
1957:
Managerial origins

Inspired by the filing cabinet,

COMTRAN & FLOW -MATIC

use data description cards to

specify the structure of data

using files, records and fields.

Programming with types
Many programming languages use types to make programs easier and safer,

but they differ widely in their understanding of the notion of a type. Are types

formal mathematical entities, a clever trick, or a software engineering tool?

1903: Mathematical origins

Bertrand Russell proposes a “Doctrine of Types” to avoid

paradoxes such as the one which arises when considering

the set of all sets that do not contain themselves as elements.

1956: Hacker origins

FORTRAN variables can be in two modes: fixed -point and

floating-point, but in 1956 the term “type” is not yet used.

1974: Engineering origins

The CLU language created by Barbara Liskov introduces

abstract data types to hide the underlying representation of

data. Types do not describe the structure of data. Instead,

they are used as a checking mechanism. 1978: Meeting of ideas

The interactive theorem prover Edinburgh LCF introduces

a metalanguage (ML) for writing programs that construct

proofs. ML later combines the ideas of multiple cultures,

using types for both data structuring and type checking.

2012: New engineering directions

Types in TypeScript are used for better developer tools.

They are checked, but the type system is unsound and

cannot make any formal correctness guarantees.

1989: New mathematical directions

Theorem provers like ALF and Rocq use programming

with types to prove formal mathematical theorems. Type

checking is used to certify the correctness of proofs.

