Programming Systems

and their Technical Dimensions

“Methodology of Programming Systems” (MOPS)
tutorial session at <programming> ’22
25 March, Porto, Portugal

Joel Jakubovic Jonathan Edwards Tomas Petricek

University of Kent jonathanmedwards@ University of Kent
jdj9@kent.ac.uk gmail.com T.Petricekl@kent.ac.uk

Lots of theory about
programming languages...

-V Based on A .. (9-1)
I 1
Syntax Evaluation t—t
t = terms: .
; Tt — 1 .
X variable (E-Apm)
AX:T.T abstraction tt—1ht
tt application t, — t) .
AX. t type abstraction Vi t: V1t (E-Arp2)
t [T] type application
(AX:Ti1.t2) vo — [x = vz]t12 (E-APPABS)
v = | values: t; — ¢ (ETADE)
Ax:T.t ab\s.‘r.-.uu‘on value t) [T2] — t; [T2] b
AX.t type abstraction value
(AX. t12) [T2] — [X = T2lti2 (E-TAPPTARS)
T o= types:
X tvpe variable | Typing [-t:T
T-T tvpe of functions X:Terl
- VO rCr Mo : : (T-VAR)
vX.T universal type Cmx:T
| contexts: xiTi -t T (T-ABS)
& empty conlext I'=AX .t 2 =12
r,x:T tzrem variable biriding M-ty : Ty =T, et Ty -
X rvpe variakle binding - -App
I X ype variakble binding M- 11 2 : T1o
ILLXET T2 B
(T-TABS)
' AX.t2 : VX. T
r'_t[: vx.Tl_) Pp—
- (T-TArr)
| R o [Tz] = [X — TZ]TI2
L J

Figure 23-1: Polymorphic lambda-calculus (System F)

but how do you theorise stuff like this:

% File Edil Fonl Slyle InitialReview Decompose Compose Debug FinalReview

gHiA g)System Browserf i LER R S RO R 3818) O] Design Notebook | =
3 jCollactions—oequely ---=~----=== f-=-=--=--=-= 3 e :
g8 Collgctlons-Taxt |Interval accasing collect: iz . % Button ‘ositive]’aVlt}'
A Collectiont“Arrave Unkedlist copving do: 3 % : -. _—)
,:5 iy i Collectione-Streamy MappedCollection | acding dosandBetweesnDo | ‘ Table of Com)
4010 d] GoMection:=Supporf O-deredCollactian | removing promoreFirstSuchT) | {:] c’\/ Group Pasitive Acceleration
3 210) Graphizs-Primitivad SortecColaztion [anumarating — { raversa ' . , L i I
3810 Grapnics-Display = -========- private | reversaRa. (_Show Me) Coemposed in project launch 8/14/52 938 AM
:‘f:‘:ﬁ::'ff_fj'fg‘,’ : select:jForm Editor FOIRE 504 O Appearance @ Behavior O How it works
1 v s 5 0 } BPEEEEEEETTI——" o e g‘ > -
fia p qg @ Mousellp () Mousestilllown () MouseEnter [24% || 215
3 . ~ v . 2
;o] collect: aBlock < & Tr iggers O MouseDown O Mouselllithin) Mouseleave on
: "Ewainate aliock with anch of my elements o8 the areument. (] 1 p- ,!9. [Accelerated Motioa 1 S
resalting velues info o collection *hat ir {ike me. Answer witi s Actionsfor |Stop increesing 1 Iy a4
: collection. Cverride superclass in vrder 20 85w add:, mol af.put. s - ’ this T:i;gt!! Dsplm, a Value!
BiEe # - Displaya Value 1
g | newCollectior | g2 ntas =
3K 3 £ : ‘ Variables f tone. Dirplay a Valuesivanzed to display) il it
0 newCollection « salf spacias new. ANIADIES 10N |15y tion Displara Valusdnumbes to displayli] s e
salf do: [teach | nawColection add: (aD ocx valua: zach)] | this Tr:ggcr welocity. Display a Valse:marbes o disglay) 1 - . 186
tnewCol wction .{}Enlb
- Behavicr on
Usar ll|lh1lL’!!l —
— b e top of Gyl kit "Fopilive Gravd y ko goed (gl "Fuzion’ — — Bave Top of Chjeet 1,1 8 17
Paragraph>icnaracterBlockAatPeint: B the 0t of gord Dutton "Pusitive Gravdy” mho goed (eld " Dicye over Save the bl of utton 1,1 :

Para qra ph>:mouseSelact:to:
CodeContro lsr(f‘oragrophﬁjiw') sprocessRedBurtton

choose eroser (ool — Clear the Graplies 1
dolhnu “Hedoor A" Clesr the Gaphies 2

CodeControler(Paragraphtditor)> ptoceRsMo.ﬂcht ons dollenn "Clear Picture” — Clear the Graphics 3

[CodeCantroler{ParagraphEditor)> reontrolActivity

ihng vert [~20

1

choace drowse ool — Clear the Graghias 4 1
1

i

1
‘N

CodeCantro ler{Cantrollary> >oontrod aop yor eard el "Posuion” tnro locarion — Aceedeare] Metlon 1 ity
Pt cud Bedd "Btutins velocity” nto velocky = Accedersted Motioa 12 .

contralActivity n):;‘! Witk tmes1 10 999 -I«nhle'mdMoli:-n L3 i o

2 = P A el o i 700 velordy = Acoeltatel Motaon 14 3 SEe
feif scrollbarContainiCurso prrp—th ”k hw* —A:nha)ﬂblu(wn 15 i
ifTrue = 2 Yl 10 ud

Ceaated 7/51/%2 by Mark Gumdial in project Gaavniey Sl ation

SEEEEE ST S S

[s=if scroll)
ifralse:

—

[self processkeyho| [1{0bsoR 5727
self pm:a”Mog;aq [Filene J<Robion>2F>EcrasnForm, st

il [FllaneJ<RobzonsSFCcraerFormChanges.st -
i clueSurrg ‘3 IRS07 corner: [Filene J<Robson>SFrwWordGraphics, form "~
B scrollBar]’anmyyn 2 | esecccemcees . _ ;

o e3a’’0
] narker - S s,
Fecteancle fromllser wrigin =

P] savedArs
i caragrap
startBlod Eoreentorm setFullFage Width,

ﬁ Smalltalk

Informal subset / containment relationship

| numbers |
numbers := Set new.

Languages: 10 timesRepeat: [numbers add: 100 atRandom].

numbers inspect.l

VS

Systems:

(but: idealised, formalised)

" Pharo

Playground
Random>>#, = Y

Scoped Variables Hisa Page
- Pkol 5 o @ Random .| | numbers |
g s @ sharedRandom . J| numbers := Set new.
1 Random-Core - 10 timesRepeat: [numbers add: 100 atRandom].
[J Random-Tests numbers ‘inspect.l
» [E1 RecentSubmissions
3 Refactoring-Changes
» [E1 Refactoring-Core
» [£1 Refactoring-Critics
[E1 Refactoring-Environmen :
[Refactoring-Tests-Chang . debug it Bytecode
> B Refactoring-Tests-Core *_Hier. Stack Proceed (mRestart M Into Over s Through

nextInt: anInteger UndefinedObject Dolt
CompiledMethod valueWithReceiver:arguments:

(specific implementation of the language)

(Good Old?) Systems

(not to scale)

Wolfram
Mathematica

i#. ‘

{ N\ -
Microsoft’)
VisualBasic'

fows cmn wahe arcs with the oroceduras ARCRICHT and ARCLETT . i ™
===} . LabVIEW RBASE
i
@ ar'e 3 orceedures that draw Dictures using eres: H
et ¢]|
T)
el UNREAL
- B () GODOT
¢ f i’
. b i
. - / :) -
- Game @ nit

o —_—
[} .. T - . e -,\
]
I\ —
£ ™)
Y
| I
Try rtutei Fallawl ne L s
i\ he o cs 1
[! rame 1.4 I_rk R)

What'’s currently lacking

* Systems more general than languages

o Stateful environment, GUI, interacting with system, contra
Platonically disembodied code

* Much research building programming systems
* Disconnected, informal, opaque, still art not science
« How to build on what has been done before...?

* Programming system design “black art” —> collaborative,
progressive (scientific?) endeavour?

Introducing “Technical Dimensions”
of Programming Systems

For comparing and analysing programming systems. Influences:

 Cognitive Dimensions of Notation framework: common
vocabulary (we go beyond notation)

* Design Patterns: common vocabulary with regular format

 Chang’s Complementary Science: engage with superseded
scientific ideas to better appreciate the present paradigm

* PPIG 2019’s “Evaluating Programming System Design”’:
difficulties with system-focused venues, incorporate multimedia
and interactive essays into submission evaluation

http://tomasp.net/academic/papers/evaluating-systems/

Here Be Metaphors...

Dim #1 2?77
N o
227
o
2?7?
o
o PERIDOT D|m _
Boxer &
Pygmalion ® 4
o Smalltalk v
- UNIX

297 \

Spreadsheets saL® €80 ;
o Haskell

Programming Languages

“Hornets’ Nest”

Desired features of the dimensions:

(and why they’re challenging to achieve!)

1. Deeper than mere “notation”

Systems often emphasise the interface;
hard to see beyond it

2. Qualitative yet comparable

Nontrivial to ensure you can have
“more” or “less” of a dimension
3. Not obviously “good” or “bad”,
tradeoffs welcome
Dimensions often inspired by standout
features of specific systems
4. Span existing & possible
systems, incl. OS-like (Unix, Lisp,
Smalltalk) and PLs
Hard to place every system
along every dimension

5. ldeally place PLs in small region
of possibility space; reflect
similarity as interactive systems

This is true in terms of interaction, yet
there are still interesting differences
between languages e.g. C vs Prolog

Dimensions format

Extreme point Dimension name Extreme point
Description of this end Description of this end
Example System A Example System B
does this does that

Running example for most dimensions: Smalltalk, Spreadsheets

Collab doc:

The Dimensions (so far) http://tinyurl.com/techdims

Interaction dimensions | Customisability dimensions

Feedback Loops Staging of Customisation
Modes of Interaction Externalisability
Abstraction Construction Additive Authoring

Self-sustainability

Notation dimensions
Multiplicity of Notations
Notational Structure
Notational Uniformity

“Conceptual Structure”|| “Adoptability”
dimensions dimensions

Integrity-vs-Openness | Learnability

I Sociabilit
Expression Geography COmPOS.ablllty y
Convenience
“Errors” dimensions Commonality

Error Detection
Error Response Degrees of Automation (singleton!)

http://tinyurl.com/techdims

How do users manifest their ideas, evaluate the

I nte raCt i 0 n D i m e n S i 0 n S result, and generate new ideas inresponse?

Gulf of Evaluation

Tight Feedback Loops Wide

Tight Immediate Feedback
(including Direct Manipulation) Batch Mode
In the Unix command line, success
is “silent” so you need to manually
ask to see part of the state to check
if it did what you wanted.

Spreadsheets immediately
update all dependent cells when
a value is changed; you don’t
have to manually re-run anything.

e e e e e e e e o e o e o o o - - - — — — — — — — —

Wide

Gulf of Execution

Execute Innermost cycle 1: Supplementary

— Medium (e.g. notebook for working out

the code design). Repeat until code is
____— ready to submit.

Intermediate cycle 2: Static checks.
@ @ @ @ Repeat until code passes the checks.
¢ ¢ ¢ ¢ — Outermost cycle 3: Runtime observation.

—4——@ —4_—@ Use the program, notice runtime bugs.
— @

Evaluate

How do users manifest their ideas, evaluate the

I nte raCt i 0 n D i m e n S i 0 n S result, and generate new ideas inresponse?

From Concrete Abstraction Construction From Abstract
You can write example code on example You have to start at the abstract
data first, then generalise it later. level and work your way down.

Pygmalion, a classic Spreadsheets let you Smalltalk requires you

“Programming By construct a formula on to write classes before

Example” system, builds specific cells, and then Instantiating them, and

programs from concrete drag it over adjacent write methods on

example executions. cells to adapt it to them. general symbolic args.

All In One Modes of Interaction Highly Partitioned
Various feedback loops, from using the Certain feedback loops only occur
running program, editing it and together and not with others; they’re
debugging it, are available at any time. partitioned into near-disjoint “modes”.

Debugging and running aré not Lisp systems sometimes separate

sharply distinguished in Jupyter interpreted execution (which provides

notebooks, which intersperse interactive debugging) from compiled

code blocks with their outputs. execution (which doesn’t).

How is meaning constructed? How are
internal and external incentives balanced?

“Conceptual Structure” Dimensions

Conceptual Integrity Conceptual Openness

Smalltalk

“An Operating System is a collection of
things that don’t fit into a language.
There shouldn’t be one.” —Dan Ingalls [1]

Basic Principle of Recursive Design: give
the parts (object) the same power as the

Unix

“Unix succeeds In existing in the postmodern
reality of diverse, independently developed,
mutually incoherent language- and application-
level abstractions, by virtue of its obliviousness
to them.” —Stephen Kell [2]

Prescribes basic structure at large/coarse scale

(processes, files). At fine scale (variables,
functions), Unix says: do what you want!

whole (computer).

Everything is an Object, automatically

. . Splits: "application" vs. “device” programming [2
persisted through the memory image. P PP Prog g 2]

volatile memory vs. disk storage

Conscientiously designed
Everything is an X

Rejects constraining norms
(Maybe) only One Way To Do It
Friction with the outside world
“Elegant” structure

Appeals to idealism

Improvised or evolved
Integrated mixtures

Compatible with existing norms
(Probably) Several Ways To Do [t
Internal friction / mismatches
eaky abstractions, edge cases
Appeals to pragmatism

[1] Design Principles Behind Smalltalk (1981) [2] The operating system: should there be one? (2013)

https://archive.org/details/byte-magazine-1981-08/page/n311/mode/2up
https://www.humprog.org/~stephen//research/papers/kell13operating.pdf

“Conceptual Structure” Dimensions

L ow Composability High

Drop-down list of Can build a range

all available of unanticipated
actions behaviours
Spreadsheet tool Spreadsheet grid
menus and cell references in
functions available combination with
INn formulas. formulas
Factoring
Cglo ur:fvehicle: Shared structure is
ue | Car parcelled out and
made machine-
readable
Red Car Array is Collection
Dict is Collection
Blue Van Array.size

Dict.size

Commonality

Convenience

How is meaning constructed? How are
internal and external incentives balanced?

Low High
Small set of Can focus
things to on essential
master complexity

Scheme provides
minimal primitives
from which you
build everything

Flattening

Shared structure

remains as copies on

iIndividual instances,
which can diverge

: 1] :

. : 1] .
Array.length
Dict.size

Smalltalk
standard library
and built-in data
structures

class: BlueCar

BlueCar
BlueVan
RedCar

RedVan

“Notation” Dimensions

Overlapping Multiplicity

Multiple notations
represent the same
thing.

Are any read-only?
How do changes to
one synchronise the
others to match?

Together/J syncs
UML diagrams with
Java source code;
Object-Relational
Mappers sync
object and DB

Smalltalk’s class

method editor.

Spreadsheet grid
vs. formula vs.
Macro notations.

How are the different textual / visual
programming notations related?

Complementing

Notations used for
different aspects of
the same thing.
Used at the same
time? One after the
other”? Or selected

browser vs.

representations. based on difficulty?
implicit Structurs Explicit
mplicit Sequence | Smalltalk method | S€AUENCe gmalitalk bytecode
editing | code text editing rendening - generation from AST
(serialization)
Structure
Explicit recovery Smalltalk class Structure | Spreadsheet grid
& (parsing) descriptions editing Interactions

14 -) - - How are the different textual / visual
N Otat I 0 n D I m e n S I O n S programming notations related?

Expression Geography

Rugged Smooth
Changing a character results in a valid Significant changes in a program’s
program which does something very behaviour require significant
different. changes in its notation.

Regex and Perl have notoriously rugged Direct manipulation of forms in VB or

notation, as well as Unix commands. cards in HyperCard shows continuity in

Exercise care typing rm -rf ./* space.

Low Uniformity High
Variety of syntax / local notations. More All notation built out of the same basic
to learn, more complex to manipulate pieces. Programmatic simplicity permits
programmatically, but avoids One-Size- €.g. macro systems. Some expressions
Fits-All restrictions may feel cumbersome or verbose.

Perl’s syntax contains a Smalltalk’s source code Lisp’s notation is highly
wide variety of keywords syntax doesn’t need many uniform. No keywords,
and symbols, as well as a keywords; even if/else are no infix operators; just

regex sub-language. expressed as message sends. | | nested lists of symbols.

Once a program exists in the system,

CUStOm Isabl I |ty Di menSIOnS how can it be extended and modified?

Staging of Customisation

Transient Persistent
Changes made to the running program Runtime changes are retained
are “fOrgOtten” if it’s shut down. ’[hrough terminations.
Unix distinguishes between volatile Smalltalk objects just live in the
storage (processes and their data) and “image”, which is automatically
non-volatile (files) throughout the system. persistent.
Low Self-sustainability High
Sharp distinction between the Nothing is “baked in”; any inner
“implementation” level and the “user” level; workings can be overridden or modified
different languages, abstractions, etc. from within the running system.

The compiler or interpreter for a PL (e.g. C++) is typically Smalltalk goes as far as
not very changeable from within the code it processes. to let you re-define True
You’re stuck with it unless you enter the separate world of as False and break the
the implementation code, possibly in another language. system!

Customisability DIMENSIONS et sxonses and madinds

I ilitv[1] :
Low Externalizability High
State references are highly fragile (e.g. You can export+import design
line numbers / memory addresses), or elements via “coordinates” which
Most state can’t even be referenced at all are stable to design changes.

(hidden, internal to the runtime.)
Much of the state in a Web page can be

A Smalltalk VM image is more or less an exported as HTML. Element IDs and CSS
opaque “blob™ only workable via a VM. classes are stable-ish coordinates.
Additive Authoringl?! .
Low J High
Generally, you can only change system Anything can be overridden—back and

behaviour by overwriting parts of its
specification—you need write access to
the original source code.

forth! —by adding new instructions for the
system to follow, including its behaviour.

An entire method in Smalltalk can
be overridden via inheritance, but
this does not extend to finer-grained
data or code behaviour.

Web stylesheets let you override
diverse display properties without
having to overwrite the CSS code.

[1] Software and how it lives on: Embedding live [2] The Open Authorial Principle: supporting networks
programs in the world around them (2016) of authors in creating externalisable designs (2018)

http://www.klokmose.net/clemens/wp-content/uploads/2016/10/ppig-2016.pdf
https://raw.githubusercontent.com/amb26/papers/master/onward-2016/onward-2016.pdf

14) - - What does the system consider to be an error?
E rrO rS D I m e n S I O n S How are they prevented and handled?

Manual Error Detection Auto
Human must watch for errors at runtime. The system can see that something

will lead to an error when run, and
The semantics of JavaScript objects are such alert you early.

that requesting an albsent property returns the

One of the functions of the Haskell type
special value undefined. Can’t automatically

system is to constrain what’s allowed so

tell whether this was because of a misspelled that e.g. misspelled names can be
key vs. intended behaviour! automatically flagged as mistakes.
Error Response .
Abort P Continue
Shut Down Everything! Simplest The Show Must Go On! May ignore, seek
implementation - just halt, complain, quit. user assistance or automatically recover
: » Interlisp’s “Do What | Mean” feature attempts to
Unix performs a “core

automatically correct misspellings and unbalanced
parentheses, deferring to the user if unsuccessful. Similarly,
TeX pauses and lets you patch in the correct command.

dump” before killing an
errant process.

How does the system facilitate or obstruct

“AdOptabI I ity” Dl menSK)nS adoption by both individuals and communities?

L bilit L .

General audience carnabiity Specialist audience
Targeted at existing

Targ?ted ,at people notlalready programmers or members of a
familiar with programming field e.g. physicists, musicians
Boxer was aimed at children’s education Unix was designed explicitly for
but designed to be easy for adults to programmers at a time when computers
understand and work with. themselves were specialised tools.

Sociability

Social Factors: Code sharing, Q/A sites, Economic Factors: Who contributes? How

documentation, community rules / norms, is development funded? How are money,

sense of belonging, Conway’s Law time, attention and people allocated? How

, economical is it to adopt the system?
Programming systems often have a

central “guru” or *figurehead” to guide Open-source projects are funded by
the technical and social evolution commercial partners or non-profits
(Smalltalk+Alan Kay, Haskell+SPdJ, (e.g. the Blender Foundation)

Boxer+diSessa)

What parts of program logic don’t need to be

“AUtOmathn” DlmenSIOns explicitly specified?

Degrees of Automation

Low-tech High-tech
“Design-time” memory Automatic reservation Garbage
management (e.g. in of heap blocks collection
bootloader) (malloc/free)

“Good Old-Fashioned

“Programming” Al” (GOFAI)

Machine Learning?

Future work

 Thoroughly apply to example systems (incl. no-code/low-
code)

e Add new dims as needed, invite critique and contributions
from future collaborators

* Explore previously unexplored combinations

Conclusions

 Systems are a broader scope that include languages
e No agreement on how to study them

e “Technical Dimensions” are attempt to provide such a
methodology

e Open Question: can this start a productive field of
research on programming systems?

