML page. It is not our goal to
document the entire DOM framework in this text, however we’d like to
demonstrate how it is designed using a few examples. The following code is a
subset of the implementation of the calendar control that was demonstrated in
the Lecture Organizer case-study (•4.3):

member this.GetDayElement(i) =
 client
 { match this.GetChild("day"+i.ToString()) with
 | Some el -> return el
 | _ -> return failwith "Element not found!" }

member this.AttachHandlers () =
 client
 { for i in [1, this.monthInfo.TotalDays] do
 let! el = this.GetDayElement(i);
 do el.ClientClick.AddClient(fun (_, e) ->
 this.DayClicked(i, e)) }

member this.DayClicked(i:int, e:CancelEventArgs) =
 client
 { // ...
 let! oel = this.GetDayElement(d)
 let! nel = this.GetDayElement(i)
 if (...) then oel.RemoveCssClass("sel")
 nel.AddCssClass("sel")

Most of the processing works with an abstract type that represents generic
HTML element – the control itself is a subclass of this type, because every
control has to be contained in an element. The children of the element can be
accessed using the GetChild method, which returns an element using the F#
option type (this demonstrates our goal to make the framework friendlier to a
F# developer). Some of the members of this abstract element type are
demonstrated in the following table:

Member Type Description
ClientID string Returns the ID of the HTML element
Visible bool Controls visibility of the element
InnerHtml string The HTML code inside the element
AddCssClass string -> unit Adds specified CSS class
RemoveCssClass string -> unit Removes specified CSS class
ClientClick ClientEvent Raised when the element is clicked
ClientMouseUp ClientEvent Raised when a button is pressed
ClientMouseDown ClientEvent Raised when a button is released

The design of the client-side GUI framework is indeed mostly following the DOM
implementation in the web browsers however we adjusted it to better fit with
the F# programming style. The fact that the framework is a wrapper around
browser implementation also allows us to hide certain incompatibilities
between implementation in web browsers.

52

6.3 Client-Server Integration

The integration between the client and the server-side is probably the most
interesting part of the presented work. As mentioned earlier, the modality of a
code can be either expressed using a monad (for single functions) or using a
.NET attribute for entire class or F# module. The following attributes can be
used in the second case:

Attribute Modality
MixedSide Vary for all members, depends on the monadic type
NeutralSide Available on both sides (neutral)
ClientSide Available only on the client-side (client-side)
(none) Available only on the server-side (server-side)

If the used attribute is MixedSide than the modality is different for every
member of the type and is determined using the type of the member, which is
indeed specified by the monad used when writing the code. Aside from client,
server and neutral code, the monadic type can also specify asynchronous client-
side code:

Builder Monadic Type Modality
neutral NeutralMonad<’a> neutral (client and server)
client ClientMonad<'a> client-side
server ServerMonad<'a> server-side
client_async ClientAsyncMonad<'a> asynchronous client-side

Indeed, we could use only the monadic syntax to distinguish between different
kinds of the code, but since we want to allow using certain standard F# and
.NET libraries, we have to provide a way for accessing types that don’t use our
monadic modality annotations. Additionally, when an entire module or a class
has the same modality the monadic syntax feels too verbose and adding
annotation using .NET attribute with larger scope allows us to write more
readable code.

This way of separating a code that is executed in different environments is also
extensible and it is easy to imagine using other monadic builders for writing
code with other modalities. We discuss several possible extensions later in
(•7.5.1). The different modalities mentioned in this overview are discussed in
detail below.

6.3.1 Monadic Builders for Modalities

Before mentioning details of each monadic builder, we need to explain one
relaxation of standard monadic rules that we use. In the overview there are a
few modalities where it is natural to allow calls from one to another via the bind
operators (let! and do!). The vital example is the neutral code, which can be by
design called from both client and server-side code, meaning that we want to
allow something like this:

53

// neutral function that adds two numbers
let add(a,b) =
 neutral
 { return a + b }

// using neutral function from the client-side
let clientTest() =
 client
 { let! res = add(1, 2)
 return res }

// using neutral function from the server-side
let serverTest() =
 server
 { let! res = add(1, 2)
 return res }

Using the standard monadic implementation, this code would be obviously
incorrect, because the types of the add function wouldn’t be compatible with
either of the bind operations:

add : int -> int -> NeutralM<int>
client.Bind : ClientM<’a> -> (’a -> ClientM<’b>) -> ClientM<’b>
server.Bind : ServerM<’a> -> (’a -> ServerM<’b>) -> ServerM<’b>

Hence the question is, if there is any reasonable relaxation of these types that
we could use to allow writing a code using this style. Note that F# doesn’t
restrict the type of the monadic operators in any way, though it is recommended
to use the standard typing scheme.

In this work we use subtyping to deal with this problem. Instead of requiring
exactly the same monadic type in the bind operator, we declared a supertype22
for every modality that can have multiple subtypes, all of them useable as an
argument for the bind operator. This means that the types of the functions
relevant to the previous example are actually following23:

add : int -> int -> NeutralM<int>
client.Bind : #IClient<’a> * (’a -> #IClient<’b>) -> ClientM<’b>
server.Bind : #IServer<’a> * (’a -> #IServer<’b>) -> ServerM<’b>

Where the following relations hold for the NeutralM<’a>, allowing us to use
neutral code as an argument for bind operators of both client and server-side
code24:

NeutralM<’a> <: IClient<’a>
NeutralM<’a> <: IServer<’a>

And of course the following holds as well, to enable calling client-side code form
other client-side code (and the same for server-side):

ClientM<’a> <: IClient<’a>
ServerM<’a> <: IServer<’a>

22 Because some types may need to have more than one supertype, we use an F# interface,
which allows us to use multiple interface inheritance.
23 We’re using an F# notation where #T means any subtype of T.
24 We’re using notation from [34], where „<:“ is a subtype relation.

54

It is important to note that using this relaxation some of the monadic laws
formalized in [35] do not hold for our implementation. We are aware of this fact
and we find it important to describe (at least informally) how our approach
affects these three laws. The laws that don’t hold in our implementation are the
left unit law and the right unit law, while the third (associative) law holds. The
rules are expressed using the following equation (adopted from [35]):

𝑢𝑛𝑖𝑡 𝑎 ∗ 𝜆𝑏. 𝑛 = 𝑛[𝑎/𝑏] left unit
𝑚 ∗ 𝜆𝑎. 𝑢𝑛𝑖𝑡 𝑎 = 𝑚 right unit
𝑚 ∗ 𝜆𝑎. 𝑛 ∗ 𝜆𝑎. 𝑜 = (𝑚 ∗ 𝜆𝑎. 𝑛) ∗ 𝜆𝑎. 𝑜 (associative)

In the following text we assume that the type of the bind and return operations
are following (this is the scheme used for all monadic builders in our
implementation):

m.Bind (∗) : #IM<’a> -> (’a -> #IM<’b>) -> M<’b>
m.Return (unit) : ’a -> M<’a>

And the following subtyping relation exists:

M<’a> <: IM<’a>

The first law requires that computing a value of a, binding it to b (using the
monadic bind) and computing n produces the same result as executing n with a
substituted for b. The reason why this does not hold in our implementation is
that the type of n may be any subtype of IM<’a>, but not necessarily M<’a>, while
the result of the monadic operation on the left hand side will be M<’a> in all
cases and so the types may differ.

The second law requires that computing m, binding the result to a (using
monadic bind) and returning the result (using monadic return) produces the
same result as executing m. It doesn’t hold for similar reason as the first law – in
our implementation, the type of m is any subtype of IM<’a>, while the value
produced by the expression on the left hand side is of type M<’a> in all cases.

Finally, the third law holds in our variation, assuming that it holds in the
implementation of the monad. First, since the types of all m, n and o values are
all subtypes of the IM<’a> type and thanks to the subtyping relation between
M<’a> and IM<’a>, it is sound to write the whole equation (i.e. it is possible to
sequence the bind operations). Second, the result type is on both sides the result
type of the bind operation, which means that the type of both expressions will
have a type M<’a>.

In our case this means that using a monadic bind operator may restrict the
modality of the value (e.g. when we use bind of the client monadic builder on a
value of a neutral code type, we will get a client code type), which is a
reasonable and expected behavior.

55

6.3.2 Concrete Modalities in Detail

Server-Side Code
Let us start with the server-side code. When the type is written using monadic
syntax, it is introduced by the server monadic builder, whose bind operation
accepts values of any subtype of the abstract type IServer<’a> and produces
values of concrete type ServerM<’a> meaning that the type of the bind operation
is following:

server.Bind : #IServer<’a> -> (’a -> #IServer<’b>) -> ServerM<’b>

The subtype of the abstract type IServer<’a> provides a way for reading a value
of type ‘a, meaning that the server-side code is executed while the monadic
operators are called, which is the simplest possible implementation of building
and executing monadic computations. The ServerM<’a> is just a trivial
implementation of such abstract type, meaning that it contains a value of type
‘a, though in fact the IServer<’a> type has one more aspect to enable state
management, which is described below.

Server side code can be called only by other server-side code and the other way
round, server-side code can call other server-side computations or a neutral
code, which is expressed by the following subtyping relation in the monadic
syntax:

ServerM<’a> <: IServer<’a>
NeutralM<’a> <: IServer<’a>

The subtype relation in this case has a meaning that a computation with the
modality of the subtype (the server-side or the neutral computation) can be
used in the computation with a modality of the supertype (server-side code in
this case). The correctness of the use of monadic typing as well as other rules for
the server-side code that can’t be verified by a type checker are discussed later
in a section •6.3.3.

Client-Side Code
The computations that involve client-side code have similar properties to the
server-side code mentioned in the previous section. Client-side monadic
computation is introduced by the server monadic builder, whose bind operation
has the following type:

client.Bind : #IClient<’a> -> (’a -> #IClient<’b>) -> ClientM<’b>

Since the client-side computations are never executed on the server-side (i.e. in
the native compiled code) neither the abstract nor the concrete types have any
members and only one (dummy) value of the concrete type exists. The client-
side code is always executed in the browser as a JavaScript generated by the
translator, which also means that every client-side member has to be marked
using the ReflectedDefiniton attribute to allow translating the F# code to
JavaScript using meta-programming (as described in •2.1.5).

The subtyping relations involving the client-side computation type are however
crucial for ensuring that the computations are composed in a correct way:

56

ClientM<’a> <: IClient<’a>
ClientM<’a> <: IClientAsync<’a>
NeutralM<’a> <: IClient<’a>

These relations say that client-side code can be called by other client-side code
or by asynchronous client-side code (see below) and conversely client-side code
can also call neutral code.

Neutral Code
Neutral code is used to represent computations that can be executed on both
client-side and server-side. “Neutral” may be a bit misleading name from the
implementation point of view, because the neutral code has to support both
execution on the client-side, requiring the translator to understand the types
used when writing neutral code, and on the server-side, which requires
inheriting the IServer<’a> abstract type. The bind operation of the monadic
builder for neutral code (introduced by the neutral value) has following type:

neutral.Bind : #INeutral<’a> -> (’a -> #INeutral<’b>) -> NeutralM<’b>

Subtyping relations involving the neutral code types are following:

NeutralM<’a> <: INeutral<’a>
NeutralM<’a> <: IClient<’a>
NeutralM<’a> <: IServer<’a>
NeutralM<’a> <: IClientAsync<’a>

This means that the neutral code can call only neutral code, but can be called by
all other kinds of computations (neutral, client-side, server-side and also
asynchronous client-side). From the implementation point of view, the neutral
code limits extensibility of our solution because it needs to support execution in
all existing environments. On the other side there is one very appealing reason
for having such concept of neutral code – it is often possible to give an
implementation of some basic operation in both client-side and server-side code
and when this is possible it would be appealing to allow building a neutral
computation from these two environment-specific computations to allow using
the composed computation from operations written as a neutral code.

This composition of computations is indeed supported by our implementation
and can be done using the primitive function buildNeutral which has the
following type:

buildNeutral : #IClient<’a> * #IServer<’a> -> NeutralM<’a>

The following example demonstrates building a neutral computation for
changing a size of a popup window and using it from a neutral computation.
When changing the size on the server-side we just update a local field that
represent the size (and will be used for rendering the window), but on the client
side we also have to update the window if it is displayed:

[<ReflectedDefinition>]
member this.SetWindowSize(sz) =
 buildNeutral
 (server { do this.size <- sz },
 client { do this.size <- sz
 if (this.visible) then
 this.UpdateWindow() })

57

Similar constructs are found very often in basic controls in the F# Web Toolkit –
for example setting a text of a label or any similar operation can be performed
on both client-side and the server-side, but using a different implementation.

Asynchronous Client-Side Code
Asynchronous client-side computations are introduced by the client_async
monadic builder. Similarly as in previous cases, the abstract monadic type
(IClientAsync<’a>) and a concrete monadic type (ClientAsyncM<’a>) exist to
allow implicit calls between different types of computations subtyping relations
that allow this are following:

ClientAsyncM<’a> <: IClientAsync<’a>
ClientM<’a> <: IClientAsync<’a>
NeutralM<’a> <: IClientAsync<’a>

This means that the asynchronous client-side code can be called by any other
asynchronous client-side computation and can also call neutral computations
and ordinary client-side computations.

Even though the code runs on the client-side (as a JavaScript produced by the
translator) the ClientAsyncM<’a> type is not just a dummy type (as in case of
ordinary client-side code), because the JavaScript translator produces similar
code as the F# compiler by desugaring the monadic syntax (as described in
•2.1.6) and the ClientAsyncM<’a> type is translated to JavaScript as well and is
used to keep a value representing the monadic computation (in JavaScript). The
use of the same type for representing the value in the F# code and in the
produced JavaScript is crucial to allow writing primitive asynchronous
computations as described later.

The builder for this monadic type, which exists in JavaScript, implements
essentially the continuation monad, where the computations have a type usual
in continuation monads:

type ClientAsyncM<’a> = | ClientAsync of ((‘a -> unit) -> unit)

This can be read as “a function that will generate an ‘a value sooner or later and
it will call the continuation (given as an argument) when the value is available”.

As already mentioned, thanks to the fact that the value is written as ordinary F#
type, it is possible to write custom primitive25 asynchronous operations. To
demonstrate this we show source code of the asynchronous sleep function
which stops the execution for specified amount of time (and which we used in
earlier examples) in Figure 21. It is obvious that the same pattern can be used to
wrap waiting for any native JavaScript event (e.g. waiting for a mouse click) in
an asynchronous operation.

let SleepAsync(ms:int) : ClientAsyncM<unit> =
 ClientAsync (fun cont ->
 let t = new Timer();
 t.Interval <- ms;
 t.Elapsed.Add(fun (sender, e) ->

25 By “primitive” we mean an operation that is not composed from other asynchronous values,
but uses some native JavaScript functionality for implementing the asynchronous behavior.

58

 t.Stop();
 cont())
 t.Start();)

Figure 21. F# source code for the SleepAsync function.

The generated JavaScript code is demonstrated in Figure 22. The F# code isn’t
significantly shorter, but was much easier to write thanks to the static typing
guarantees.

function SleepAsync(ms) {
 return CreateObject(new DiscriminatedUnion(),
 ["ClientAsync",
 createDelegate(this,
 function (cont) {
 var t = CreateObject(new Timer(), []);
 t.set_Interval(ms);
 t.get_Elapsed().add(createDelegate(this,
 function (sender, e) {
 t.Stop();
 cont(); }));
 t.Start(); })
]);
}

Figure 22. JavaScript generated for the SleepAsync function.

6.3.3 Separation Correctness

It is of course important to discuss a set of rules that have to hold in the code
written using the presented way in order to make sure that the separation
between different kinds of code modalities is correct, meaning that the code
executed in one environment can’t make calls to a code intended to run in the
other execution environment with an explicitly allowed exceptions (for example
using the serverExecute function).

Our ultimate goal is to be able to verify all these rules at compile-time, but in the
current implementation, the compiler verifies only rules encoded in the
monadic typing. We first introduce rules that use monadic typing and the rules
that are not verified automatically and have to be kept in mind when writing the
code are presented later.

Modalities using Monadic Typing
First, we informally review all possible combinations of calls that can occur in
code written using three basic modalities (client, server and asynchronous client)
and the neutral modality is discussed below. In the discussion we use functions
with the following signatures:

val serverF : unit -> ServerM<unit>
val clientF : unit -> ClientM<unit>
val clasyncF : unit -> ClientAsyncM<unit>

Since we introduced a subtyping relation between modalities earlier in the text,
we have to consider subtyping when discussing what types of code can invoke a
code written using the monadic modality type. In the following text we will use
symbol “<:” to represent a subtyping relation and a symbol “□” to represent that

59

there is no relation between two types. First, we consider options when client-
side code invokes one of the functions declared earlier:

client { do! clientF() } // OK (C<unit> <: IC<unit>)
client { do! serverF() } // FAIL (S<unit> □ IC<unit>)
client { do! clasyncF() } // FAIL (A<unit> □ IC<unit>)

From these cases, only a call between the same modalities is allowed, which
means that a client-side code can other call client-side code (this is clearly
correct). Call to an asynchronous client-side code is allowed only explicitly using
asyncExecute function with the following signature:

asyncExecute : IClientAsync<unit> : ClientM<unit>

It is important to note that the return type of the code executed using this
function has to be unit (i.e. it has no return value), because the semantics of the
function is that the code is spawned on a different “thread”. The next section
discusses calls from the server-side code:

server { do! clientF() } // FAIL (C<unit> □ IS<unit>)
server { do! serverF() } // OK (S<unit> <: IS<unit>)
server { do! clasyncF() } // FAIL (S<unit> □ IS<unit>)

Clearly, a server-side code can call only other server-side code. Calls to a client-
side are not possible (not even explicitly), because a server-side code is not
executed in a continuation-passing style and so calling a client-side code is by
design impossible. Finally, the calls from the asynchronous client-side code are
following:

client_async { do! clientF() } // OK (C<unit> <: IA<unit>)
client_async { do! serverF() } // FAIL (S<unit> □ IA<unit>)
client_async { do! clasyncF() } // OK (A<unit> <: IA<unit>)

As we can see, the asynchronous client-side code can call other asynchronous
client-side code. This is done using the monadic Bind operation on the monadic
type representing an asynchronous client-side code (a continuation monad).
The call to an ordinary client-side code is allowed implicitly using a subtyping,
though this has to be handled explicitly in the F# to JavaScript translator as the
call is done using the monadic Let operation (which represents a binding of a
non-monadic value). Finally, the call to a server-side code is allowed only
explicitly using the serverExecute function which executes a call asynchronously
and then calls the continuation with a result returned from the server-side. The
signature of this function is following:

serverExecute : IServer<’a> -> ClientM<’a>.

As discussed earlier, the code with the neutral modality is a subtype of all three
modalities, namely server-side code (IServer<’a>), client-side code
(IClient<’a>) and client-side asynchronous code (IClientAsync<’a>). The
subtyping relation implies that it should be possible to use this kind of code in a
place where any other type of code is expected. For the server-side code, this is
possible because the NeutralM<’a> type, which represents a code with this
modality implements all functionality required by the server-side code (by
implementing the IServer<’a> interface). On the client-side, the code with
neutral modality is translated to an ordinary client-side code (equivalent to a

60

code written with the client-side modality only), so the calls from client-side
code to the neutral code are translated in an exactly same way as calls to other
client-side code blocks. Finally, when calling a neutral code from the
asynchronous client-side code, it is treated in a same way as ordinary client-side
code and it is called using the monadic Let operator.

F# does not support co-variance or contra-variance, neither when working with
generic types, nor for method overriding, so it is not necessary to discuss a cases
where variance would be involved, but the relations between modalities of the
code have the same properties as a subtyping relation, so the presence of
variance would not affect correctness of our approach.

Lastly, it is important to note that F# doesn’t automatically perform upcasts
when calling a function and so a function can be declared with a signature that
allows arguments of type T or arguments of type T and any subtypes of type T,
which is written as #T as demonstrated by the following two functions:

val map1 : list<’a> -> (’a -> #IClientAsync<’b>) -> list<’b>
val map2 : list<’a> -> (’a -> IClientAsync<’b>) -> list<’b>

The following example demonstrates how these functions can be used:

map1 [1 .. 10] client // Correct
map2 [1 .. 10] client // Not correct – incompatible types

// Correct – the argument has the corresponding type
map2 [1 .. 10] (fun n -> client { return! (clientF n) })

Additional Modality Rules
Other rules that are not tracked by the type system are introduced when
working with types or modules where the modality is defined using an
annotation (either using the ClientSide attribute for client-side code or using
the NeutralSide attribute for a code with neutral modality). As mentioned
earlier, it would be appealing if it were possible to verify these rules during
compile-time as well a possible solution, which would be implementing an
extensible verification for the F# compiler is mentioned in •7.5.1.

The types that contain internal mappings described in •6.2.1 have to be marked
using the ClientSide attribtue, so the verification of internal mappings doesn’t
require any additional handling. Further, any type for which an external
mapping is defined (meaning that a client-side implementation of a type that
exists on the server-side) is treated as a type marked using the NeutralSide
attribute. Lastly, any type or module not marked using neither of these two
attributes is treated as a server-side code.

The attributes define a code modality for the entire type which means that any
code present in the type/module is treated accordingly to the attribute which
specifies the modality. The rules for a calls across different modalities in these
types are the same as these expressed using monadic modalities, which means
that neutral code can call only neutral code, server-side code can call only
server-side or a neutral code, client-side code can call only client-side or neutral
code.

61

6.4 Serialization and Mixed Types

6.4.1 Mixed Types

Mixed type is a term that we use when talking about type that can exist on both
client-side and the server-side. Mixed types serve as a container for the code
with mixed modalities written using the monadic syntax and so they are
probably the most important part of the work from the object-oriented point of
view.

The most common cases where mixed types are used in our project are objects
representing pages and controls and indeed, we already used them in a few
examples. The only unusual aspect of mixed types that represent GUI elements
is that construction of these is controlled by the GUI framework, which builds
them according to the declarative markup (in the aspx file). Controls are
discussed in more detail below in section •6.5.

In some sense mixed types combine the client-side part of the type and the
server-side part of the type, but the key benefit (when comparing to working
with two separate types) is that some parts of the type can be neutral, and so
are available to both sides. A parts of the type that can be neutral are members
that can be executed in both environments (written using neutral monadic
type) and fields (marked using a special attribute) that are automatically
serialized when transferring control flow from one environment to another. All
possible types of members that can be used in a mixed type are demonstrated in
Figure 23.

[<MixedSide>]
type MixedDemo =
 // Field available only on the client-side
 [<ClientField>]
 val clientStr : string
 // Field available only on the server-side
 val serverStr : string
 // Field shared by both sides
 [<NeutralField>]
 val num : int

 // Client-side member
 member x.ClientMethod() =
 client { ... }
 // Server-side member
 member x.ServerMethod() =
 server { ... }
 // Member available on both sides
 member x.NeutralMethod() =
 neutral { ... }

Figure 23. Possible types of members that can be used in a mixed type.

62

6.4.2 Mixed Type Semantics

Formal definition of semantics of mixed types isn’t a goal of our work, but we’d
like to present what rules we adopted in our implementation as well as several
interesting problems related to splitting a single type between two execution
environments. The two problems that we discuss further are object-oriented
inheritance and construction of these types.

Inheritance
The first concern when writing mixed types is what type can a mixed type
inherit from? The problem can be viewed as if we had two different types, one
for the server-side and the one for the client-side, where the mixed part is
duplicated in both of the types. The most common case of inheritance that we
clearly have to allow is inheriting a mixed type from another mixed type, in
which case the client-side and the server-side part of the subtype inherit from
the client-side or the server-side part of the supertype respectively. This is the
option used most often by users of our framework and so we will discuss it in a
larger detail and mention other possible inheritance relations later.

In our implementation the server-side code is executed natively using the .NET
runtime and the client-side code is executed as a JavaScript code (translated
using the OOP emulation framework for JavaScript), which means that the
inheritance relation exists in a different notion on both sides. Inherited mixed
type is demonstrated at the following example (including two overridden
members, one on the server-side and one on the client-side):

[<MixedSide>]
type InheritedMixed =
 inherit BaseMixed
 override x.ServerFoo() =
 server { return 1 }
 override x.ClientFoo() =
 client { return 1 }

The server-side code is compiled into a .NET executable, where the inheritance
relation exists (as in any ordinary F# code). In the client-side code the
JavaScript class that is generated from the type inherits from the JavaScript
class generated from the base type.

The other option that we find reasonable is to allow the inheritance to exist only
in one of the environments, for example having a mixed type inherited from the
server-side type or from a client-side type. In these cases the inheritance
relation exists only in one environment and in the other a new type is
introduced. Finally, it is also reasonable to consider a case where the type
inherits from two different types, one being a server-side type and the other
client-side type. In this case the two base types are combined, but it doesn’t lead
to common problems with multiple inheritance since there can’t be any relation
between the two base types. These additional options are useful mainly for
extending an existing code and so we use the last option internally in our
framework for building a base types for user interface elements (such as pages
and controls), however these options have to be used very carefully and our
implementation focused mostly on a cases needed by our framework.

63

Control Flow
When discussing how the mixed types can be created and how the control flow
is managed, it is important to realize that there is an asymmetry in how the
objects can be used – this is in particular because the client-side can make calls
to the server-side (using the serverExecute function), but not vice versa.

Our implementation allows creating an object on both server-side and the
client-side. When the object is created on the server-side it can’t however make
calls to a client-side and so the entire lifetime of the object is limited to a server-
side. On the other side when the object is created on the client-side it can
execute some code on the client-side and then transfer the control flow to a
server side. As mentioned earlier, the object may contain a mixed-side fields
that are automatically serialized and sent between the both environments so
the object created on the client-side can make a call to the server, the server-
side code can update a side-neutral field and when the execution of the server-
side code finishes, the changes made to a neutral-side fields are propagated
back to the client-side. The implementation of this field-update tracking
mechanism is discussed in the next section.

6.4.3 State Management for the Server Calls

When talking about the ServerM<’a> type earlier in •6.3.2 we mentioned just its
typing properties that are important for the correctness of the client-server
integration, but we didn’t describe in a detail how it supports the scenario
presented in a case study •4.3, where the ServerM<’a> is used to collect “state
updates” executed on the server during an asynchronous call from the client, so
that the changes can be performed on the client-side after the call finishes. Using
the terminology from the previous section, the members of the ServerM<’a> type
can be used only in mixed types and the “state updates” are updates of the value
of neutral-side field.

The ServerM<’a> is an implementation of the abstract type IServer<’a> which
has the following structure:

// Stores a single state update
type StateUpdate =
 { TargetControl : obj;
 SetProperty : bool;
 PropertyName : string;
 Value : obj; }

// Represents a value and list of state updates
type IServer<'a> =
 abstract Value : unit -> ‘a
 abstract StateUpdates : StateUpdate list

As we can see, the server-side computation contains a value (which is the result
returned by the computation) and a list of state updates. State update is
represented by a data type that contains a reference to the target control, a flag
indicating whether we updated a field (in this case we will just set a value of the
field in JavaScript) or a property (which means that some associated JavaScript
code may be executed when setting it). It also contains the name of the property
or a field to set and of course a value to be set. The monadic builder (server)

64

that produces values of this type is easy to implement – the Return operation
just calculates the result and produces a monadic value with empty list of side-
effects and the Bind operation in addition concatenates the two lists as
demonstrated in Figure 24.

// Monadic bind operation for the server monadic type
let bind g (a:#IServer<'a>) (f:'a -> #IServer<'b>) =
 // Call the function
 let b = (f a.Value)
 // Concatenate the state updates
 let stateUpdates = a.StateUpdates @ b.StateUpdates
 // Build a new value of type Server<’b>
 makeServer (b.Value) (stateUpdates)

Figure 24. Implementation of the bind operation from the ServerM<'a> monad.

In general it would be possible to allow tracking calls to any client-side code by
extending the structure to allow representation of a method call as well, but our
intention when introducing this feature is to allow state management and not
delaying execution of some client-side. There are two main reasons for this
intentional limitation, first is that it could easily introduce bugs in the code,
because the fact that the computation is delayed (which is rather hidden in the
code) changes the semantics of the code and the second is that allowing a
method call would lead to an obvious question: “How can we use a method that
returns a value?”, which is indeed impossible by design.

The calls to the server are possible only using the serverExecute function, which
has a type that allows using calling a function returning ServerM<’a> from a code
that accepts ClientM<’a>. The function isn’t actually implemented anywhere,
because it is treated specially in the F# to JavaScript translator, which
recognizes the following pattern26:

client_async
 { let! <res> = serverExecute (<serverMethod>(<arguments>))
 ... }

The call is (just by syntactic transformation) translated to the F# code that uses
functionality available on the client-side and so it is possible to translate it to
JavaScript using our general purpose translator:

AsyncMonad.Bind
 (Async.HttpCall
 (new LibXmlHttpRequest("POST", "<encodedServerMethod>"),
 <instance>, [<arguments>]),
 fun <res> =>
 ...)

In this code snippet, the AsyncMonad type is a client-side implementation of the
continuation monad which was discussed earlier (in •6.3.2). LibXmlHttpRequest
is a client-side type that wraps functionality of the native XmlHttpRequest object

26 Since the translator recognizes calls as a syntactical pattern, this brings some restrictions on a
way the serverExecute function can be used, because server-side functions can’t be treated as
a first-class values, meaning that it is not possible to create a function that would take server-
side function as an argument and execute it using serverExecute. We’d like to remove this
limitation in the future.

65

which is used in Ajax applications for performing asynchronous calls to the
server, <encodedServerMethod> is an encrypted string that encodes the method to
be called, <instance> is an optional value that represents the object on which
the method was invoked if the method is an instance method, or None for static
methods.

The HttpCall function is similarly to the SleepAsync function in Figure 21
implemented in F# as a primitive asynchronous function that wraps the use of
native JavaScript events. The implementation is shown in Figure 25 and uses
several other objects (ClientCore contains wrappers for dynamic JavaScript
functionality, JsonSerializer and JsonDeserializer will be discussed later).

[<ReflectedDefinition>]
static member HttpCall<'a> (req, inst, args) =
 ClientAsync (fun (cont:'a -> unit) ->
 req.Received.Add(fun (sender, e) ->

 // Deserialuze the response
 let ont = ClientCore.Eval(req.ResponseText)
 let ods = JsonDeserializer.DeserializeServerResponse(ont)
 let val = ClientCore.Cast<'a>(ods)

 // Call the continutaion
 (cont val))

 // Serialize arguments and call the server-side
 let snd = JsonSerializer.SerializeCallArguments(inst, args)
 req.Send(snd);)

Figure 25. The implementation of the asynchronous client-side HttpCall function.

The call to the serverExecute function is the only place in the code where the
automatic serialization takes place. As can be seen in Figure 25, the instance on
which the call is performed is given as an argument to a function
SerializeCallArguments, which serializes all the neutral-side fields that have to
be copied to the server-side. After the call is completed, the function
DeserializeServerResponse updates the fields modified during the call to the
server-side.

The fact that the call is asynchronous introduces a concurrency in the code,
because the client-side code may change a value sent to the server. In a context
of web applications this concurrency usually requires different solution than
traditionally, so we leave handling of this problem to a developer. Also in a web
application it is often reasonable to ignore the problem, for example when the
user invokes a call that loads the next page of a displayed data and then changes
a view on the current page it is expected behavior that the new page will load
even though something was changed in a meantime27.

27 A possible improvement would be to implement optimistic concurrency control and add a
validation that a value didn’t change during a call to a server-side code, however this would
require an additional effort from the developers who use the system, because they would have
to specify what to do if the validation fails.

66

6.4.4 Implementation of the Serialization

The serialization uses JSON format to encode the data, however it is not possible
to encode all objects just using the key-value format which is sufficient for
representing data in JavaScript, because the data that are serialized in our
implementation are classes and we need to deserialize them as a class (with
associated methods, internal information representing the .NET type of the
class, etc.).

It is also important to note that the serialization has to be implemented on both
server-side (when sending a value from server to a client) and client-side (when
sending a value from client to a server) and similarly for the deserialization.
Even though in our case all 4 operations are implemented in F# it would be
difficult to share part of the implementation, primarily because the reflection
mechanism that is essential for the implementation is different on both sides –
on the server-side the .NET reflection is used and on the client-side this is done
using dynamic features of the JavaScript language and runtime (though these
are mapped to a set of simple F# functions).

Our serialization mechanism supports are standard F# types (that can be sent
between the client and the server as needed) as well as mixed types (built using
F# object oriented programming) discussed in this section. The patterns used
for encoding the types are demonstrated in Figure 26.

Array
 { "__js_special__": "array", "net_type": "<encoded type>",
 "members": [<elements>] }

Record
 { "__js_special__": "record", "net_type": "<encoded type>",
 "members": { <key-value dictionary> } }

Discrimated Union
 { "__js_special__": "union", "net_type": "<encoded type>",
 "tag": "<tag name>", "args": <args array> }

Tuple
 { "__js_special__": "tuple", "net_type": "<encoded type>",
 "args": <args array> }

Mixed Type
 { "__js_class__": "<encoded type>", "typeargs": <tyargss arr>,
 "properties": { <key-value dictionary> } }

Figure 26. Encoding of serializable F# types in the extended JSON format.

Note that for a generic mixed types we store a type of the type arguments
separately (in an array) and not as a part of the encoded .NET type of the class.
This is needed in a JavaScript code that uses the type of the type argument when
creating certain types inside the generated code. For example when a type
List<T> initializes an array of type T[] it needs to know the encoded .NET type
representation of T, so the array can be later correctly serialized and sent to the
server-side.

67

6.5 Composable Components

As mentioned when introducing mixed types, the most common use of mixed
types in our work is for representing user interface elements, specifically types
representing pages and controls, which we together call components.
Components inherit all features of mixed types with the only difference that the
construction of components on the client-side is done automatically, using the
component structure produced when initializing the page on the server-side,
usually using the declarative markup.

6.5.1 Building a Page using Components

Since our project is built using ASP.NET, we can easily use the declarative way
for building a page from components provided by ASP.NET. In ASP.NET it is
possible to define the markup in a file with aspx extension and the interaction
logic of the page in the file with fs extension (when using the F# language). A
sample page that contains a textbox control (for entering a text) and an element
control (for displaying response) which “pings” the server-side when the text in
the textbox changes is demonstrated in Figure 28 (markup) and in Figure 27
(page interaction logic).

[<MixedSide>]
type Ping =
 inherit ClientPage

 val mutable txtInput : TextBox
 val mutable ctlOutput : Element

 member this.Client_Load (sender, e) =
 client
 { do this.txtInput.ClientKeyUp.AddClient
 (this.UpdatePing) }
 static member Ping(s) =
 server
 { return "Response to '" + s + "'." }

 member this.UpdatePing (sender, e) =
 client
 { let str = this.txtInput.Text
 do! asyncExecute
 (client_async
 { let! sugs = serverExecute(Suggest.Load(str))
 do! this.DisplayResponse(sugs) }) }

Figure 27. Suggest.aspx.fs file with the interaction logic for a sample page.

The page interaction logic contains one additional extension that is not
inherited from ASP.NET – this is the Client_Load method, which is a special
method that will be invoked when the page is loaded on the client-side and can
be used for initialization of the page. In the example we present, this method is
used for registering an event handler that will be called when the text changes.

68

<%@ Page CodeFile="Ping.aspx.fs"
 Inherits="Demos.Ping" %>
<html>
<body>
 Search for: <fwc:TextBox runat="server" id="txtInput" />
 <div id="result">
 <fwc:Element runat="server" id="ctlOutput" />
 </div>
</body>
</html>

Figure 28. Ping.aspx file with the declarative markup for a sample page.

6.5.2 Building New Controls

We extend the ASP.NET programming model not only for writing pages, but also
for writing new controls, so the users can define their set of controls, purely
using our F# Web Toolkit and use them to build their web applications.
Similarly to ASP.NET we allow building user controls and custom controls. The
former is a control which is written in a similar style as a page, meaning that it
consists of a file declaring markup (Control.ascx) and a file declaring the
interaction logic (Control.ascx.fs). User controls are particularly useful when
wrapping some complex functionality created using several elementary
components into a block that can be used in multiple pages of the application.
The second kind of control (custom controls) are elementary controls that are
written as a single F# type. These controls can usually generate the HTML code
programmatically, and handle updating the code on the client-side using the
client-side DOM framework described in •6.2.3.

Since the components are written as mixed types, it is very easy to see what
functionality of the control is available on the server-side and what functionality
can be accessed on the client-side. The following example presents part of the
interface of the Calendar control (used in the Lecture Organizer case study):

type Calendar =
 member SelectedDate : NeutralM<DateTime> with get, set
 member HighlightDates : ServerM<HighlightDatesDelegate>
 member ClientDateSelected : ClientM<ClientEvent>

As we can see, the SelectedDate member, which is used for setting or getting the
selected date in the calendar can be used on both client-side and server-side, the
HighlightDates member is an event that is invoked on the server-side when
rendering a calendar, and the user can use it to return a list of highlighted days
for the currently rendered month. Finally, the ClientDateSelected member is an
event raised on the client-side when a date is selected and this is the most
innovating part of our approach, because the event raised on the client-side can
be handled by other client-side code without calling the server-side, but while
preserving the same programming style.

69

Chapter 7

Key Language Features Used

In the last chapter we’d like to review all important aspects of the presented
work and describe what language features were used to implement these
aspects. The purpose of this chapter is to recapitulate novel concepts in our
work as well as to summarize what has the programming language support to
enable developing similar web development framework as is our F# Web
Toolkit.

7.1 Heterogeneous Execution

Heterogeneous execution of homogeneous code is becoming more and more
important as programming tools try to solve the language impedance mismatch
and target more execution environments by a single language. Enabling smooth
heterogeneous execution of the code written in a single programming language
requires according to our experience with the F# Web Toolkit project following:

1) First requirement is to provide some way for accessing some form of AST
of the code that should be executed in a non-standard way. This is in fact
more a compiler feature enabled by the ReflectedDefiniton attribute and
it doesn’t require any explicit support in the programming language,
though it can be nicely used in association with meta-programming
support as in F#.

2) Supporting a scenario where the source code is compiled and distributed
among several environments that execute it natively (e.g. part on the
server using .NET and part on the client using the Silverlight platform) is
slightly more difficult (and still unsolved in F#), because it may need to
compile part of the source against different version of standard libraries
and so the splitting would have to be done before the actual compilation.

3) Finally, it is essential to have a mechanism for verifying that the code
executed in a non-standard way (by translating the AST to other
language) satisfy all additional limitations of the target environment (e.g.
uses only supported language constructs and accesses only types and
functions supported by the target environment). How this mechanism
could be implemented for F# is outlined in •7.5.1.

The need for heterogeneous execution can be demonstrated by a large number
of examples including execution on the GPU and SQL mentioned in [10] and
execution in web browser (either as a JavaScript or using a Silverlight platform)
presented in our work. An additional example may be translating larger blocks
of code to an SQL and “compiling” them to a stored procedure. In our syntax
using monads it would look like following:

70

[<ReflectedDefinition>]
let countLines(db, country) =
 sql { let rows =
 { for c in db.Customers
 when c.Country = country
 -> c }
 return (count rows) }

We believe that a variant of the ReflectedDefinition attribute from F# would be
relatively easy to implement in other languages as well and together with an
alternative approach to annotating execution environment (mentioned in •5.1)
could form an adequate support for the heterogeneous executions for example
in languages like C#. A possible example of this approach is demonstrated in
Figure 29. The other important part of support for heterogeneous execution,
tracking of the modalities in a type system, requires however additional efforts.

[RunAt(Side.Client), ReflectedDefinition]
void PingServer()
{
 string str = this.txtInput.Text;
 string resp = this.ServerEcho(str)
 Window.Alert("Response: " + resp);
}

Figure 29. Possible use of the ReflectedDefinition attribute in C#.

7.2 Non-Standard Computations

In our project we use the F# monadic syntax to represent two kinds of non-
standard computations. We use it to track the modality of the code in a type-
system and for writing asynchronous computations on the client-side akin to
the asynchronous workflows in F#.

The first use of monadic syntax actually uses only one aspect of monads, which
is the ability to wrap a computation in a type specifying some additional
properties of the computation and keep track of these additional properties in a
type system. The use of monads only for this purpose may be problematic,
because they raise some additional restrictions to the code that are not
important for our code. These limitations arise for example when writing a
sequence of applications where every application has a type ‘a -> M<’b> and so
it is impossible to use the natural dot-notation:

// Non-monadic code
let res = this.Foo().Bar().Result

// Monadic code
m { let! t1 = this.Foo()
 let! t2 = t1.Bar()
 let res = t2.Result }

In a project focusing only on heterogeneous execution we would prefer using
some weaker language construct for tracking the modality. One possible
alternative may be Idioms presented in [37], however even Idioms are too
strong for expressing just a modality of the code.

71

The second use of monadic syntax is rather standard use of monads for writing
the code in a continuation-passing style, aside from the fact that we use it in the
client-side code, however supporting this requires only a little effort in the F# to
JavaScript translator and in fact it could be written without any explicit support,
because the monadic syntax is stored in a desugared form in the F# quotations.

This programming style can be generally achieved only in a programming
language that supports some form of monads. The use of asynchronous code
isn’t essential for implementing a project like this, but we believe that it is very
important for giving better client-side programming model, since it partially
allows dealing with the inversion of control in reactive applications. For
example drag and drop operation can be nicely expressed using our
client_async code (with some additional functions that are not currently
present in our project):

let dragDrop(ctrl) =
 let rec dragging(pos) =
 client_async
 { match WaitForAnyEvent [ctrl.MouseUp; ctrl.MouseMove] with
 | MouseUp _ -> do! waiting()
 | MouseMove e -> do ctrl.Location <- e.Postion - pos
 do! dragging() }
 and waiting() =
 client_async
 { let! e = WaitForEvent(ctrl.MouseDown)
 do! dragging(e.Position - ctrl.Location) }
 waiting()

7.3 Members as Symbols

Another interesting language feature that we use is the ability to work with a
member (for example method) as a symbol. By symbol we mean some
representation of the member that can be passed as an argument to a function
and processed in other ways, but not necessarily executed. F# doesn’t have any
direct support for a notion of “symbol”, but it can be suitably achieved by meta-
programming, specifically by the ability to quote F# code. Let’s look again at the
example we presented earlier:

member this.SetData(data) =
 server { do! „(§this).set_ClientData(§data)‚ }

In our implementation, the Unicode quotes process the enclosed code as a
quotation, but in an essence we just need to get a symbol representing the
set_ClientData member.

 The notion of “symbols” in a sense we use it here is common to some languages
that employ dynamic typing28, but as far as we are aware, the support of
symbols with similar elegance as in these dynamic languages is not available in
any strongly typed language.

28 For example the Ruby language or the Smalltalk language

72

Conclusion and Related Work

7.4 Related Work

The two key areas that we focused on in this work are restricted development
environment for writing the client-side code (including a limited choice of the
programming languages and the lack of standard libraries) and the need to
bridge the gap between client and server when writing a code of which the
execution is distributed between these two environments including the
difficulty of wrapping such code in reusable components. Finally, the last area
that appeared as a relevant, although focusing it wasn’t primary intention of this
work, is finding a more adequate programming model for the development of
web applications.

7.4.1 Rich Client-Side

The first problem, which is the complexity of writing client-side code, can be
solved by replacing JavaScript altogether, extending JavaScript as a language or
by providing a compiler from another language to JavaScript.

The approach to replace JavaScript completely was used in the Silverlight
project [15], which tries to build a plug-in that provides a general purpose
programming environment (based on the .NET Framework) for the client-side.
The goal of the project is to make the plug-in compatible with most of the
frequently used web browsers and platforms, which is essential for the usability
of any project taking this approach. The project is relatively new, but once it
becomes more broadly available it can be viewed as an attractive alternative to
JavaScript as an execution environment. Nevertheless other web development
problems focused in our work still remain, so it would be indeed interesting to
adapt our work to use Silverlight as a client-side execution environment.

The extensions to the JavaScript language can be written as a set of functions
that capture common programming patterns, as in [7] which contains a layer for
emulating .NET programming patterns (including class-based OOP) or in a part
of [26], which provides functions for writing functional reactive programs for
the client-side. This way of extending client-side environment requires the least
effort, but it doesn’t fundamentally improve the developer experience. It also
requires additional developer knowledge of the specific library. On the other
side these extensions are extremely useful for the third possible solution –
translating another language to JavaScript and we use part of the ASP.NET AJAX
extension [7] for executing class-based OOP code generated from F# in
JavaScript.

An alternative way of extending the client-side environment (purely in
JavaScript) is to develop an embedded language (typically XML-based) and a
processor of such language. This approach is used in commercially used
frameworks such as ASP.NET AJAX [7] or Backbase [12]. In these frameworks,
the XML-based language is used for declarative description of interactions
between client-side components. Its advantages are that the XML declarations

73

are easier to write and can be also verified for correctness to some point, but
are limited in what interactions they allow users to define and also require
knowledge of domain specific (XML based) language that is specific for every
web framework.

The third approach is to implement a compiler to JavaScript. Such compiler can
work with either a low-level language (like .NET IL code in [4]), or with a high-
level language (for example Java in [5], C# in [6] or a Links language in [3]).
Indeed, translating a low-level code (or implementing a back-end for existing
compiler) looks very appealing, but the implementation can be very complex
and in addition some higher level language features that could be translated
directly to JavaScript (e.g. first-class functions and closures) may be already lost
in the low-level code. The overall complexity of our implementation stack is
very low in comparison to these approaches: our entire translator and library
mappings consist of approximately 4,000 lines of F# code and only a handful of
lines of bespoke JavaScript.

7.4.2 Client-Server Gap

The second problem of the web development is the integration between client
and server-side code. There are many attempts to make it possible to use the
same programming language for writing client and server-side code, but
integrating code for both sides in one program is a more difficult problem and
there are only a few projects that attempt to solve it to some extent (e.g. Volta
[4] and Links [3]).

Solving the client-server gap and the language impedance mismatch in the web-
development field is one of the main goals of the Links project [3, 17] where the
Links language is compiled and executed differently when running on client,
server and when accessing the database. In the .NET environment, the
possibilities for integration of the data access into a language were investigated
in [18] and [19] and are being implemented commercially in [20]. In F# the
data-access without a language impedance mismatch is presented in [10]. In our
work we integrate client-side and server-side code, though the calls between
different execution environments are explicit, which we find rather useful,
because we believe that the programmer should be aware of the presence of
non-standard calls in his code. Conversely, in Links [3] the entire code is
compiled to a continuation passing style code and calls between different
environments are allowed implicitly. Another project that allows tight
integration between execution environments is the HOP language [21].

Other related projects focus mostly only on the language impedance mismatch
(e.g. [4, 5, 6]) and don’t provide any direct integration between client-side and
server-side code. The cross-environment calls are usually possible thanks to
RPC or Web Services for invoking server-code from the client side. In Volta [4]
the code is first written without explicit separation of environments (which also
allows comfortable debugging support) and the explicit Web Service calls can be
generated automatically.

74

7.4.3 Markup & Components

Another aspect of web programming is the separation between web design
aspects (CSS, HTML, etc…) of the page and the application logic (e.g., F# code).
Our implementation is based on ASP.NET [9] where this separation is directly
supported. The advantages of separating application logic from HTML markup
are also discussed in [22], but its implementation in projects that integrate
client and server-side code is not very common and most of the related projects
[3, 5, 21] work with HTML markup directly from the language however the
authors of the Links project discuss several possible abstractions in [17].

7.4.4 Web Development Paradigms

The last aspect that deserves mentioning, though focusing on it wasn’t primary
goal of our work is overall the structuring of control-flow and data-flow in web
applications. Our work follows the same path as most of the commercially used
frameworks (e.g. [9, 29, 36]) and use the page-based model with event-based
control flow, however there are some interesting alternatives.

Projects based on functional programming often use the continuation based
model (for example in [31] or to some point in [3]) which allows dealing with
the inversion of control [28] and makes the code more readable, though
arguably some important aspects of the architecture are hidden when using this
abstraction. Finally functional reactive programming gives a very promising
approach and was successfully used in [26] for developing client-side part of the
application.

7.4.5 Summary

The following table shows a summary of several possible approaches and the
projects that followed them. Our project is displayed in the table under the
name “F# Web Toolkit”. In the table we compare programming languages that
can be used for writing a code on the client and on the server, the runtime
environment used on the client-side, the level of integration between client-side
and server-side code and also the ability to use declarative markup to write the
HTML code or even build an application using components.

Project Client
Language

Server
Language

Client
Runtime

Integrated
Code

Declarative
Markup§

MS AJAX [7] JS‡ Any JS no client/server
Script# [6] C# Any JS no Server
GWT [5] Java Any JS no None
Volta [4] C#/VB/.NET† .NET JS no None
Silverlight [15] .NET Any .NET no client/server
haXe [30] haXe haXe JS no html/server
Links [3] Links Links JS yes none£
F# WebToolkit F# F#, ASP.NET JS yes Integrated

† Language support depends on the completeness of the decompiler from the IL code.
‡ JavaScript with several extensions that emulate .NET programming patterns.
• In this column client/server means that some declarative code can be used on both sides,
but the languages differ, html means that it is possible to use HTML language for writing
the code, none means that whole page has to be constructed programmatically and
integrated mans that the same style can be used on both sides.
£ Links makes this easier by supporting XML literals in the language directly.

75

7.5 Future Work

7.5.1 Improving Compile-Time Verification

In the section •6.3 we informally described a set of rules that have to be verified
in order to ensure that the environment separation of the program is correct,
even in the parts that are not written using the monadic typing. Even though
monadic typing solves many of the correctness problems it can’t be used
everywhere and in some places we need an additional verification mechanism.

We believe that it would be feasible to implement such mechanism as an
extensibility point in the F# language compiler, so developers of embedded
languages in F# could implement custom rules that have to be checked in order
to catch all possible errors during compile time.

In general we think that the compiler extensibility like this would be very
helpful in any meta-programming scenario where the code is executed in
heterogeneous environments and where additional ad hoc restrictions exist. It
would be beneficial to use mechanism like this in most of the examples
presented in [10], both translation of the F# code to SQL (when accessing
database) and translation of F# language to GPU code working with matrices
have some restrictions that are verified at runtime in current implementation.

7.5.2 Other Client-Side Runtime Environments

Other client-side environments could be used for two different purposes. On
one hand it could be used to achieve better support for debugging of the client-
side code (which is a difficult task in our current implementation). We could
implement a mechanism similar to the one presented in [4] or [5] where during
debugging, the client-side code is executed natively instead of being translated
and executed in the browser and so the code can be debugged using any
debugging tools for .NET/Java. A similar solution would be applicable to our
project.

On the other hand we would like to investigate the possibility of targeting the
Silverlight platform [15] as an alternative to the JavaScript for execution of the
client-side code. Silverlight is interesting mainly because it may be available in
most of the web browsers on most of the platforms in the near future (the
implementation for the Mono platform [25] was also announced). It is easy to
imagine that the support for this could be added to our toolkit as an additional
modality with a new monadic type. Code written using this modality could be
then executed natively on the client-side. Silverlight provides an environment
rich enough to execute most of the F#/.NET code, though some of the
functionality may not be available so it would be still very useful to have a
mechanism for verifying that the client-side of the web application uses only
functionality available in the Silverlight. This verification could be implemented
as an complier extension using the mechanism proposed above.

76

7.5.3 Control and Data Flow in Web Applications

Our work so far was mostly focused on the integration of the client and the
server-side of a single web application, so once this is satisfactorily solved, the
next logical step of our work is to examine alternative and possibly better
programming models for developing web applications as a whole.

The most appealing approach for future direction of the project seems to be the
functional reactive programming, because the web applications can be indeed
treated as a reactive system where many data structures (and not only those
present on the client-side) are time-varying values (called behaviors in [33]) and
the application is driven by events, which is the second common aspect of all
functional reactive systems.

Also working with a slightly higher abstraction can eliminate some additional
inconsistencies between the client and the server-side. For example the fact that
server-side can’t call client-side code is nicely eliminated in Link [3], which
makes it possible to call a client-side code from a server-side thanks to the use
of continuation-passing style. Though we may not use exactly this principle, it
exhibits the overall goal to make the integration smooth.

7.5.4 Security and Data Validation

In •5.5 we discussed a security aspects of Ajax web applications in general as
well as of our project. The problem that causes most of the security issues of
Ajax applications is that the data from the client-side cannot be trusted in any
way and so all verifications done on the client-side have to be performed
explicitly again on the server-side. This is indeed caused by design of the web
applications however we believe that it should be possible to provide a better
abstraction for data that need to be verified and perform the re-verification on
the server-side automatically when receiving a request from the client.

One possible solution for this would be to place the code performing the
verification not in the client-side and server-side code, but as a property of the
data type. The code performing the verification should be of course written as a
neutral code which will allow the system to execute it from both client-side and
server-side.

7.6 Conclusion

In this work we have shown how F# language can be used to tackle three of the
key issues in client/server web programming: the heterogeneous nature of
execution, the discontinuity between client and server parts of execution and
the limitations of the client-side environment (when targeting JavaScript)
including the lack of type-checked execution. We also gave an overview of all the
relevant F# language features that we used in our work to make our solution
easily reproducible with any other programming language that could support
such extensions.

77

We use non-intrusive meta-programming in F# to serve the client-side portions
of an F# application as JavaScript, which makes it possible to write programs
running in web browsers in a type-checked functional language without
installing any extensions to the browsers. We also demonstrate mechanisms for
accessing native JavaScript functionality from F#, which together with the
translator gives us enough expressive power to write an entire client-side
library purely in F#.

Finally, we combine two approaches for integrating client-side and server-side
code (or code executing in multiple environments in general). We allow the
usage of either F# attributes to annotate that a large block of code (module or a
class) has specific modality or the usage of monadic modalities to separate
members intended to run in specific environments. Thanks to the typing
properties of monads the calls between different environments are made
explicit, which prevents the users from writing an incorrect code and also gives
a clue where the application performs an inefficient call between environments.
In addition we use subtyping between monadic types to enable implicit calls
between blocks of code with different, but compatible modalities.

From a web development perspective, we allow the client-side code to be
written in an asynchronous way similarly to the continuation-passing style
presented in [17], but we make this explicit using F# monadic syntax. This
enables us to use continuation based model only when it is appropriate without
losing the possibility to write code in a standard way when needed. We also
demonstrate a way to build composable components based on those used in
ASP.NET that allow wrapping of both server-side and client-side functionality.
These components expose a clear interface where a modality of the exposed
member is tracked by a type system that makes it extremely easy to understand
the exposed functionality. Finally, thanks to our homogeneous programming
style it is possible to express both server-side and client-side interaction
between components in a uniform way.

The presented aspects of our work have convinced us that the foundational
elements offered by F# combine to give by far the best environment for applied
heterogeneous execution of this kind, regardless of whether the F# Web Toolkit
becomes the world’s biggest web-development platform or not.

78

References

[1] Jesse James Garrett. Ajax: A new approach to web applications.
Adaptive path, 2005

[2] Ali Mesbah; Arie van Deursen. An Architectural Style for Ajax.
In Proceedings of the 6th Working IEEE/IFIP Conference on Software
Architecture, 2006

[3] Ezra Cooper, Sam Lindley, Philip Wadler, Jeremy Yallop. Links project.
The Links website, 2007. See http://groups.inf.ed.ac.uk/links/

[4] Erik Meijer et al. Project Volta. Microsoft, 2007.
See http://channel9.msdn.com/ShowPost.aspx?PostID=223865

[5] Google Web Toolkit. The GWT website, 2007.
See http://code.google.com/webtoolkit/

[6] Nikhil Kothari. Script#. The Script# website, 2007.
See http://projects.nikhilk.net/Projects/ScriptSharp.aspx

[7] ASP.NET AJAX. Microsoft, 2007.
See http://ajax.asp.net/

[8] Don Syme and James Margetson. The F# website, 2006.
See http://research.microsoft.com/fsharp/.

[9] ASP.NET. Microsoft, 2007. See http://asp.net/

[10] Don Syme. Leveraging .NET meta-programming components from F#:
Integrated queries and interoperable heterogeneous execution.
In Proceedings of the ACM SIGPLAN Workshop on ML and its Applications,
2006.

[11] Don Syme, Gregory Neverov, James Margetson. Extensible Pattern
Matching via Lightweight Language Extensions.
To appear in Proceedings of the Inter-national Conference on Functional
Programming (ICFP ’07). ACM, 2007

[12] Backbase AJAX Solutions. The Backbase website, 2007.
See http://www.backbase.com/

[13] Tim O’Reilly. What Is Web 2.0: Design Patterns and Business Models for
the Next Generation of Software. O'Reilly Media, Inc, 2007

[14] ECMAScript Language Specification. ECMA 262 3rd edition, 1999.

[15] Silverlight. Microsoft 2007.
See http://silverlight.net/

[16] Tomas Petricek. F# Web Toolkit project website, 2007.
See http://tomasp.net/fswebtools

[17] Ezra Cooper, Sam Lindley, Philip Wadler, Jeremy Yallop. Links: Web
Programming Without Tiers, In Proceedings of 5th International
Symposium on Formal Methods for Components and Objects ‘06. 2006

[18] Gavin Bierman, Erik Meijer, Wolfram Schulte. Programming with
rectangles, triangles, and circles. XML Conference, 2003.

79

[19] Gavin Bierman, Erik Meijer, Wolfram Schulte. The essence of data access
in Cω. In Proceedings on the 19th European Conference on Object Oriented
Programming, pages 287–311, July 2005.

[20] Microsoft Corporation. The LINQ May 2006 Preview, 2006. See
http://msdn.microsoft.com/data/ref/linq/

[21] Manuel Serrano, Erick Gallesio, and Florian Loitsch. HOP, a language for
programming the Web 2.0. In Proceedings of the First Dynamic Languages
Symposium, Portland, Oregon, October 2006.

[22] David L. Atkins, Thomas Ball, Glenn Bruns and Kenneth C. Cox. Mawl: A
domain-specific language for formbased services. Software Engineering,
25(3):334 346, 1999.

[23] Robert Pickering. Foundations of F# (book).
Apress 2007. ISBN 978-1590597576

[24] Don Syme, Adam Granicz, Antonio Cisternino. Expert F# (book).
Apress 2007. ISBN 978-1590598504

[25] The Mono Project. 2007. See http://www.mono-project.com

[26] Leo Meyerovich. Flapjax: Functional Reactive Web Programming. See
http://www.cs.brown.edu/~lmeyerov/thesis8.pdf

[27] David Tarditi, Sidd Puri, Jose Oglesby. Accelerator: Using Data Parallelism
to Program GPUs for General-Purpose Uses. In Proceedings of the 12th
international conference on Architectural support for programming
languages and operating systems, 2006

[28] Christian Queinnec. Inverting back the inversion of control or,
Continuations versus page-centric programming. Sigplan Not., 2003

[29] Ruby on Rails. 2007. See http://www.rubyonrails.org

[30] Nicolas Cannasse. haXe: A Web-oriented Programming Language. OSCON
2006. See: http://ncannasse.free.fr/files/haxe_oscon2006.pdf

[31] C. Queinnec. Continuations to program web servers. ICFP, 2000.

[32] Philipp Haller, Martin Odersky. Event-based Programming without
Inversion of Control. In Proceedings of JMLC, LNCS, pages 4-22.
Springer 2006.

[33] Gregory Cooper, Shriram Krishnamurthi. FrTime: Functional Reactive
Programming in PLT Scheme. Tech. Rep. CS-03-20, Brown University

[34] Martín Abadi, Luca Cardelli. A theory of objects (book).
Springer-Verlag 1996. ISBN 0-387-94775-2

[35] Philip Wadler. Monads for Functional Programming. In J. Jeuring and E.
Meijer, editors, Advanced Functional Programming in Proceedings of the
Båstad Spring School, May 1995, Springer Verlag Lecture Notes in
Computer Science 925.

[36] Sun Microsystems Inc. Java Server Pages Technology, 2007.
See: http://java.sun.com/products/jsp/

[37] Conor McBride. Ross Paterson. FUNCTIONAL PEARL: Idioms: applicative
programming with effects. In Journal of Functional Programming.
Cambridge University Press, 2007.

80

Appendix
Contents of the Attached CD

The attached CD contains the following folders:

 source – This directory contains the source code of the F# Web Toolkit
project. The subdirectory WebToolkit.Core contains implementation of the
core components of the project including the F# to JavaScript translator
and the components for client-server integration. The subdirectory
WebToolkit.Controls contains basic set of controls, including those used in
the presented case-studies.

 fsharp – This directory contains the installation of the F# compiler in a
version that is compatible with the attached source code.

 demos – This directory contains the three case-studies presented in this
work (WSH Scripting, Symbolic Manipulations and Lecture Organizer) as
well as one additional case-study (Ajax Dictionary) and also a database with
data used by the Dictionary and Lecture Organizer samples.

 documents – Contains the text of this thesis in a PDF format.

