
SIMULA begin comment airport departure;

set q counter, q fee, q control, lobby (passenger);

counter office (clerk); . . .

activity passenger; Boolean fee paid;

begin fee paid := random (0, 1) < 0.5; . . . ;

wait (q counter) end;

activity clerk;

begin

counter: extract passenger

select first (q counter) do

begin hold (normal (2, 0.3));

if fee paid then

begin include (passenger) into: (q control);

incite (control office) end

else

begin include (passenger) into: (q fee);

incite (fee office) end;

end

if none wait (counter office);

goto counter

end

. . .

end of SIMULA;

exampleWithNumber: x

"This is a small method that illustrates every part of Smalltalk method

syntax except primitives, which aren’t very standard. It has unary, binary,

and key word messages, declares arguments and temporaries (but not block

temporaries), accesses a global variable (but not an instance variable), uses

literals (array, character, symbol, string, integer, float), uses the pseudo

variable true false, nil, self, and super, and has sequence, assignment,

return and cascade. It has both zero argument and one argument blocks. It

doesn’t do anything useful, though"

|y|

true & false not & (nil isNil) ifFalse: [self halt].

y := self size + super size.

#($a #a 'a' 1 1.0)

 do: [:each | Transcript

 show: (each class name);

 show: (each printString);

 show: ' '].

^ x < y

namespace Chrono {

 enum class Month { jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec };

 class Date {

 public: // public interface:

 class Bad_date { }; // exception class

 explicit Date(int dd ={}, Month mm ={}, int yy ={});

 // nonmodifying functions for examining the Date:

 int day() const;

 Month month() const;

 int year() const;

 string string_rep() const; //

string representation

 void char_rep(char s[], in max)

const; // C- style string

 // (modifying) functions for changing

the Date:

 Date& add_year(int n); // add n years

 Date& add_month(int n); // add n months

 Date& add_day(int n); // add n days

 private:

 bool is_valid(); // check if this Date represents a date

 int d, m, y; // representation

 };

 bool is_date(int d, Month m, int y); // true for valid date

 bool is_leapyear(int y); // true if y is a leap year

 bool operator==(const Date& a, const Date& b);

 bool operator!=(const Date& a, const Date& b);

 const Date& default_date(); // the default date

 ostream& operator<<(ostream& os, const Date& d); // print d to os

 istream& operator>>(istream& is, Date& d); // read Date from is into d

Object -oriented
programming

import java.applet.Applet;

import java.awt.Graphics;

public class HelloWorld extends Applet {

 public void paint(Graphics g) {

 g.drawString("Hello world!", 50, 25);

 }

}

1960s —Simula anticipates many aspects of

later object-oriented languages in the context

of mathematical simulations.

SIMULA begin comment airport departure;

set q counter, q fee, q control, lobby (passenger);

counter office (clerk); . . .

activity passenger; Boolean fee paid;

begin fee paid := random (0, 1) < 0.5; . . . ;

wait (q counter) end;

. . .

end of SIMULA;

1970s — In the humanistic vision of Smalltalk ,

objects become the basis of a new medium

for communication with the computer.

exampleWithNumber: x

|y|

true & false not & (nil isNil) ifFalse: [self halt].

y := self size + super size.

#($a #a 'a' 1 1.0)

 do: [:each | Transcript

 show: (each class name);

 show: (each printString);

 show: ' '].

^ x < y

1990s —UML and new software development

processes shift attention to the managerial

problem of structuring systems and teams.

class date {

 int month, day, year;

public:

 void set(int, int, int);

 void get(int*, int*, int*);

 void next();

 void print();

};

1980s —Object -oriented programming

becomes a household name. C++ and later

Java focus on practical engineering concerns.

