
Programming Systems
and their Technical Dimensions

Joel Jakubovic

University of Kent

jdj9@kent.ac.uk

“Methodology of Programming Systems” (MOPS)
tutorial session at <programming> ’22

25 March, Porto, Portugal

Tomas Petricek

University of Kent

T.Petricek@kent.ac.uk

Jonathan Edwards

jonathanmedwards@  

gmail.com

Lots of theory about
programming languages…

…but how do you theorise stuff like this:

HyperCard

Smalltalk

Languages:

Systems:

Informal subset / containment relationship

(but: idealised, formalised)

(specific implementation of the language)

vs.

(Good Old?) Systems
(not to scale)

What’s currently lacking
• Systems more general than languages

• Stateful environment, GUI, interacting with system, contra
Platonically disembodied code

• Much research building programming systems

• Disconnected, informal, opaque, still art not science

• How to build on what has been done before…?

• Programming system design “black art” —> collaborative,
progressive (scientific?) endeavour?

For comparing and analysing programming systems. Influences:

• Cognitive Dimensions of Notation framework: common
vocabulary (we go beyond notation)

• Design Patterns: common vocabulary with regular format

• Chang’s Complementary Science: engage with superseded
scientific ideas to better appreciate the present paradigm

• PPIG 2019’s “Evaluating Programming System Design”:
difficulties with system-focused venues, incorporate multimedia
and interactive essays into submission evaluation

Introducing “Technical Dimensions”
of Programming Systems

http://tomasp.net/academic/papers/evaluating-systems/

Programming Languages
“Hornets’ Nest”

Java

Haskell

UNIX
Smalltalk

HyperCard

Boxer

Spreadsheets

PERIDOT

Pygmalion

???

???
???

???

SQL
C++

Rust

Dim #1

Dim #2

Desired features of the dimensions:

1. Deeper than mere “notation”

2. Qualitative yet comparable

3. Not obviously “good” or “bad”,
tradeoffs welcome

4. Span existing & possible
systems, incl. OS-like (Unix, Lisp,
Smalltalk) and PLs

5. Ideally place PLs in small region
of possibility space; reflect
similarity as interactive systems

Here Be Metaphors…
(and why they’re challenging to achieve!)

Systems often emphasise the interface;
hard to see beyond it

Nontrivial to ensure you can have
“more” or “less” of a dimension

Dimensions often inspired by standout
features of specific systems

Hard to place every system
along every dimension

This is true in terms of interaction, yet
there are still interesting differences
between languages e.g. C vs Prolog

Dimensions format

Dimension nameExtreme point Extreme point

Description of this end Description of this end

S SExample System A
does this

Example System B
does that

Running example for most dimensions: Smalltalk, Spreadsheets

The Dimensions (so far)

Interaction dimensions
Feedback Loops

Modes of Interaction

Abstraction Construction

Notation dimensions
Multiplicity of Notations

Notational Structure

Notational Uniformity

Expression Geography

“Conceptual Structure”
dimensions

Integrity-vs-Openness

Composability

Convenience

Commonality

Customisability dimensions
Staging of Customisation

Externalisability

Additive Authoring

Self-sustainability

“Errors” dimensions
Error Detection

Error Response

“Adoptability”
dimensions
Learnability

Sociability

Degrees of Automation (singleton!)

Collab doc:
http://tinyurl.com/techdims

http://tinyurl.com/techdims

Interaction Dimensions How do users manifest their ideas, evaluate the
result, and generate new ideas in response?

WideTight Feedback Loops

Tight

Wide

Gulf of Evaluation
G

ul
f o

f E
xe

cu
tio

n

Immediate Feedback
(including Direct Manipulation) Batch Mode

Spreadsheets immediately
update all dependent cells when
a value is changed; you don’t
have to manually re-run anything.

In the Unix command line, success
is “silent” so you need to manually
ask to see part of the state to check
if it did what you wanted.

Execute

Evaluate

Innermost cycle 1: Supplementary
Medium (e.g. notebook for working out
the code design). Repeat until code is
ready to submit.

Intermediate cycle 2: Static checks.
Repeat until code passes the checks.

Outermost cycle 3: Runtime observation.
Use the program, notice runtime bugs.2 2

3

1 1 1 1

Interaction Dimensions How do users manifest their ideas, evaluate the
result, and generate new ideas in response?

Abstraction ConstructionFrom Concrete From Abstract

You can write example code on example
data first, then generalise it later.

You have to start at the abstract
level and work your way down.

S SPygmalion, a classic
“Programming By
Example” system, builds
programs from concrete
example executions.

Modes of InteractionAll In One Highly Partitioned

Various feedback loops, from using the
running program, editing it and
debugging it, are available at any time.

Certain feedback loops only occur
together and not with others; they’re

partitioned into near-disjoint “modes”.

SDebugging and running are not
sharply distinguished in Jupyter
notebooks, which intersperse
code blocks with their outputs.

S Lisp systems sometimes separate
interpreted execution (which provides
interactive debugging) from compiled

execution (which doesn’t).

SSpreadsheets let you
construct a formula on
specific cells, and then
drag it over adjacent
cells to adapt it to them.

Smalltalk requires you
to write classes before
instantiating them, and
write methods on
general symbolic args.

“Conceptual Structure” Dimensions

Conceptual Integrity

How is meaning constructed? How are
internal and external incentives balanced?

Conceptual Openness

Conscientiously designed
Everything is an X
Rejects constraining norms
(Maybe) only One Way To Do It
Friction with the outside world
“Elegant” structure
Appeals to idealism

Improvised or evolved
Integrated mixtures

Compatible with existing norms
(Probably) Several Ways To Do It

Internal friction / mismatches
Leaky abstractions, edge cases

Appeals to pragmatism

Smalltalk

T

Unix
“An Operating System is a collection of
things that don’t fit into a language.
There shouldn’t be one.”—Dan Ingalls [1]
Basic Principle of Recursive Design: give
the parts (object) the same power as the
whole (computer).
Everything is an Object, automatically
persisted through the memory image.

“Unix succeeds in existing in the postmodern
reality of diverse, independently developed,

mutually incoherent language- and application-
level abstractions, by virtue of its obliviousness

to them.”—Stephen Kell [2]
Prescribes basic structure at large/coarse scale

(processes, files). At fine scale (variables,
functions), Unix says: do what you want!

Splits: "application" vs. “device” programming [2]
volatile memory vs. disk storage

[1] Design Principles Behind Smalltalk (1981) [2] The operating system: should there be one? (2013)

https://archive.org/details/byte-magazine-1981-08/page/n311/mode/2up
https://www.humprog.org/~stephen//research/papers/kell13operating.pdf

“Conceptual Structure” Dimensions How is meaning constructed? How are
internal and external incentives balanced?

FlatteningFactoring Commonality

ComposabilityLow High Convenience

Drop-down list of
all available
actions

Can build a range
of unanticipated

behaviours

HighLow
Small set of
things to
master

Can focus
on essential
complexity

Shared structure is
parcelled out and
made machine-
readable

Shared structure
remains as copies on

individual instances,
which can diverge

Array is Collection
Dict is Collection
Array.size
Dict.size

Array is Collection
Dict is Collection
Array.length
Dict.size

S S S SSpreadsheet tool
menus and
functions available
in formulas.

Spreadsheet grid
cell references in
combination with

formulas

Scheme provides
minimal primitives
from which you
build everything

Smalltalk
standard library
and built-in data
structures

Car

Van

vehicle:
Car

class: BlueCar

Red

Blue

colour:
Blue

BlueCar

BlueVan

RedCar

RedVan

“Notation” Dimensions
Overlapping

How are the different textual / visual
programming notations related?

Complementing

ExplicitImplicit Structure

Multiple notations
represent the same
thing.
Are any read-only?
How do changes to
one synchronise the
others to match?

Notations used for
different aspects of

the same thing.
Used at the same

time? One after the
other? Or selected

based on difficulty?

Implicit

Explicit

Multiplicity

Surface notation

In
te

rn
al

 n
ot

at
io

n

Sequence
editing

Sequence
rendering

(serialization)

Structure
recovery
(parsing)

Structure
editing

Smalltalk’s class
browser vs.

method editor.
Spreadsheet grid

vs. formula vs.
Macro notations.

Smalltalk method
code text editing

Smalltalk class
descriptions

Smalltalk bytecode
generation from AST

Spreadsheet grid
interactions

Together/J syncs
UML diagrams with
Java source code;
Object-Relational
Mappers sync
object and DB
representations.

“Notation” Dimensions How are the different textual / visual
programming notations related?

Expression GeographyRugged Smooth

Changing a character results in a valid
program which does something very
different.

Significant changes in a program’s
behaviour require significant

changes in its notation.

UniformityLow High
Variety of syntax / local notations. More
to learn, more complex to manipulate
programmatically, but avoids One-Size-
Fits-All restrictions

All notation built out of the same basic
pieces. Programmatic simplicity permits
e.g. macro systems. Some expressions

may feel cumbersome or verbose.

Smalltalk’s source code
syntax doesn’t need many
keywords; even if/else are

expressed as message sends.

Lisp’s notation is highly
uniform. No keywords,
no infix operators; just

nested lists of symbols.

Regex and Perl have notoriously rugged
notation, as well as Unix commands.
Exercise care typing rm -rf ./*

Direct manipulation of forms in VB or
cards in HyperCard shows continuity in

space.

Perl’s syntax contains a
wide variety of keywords
and symbols, as well as a
regex sub-language.

Customisability Dimensions Once a program exists in the system,
how can it be extended and modified?

Staging of CustomisationTransient Persistent

Changes made to the running program
are “forgotten” if it’s shut down.

Runtime changes are retained
through terminations.

Self-sustainabilityLow High

Sharp distinction between the
“implementation” level and the “user” level;
different languages, abstractions, etc.

Nothing is “baked in”; any inner
workings can be overridden or modified

from within the running system.

Smalltalk goes as far as
to let you re-define True
as False and break the

system!

Unix distinguishes between volatile
storage (processes and their data) and
non-volatile (files) throughout the system.

Smalltalk objects just live in the
“image”, which is automatically

persistent.

The compiler or interpreter for a PL (e.g. C++) is typically
not very changeable from within the code it processes.
You’re stuck with it unless you enter the separate world of
the implementation code, possibly in another language.

Customisability Dimensions Once a program exists in the system,
how can it be extended and modified?

Externalizability[1]
Low High

State references are highly fragile (e.g.
line numbers / memory addresses), or
most state can’t even be referenced at all
(hidden, internal to the runtime.)

You can export+import design
elements via “coordinates” which

are stable to design changes.

Additive Authoring[2]
Low High
Generally, you can only change system
behaviour by overwriting parts of its
specification—you need write access to
the original source code.

Anything can be overridden—back and
forth!—by adding new instructions for the

system to follow, including its behaviour.

Web stylesheets let you override
diverse display properties without

having to overwrite the CSS code.

A Smalltalk VM image is more or less an
opaque “blob” only workable via a VM.

Much of the state in a Web page can be
exported as HTML. Element IDs and CSS

classes are stable-ish coordinates.

An entire method in Smalltalk can
be overridden via inheritance, but
this does not extend to finer-grained
data or code behaviour.

[1] Software and how it lives on: Embedding live
programs in the world around them (2016)

[2] The Open Authorial Principle: supporting networks
of authors in creating externalisable designs (2018)

http://www.klokmose.net/clemens/wp-content/uploads/2016/10/ppig-2016.pdf
https://raw.githubusercontent.com/amb26/papers/master/onward-2016/onward-2016.pdf

“Errors” Dimensions What does the system consider to be an error?
How are they prevented and handled?

Error DetectionManual Auto

Human must watch for errors at runtime. The system can see that something
will lead to an error when run, and

alert you early.

Error ResponseAbort Continue
Shut Down Everything! Simplest
implementation - just halt, complain, quit.

The Show Must Go On! May ignore, seek
user assistance or automatically recover

Interlisp’s “Do What I Mean” feature attempts to
automatically correct misspellings and unbalanced

parentheses, deferring to the user if unsuccessful. Similarly,
TeX pauses and lets you patch in the correct command.

The semantics of JavaScript objects are such
that requesting an absent property returns the
special value undefined. Can’t automatically
tell whether this was because of a misspelled
key vs. intended behaviour!

One of the functions of the Haskell type
system is to constrain what’s allowed so

that e.g. misspelled names can be
automatically flagged as mistakes.

Unix performs a “core
dump” before killing an
errant process.

“Adoptability” Dimensions How does the system facilitate or obstruct
adoption by both individuals and communities?

LearnabilityGeneral audience Specialist audience

Targeted at people not already
familiar with programming

Targeted at existing
programmers or members of a
field e.g. physicists, musicians

Sociability

Social Factors: Code sharing, Q/A sites,
documentation, community rules / norms,
sense of belonging, Conway’s Law

Economic Factors: Who contributes? How
is development funded? How are money,

time, attention and people allocated? How
economical is it to adopt the system?

Boxer was aimed at children’s education
but designed to be easy for adults to
understand and work with.

Unix was designed explicitly for
programmers at a time when computers

themselves were specialised tools.

Programming systems often have a
central “guru” or “figurehead” to guide
the technical and social evolution
(Smalltalk+Alan Kay, Haskell+SPJ,
Boxer+diSessa)

Open-source projects are funded by
commercial partners or non-profits
(e.g. the Blender Foundation)

“Automation” Dimensions
What parts of program logic don’t need to be
explicitly specified?

Degrees of AutomationLow-tech High-tech

“Design-time” memory
management (e.g. in
bootloader)

Automatic reservation
of heap blocks
(malloc/free)

Garbage
collection

“Programming” “Good Old-Fashioned
AI” (GOFAI) Machine Learning?

Future work

• Thoroughly apply to example systems (incl. no-code/low-
code)

• Add new dims as needed, invite critique and contributions
from future collaborators

• Explore previously unexplored combinations

Conclusions

• Systems are a broader scope that include languages

• No agreement on how to study them

• “Technical Dimensions” are attempt to provide such a
methodology

• Open Question: can this start a productive field of
research on programming systems?

